JP3924059B2 - 複数の転炉を用いる製鋼方法 - Google Patents

複数の転炉を用いる製鋼方法 Download PDF

Info

Publication number
JP3924059B2
JP3924059B2 JP36955597A JP36955597A JP3924059B2 JP 3924059 B2 JP3924059 B2 JP 3924059B2 JP 36955597 A JP36955597 A JP 36955597A JP 36955597 A JP36955597 A JP 36955597A JP 3924059 B2 JP3924059 B2 JP 3924059B2
Authority
JP
Japan
Prior art keywords
refining
slag
converter
dephosphorization
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36955597A
Other languages
English (en)
Other versions
JPH11193414A (ja
Inventor
秀栄 田中
喜美 小松
一郎 菊地
悟史 小平
学 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP36955597A priority Critical patent/JP3924059B2/ja
Publication of JPH11193414A publication Critical patent/JPH11193414A/ja
Application granted granted Critical
Publication of JP3924059B2 publication Critical patent/JP3924059B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉溶銑を一の転炉において脱燐精錬を行い、この脱燐精錬された溶銑を他の転炉において脱炭精錬を行い、円滑に連続した生産性の高い溶銑からの製鋼方法に関する。
【0002】
【従来の技術】
伝統的転炉製鋼法においては、同一の転炉において高炉溶銑の脱燐精錬と脱炭精錬とを行なって、製鋼作業を行っていた。しかし、近年の鋼材の品質に対する要求が高くなる一方、連続鋳造の拡大や、真空脱ガス、取鍋精錬等の溶鋼の二次精錬が普及するに伴い、転炉における出鋼温度が上昇し、転炉に於ける脱燐能力が低下してきた。この理由は、脱燐反応は高温ほど不利に進行するからである。
【0003】
そこで、転炉に装入する溶銑を予め処理して、特に燐(Pとも記述する)成分をある程度除去してから転炉に装入する溶銑予備処理法が発展してきた。この方法は例えば、溶銑鍋又は一の転炉等において溶銑の脱燐精錬を行ない、この脱燐された溶銑を他の転炉に移動して脱炭精錬を行なう製鋼法である。
【0004】
かかる技術として、特開平2−200715号公報、特公平2−14404号公報、特公昭61−23243号公報の提案がある。また、本願の発明者も既に従来の製鋼工場を改造し、複数の転炉のそれぞれの炉前作業床に作業床開口部を設け、一の転炉で溶銑の脱燐精錬をした溶湯を受湯鍋に受け、この受湯鍋を前記作業床開口部を通して他の一の転炉に運搬し、この転炉に装入し、ここで脱炭精錬を行なう精錬方法を開発している(特開平6−41624号公報)。
【0005】
【発明が解決しようとする課題】
上記製鋼方法において、一の転炉等で溶銑の脱燐精錬を行ない直ちに出湯し、これを他の転炉等で少なくとも脱燐精錬時間以内での時間内で脱炭精錬することが円滑な製鋼作業上必要である。
【0006】
本発明前における340ton転炉における脱燐精錬の概要を図9及び図10に示す。上記溶銑の脱燐精錬は低温(1250〜1400℃)で行われており、また、溶銑の脱燐精錬のためにスラグのFeO(5〜10%)を高くするため、スラグがフォーミングしており、直ちに出湯すると、炉口からスラグが流出し、又は受湯鍋に大量のスラグが流入するので、図に示す様に鎮静時間が4分程度を要していた。そのため、脱燐処理時間は、例えば平均約36分であった。
【0007】
一方、この脱燐溶銑の他の転炉における脱炭精錬時間は種々の改良により平均29分、スラグコーテングをしない場合には27分である。従って、脱炭精錬炉は少なくとも7分、最大9分遊び時間が発生し、従ってその分製鋼能率が低下していた。この7分間の遊び時間を短縮すると約20%の生産向上が得られる。また、この遊び時間において脱炭精錬炉の炉内温度の低下があり、煉瓦の損耗等も発生し、転炉寿命の低下ももたらしていた。
【0008】
そこで、本発明は、脱燐精錬時間を低下させ、脱炭精錬炉の遊び時間を無くし、円滑な製鋼作業を確保し、更に製鋼能率の向上を目的とする。上記脱燐精錬において溶鋼のP含有量を脱炭精錬における復燐量と粗鋼成分のP含有量(所謂規格値、通常0.02wt%以下)を考慮して精錬し、脱炭精錬においては実質的に脱燐精錬をせず、製鋼能率の向上を目的とする。
【0009】
また、上記製鋼方法で発生するスラグは減少しているが、更に減少することが望ましい。脱炭精錬する溶銑が既に十分脱燐精錬されてれれば、更に脱燐する必要はないのでスラグ量を極小化できる。また、高価なマンガン合金を節約するため、脱炭精錬において可能な範囲でマンガン鉱石を装入し、これを還元して溶鋼のMn含有量を高めることが一部実施されているが、スラグを極小化することによりマンガン鉱石中のMnの溶鋼への還元歩留りを極限まで向上させることが可能となる。
【0010】
【課題を解決するための手段】
上記課題について種々研究した結果、下記の発明をするに至った。
第1の発明は、下記の工程を備えたことを特徴とする脱燐溶銑を使用する複数の転炉を用いる製鋼方法である。
(a)一の転炉において溶銑の珪素(以下Siと記する)含有量が0.3wt%以下の溶銑を装入して脱燐精錬するに際して、終点の燐含有量([P]f wt%)が下式(1) に従うように精錬し、
[P]f wt%≦[P]k wt%−Δ1 −Δ2 ---(1)
ここで、[P]k wt%: 粗鋼で要求されているP含有量(鋼の成分規格値)
Δ1:この溶銑を脱炭精錬する他の転炉において、先行する脱炭精錬後の炉内に残留したスラグ量による燐の増加量(wt%)、
Δ2:取鍋における溶鋼の復燐量(wt%)
(b)前記脱燐精錬された溶銑を他の転炉に装入し、実質的に造滓材を装入せず脱炭精錬を行い、
(c)前記脱炭精錬された溶鋼と、脱炭精錬中に増加したスラグ量のみを必要に応じて前記他の転炉から出鋼し、又は排出する。
【0011】
第2の発明は、前記[P]f wt%が、下式(2) に従うように脱燐精錬することを特徴とする複数の転炉を用いる転炉製鋼方法である。
[P]f wt%≦ [P]k wt%−Δ1 −Δ2 −Δ3---(2)
ここで、Δ3 : 当該脱燐精錬で発生したスラグが、前記他の転炉に混入することによる復燐量(wt%)
【0012】
第3の発明は、前記溶銑のSi含有量が0.3wt%を超える場合には、予め脱珪素処理を行い、Si含有量を0.3wt%以下とすることを特徴とする複数の転炉を用いる製鋼方法である。
【0013】
第4の発明は、前記脱珪素処理を、脱燐精錬を行う転炉でSi含有量を0.3wt%以下に精錬し、生成したスラグを排出し、引き続いて脱燐精錬を行うことを特徴とする複数の転炉を用いる製鋼方法である。
【0014】
第5の発明は、前記脱炭精錬を行う転炉において、更にマンガン鉱石を装入し、終点における溶鋼のマンガン(以下Mnと記する)含有量を最大、粗鋼で要求されているMn規格値の上限以内においてMn含有量を高めることを特徴とする複数の転炉を用いる製鋼方法である。
【0015】
第6の発明は、前記マンガン鉱石の装入に際し、マンガン鉱石に含まれているシリカ(SiO2 )に対して所定の塩基度(CaOwt%/SiO2 wt%)となるように更にCaOを含む造滓材を装入することを特徴とする複数の転炉を用いる製鋼方法である。
【0016】
第7の発明は、前記脱炭精錬を行う転炉において、前記脱燐精錬された溶銑の装入に先立ち、スラグ固化剤を装入することを特徴とする複数の転炉を用いる製鋼方法である。
【0017】
第8の発明は、前記スラグ固化剤が軽焼ドロマイト及び/又は生ドロマイトであることを特徴とする複数の転炉を用いる製鋼方法である。
【0018】
第9の発明は、前記脱燐精錬を行う転炉に、溶銑を装入するに先立ちスクラップの全量を装入することを特徴とする複数の転炉を用いる製鋼方法ある。
【0019】
第10の発明は、前記スクラップの一部又は全部を脱燐精錬及び/又は脱炭精錬で生成したスラグの磁選屑とすることを特徴とする複数の転炉を用いる製鋼方法である。
【0020】
第11の発明は、前記脱炭精錬を前記脱燐精錬時間以内において行うことを特徴とする複数の転炉を用いる製鋼方法である。
【0021】
【発明の実施の形態】
以下、溶銑の転炉における脱燐精錬の概要を図9において説明する。図9は、例えば溶銑340tonの転炉2における溶銑4の脱燐精錬の状況を概念的に示す。溶銑装入後、ランス12から酸素を吹錬し、所定量の焼石灰等を装入し、CaO、SiO2 、FeO等を主成分とするスラグ6を生成させ、溶銑から燐を除去する。
【0022】
溶銑の脱燐精錬が終了すると倒炉して出鋼口8を介して取鍋に出湯を行う。従来例若しくは本発明前の溶銑の脱燐精錬の概要を図10に示す。スクラップ装入に続いて溶銑340tonを装入後、造滓材としての焼石灰(6ton/ch)、ホタル石(0.6ton/ch)、都合により生ドロマイト等を装入しながら、酸素吹錬を約13分間行う。
【0023】
その後、溶銑とスラグの分離を行うためリンスを3分間程度行う。その後、従来はスラグフォーミングの鎮静化のため約4分を待ち、その後出湯する。図に示すように脱燐精錬時間は約36分である。一方、この脱燐精錬を脱炭精錬する時間は約29分であり、脱炭精錬する転炉(以下、脱炭転炉という)は約7分間の非稼働時間があった。
【0024】
本発明における340ton転炉における脱燐精錬の概要を図1に、また、Si含有量と全脱燐精錬時間との関係を図3に、精錬時間配分を図4に示す。図3に示すように、従来例においては高炉から出銑される溶銑のSi含有量は0.3〜0.5wt%程度であったが、本発明では0.3wt%以下の溶銑を使用するので、脱燐精錬時間は約32分以下となり、従来の36分に対して約10%の生産性の向上が得られる。
【0025】
最近の高炉操業においては溶銑のSi含有量は0.3wt%以下であるので、この問題はない。しかし、非定常的な操業(高炉休風後等)ではSiが0.3wt%を超えることがあるが、このような場合には鋳床脱珪、溶銑鍋脱珪、更には脱燐精錬を行う転炉における脱珪精錬(酸素吹錬による)等で予め脱珪素を行なうことができる。
【0026】
本発明ではSi0.3wt%以下の溶銑を使用するため、スラグ量は図6に示すように、従来(40〜50kg/ton)より少なく(20〜30kg/ton以下,図6参照)、精錬中におけるスラグフォーミングも少ないので鎮静時間(従来4分)を要せず、図1に示すように、脱燐精錬時間は従来の36分から32.2分に短縮でき、脱炭精錬時間により近くなった。
【0027】
所で、脱燐精錬における終点のP含有量は、他の転炉における脱炭精錬において下記の原因により変化する。
(1)この溶銑を脱炭精錬する他の転炉において先行する脱炭精錬後の炉内に残留したスラグ量
(2)及び、出鋼後における取鍋における復燐量
(3)当該脱燐精錬で発生したスラグが他の転炉に混入することによる復燐量
【0028】
以下、順にこれらの影響を考察する。
以下の考察に次の記号を使用する。
[P]f wt%:一の転炉における脱燐精錬の終点の燐含有量
[P]k wt%:粗鋼で要求されているP含有量(鋼の成分規格値)
Δ1 :この溶銑を脱炭精錬する他の転炉において先行する脱炭精錬後に炉内に残留させたスラグ量による燐の増加量(wt%)
Δ2 :取鍋における復燐量(wt%)
Δ3 :当該脱燐精錬で発生したスラグが、前記他の転炉に混入することによる復燐量(wt%)
【0029】
Figure 0003924059
【0030】
脱燐平衡条件は、(P)0 / [P]0 =k( 約200)、(P)2/[P]2 =k( 約200)、脱炭精錬における燐のマスバランスは、
入り側= 1000 *X1 *[P]1/100 + X1 *Y0 *(P)0/100
出側 = 1000 *X2 *[P]2/100 + X2 *Y2 *(P)0/100
上記式において*は乗算を意味する。ここで、溶銑量と溶鋼量は略等しいのでX1 =X2 とすると、
[P]2 =(1000 *[P]1+Y0 *k*[P]0)/(1000 +Y2 *k)
ここで、Y2 = 30 kg/ton , Y0 = 15 kg/ton, k= 200 の場合は、[P]2 = (0.14*[P]1+ 0.42 *[P]0)
【0031】
例えば、[P]1 = 0.1wt%で、[P]0 = 0.010wt%, 0.015 wt%, 0.020 wt%の場合には、kが一定であれば、それぞれ[P]2 = 0.018wt%, 0.020 wt%, 0.022 wt%となる。なお、Y2 が0の場合には、[P]2 = 0.014 wt%である。
【0032】
以上の計算から明らかなように、脱炭炉に残留スラグがない場合には、[P]2 = 0.014wt%であるが、残留スラグが 15 kg/ton である場合には[P]2 は大きな影響を受ける。この例においては、例えば、[P]kwt%= 0.020wt%の場合には、[P]f wt%は0.016 wt%以下、0.014 wt%以下、0.012 wt%以下となる。即ち、Δ1 = 0.004wt%、0.006 wt%、0.008 wt%である。このことから、 脱燐精錬においてはΔ1に相当する量だけ低めに脱燐精錬する必要がある。
【0033】
Δ2 は取鍋における復燐量であり、取鍋内に転炉から流出したスラグ組成、量、鋳造までの時間、出鋼時に添加した保温材の種類と量等の影響により変化するので、予め計算することはできないが、上記工程が一定である場合には経験的に予想することができる。経験上、Δ2 は0.002 wt%以下である。
【0034】
Δ3 は当該脱燐精錬で発生したスラグが、前記他の転炉に混入することによる復燐量であるが、予め推定することが困難である。しかし、一定の作業においては経験上 0.002wt%以下である。以上の点を予め考慮して、[P]f wt%を下式により定めて当該脱燐精錬を行うことにより、本発明を実施することができる。
【0035】
[P]f wt%≦[P]kwt%−Δ1 −Δ2 ---(1)
脱燐精錬のスラグが脱炭炉に混入する場合には、
[P]f wt%≦[P]kwt%−Δ1 −Δ2 −Δ3---(2)
【0036】
本発明においては、上記脱燐精錬によりPは脱炭炉における復燐を考慮して少なくとも通常粗鋼で要求されている(規格値)0.02wt%以下に精錬される(図6参照)。このため脱炭精錬においてはPを精錬する必要がない。
【0037】
なお、本発明における脱燐精錬においては、十分な脱燐精錬と精錬時間の短縮を確保するため、スラグの塩基度を1.5〜5程度とする。必要によりスラグフォーミングを抑制するため、コークスを0.5ton/ch程度装入する。その装入方法は、1回に全量装入してもよいが、例えば1回の装入量を1〜4分間に渡って分割して装入することが望ましい。
【0038】
また、通常の脱燐精錬においては溶銑中のPがスラグ中のFeOと反応してスラグに吸収される。そこで、脱燐精錬を促進するためにはスラグ中のFeO濃度を高くする。このため、吹錬中期に鉄鉱石或いはミルスケールを装入する(図1参照)。また、スラグのFeOが高いと、酸素吹錬終了後においてスラグフォーミングが大きくなる。そこで、本発明においては、酸素吹錬終了時刻の5分間以前において終了しているように鉄鉱石装入を行う。
【0039】
次に、図2に脱炭精錬の状況を示す。この精錬においては主に脱炭精錬を目的とするため、吹錬する酸素量を多くする。溶銑のP含有量は少なくとも規格値(0.02wt%)以下となっているため、従来多く使用している焼石灰等の造滓材を一連の吹錬の最初のチャージ以外は原則として装入しない。従って、炉内に生成するスラグ量は図6に示すように10〜30kg/tonと少ない。しかも、出鋼後において原則として炉内に残留させるため排出するスラグ量は従来と比較し大きく減少する(図6参照)。
【0040】
本発明における脱炭精錬においては、マンガン鉱石を可能な範囲で装入する。高炉溶銑のMn含有量は通常0.2〜0.3wt%であり、脱燐精錬された溶銑のMn含有量は、通常0.05〜0.15wt%である。また、脱炭精錬においても同程度である。一方粗鋼のMn含有量(規格値)は鋼種によるが、低炭素鋼では例えば0.40〜0.60wt%、高マンガン鋼では例えば1.0〜1.2wt%である。そこで通常は出鋼時において高価なマンガン合金を添加して規格値とする。
【0041】
本発明では脱炭精錬において脱燐精錬をする必要がないのでスラグを極小化できる。そこで、本発明ではマンガン鉱石(例えば、Mn約50wt%,Fe約10wt%以下,SiO2 約10wt%以下)を装入する。マンガン鉱石を精錬中に添加すると効率よく還元され、溶鋼のMn含有量を最大、粗鋼のMn含有量の上限値まで高めておくことができ、より経済的に製鋼作業が可能となる。
【0042】
しかし、マンガン鉱石にはSiO2 を含有しているので、これを溶解し、スラグの塩基度(CaOwt%/SiO2 wt%)が1.5〜5となるようにCaOを含む造滓材を装入する。マンガン鉱石はコストの高いマンガン合金鉄の添加量を最小限とするように、可能な範囲で多く装入する。スラグのMnO濃度が吹錬前から高く維持されており、造滓材による希釈も少ないので、マンガン鉱石のMn分は、少なくとも約60%以上溶鋼に還元される。
【0043】
更に、本発明における脱炭精錬においては、脱燐精錬された溶銑の装入に先立ち、スラグ固化剤を装入する。この場合には、脱燐溶銑を装入した際に溶銑の突沸現象を抑える作用があり、安全な操業を担保する。スラグ固化剤としては、煉瓦屑、焼石灰、軽焼ドロマイト、生ドロマイト等がある。上記スラグ固化剤のうち、軽焼ドロマイト、生ドロマイトは、溶解性、経済性、更には炉体寿命を延長する点から望ましい。
【0044】
脱燐溶銑を脱炭精錬炉に装入するに先立ち予め軽焼ドロマイト及び/又は生ドロマイトを添加すると、脱炭精錬中において十分スラグに溶解し、MgO濃度を高める作用がある。このようなスラグはスラグ自体がMgOを溶解度限まで含有しているため、マグネシヤ(MgO)を主成分とする煉瓦からなる炉体煉瓦の損耗を抑制し、炉体寿命を延長させる効果がある。
【0045】
さらに、溶鋼を出鋼後において必要に応じて炉体を傾動して炉内に残留したスラグを炉体内張り煉瓦に付着させ、所謂スラグコーテングを行う。このスラグコーテングは炉体寿命の延長に大きく貢献し、脱燐精錬炉と同程度の炉体寿命となる。従って、脱燐精錬時間と脱炭精錬時間の時間的サイクルが同じとなるだけでなく、双方の炉体寿命も同程度になり円滑な一貫した製鋼作業が可能となった。
【0046】
本発明においては上記スラグコ−テング時に、脱炭精錬炉から排出されるスラグは最大約10kg/ton、少ない場合には全く排出しない。すでに述べた通り、脱燐精錬で発生するスラグ量も40kg/ton以下であり、その一部はリサイクルできるので、粗鋼1ton当たり外部に排出するスラグ量は約40kg/ton以下である。
【0047】
本発明においては、脱燐精錬時間を従来より短縮できるので、脱燐精錬を行う転炉に、溶銑を装入するに先立ちスクラップの全量を装入することが時間的に可能である。また、脱燐精錬は低い温度(1300〜1400℃)で行われるが、溶銑の炭素量が高いために、スクラップを容易に溶解できるので、スクラップの装入が可能である。スクラップの装入量は熱バランスの点から溶銑量の約10wt%以内である。スクラップの装入は、脱燐精錬溶銑の生産量を増加させる効果がある。
【0048】
また、上記スクラップの一部又は全部を、脱燐精錬及び脱炭精錬において発生したスラグの磁選屑とすることができる。磁選屑とは、脱燐精錬及び脱炭精錬において発生したスラグを磁選機にかけて選別した粒鉄等の鉄分を多く(約50wt%以上)を含む部分である。磁選屑は溶解したスラグを約50wt%含むので、溶銑温度が低い場合でもスラグ生成が円滑に行われ、終点のP含有量を安定して低くすることができる。
【0049】
本発明においては、脱炭精錬は脱燐精錬時間以内において行うことができるので、脱燐精錬溶銑は待ち時間なしに脱炭精錬を行うことができ、製鋼能率を向上させることができる。また、本発明における転炉とは、上吹き酸素転炉、底吹き酸素転炉、及び上底吹き酸素転炉にいずれであってもよい。
【0050】
【実施例】
本発明の効果を確認するため従来の精錬方法と本発明の精錬方法をそれぞれ50チャージ実施して脱燐精錬と脱炭精錬における鋼の成分組成の変化、及びスラグ量の変化を図6に示す。従来例においては脱燐精錬の終点のP含有量は0.03から0.04wt%であるため脱炭精錬において更に焼石灰を装入し脱炭精錬と脱燐精錬もあわせて行い、P含有量を0.02wt%以下とする。
【0051】
他方、本発明例においてはSi0.3wt%以下の溶銑を使用して脱燐精錬を行い、脱炭精錬における復燐を考慮して精錬を行った。その結果、原則として造滓材を装入しなくても通常の燐の規格値(0.020wt%)以下に維持することができた。
【0052】
更に、低炭素鋼(C:0.1wt%未満)、中炭素鋼(C:0.1〜0.2wt%)、高炭素鋼(C:0.2wt%超え)をそれぞれ50チャ−ジ製造した。その結果を表1を示す図7と表2を示す図8に示す。脱燐精錬における成分組成の変化を図7に、脱炭精錬における成分組成の変化を図8に示す。例えば高炭素鋼においては、復燐量が多いので脱燐精錬においてこの点を考慮して精錬を実施した。
【0053】
溶銑のSi含有量が0.3wt%以下の溶銑を使用することにより、粗鋼のP含有量はいずれも0.02wt%以下に精錬されている。また、粗鋼のMn含有量はマンガン鉱石の装入量に応じて高めることができた。その他の精錬データは図1から図6に示す通りである。
【0054】
【発明の効果】
本発明においては、Si含有量が0.3wt%以下の溶銑を脱燐精錬し、この溶銑を脱炭精錬することにより、従来、脱炭精錬時間より長かった脱燐精錬を短縮でき、スラグコーテング時間を含めた脱炭精錬時間により近づくことができる。従って全体として所謂製鋼時間を約20%短縮することができる。
【0055】
更に、本発明においては、溶銑を一の転炉で溶銑の燐(P)含有量を、脱炭精錬における復燐量と粗鋼で要求されているP含有量(鋼の成分規格値)を考慮した量以下に精錬し、脱燐精錬された溶銑を転炉に装入し、実質的に造滓材を装入せず脱炭精錬を行う。従って、脱炭精錬を行う転炉において、マンガン鉱石を装入し、粗鋼で要求されているMn規格値の上限以内においてMn含有量を高めることが可能となり、極めて経済的な製鋼方法が実現できる。また、この製鋼方法は発生するスラグを最小に抑えることができるので、省資源の効果もある。よって本発明の産業上の効果は著しい。
【図面の簡単な説明】
【図1】本発明における脱燐精錬工程を示す図である。
【図2】本発明における脱炭精錬工程を示す図である。
【図3】溶銑のSi量と脱燐精錬時間との関係を示す図である。
【図4】本発明における溶銑の脱燐精錬時間を示す図である。
【図5】本発明における溶銑の脱燐精錬時間と脱炭精錬時間を示す図である。
【図6】本発明における溶銑と溶鋼の成分組成の変化を示す図である。
【図7】本発明により各種炭素鋼を製造した場合における脱燐精錬における溶銑とスラグの成分組成の変化を示す図である。
【図8】本発明により各種炭素鋼を製造した場合における脱炭精錬における溶鋼及びスラグの成分組成の変化を示す図である。
【図9】転炉における精錬状況を概念的に示す図である。
【図10】本発明前における脱燐精錬の過程を示す図である。
【符号の説明】
2 転炉型精錬容器
4 溶銑
6 スラグ
8 出鋼口
10 炉口
12 ランス

Claims (11)

  1. 下記の工程を備えたことを特徴とする複数の転炉を用いる製鋼方法。
    (a)一の転炉において溶銑の珪素(以下Siと記する)含有量が0.3wt%
    以下の溶銑を装入して脱燐精錬して終点の燐含有量([P〕f wt%)が下式(1)に従うように精錬し、
    [P]f wt%≦[P]k wt%−△1−△2−一−(1)
    ここで、[P]k wt%:粗鋼で要求されているP含有量(鋼の成分規格値)
    △1:この溶銑を脱炭精錬する他の転炉における先行する脱炭精錬後の炉内に残留したスラグ量による燐の増加量(wt%)、
    △2:取鍋における復燐量(wt%)
    (b)前記脱燐精錬された溶銑を他の転炉に装入し、造滓材を装入せず脱炭精錬を行い、
    (c)前記脱炭精錬された溶鋼と、当該脱炭精錬中に増加したスラグ量のみを前記他の転炉から出鋼し、又は排出する。
  2. 前記[P]f wt%が、前記式(1) に代えて下式(2) に従うように脱燐精錬することを特徴とする請求項1記載の複数の転炉を用いる転炉製鋼方法。
    [P]f wt%≦[P]k wt%−Δ1 −Δ2 −Δ3---(2)
    ここで、Δ3 : 当該脱燐精錬で発生したスラグが、前記他の転炉に混入することによる復燐量(wt%)
  3. 前記脱燐精錬を行う溶銑のSi含有量が0.3wt%を超える場合には、予め脱珪素処理を行い、Si含有量を0.3wt%以下としてから脱燐精錬することを特徴とする請求項1又は2記載の複数の転炉を用いる製鋼方法。
  4. 前記脱珪素処理を、脱燐精錬を行う転炉でSi含有量を0.3wt%以下に精錬し、生成したスラグを排出し、引き続いて脱燐精錬を行うことを特徴とする請求項3記載の複数の転炉を用いる製鋼方法。
  5. 前記脱炭精錬を行う転炉において、更にマンガン鉱石を装入し、終点における溶鋼のマンガン(以下Mnと記する)含有量を最大、粗鋼で要求されているMn規格値の上限以内においてMn含有量を高めることを特徴とする請求項1から4のいずれかに記載の複数の転炉を用いる製鋼方法。
  6. 前記マンガン鉱石の装入に際し、マンガン鉱石に含まれているシリカ(SiO2 )に対して所定の塩基度(CaOwt%/SiO2 wt%)となるように更にCaOを含む造滓材を装入することを特徴とする請求項5記載の複数の転炉を用いる製鋼方法。
  7. 前記脱炭精錬を行う転炉において、前記脱燐精錬された溶銑の装入に先立ち、スラグ固化剤を装入することを特徴とする請求項1から6のいずれかに記載の複数の転炉を用いる製鋼方法。
  8. 前記スラグ固化剤が軽焼ドロマイト及び/又は生ドロマイトであることを特徴とする請求項1から7のいずれかに記載の複数の転炉を用いる製鋼方法。
  9. 前記脱燐精錬を行う転炉に、溶銑を装入するに先立ちスクラップの全量を装入することを特徴とする請求項1から8のいずれかに記載の複数の転炉を用いる製鋼方法。
  10. 前記スクラップの一部又は全部を脱燐精錬及び/又は脱炭精錬で生成したスラグの磁選屑とすることを特徴とする請求項9に記載の複数の転炉を用いる製鋼方法。
  11. 前記脱炭精錬を前記脱燐精錬時間以内において行うことを特徴とする請求項1から10のいずれかに記載の複数の転炉を用いる製鋼方法。
JP36955597A 1997-12-29 1997-12-29 複数の転炉を用いる製鋼方法 Expired - Fee Related JP3924059B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36955597A JP3924059B2 (ja) 1997-12-29 1997-12-29 複数の転炉を用いる製鋼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36955597A JP3924059B2 (ja) 1997-12-29 1997-12-29 複数の転炉を用いる製鋼方法

Publications (2)

Publication Number Publication Date
JPH11193414A JPH11193414A (ja) 1999-07-21
JP3924059B2 true JP3924059B2 (ja) 2007-06-06

Family

ID=18494728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36955597A Expired - Fee Related JP3924059B2 (ja) 1997-12-29 1997-12-29 複数の転炉を用いる製鋼方法

Country Status (1)

Country Link
JP (1) JP3924059B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649694B2 (ja) * 1999-12-21 2011-03-16 Jfeスチール株式会社 溶銑の精錬方法
JP4788013B2 (ja) * 1999-12-21 2011-10-05 Jfeスチール株式会社 低燐溶銑の製造方法
JP6347174B2 (ja) * 2014-08-05 2018-06-27 新日鐵住金株式会社 脱りん予備処理溶銑を用いる転炉の操業方法
CN115305313B (zh) * 2022-09-16 2023-05-16 宝武集团鄂城钢铁有限公司 一种转炉化渣剂及其制备方法和应用

Also Published As

Publication number Publication date
JPH11193414A (ja) 1999-07-21

Similar Documents

Publication Publication Date Title
WO1995001458A1 (fr) Procede de production et d'acier au moyen d'un convertisseur
JP3924059B2 (ja) 複数の転炉を用いる製鋼方法
JP2008063645A (ja) 製鋼方法
JP3458890B2 (ja) 溶銑精錬方法
JP3470857B2 (ja) 転炉型精錬容器における溶銑の脱燐精錬方法
JP3486886B2 (ja) 2基以上の転炉を使用する製鋼方法
JP4461495B2 (ja) 溶銑の脱燐精錬方法
JP3486889B2 (ja) 二以上の転炉を用いた製鋼方法
JPH10237526A (ja) 溶銑の脱りん方法
JPH07310110A (ja) ステンレス鋼の製造方法
JP3772918B2 (ja) 転炉型精錬容器における溶銑の脱燐精錬方法
JP3924058B2 (ja) 脱燐溶銑を使用する転炉製鋼方法
JP2900011B2 (ja) 転炉精錬方法
JP3158912B2 (ja) ステンレス鋼の精錬方法
JP2001049320A (ja) 高燐鉱石を原料とする鉄鋼製造方法
JP2958842B2 (ja) 転炉精錬方法
JP2607329B2 (ja) 溶銑の脱りん方法
JP3486887B2 (ja) 複数の転炉を使用する製鋼方法
JPH0437135B2 (ja)
JP4356275B2 (ja) 溶銑精錬方法
JP2000212623A (ja) 生石灰の少ない溶銑脱燐方法
JP3486890B2 (ja) 脱燐溶銑を用いた転炉製鋼方法
JPH1150122A (ja) 転炉型精錬容器における溶銑の脱燐精錬方法
JPH0557327B2 (ja)
JP3823595B2 (ja) 溶銑精錬方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees