JP3906903B2 - Metal-coated fiber body and method for producing the same - Google Patents

Metal-coated fiber body and method for producing the same Download PDF

Info

Publication number
JP3906903B2
JP3906903B2 JP2001324176A JP2001324176A JP3906903B2 JP 3906903 B2 JP3906903 B2 JP 3906903B2 JP 2001324176 A JP2001324176 A JP 2001324176A JP 2001324176 A JP2001324176 A JP 2001324176A JP 3906903 B2 JP3906903 B2 JP 3906903B2
Authority
JP
Japan
Prior art keywords
fiber body
metal
fiber
temperature
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001324176A
Other languages
Japanese (ja)
Other versions
JP2003129373A (en
Inventor
真 綱島
雄亮 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001324176A priority Critical patent/JP3906903B2/en
Priority to KR1020037008527A priority patent/KR100808322B1/en
Priority to TW090126696A priority patent/TW593492B/en
Priority to EP01980924A priority patent/EP1369525A4/en
Priority to PCT/JP2001/009456 priority patent/WO2002052098A1/en
Priority to US10/450,833 priority patent/US7166354B2/en
Publication of JP2003129373A publication Critical patent/JP2003129373A/en
Application granted granted Critical
Publication of JP3906903B2 publication Critical patent/JP3906903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度ナイロン系繊維体、ポリフェニレンサルファイド系繊維体、またはポリカーボネート系繊維体の一種または2種以上に金属被覆を設けた繊維体について、金属被覆の密着性に優れ、加熱下での耐久性に優れた金属被覆繊維体とその製造方法に関する。
【0002】
【従来の技術】
ナイロン繊維やポリエステル繊維などの高分子材料からなる合成繊維表面に金属薄膜をコーテングした導電性繊維ないし導電性糸が従来から知られており、金属コーテング膜の密着性を高めるために種々の方法が試みられている。例えば、硫化銅をコーテングする場合に、銅イオン捕捉基を有する染料で高分子材料を前処理し、これに銅イオンを結合させた後に硫化する方法(特公平01-37513号)や、アルカリ処理して粗面化した繊維表面に銅イオン捕捉基を付着させ、これに硫化銅を結合させる方法(特開平06-298973号)などが知られている。また、アラミド繊維などのように金属メッキを施し難いものについては、ポリビニルピロリドン(PVP)を利用して金属イオンを付着させ、これを還元して金属メッキを形成する方法(特表平06-506267号)などが知られている。
【0003】
【発明が解決しようとする課題】
ところが、上記PVPを利用するメッキ方法は繊維の種類が限られるので一般的ではない。また、銅イオン捕捉基を導入するコーテング方法は金属被覆が銅やその化合物に限られ、しかも金属被覆の強度が必ずしも十分ではないと云う問題がある。なお、繊維をアルカリ処理して粗面化すれば概ね金属被覆の付着強度を高めることができるが、粗面化の程度と金属被覆の状態が適切ではないと十分な効果が得られない。しかも、金属被覆繊維を衣類等に使用する場合には洗濯や摩耗などの過酷な使用条件に耐える必要がある。さらに導電性の観点からは、金属被覆の部分的剥離によっても断線状態を招くので、金属被覆は信頼性の高い密着強度を有することが求められる。
【0004】
本発明者等は、金属被覆を有する繊維体に加熱処理を施して繊維体の組織を整えることにより、具体的には、例えば繊維体を加熱処理して結晶化すれば金属被覆の被覆強度が飛躍的に向上することを見い出した。また、この加熱処理において昇温および冷却を徐々に行うことによって金属被覆の強度が一層向上すると共に耐久性が高まり、繊維体の伸縮率が大幅に小さくなることを見い出した。本発明はこの知見を、繊維体としてポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体の一種または2種以上を用いた金属被覆繊維体に適用したものである。
【0005】
すなわち、本発明は(1)ポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体の一種または2種以上からなる繊維体に金属被覆を設け、この金属被覆繊維体を、ポリフェニレンサルファイド系繊維体については200〜300℃、ポリカーボネート系繊維体については200〜300℃、アラミド繊維体については250〜350℃の温度範囲において、該繊維体の結晶化温度以上であって融解温度未満の温度で加熱処理してなることを特徴とする金属被覆繊維体繊維体に関する。
【0006】
本発明の金属被覆繊維体は以下の各態様を含む。
(2)繊維体の結晶化温度以上であって融解温度未満の温度下における伸縮率が±4%以下である金属被覆繊維体。
(3)繊維体の結晶化温度以上であって融解温度未満の温度下において、繊維体径(デニール値)の100分の1に相当するg荷重に対する伸縮率が±2%以下である金属被覆繊維体。
(4)繊維体1cmについて1デニール当たりの電気抵抗が1000Ω/cm・テ゛ニール以下である金属被覆繊維体。
(5)被覆剥離試験において金属被覆が4等級以上の基準強度を有する金属被覆繊維体。
(6)繊維体が短繊維、長繊維、またはこれらの繊維からなる各種の糸である金属被覆繊維体。
(7)金属被覆が銀、金、白金、銅、ニッケル、スズ、亜鉛、バラジウム、またはこれらの混合物ないし合金からなる導電性金属である金属被覆繊維体。
(8)請求項1〜7の何れかの金属被覆繊維体の少なくとも1種を合成繊維、天然繊維、もしくは合成繊維と天然繊維の混合繊維に混紡した混合繊維体。
(9)上記何れかの金属被覆繊維体からなる織布または不織布。
(10)上記何れかの金属被覆繊維体からなる電線代替材料。
【0007】
さらに、本発明は(11)ポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体の一種または2種以上からなる繊維体に金属被覆を設け、この金属被覆繊維体を、ポリフェニレンサルファイド系繊維体については200〜300℃、ポリカーボネート系繊維体については200〜300℃、アラミド繊維体については250〜350℃の温度範囲において、該繊維体の結晶化温度以上であって融解温度未満の温度で加熱処理することを特徴とする金属被覆繊維体の製造方法に関する。
【0008】
本発明の製造方法は以下の各態様を含む。
(12)1分間に0.1〜10℃の割合で昇温し、昇温した温度を5分〜200分保持する製造方法。
(13)昇温した温度を保持した後に、1分間に0.1〜10℃の割合で室温まで徐冷する製造方法。
(14)加圧水蒸気下もしくは電気炉内で、窒素ガスまたはアルゴンガスの不活性雰囲気下で、加熱徐冷処理する製造方法。
【0009】
【発明の実施の態様】
以下、本発明を実施態様に基づいて詳細に説明する。
〔金属被覆繊維体〕本発明の金属被覆繊維体は、繊維体の表面に金属被覆を設けた後に該繊維体の結晶化温度以上および融解温度未満の温度で加熱処理した金属被覆繊維体であって、繊維体がポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体の一種または2種以上であることを特徴とするものである。なお、本発明において繊維体とは、短繊維(ステープル)、長繊維(フィラメント)、これらの繊維からなる各種の加工糸(フィラメント糸、紡績糸など)を云い、これらを含めて繊維体と云う。なお、他のエンジアリングプラスチックからなる繊維なども用いることができる。
【0010】
一般に、ポリエステル、ナイロン、ポリアクリル等の合成繊維を加熱すると、加熱温度に応じてガラス転移、結晶化、融解(溶融)と次第に状態が変化し、多くの場合にはガラス転移によって軟化し、続いて結晶化の段階で大きく収縮する。本発明は、繊維体として高強度ナイロン系繊維体、ポリフェニレンサルファイド系繊維体、またはポリカーボネート系繊維体の一種または2種以上を用いた金属被覆繊維体について、このような加熱処理を行うことによって金属被覆の密着強度を高めたものである。
【0011】
すなわち、金属被覆繊維体を、100℃〜700℃の範囲で、その繊維体の結晶化温度以上に加熱して繊維体表面を軟化させる。軟化した繊維体の表面は金属被覆との接触面の微細な凹凸に入り込み、アンカー効果によって金属被覆と繊維体との密着性を高める。
【0012】
本発明では、繊維体としてポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体を用いるが、これらは他の合成繊維よりも耐熱性が高く、融解温度が概ね700℃をやや下回る程度であり、しかも高強度であるので、500度〜600℃程度の高温環境下においても使用することができる。なお、加熱温度が100℃未満では十分な加熱処理効果が得られず、一方、加熱温度が700℃を上回ると繊維体が融解するようになるので好ましくない。
【0013】
具体的には、例えば、金属被覆を設けた後に、ポリフェニレンサルファイド系繊維体については200〜300℃、ポリカーボネート系繊維体については200〜300℃、アラミド繊維体については250〜350℃で加熱処理するのが好ましい。
【0014】
この加熱処理は1分間に0.1〜10℃の割合で昇温し、昇温した温度を5分〜200分保持するのが好ましい。昇温速度が0.1℃/分より低いと処理時間が長くかかり、また10℃/分より高いと金属被覆が剥げやすくなるので好ましくない。なお、繊維体の融解温度より高く加熱すると繊維体全体が溶融して結晶性が低下すると共に繊維体を破壊して金属被覆を保持できなくなる。
【0015】
この加熱処理の後に一定の割合で室温まで徐冷することによって金属被覆の密着(被覆)強度を更に高めることができる。すなわち、金属被覆繊維体を加熱処理後に金属被覆と繊維体の密着性を高めた状態で繊維体と金属被覆とを一体に冷却することにより、冷却工程での繊維体と金属被覆の接触面の剥離が防止され、金属被覆の密着強度がさらに向上する。また適切な徐冷を行うことによって金属被覆繊維体をその後に加熱しても殆ど収縮を生ぜず、伸縮率が大幅に小さくなる。
【0016】
徐冷速度は、例えば1分間あたり0.1〜10℃の割合が適当であり、好ましくは1分間あたり0.1〜5℃の割合、更に好ましくは0.2〜2℃の割合で徐冷するのが良い。なお、徐冷速度が0.1℃/分より小さいと処理時間が長くなり、また、10℃/分より大きいと冷却速度が早すぎ、繊維体の再結晶化が不十分になるので好ましくない。
【0017】
加熱処理手段は加熱炉、熱風炉などの他に赤外線による加熱でも良い。また、メッキ槽内での加圧水蒸気による加熱処理でも良い。加熱処理雰囲気は空気中でも良いが、金属被覆の酸化による変色を防止するには、窒素やアルゴン等の不活性ガス雰囲気下で加熱処理するのが好ましい。
【0018】
以上のように、本発明の金属被覆繊維体は、第一段階として金属被覆繊維体を繊維体の結晶化温度以上に加熱して繊維体の再結晶化を促すと共に、この温度を一定時間保持することによって軟化した繊維体の表面と金属被覆との接触面に十分に入り込ませて隙間を無くし、密着性を高めた後に、好ましくは、さらに第二段階として設定温度から室温まで冷却する際に十分に徐冷することによって再結晶化した繊維体と金属被覆の冷却収縮時の局部的な剥離を防止し、繊維体に対する金属被覆の被覆強度を大幅に高め、かつ繊維体の伸縮性を大幅に抑制する。
【0019】
本発明の金属被覆繊維体はこのような加熱冷却処理によって優れた被覆強度と非伸縮性を有する。すなわち、先に述べたように、一般に合成繊維は結晶化温度以上に加熱されると結晶構造が変化するので10%以上の熱収縮を生じることがあるが、金属被覆を有する繊維体を加熱処理して繊維体の結晶構造を整えたものは、その後に加熱しても結晶構造が変化し難く、熱収縮を殆ど生じない。むしろ場合によっては僅かな伸びを示す傾向を有するようになる。
【0020】
具体的には、例えば、繊維体の結晶化温度以上であって融解温度未満の温度下において、荷重を加えないときの伸縮率が±4%以下、好ましくは±3%以下の金属被覆繊維体を得ることができる。また、この加熱下で荷重を加えた場合でも、例えば、繊維体の結晶化温度以上であって融解温度未満の温度下において、繊維体の径(デニール値)の100分の1に相当するg荷重に対して伸縮率が±2%以下、好ましくは伸縮率±1.5%以下、さらに好ましくは伸縮率±1%以下の金属被覆繊維体を得ることができる。なお、繊維体径のデニール値の100分の1に相当するg荷重とは、例えば100デニールの繊維体について1gの荷重を加えることを云う。
【0021】
また、本発明の金属被覆繊維体は、以上の加熱冷却処理を行うことにより、規格(JIS L 0849)に基づく剥離強度試験において4等級以上の剥離強度(単に4等級以上の強度と云う)を有することができる。因みに、上記規格試験(JIS L 0849)は繊維体や布の染色堅ろう度を示す試験であり、染色布に白色布を重ね、所定荷重下で規定回数擦り合わせた場合に生じる白色布の汚染度によって染色の付着性が判定される。汚染度の高い順(付着性の低い順)に1等級から5等級までの基準が定められており、5等級の汚染度が最も低く、従って染色の密着性が最も高い。上記加熱処理を施した金属被覆繊維体について、この剥離試験における白色布の汚染度によって金属被覆の付着強度(被覆強度)を同様に判定することができる。加熱処理前は3等級以下の被覆強度を有する金属被覆繊維体について、本発明の加熱徐冷処理を行うことによって4等級以上の高い被覆強度を有するものを得ることができる。
【0022】
本発明に用いる繊維体は、ポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体であるが、これらは一種でも良く、二種以上を混合したものでも良い。また、この合成繊維と天然繊維を混紡したものでも良い。
【0023】
繊維体の表面に被覆する金属の種類は限定されない。例えば、銀、金、白金、銅、ニッケル、スズ、亜鉛、パラジウム、およびこれらの混合物や合金などを用いることができる。なお、被覆方法ないし手段も制限されない。電解メッキ、化学メッキ、あるいは真空蒸着などにより金属被覆を設けた繊維体について本発明を広く適用することができる。また、上記加熱冷却処理を妨げない範囲であれば他の施工条件も限定されない。
【0024】
本発明の金属被覆繊維体は良好な導電性を有することができる。具体的には、例えば、繊維体1cmについて1デニール当たりの電気抵抗が10000Ω/cm・デニール以下、好ましくは1000Ω/cm・デニール以下、さらに好ましくは100Ω/cm・デニール以下の導電性繊維体を得ることができる。なお、金属被覆量を低減することによって電気抵抗が10万Ω/cm・デニール以上の繊維体とすることもできる。また、特に銀や白金、ニッケル、スズなどの白色光沢金属を被覆したものは白色度(L値)50以上の白色度の高い導電性繊維体を得ることができる。なお、白色度はハンターの式に基づくLab法によって測定される。
【0025】
本発明の金属被覆繊維体は加熱徐冷処理後にさらに表面処理を施すことができる。この表面処理としては、反応性表面処理剤、金属表面と親和性のある界面活性剤、あるいはパラフィンやワックスによる防錆処理ないしオイル処理(オイリング)などを施すことができる。なお、この防錆処理によって白色度の経時的な低下や密着性(剥離強度)の低下を防止することができる。また、オイル処理を施すことにより繊維体表面の滑り性が向上する。このオイル処理は繊維体を織機や編機によって加工する際にその滑りを良くするので金属被覆の密着性の保護にもなる。金属被覆繊維体は実際に使用する際に、摩擦、剪断力、曲げ等の物理的な力を受け、その強さや頻度によって金属被覆の剥離や欠落が生じる。それらの度合いは直接的には金属被覆と繊維体との密着強度に基づくが、上記表面処理を施すことによって摩擦や剪断力などが緩衝され、その結果として金属被覆の剥離が防止される。また、金属表面は一般に一部が酸化して水酸基を有しているので、表面処理によって酸化を防止し防錆するのが好ましい。表面処理剤の使用量は金属の種類や加熱冷却処理の条件等にもよるが、概ね0.1〜20wt%の範囲が有効である。
【0026】
本発明の金属被覆繊維体は短繊維や長繊維、あるいは紡績糸や加工糸など各種の糸にして用いられる。また、金属被覆繊維を単独に用いる他に、合成繊維や天然繊維、あるいは合成繊維と天然繊維の混合繊維に混紡した混合繊維として用いることができる。
【0027】
さらに、本発明の金属被覆繊維体は織布または不織布などの布地材料や編物材料などとして用いることができる。この場合、銀やスズ、ニッケルなどを用いたものは高い白色度を有するので染色した際に発色性に優れ、テキスタイルや衣料品の布材に適する。さらに、銀などをコーテングしたものは抗菌繊維体および抗菌衣料として利用することができる。具体的な用途としては、抗菌性の靴下、下着、上着、白衣、寝具、シーツ、ナプキン、手袋、シャツ、ズボン、絨毯、マット、あるいは作業衣などが挙げられる。また、本発明の金属被覆繊維体は布地材料等に限らず、その導電性を利用して電磁波シールド材、無塵服や手袋、靴、カバー、作業衣など静電防止材料、あるいは電極や電線の軽量化を図る代替材料などに用いることができる。さらに、導電性有機材料への表面被覆による複合導電材料や繊維体強化プラスチックの導電性補強材などに用いることができる。
【0028】
〔製造方法〕本発明の金属被覆繊維体は、ポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体の原糸表面に、電解メッキあるいは化学メッキなどによって金属被覆を設け、上記温度範囲で加熱処理し、冷却することによって得られる。なお、この金属被覆を設ける際に、予め繊維体表面をアルカリ等によってエッチング処理し、粗面化すれば被覆されるメッキ金属がこの繊維体表面の粗面に入り込んでアンカー効果を発揮するので更に好ましい。
【0029】
繊維体(原糸)に金属被覆を設ける際に、メッキ槽の内部に原糸をチーズ巻の状態にした巻糸体を装着するための固定軸を設け、この固定軸を中空の管材によって形成し、管壁に多数の通液孔を設け、この固定軸を通じて巻糸体の内側からメッキ液が流れ出すようにすると良い。このような装置構成によれば、メッキ液は固定軸を通じて巻糸体の内側から供給され、巻糸体の外部に向かって流れるので、繊維体間の間隙がメッキ液によって外側に押し広がられた状態となり、繊維体間の細部にまでメッキ液が浸透するので、チーズ巻きの状態でも繊維体の表面に金属メッキが均一に形成される。
【0030】
金属被覆(メッキ)を施した後にこの繊維体を乾燥し、上記温度範囲の加熱冷却処理を施す。この加熱処理はメッキ槽内に加圧水蒸気を導入して行っても良い。またはメッキ槽から巻糸体を取り出して、電気炉などに移して加熱処理しても良い。なお、加熱処理雰囲気は空気中でも良いが、金属被覆の酸化による変色を防止するためには窒素やアルゴン等の不活性雰囲気下で加熱処理を行うと良い。
【0031】
【実施例】
以下、本発明を実施例によって具体的に示す。
表1に示す高分子材料(高強度ナイロン系繊維、ポリフェニレンサルファイド系繊維、ポリカーボネート系繊維、アラミド繊維)からなる繊維体をメッキ槽に入れ、以下の(イ)脱脂処理、(ロ)アルカリ処理・中和処理、(ハ)活性化処理を行った後、(ニ)無電解メッキを施し、さらに(ホ)加熱処理を施した。
【0032】
(イ)脱脂処理:脱脂液(エースクリーンA-220:奥野製薬工業社製品)の5wt%溶液を55℃でメッキ槽に5分間循環させた後、イオン交換水を通じて十分に洗浄した。
(ロ)アルカリ処理:脱脂処理後に20wt%水酸化ナトリウム溶液を70℃でメッキ槽に20分間循環させ、さらにイオン交換水を通じて十分に洗浄した後に5wt%濃塩酸溶液を室温でメッキ槽に2分間循環させた。
(ハ)活性化処理:アルカリ処理後に濃塩酸溶液と塩化パラジウム混合溶液(キャタリストC:輿野製薬工業社製品)をメッキ槽に室温で3分間循環させた後にイオン交換水を通じて十分に洗浄した。さらに10wt%硫酸溶液をメッキ槽に45℃で3分間循環させて活性化した。
(ニ)メッキ工程:以上の前処理によって繊維体表面に触媒を付着させた後に、表1に示す金、銀、ニッケル、銅について、各々のメッキ液をメッキ槽に循環させて金属被覆を形成した。
(ホ)加熱処理:金属被覆を形成した巻糸体を電気炉に装入し、表1に示す温度条件で加熱冷却処理した。
【0033】
これらの金属被覆繊維体について被覆の密着(剥離)強度を測定した。この結果を表1に示した。また金属被覆後に加熱処理を施さないものについて同様の試験結果を比較例として表1に示した。この密着強度は繊維体や布の染色堅ろう度を示す規格試験(JIS L 0849)に準じた剥離強度試験に基づいて測定した。具体的には、試験試料の金属被覆繊維体の束に白色布を重ね、200gの荷重を加え、毎分30回の往復速度で100回往復摩擦を行い、白色布に付着した汚染度に基づき、汚染度の高い順(付着性の低い順)に1等級から5等級までの基準に従って剥離強度(密着強度)を判定した。また、導電性を測定した。導電性は繊維体の中央部10cm間の電気抵抗を測定し、150デニールの繊維体1cmについて、1デニール当たりの抵抗値(Ω/cm・デニール)を求めた。これを初期電気抵抗と摩擦100回後の電気抵抗について求めた。さらに、収縮率(伸縮率)について測定した。この収縮率は200℃の温度下で繊維体に1.5gの荷重を加えたときの伸縮長さである。これらの結果を表1に示した。
【0034】
表1の結果に示すように、金属被覆後に加熱処理を施した本発明の試料(A1,A2,A3,A4)は何れも剥離強度が4等級以上であるが、加熱処理を施さない比較試料(B1,B2,B3)は3等級以下であって、本発明の被覆(剥離)強度は格段に大きく、密着性に優れている。また、初期電気抵抗は差がないものの摩擦後の電気抵抗は比較試料より大幅に低く、優れた導電性を有する。さらに、比較試料の収縮率は−1%〜−2%の収縮を示すが、本発明の繊維体の収縮率は何れも0%以下であり、殆ど収縮せず、極めて安定である。
【0035】
【発明の効果】
本発明の金属被覆繊維体は優れた被覆強度を有しており、具体的には被覆の剥離強度試験において4等級以上の基準強度を有することができる。また、加熱下でも伸縮率が小さく、外力に対する耐久性に優れる。従って、金属被覆の密着性や耐久性が十分でないために従来は適用できなかった分野にも本発明の金属被覆繊維体を用いることできる。また、本発明の金属被覆繊維体は金属被覆を設けた後に特定温度での加熱徐冷処理を施すことによって得られるので容易に製造することができる。
【0036】
【表1】

Figure 0003906903
[0001]
BACKGROUND OF THE INVENTION
The present invention is a high strength nylon fiber body, a polyphenylene sulfide fiber body, or a fiber body in which one or more of the polycarbonate fiber bodies are provided with a metal coating. The present invention relates to a metal-coated fiber body having excellent durability and a method for producing the same.
[0002]
[Prior art]
Conventionally known are conductive fibers or yarns in which a metal thin film is coated on the surface of a synthetic fiber made of a polymer material such as nylon fiber or polyester fiber, and various methods are available for improving the adhesion of the metal coating film. Has been tried. For example, when coating copper sulfide, a method of pre-treating a polymer material with a dye having a copper ion-trapping group, and then sulfiding after binding copper ions to this (Japanese Patent Publication No. 01-37513) or alkali treatment A method of attaching a copper ion capturing group to a roughened fiber surface and bonding copper sulfide to the copper ion capturing group is known (Japanese Patent Laid-Open No. 06-298973). For materials that are difficult to be metal-plated, such as aramid fiber, a method of forming metal plating by attaching metal ions using polyvinylpyrrolidone (PVP) and reducing the metal ions (JP-A 06-506267) No.) is known.
[0003]
[Problems to be solved by the invention]
However, the plating method using PVP is not general because the types of fibers are limited. Further, the coating method for introducing a copper ion capturing group has a problem that the metal coating is limited to copper or a compound thereof and the strength of the metal coating is not always sufficient. Note that if the fiber is roughened by alkali treatment, the adhesion strength of the metal coating can be generally increased, but sufficient effects cannot be obtained unless the degree of roughening and the state of the metal coating are appropriate. Moreover, when the metal-coated fiber is used for clothing or the like, it is necessary to withstand severe use conditions such as washing and wear. Further, from the viewpoint of electrical conductivity, the metal coating is required to have a highly reliable adhesion strength because a disconnection state is also caused by partial peeling of the metal coating.
[0004]
The inventors of the present invention applied heat treatment to a fiber body having a metal coating to prepare the structure of the fiber body. Specifically, for example, if the fiber body is heat-treated and crystallized, the coating strength of the metal coating is increased. I found a dramatic improvement. Further, it has been found that by gradually raising the temperature and cooling in this heat treatment, the strength of the metal coating is further improved and the durability is enhanced, and the expansion / contraction rate of the fiber body is significantly reduced. In the present invention, this knowledge is applied to a metal-coated fiber body using one or more of polyphenylene sulfide fiber body, polycarbonate fiber body, or aramid fiber body as a fiber body .
[0005]
That is, the present invention provides (1) a fiber coating comprising one or more of a polyphenylene sulfide-based fiber body, a polycarbonate-based fiber body, or an aramid fiber body, and the metal-coated fiber body is provided with a polyphenylene sulfide-based fiber. In the temperature range of 200 to 300 ° C. for the body, 200 to 300 ° C. for the polycarbonate fiber body, and 250 to 350 ° C. for the aramid fiber body, at a temperature not lower than the crystallization temperature of the fiber body and lower than the melting temperature. The present invention relates to a metal-coated fibrous body that is heat-treated .
[0006]
The metal-coated fiber body of the present invention includes the following aspects.
(2) A metal-coated fiber body having a stretch rate of ± 4% or less at a temperature not lower than the crystallization temperature of the fiber body and lower than the melting temperature.
(3) Metal coating having an expansion / contraction ratio of ± 2% or less with respect to g load corresponding to 1/100 of fiber body diameter (denier value) at a temperature not lower than the melting temperature of the fiber body but not lower than the melting temperature. Fiber body.
(4) A metal-coated fibrous body having an electrical resistance per denier of 1000 Ω / cm · denier or less per 1 cm of fibrous body.
(5) A metal-coated fiber body in which the metal coating has a reference strength of grade 4 or higher in the coating peeling test.
(6) A metal-coated fiber body in which the fiber body is a short fiber, a long fiber, or various yarns composed of these fibers.
(7) A metal-coated fiber body in which the metal coating is a conductive metal made of silver, gold, platinum, copper, nickel, tin, zinc, palladium, or a mixture or alloy thereof.
(8) A mixed fiber body obtained by blending at least one of the metal-coated fiber bodies according to any one of claims 1 to 7 into a synthetic fiber, a natural fiber, or a mixed fiber of a synthetic fiber and a natural fiber.
(9) A woven or non-woven fabric made of any one of the above metal-coated fiber bodies.
(10) An electric wire substitute material made of any one of the above metal-coated fiber bodies.
[0007]
Furthermore, the present invention provides (11) a metal coating on a fiber body composed of one or more of polyphenylene sulfide-based fiber body, polycarbonate-based fiber body, or aramid fiber body , and this metal-coated fiber body is made of polyphenylene sulfide-based fiber. In the temperature range of 200 to 300 ° C. for the body, 200 to 300 ° C. for the polycarbonate fiber body , and 250 to 350 ° C. for the aramid fiber body, at a temperature not lower than the crystallization temperature of the fiber body and lower than the melting temperature. The present invention relates to a method for producing a metal-coated fiber body, characterized by performing a heat treatment .
[0008]
The manufacturing method of the present invention includes the following aspects.
(12) A production method in which the temperature is raised at a rate of 0.1 to 10 ° C. per minute and the heated temperature is maintained for 5 to 200 minutes.
(13) A production method in which, after maintaining the elevated temperature, it is gradually cooled to room temperature at a rate of 0.1 to 10 ° C. per minute.
(14) A manufacturing method in which heating and cooling are performed under pressured steam or in an electric furnace in an inert atmosphere of nitrogen gas or argon gas.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments.
[Metal-coated fiber body] The metal-coated fiber body of the present invention is a metal-coated fiber body that is heat-treated at a temperature higher than the crystallization temperature and lower than the melting temperature of the fiber body after a metal coating is provided on the surface of the fiber body. The fiber body is one or two or more of a polyphenylene sulfide fiber body, a polycarbonate fiber body, or an aramid fiber body . In the present invention, the fiber body refers to short fibers (staples), long fibers (filaments), and various processed yarns (filament yarns, spun yarns, etc.) made of these fibers, and these are also referred to as fiber bodies. . In addition, the fiber etc. which consist of other engineering plastics can also be used.
[0010]
In general, when synthetic fibers such as polyester, nylon, and polyacryl are heated, the state gradually changes depending on the heating temperature, such as glass transition, crystallization, and melting (melting). It shrinks greatly at the crystallization stage. In the present invention, a metal-coated fiber body using one or more of a high-strength nylon-based fiber body, a polyphenylene sulfide-based fiber body, or a polycarbonate-based fiber body as a fiber body is subjected to such a heat treatment to form a metal. The adhesion strength of the coating is increased.
[0011]
That is, the metal-coated fiber body is heated in the range of 100 ° C. to 700 ° C. to a temperature higher than the crystallization temperature of the fiber body to soften the fiber body surface. The surface of the softened fiber body enters fine irregularities on the contact surface with the metal coating, and improves the adhesion between the metal coating and the fiber body by an anchor effect.
[0012]
In the present invention, a polyphenylene sulfide-based fiber body, a polycarbonate-based fiber body, or an aramid fiber body is used as the fiber body, but these have higher heat resistance than other synthetic fibers and have a melting temperature slightly below 700 ° C. In addition, since it has high strength, it can be used even in a high temperature environment of about 500 ° C. to 600 ° C. If the heating temperature is less than 100 ° C., a sufficient heat treatment effect cannot be obtained. On the other hand, if the heating temperature exceeds 700 ° C., the fibrous body is melted, which is not preferable.
[0013]
Specifically, for example, after providing a metal coating, heat treatment is performed at 200 to 300 ° C. for a polyphenylene sulfide fiber body, 200 to 300 ° C. for a polycarbonate fiber body, and 250 to 350 ° C. for an aramid fiber body. It is preferable to do this.
[0014]
This heat treatment is preferably performed at a rate of 0.1 to 10 ° C. per minute, and the elevated temperature is preferably maintained for 5 to 200 minutes. If the heating rate is lower than 0.1 ° C./min, it takes a long processing time. In addition, if it heats higher than the melting temperature of a fiber body, the whole fiber body will melt | dissolve and crystallinity will fall, and it will become impossible to hold | maintain a metal coating by destroying a fiber body.
[0015]
The adhesion (coating) strength of the metal coating can be further increased by slowly cooling to room temperature at a constant rate after this heat treatment. That is, after the heat treatment of the metal-coated fiber body, the fiber body and the metal coating are integrally cooled in a state where the adhesion between the metal cover and the fiber body is enhanced, so that the contact surface between the fiber body and the metal cover in the cooling process is Peeling is prevented and the adhesion strength of the metal coating is further improved. Further, by performing appropriate slow cooling, even if the metal-coated fiber body is subsequently heated, it hardly shrinks, and the expansion / contraction rate is greatly reduced.
[0016]
The slow cooling rate is, for example, suitably from 0.1 to 10 ° C. per minute, preferably from 0.1 to 5 ° C. per minute, more preferably from 0.2 to 2 ° C. Good to do. It should be noted that if the slow cooling rate is less than 0.1 ° C./min, the treatment time becomes longer, and if it is greater than 10 ° C./min, the cooling rate is too fast and the recrystallization of the fiber body becomes insufficient, which is not preferable. .
[0017]
The heat treatment means may be heating by infrared rays in addition to a heating furnace, a hot air furnace or the like. Moreover, the heat processing by the pressurized water vapor | steam in a plating tank may be sufficient. The heat treatment atmosphere may be air, but in order to prevent discoloration due to oxidation of the metal coating, heat treatment is preferably performed in an inert gas atmosphere such as nitrogen or argon.
[0018]
As described above, in the metal-coated fiber body of the present invention, as a first step, the metal-coated fiber body is heated to a temperature higher than the crystallization temperature of the fiber body to promote recrystallization of the fiber body, and this temperature is maintained for a certain time. After the surface of the fibrous body softened by the metal coating is sufficiently penetrated to eliminate the gap and improve the adhesion, preferably, when cooling from the set temperature to room temperature as the second stage, Sufficient slow cooling prevents local delamination between the recrystallized fiber body and the metal coating during cooling shrinkage, greatly increases the coating strength of the metal coating on the fiber body, and greatly increases the stretchability of the fiber body To suppress.
[0019]
The metal-coated fiber body of the present invention has excellent coating strength and non-stretchability by such heating and cooling treatment. In other words, as mentioned above, synthetic fibers generally change their crystal structure when heated to a temperature higher than the crystallization temperature and may cause heat shrinkage of 10% or more. In the case where the crystal structure of the fibrous body is adjusted, the crystal structure hardly changes even when heated thereafter, and hardly causes thermal contraction. Rather, in some cases, it tends to exhibit a slight elongation.
[0020]
Specifically, for example, a metal-coated fiber body having a stretch rate of ± 4% or less, preferably ± 3% or less when no load is applied, at a temperature higher than the crystallization temperature of the fiber body and lower than the melting temperature. Can be obtained. Further, even when a load is applied under this heating, for example, g corresponding to 1 / 100th of the diameter (denier value) of the fiber body at a temperature higher than the crystallization temperature of the fiber body and lower than the melting temperature. It is possible to obtain a metal-coated fiber body having a stretch rate of ± 2% or less, preferably a stretch rate of ± 1.5% or less, more preferably a stretch rate of ± 1% or less with respect to the load. Note that the g load corresponding to 1 / 100th of the denier value of the fiber body diameter means that, for example, a 1 g load is applied to a 100 denier fiber body.
[0021]
In addition, the metal-coated fibrous body of the present invention has a peel strength of 4 or more in the peel strength test based on the standard (JIS L 0849) (simply called a strength of 4 or more) by performing the above heating and cooling treatment. Can have. By the way, the above standard test (JIS L 0849) is a test to show the fastness to dyeing of fiber bodies and fabrics. To determine the adherence of dyeing. Criteria from grade 1 to grade 5 are set in order of the degree of contamination (in order of low adhesion), and the degree of contamination of grade 5 is the lowest and therefore the adhesion of dyeing is the highest. With respect to the metal-coated fiber body subjected to the heat treatment, the adhesion strength (coating strength) of the metal coating can be similarly determined based on the degree of contamination of the white cloth in this peel test. Before the heat treatment, a metal-coated fiber body having a coating strength of 3 grades or less can be obtained having a high coating strength of 4 grades or more by performing the heating and slow cooling treatment of the present invention.
[0022]
The fiber body used in the present invention is a polyphenylene sulfide-based fiber body, a polycarbonate-based fiber body, or an aramid fiber body , but these may be one kind or a mixture of two or more kinds. Further, a blend of this synthetic fiber and natural fiber may be used.
[0023]
The kind of the metal coated on the surface of the fiber body is not limited. For example, silver, gold, platinum, copper, nickel, tin, zinc, palladium, and a mixture or alloy thereof can be used. The coating method or means is not limited. The present invention can be widely applied to a fibrous body provided with a metal coating by electrolytic plating, chemical plating, vacuum deposition, or the like. Also, other construction conditions are not limited as long as they do not interfere with the heating and cooling treatment.
[0024]
The metal-coated fiber body of the present invention can have good conductivity. Specifically, for example, a conductive fiber body having an electric resistance per denier of 1 000 Ω / cm · denier or less, preferably 1000 Ω / cm · denier or less, more preferably 100 Ω / cm · denier or less per 1 cm of fiber body is obtained. be able to. In addition, by reducing the metal coating amount, a fiber body having an electrical resistance of 100,000 Ω / cm · denier or more can be obtained. In particular, those coated with a white glossy metal such as silver, platinum, nickel, and tin can obtain a conductive fiber body having a high whiteness with a whiteness (L value) of 50 or more. The whiteness is measured by the Lab method based on Hunter's equation.
[0025]
The metal-coated fiber body of the present invention can be further subjected to a surface treatment after the heat annealing treatment. As this surface treatment, a reactive surface treatment agent, a surfactant having an affinity for the metal surface, or a rust prevention treatment or oil treatment (oiling) with paraffin or wax can be applied. In addition, this rust prevention treatment can prevent a decrease in whiteness over time and a decrease in adhesion (peeling strength). Moreover, the slipperiness of the fiber body surface improves by performing an oil process. This oil treatment improves slipping when the fiber body is processed by a loom or a knitting machine, and thus also protects the adhesion of the metal coating. When the metal-coated fiber body is actually used, it receives physical forces such as friction, shearing force, bending, and the like, and the metal coating is peeled or missing depending on its strength and frequency. The degree thereof is directly based on the adhesion strength between the metal coating and the fibrous body, but by applying the surface treatment, friction, shearing force and the like are buffered, and as a result, peeling of the metal coating is prevented. Further, since the metal surface is generally partially oxidized to have a hydroxyl group, it is preferable to prevent oxidation and prevent rust by surface treatment. The amount of the surface treatment agent used is generally in the range of 0.1 to 20 wt%, although it depends on the type of metal and the conditions of the heating and cooling treatment.
[0026]
The metal-coated fiber body of the present invention is used as various yarns such as short fibers and long fibers, or spun yarn and processed yarn. In addition to using the metal-coated fiber alone, it can be used as a synthetic fiber, a natural fiber, or a mixed fiber blended with a synthetic fiber and a natural fiber.
[0027]
Furthermore, the metal-coated fiber body of the present invention can be used as a fabric material such as a woven fabric or a non-woven fabric or a knitted material. In this case, those using silver, tin, nickel, etc. have high whiteness, so that they have excellent color developability when dyed and are suitable for textiles and clothing materials. Furthermore, what coated silver etc. can be utilized as an antimicrobial fiber body and antimicrobial clothing. Specific examples include antibacterial socks, underwear, outerwear, white robes, bedding, sheets, napkins, gloves, shirts, trousers, carpets, mats, and work clothes. In addition, the metal-coated fiber body of the present invention is not limited to a fabric material or the like, but uses an electroconductive property, such as an electromagnetic shielding material, dust-free clothing or gloves, shoes, covers, work clothes, or an antistatic material such as an electrode or an electric wire. It can be used as an alternative material for reducing the weight. Further, it can be used as a composite conductive material by surface coating on a conductive organic material, a conductive reinforcing material of a fiber reinforced plastic, or the like.
[0028]
[Production method] The metal-coated fiber body of the present invention is provided with a metal coating on the surface of the original yarn of a polyphenylene sulfide-based fiber body, a polycarbonate-based fiber body, or an aramid fiber body by electrolytic plating, chemical plating, or the like. It is obtained by heat treatment and cooling. When the metal coating is provided, the surface of the fiber body is etched in advance with alkali or the like, and if the surface is roughened, the coated metal enters the rough surface of the fiber body surface and exhibits an anchor effect. preferable.
[0029]
When a metal coating is provided on the fiber body (raw yarn), a fixed shaft is provided inside the plating tank for mounting the wound yarn body with the raw yarn in a cheese winding state, and this fixed shaft is formed by a hollow tube material. Then, it is preferable to provide a large number of liquid passage holes on the tube wall so that the plating solution flows out from the inside of the wound body through the fixed shaft. According to such an apparatus configuration, since the plating solution is supplied from the inside of the wound body through the fixed shaft and flows toward the outside of the wound body, the gap between the fiber bodies is pushed outward by the plating solution. Since the plating solution penetrates into the details between the fiber bodies, the metal plating is uniformly formed on the surface of the fiber bodies even in the cheese-wrapped state.
[0030]
After the metal coating (plating) is applied, the fiber body is dried and subjected to a heating / cooling treatment within the above temperature range. This heat treatment may be performed by introducing pressurized water vapor into the plating tank. Alternatively, the wound body may be taken out from the plating tank and transferred to an electric furnace or the like for heat treatment. Note that the heat treatment atmosphere may be air, but in order to prevent discoloration due to oxidation of the metal coating, the heat treatment may be performed in an inert atmosphere such as nitrogen or argon.
[0031]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
A fiber body made of a polymer material shown in Table 1 (high-strength nylon fiber, polyphenylene sulfide fiber, polycarbonate fiber, aramid fiber) is placed in a plating tank, and the following (a) degreasing treatment, (b) alkali treatment / After neutralization treatment and (c) activation treatment, (d) electroless plating was performed, and (e) heat treatment was further performed.
[0032]
(A) Degreasing treatment: A 5 wt% solution of a degreasing solution (Ascreen A-220: Okuno Pharmaceutical Co., Ltd.) was circulated in a plating tank at 55 ° C. for 5 minutes, and then thoroughly washed with ion-exchanged water.
(B) Alkaline treatment: After degreasing treatment, 20 wt% sodium hydroxide solution is circulated in the plating tank for 20 minutes at 70 ° C., and after thoroughly washing with ion exchange water, 5 wt% concentrated hydrochloric acid solution is placed in the plating tank at room temperature for 2 minutes. It was circulated.
(C) Activation treatment: After alkali treatment, concentrated hydrochloric acid solution and palladium chloride mixed solution (Catalyst C: Hadano Pharmaceutical Co., Ltd. product) was circulated through the plating bath at room temperature for 3 minutes and then thoroughly washed with ion-exchanged water. . Further, a 10 wt% sulfuric acid solution was circulated through the plating tank at 45 ° C. for 3 minutes for activation.
(D) Plating step: After depositing the catalyst on the surface of the fiber body by the above pretreatment, each metal plating solution is circulated through the plating tank to form a metal coating for gold, silver, nickel and copper shown in Table 1. did.
(E) Heat treatment: The wound body on which the metal coating was formed was placed in an electric furnace and heat-cooled under the temperature conditions shown in Table 1.
[0033]
The adhesion (peeling) strength of the coating was measured for these metal-coated fiber bodies. The results are shown in Table 1. Similar test results for those not subjected to heat treatment after metal coating are shown in Table 1 as comparative examples. This adhesion strength was measured based on a peel strength test in accordance with a standard test (JIS L 0849) showing the dyeing fastness of a fiber body or cloth. Specifically, a white cloth is piled on a bundle of metal-coated fibrous bodies of a test sample, a load of 200 g is applied, a reciprocating friction is performed 100 times at a reciprocating speed of 30 times per minute, and the degree of contamination attached to the white cloth is determined. The peel strength (adhesion strength) was determined according to the standards of grades 1 to 5 in descending order of degree of contamination (in order of low adhesion). In addition, conductivity was measured. For electrical conductivity, the electrical resistance between 10 cm of the central part of the fiber body was measured, and the resistance value per 1 denier (Ω / cm · denier) was determined for 1 cm of the 150 denier fiber body. This was determined for the initial electrical resistance and the electrical resistance after 100 frictions. Further, the shrinkage rate (stretch rate) was measured. This shrinkage ratio is the length of expansion and contraction when a load of 1.5 g is applied to the fibrous body at a temperature of 200 ° C. These results are shown in Table 1.
[0034]
As shown in the results in Table 1, all of the samples (A1, A2, A3, A4) of the present invention that were heat-treated after metal coating had a peel strength of 4 grades or more, but comparative samples that were not heat-treated (B1, B2, B3) is 3 grades or less, and the coating (peeling) strength of the present invention is remarkably large and has excellent adhesion. Moreover, although there is no difference in initial electrical resistance, the electrical resistance after friction is significantly lower than that of the comparative sample, and has excellent conductivity. Furthermore, the shrinkage rate of the comparative sample shows shrinkage of −1% to −2%, but the shrinkage rate of the fiber body of the present invention is 0% or less, hardly shrinks, and is extremely stable.
[0035]
【The invention's effect】
The metal-coated fiber body of the present invention has an excellent coating strength, and specifically, it can have a reference strength of 4 grades or more in a coating peel strength test. In addition, the stretch rate is small even under heating, and the durability against external force is excellent. Therefore, the metal-coated fiber body of the present invention can also be used in fields where the metal-coating adhesion and durability are not sufficient and cannot be applied conventionally. In addition, the metal-coated fiber body of the present invention can be easily produced because it is obtained by applying a heat annealing process at a specific temperature after providing a metal coating.
[0036]
[Table 1]
Figure 0003906903

Claims (14)

ポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体の一種または2種以上からなる繊維体に金属被覆を設け、この金属被覆繊維体を、ポリフェニレンサルファイド系繊維体については200〜300℃、ポリカーボネート系繊維体については200〜300℃、アラミド繊維体については250〜350℃の温度範囲において、該繊維体の結晶化温度以上であって融解温度未満の温度で加熱処理してなることを特徴とする金属被覆繊維体繊維体。 A metal coating is provided on a fiber body composed of one or two or more of a polyphenylene sulfide fiber body, a polycarbonate fiber body, or an aramid fiber body. In the temperature range of 200 to 300 ° C. for the polycarbonate fiber body and in the temperature range of 250 to 350 ° C. for the aramid fiber body, the heat treatment is performed at a temperature that is higher than the crystallization temperature of the fiber body and lower than the melting temperature. A metal-coated fibrous body. 繊維体の結晶化温度以上であって融解温度未満の温度下における伸縮率が±4%以下である請求項1の金属被覆繊維体。  The metal-coated fiber body according to claim 1, wherein the stretch ratio at a temperature not lower than the crystallization temperature of the fiber body and lower than the melting temperature is ± 4% or less. 繊維体の結晶化温度以上であって融解温度未満の温度下において、繊維体径(デニール値)の100分の1に相当するg荷重に対する伸縮率が±2%以下である請求項1または2の金属被覆繊維体。  The expansion / contraction rate with respect to g load corresponding to 1/100 of the fiber body diameter (denier value) is not more than ± 2% at a temperature not less than the crystallization temperature of the fiber body and less than the melting temperature. Metal-coated fiber body. 繊維体1cmについて1デニール当たりの電気抵抗が1000Ω/cm・テ゛ニール以下である請求項1〜3の何れかの金属被覆繊維体。  The metal-coated fiber body according to any one of claims 1 to 3, wherein 1 cm of the fiber body has an electric resistance per denier of 1000 Ω / cm · denier or less. 被覆剥離試験において金属被覆が4等級以上の基準強度を有する請求項1〜4の何れかの金属被覆繊維体。  The metal-coated fiber body according to any one of claims 1 to 4, wherein the metal coating has a reference strength of 4 grades or more in a coating peeling test. 繊維体が短繊維、長繊維、またはこれらの繊維からなる各種の糸である請求項1〜5の何れかの金属被覆繊維体。  The metal-coated fiber body according to any one of claims 1 to 5, wherein the fiber body is a short fiber, a long fiber, or various yarns composed of these fibers. 金属被覆が銀、金、白金、銅、ニッケル、スズ、亜鉛、バラジウム、またはこれらの混合物ないし合金からなる導電性金属である請求項1〜6の何れかの金属被覆繊維体。  The metal-coated fiber body according to any one of claims 1 to 6, wherein the metal coating is a conductive metal made of silver, gold, platinum, copper, nickel, tin, zinc, baradium, or a mixture or alloy thereof. 請求項1〜7の何れかの金属被覆繊維体の少なくとも1種を合成繊維、天然繊維、もしくは合成繊維と天然繊維の混合繊維に混紡した混合繊維体。  A mixed fiber body obtained by blending at least one of the metal-coated fiber bodies according to any one of claims 1 to 7 into a synthetic fiber, a natural fiber, or a mixed fiber of a synthetic fiber and a natural fiber. 請求項1〜8の何れかの金属被覆繊維体からなる織布または不織布。  A woven or non-woven fabric comprising the metal-coated fiber body according to any one of claims 1 to 8. 請求項1〜9の何れかの金属被覆繊維体からなる電線代替材料。  The electric wire substitute material which consists of a metal-coated fiber body in any one of Claims 1-9. ポリフェニレンサルファイド系繊維体、ポリカーボネート系繊維体、またはアラミド繊維体の一種または2種以上からなる繊維体に金属被覆を設け、この金属被覆繊維体を、ポリフェニレンサルファイド系繊維体については200〜300℃、ポリカーボネート系繊維体については200〜300℃、アラミド繊維体については250〜350℃の温度範囲において、該繊維体の結晶化温度以上であって融解温度未満の温度で加熱処理することを特徴とする金属被覆繊維体の製造方法。 A metal coating is provided on a fiber body composed of one or two or more of a polyphenylene sulfide fiber body, a polycarbonate fiber body, or an aramid fiber body . In the temperature range of 200 to 300 ° C. for the polycarbonate fiber body and in the temperature range of 250 to 350 ° C. for the aramid fiber body , heat treatment is performed at a temperature that is higher than the crystallization temperature of the fiber body and lower than the melting temperature. A method for producing a metal-coated fiber body. 1分間に0.1〜10℃の割合で昇温し、昇温した温度を5分〜200分保持する請求項11の製造方法。The manufacturing method of Claim 11 which heats up at a rate of 0.1-10 degreeC in 1 minute, and hold | maintains the heated temperature for 5 minutes-200 minutes. 昇温した温度を保持した後に、1分間に0.1〜10℃の割合で室温まで徐冷する請求項12の製造方法。  The method according to claim 12, wherein after the temperature is raised, the solution is gradually cooled to room temperature at a rate of 0.1 to 10 ° C per minute. 加圧水蒸気下もしくは電気炉内で、窒素ガスまたはアルゴンガスの不活性雰囲気下で、加熱徐冷処理する請求項11〜13の何れかの製造方法。  The production method according to any one of claims 11 to 13, wherein the heating and cooling treatment is performed under pressured steam or in an electric furnace under an inert atmosphere of nitrogen gas or argon gas.
JP2001324176A 2000-12-26 2001-10-22 Metal-coated fiber body and method for producing the same Expired - Fee Related JP3906903B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001324176A JP3906903B2 (en) 2001-10-22 2001-10-22 Metal-coated fiber body and method for producing the same
KR1020037008527A KR100808322B1 (en) 2000-12-26 2001-10-26 Metal-coated fiber and electroconductive composition comprising the same, and method for production thereof and use thereof
TW090126696A TW593492B (en) 2000-12-26 2001-10-26 Metal coated fibres, electrically conductive composition formed with such fibres and method for making the same, and use thereof
EP01980924A EP1369525A4 (en) 2000-12-26 2001-10-26 Metal-coated fiber and electroconductive composition comprising the same, and method for production thereof and use thereof
PCT/JP2001/009456 WO2002052098A1 (en) 2000-12-26 2001-10-26 Metal-coated fiber and electroconductive composition comprising the same, and method for production thereof and use thereof
US10/450,833 US7166354B2 (en) 2000-12-26 2001-10-26 Metal coated fiber and electroconductive composition comprising the same and method for production thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324176A JP3906903B2 (en) 2001-10-22 2001-10-22 Metal-coated fiber body and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006280915A Division JP4329105B2 (en) 2006-10-16 2006-10-16 Metal-coated fiber body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003129373A JP2003129373A (en) 2003-05-08
JP3906903B2 true JP3906903B2 (en) 2007-04-18

Family

ID=19140946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324176A Expired - Fee Related JP3906903B2 (en) 2000-12-26 2001-10-22 Metal-coated fiber body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3906903B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307391A (en) * 2004-04-21 2005-11-04 Teijin Techno Products Ltd Heat-resistant antistatic machine sewing thread
JP4642448B2 (en) * 2004-12-06 2011-03-02 財団法人鉄道総合技術研究所 Permanent disposition method of low thermal expansion linear body
JP2009081028A (en) * 2007-09-26 2009-04-16 Railway Technical Res Inst Manufacturing method for low thermal expansion linear body
JP2016212960A (en) * 2015-04-29 2016-12-15 株式会社サーテックカリヤ Polymer fiber conductive wire and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003129373A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
KR100808322B1 (en) Metal-coated fiber and electroconductive composition comprising the same, and method for production thereof and use thereof
WO2006047607A2 (en) Method for improved dyeing of difficult to dye items, yarns, fabrics or articles
US6703123B1 (en) Conductive fiber, manufacturing method therefor, apparatus, and application
CN103370460A (en) Metal wire having dual structure, preparation method thereof, ply yarn and doubling and twisting method using same, and cloth prepared using ply yarn
JP3906903B2 (en) Metal-coated fiber body and method for producing the same
JP4329105B2 (en) Metal-coated fiber body and method for producing the same
JP3972127B2 (en) Metal-coated fiber body and method for producing the same
JP4543356B2 (en) Metal-coated fiber body, its use and production method
JP4560750B2 (en) Metal-coated fibers and their applications
JP4631481B2 (en) Polyester core-sheath composite fiber
JP4789081B2 (en) Metal-coated fiber body and method for producing the same
JP4524725B2 (en) Metal-coated fiber body
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JPH0377306B2 (en)
JPH05302266A (en) Electrically conductive fiber excellent in durability
JP7017781B2 (en) Copper plating method for fibers
WO2021145180A1 (en) Metal-covered liquid crystal polyester multifilament
JP2023104703A (en) Stretchable conductive fabric
JPH02182970A (en) Polyester fiber and production thereof
JP2022109899A (en) Electroconductive composite yarn
CN117813425A (en) Core-sheath type polyester composite fiber and manufacturing method thereof
JPH04153367A (en) Electrically conductive fiber
JP2021161578A (en) Woven fabric and clothing
JPS6017114A (en) Polyester yarn having pilling resistance
JPS59211659A (en) Polyester weft knitted article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees