JP4789081B2 - Metal-coated fiber body and method for producing the same - Google Patents

Metal-coated fiber body and method for producing the same Download PDF

Info

Publication number
JP4789081B2
JP4789081B2 JP2001096794A JP2001096794A JP4789081B2 JP 4789081 B2 JP4789081 B2 JP 4789081B2 JP 2001096794 A JP2001096794 A JP 2001096794A JP 2001096794 A JP2001096794 A JP 2001096794A JP 4789081 B2 JP4789081 B2 JP 4789081B2
Authority
JP
Japan
Prior art keywords
fiber
metal
coating
coated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001096794A
Other languages
Japanese (ja)
Other versions
JP2002294553A (en
Inventor
真 綱島
雄亮 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2001096794A priority Critical patent/JP4789081B2/en
Publication of JP2002294553A publication Critical patent/JP2002294553A/en
Application granted granted Critical
Publication of JP4789081B2 publication Critical patent/JP4789081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繊維体に設けた金属被覆の密着性および耐腐蝕性に優れると共に軽量であって低価格で製造でき、しかも人の皮膚への影響も少ない金属被覆繊維体に関する。
【0002】
【従来の技術】
ナイロン繊維やポリエステル繊維などの高分子材料からなる合成繊維表面に金属薄膜をコーテングした導電性繊維ないし導電性糸が従来から知られており、金属コーテング膜の密着性を高めるために種々の方法が試みられている。例えば、硫化銅をコーテングする場合に、銅イオン捕捉基を有する染料で高分子材料を前処理し、これに銅イオンを結合させた後に硫化する方法(特公平01-37513号)や、アルカリ処理して粗面化した繊維表面に銅イオン捕捉基を付着させた後にこれに硫化銅を結合させる方法(特開平06-298973号)などが知られている。また、アラミド繊維などのように金属メッキを施し難いものについては、ポリビニルピロリドン(PVP)を利用して金属イオンを付着させ、これを還元して金属メッキを形成する方法(特表平06-506267号)などが知られている。
【0003】
【発明が解決しようとする課題】
ところが、上記PVPを利用するメッキ方法は繊維の種類が限られるので一般的ではない。また、銅イオン捕捉基を導入するコーテング方法は金属被覆が銅やその化合物に限られ、しかも金属被覆の付着強度が必ずしも十分ではないと云う問題がある。なお、繊維をアルカリ処理して粗面化すれば概ね金属被覆の付着強度を高めることができるが、粗面化の程度と金属被覆の状態が適切でないと十分な効果が得られない。しかも、金属被覆繊維を衣類等に使用する場合には洗濯や摩耗などの過酷な使用条件に耐える必要がある。さらに導電性の観点からは、金属被覆の部分的剥離によっても断線状態を招くので、金属被覆は信頼性の高い密着強度を有することが求められる。
【0004】
本発明は、従来の金属被覆繊維における上記問題を解決したものであって、優れた被覆強度を有する金属被覆繊維体を提供する。また、一般に金属被覆繊維体は塩素や硫化物による表面腐食が多く見られる。これを防止するため、下地の金属被覆の上側に防食用金属被覆を設ける二重金属被覆繊維体があるが、これは金属量が多く、コスト高を招くことが懸念される。本発明は上側の被覆にシリカ等の珪素化合物被覆を設けることにより、被覆金属量が少なく、しかも耐腐食性に優れ、皮膚への刺激も少ないた金属被覆繊維耐を提供するものである。
【0005】
【課題を解決する手段】
本発明は、金属被覆を有する繊維体において、繊維体表面に設けた金属被覆を下地とし、その上側にケイ素化合物からなる表面被覆を設けたものであり、下地に導電性金属被覆を設けることによって優れた導電性を有すると共に上側の表面被覆によって耐腐食性を高め、しかも皮膚への刺激が少なく比較的軽量であって製造コストも低い金属被覆繊維体を提供する。
【0006】
本発明は以下の構成からなる金属被覆繊維体に関する。
〔1〕合成繊維からなる基体繊維の表面に金属被覆と該金属被覆の上側にケイ素化合物被覆を有し、基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理されており、該加熱処理しないときより高い被覆強度を有することを特徴とする金属被覆繊維体。
〔2〕基体繊維がアクリル繊維、ナイロン繊維、ポリエステル繊維から選択される繊維の何れかである上記[1]に記載する金属被覆繊維体。
〔3〕下地の金属被覆がオレンジピールを有し、上側のケイ素化合物被覆がパラフィン処理またはワックス処理されている上記[1]または上記[2]に記載する金属被覆繊維体。
【0007】
また、本発明は以下の構成からなる金属被覆繊維体の製造方法に関する。
〔4〕基体繊維の表面に金属被覆を設けた後、あるいは金属被覆の上側にケイ素化合物被覆を設けた後に、この金属被覆繊維体を基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理して徐冷することにより、被覆強度を高めることを特徴とする金属被覆繊維体の製造方法。
〔5〕基体繊維の表面に金属被覆を設けた後に、基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理し、次いで、この金属被覆表面にケイ素化合物被覆を基体繊維の結晶化温度以下で形成する上記[4]に記載する金属被覆繊維体の製造方法。
〔6〕基体繊維がアクリル繊維、ナイロン繊維、ポリエステル繊維から選択される繊維の何れかであるとき、アクリル繊維については150〜200℃、ナイロン繊維については110〜180℃、ポリエステル繊維については170〜240℃に加熱し、昇温後の温度を5〜200分程度保持する加熱処理を行う上記[4]または上記[5]に記載する金属被覆繊維体の製造方法。
〔7〕ケイ素化合物被覆の形成溶液として、ケイ素化合物のアルコキシド硝酸性溶液を用いる上記[4]〜上記[6]の何れかに記載する金属被覆繊維体の製造方法。
【0008】
【発明の実施の態様】
以下、本発明を実施態様に基づいて具体的に説明する。
本発明の金属被覆繊維体は、合成繊維からなる基体繊維の表面に金属被覆と該金属被覆の上側にケイ素化合物被覆を有し、基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理されており、該加熱処理しないときより高い被覆強度を有することを特徴とする金属被覆繊維体である。なお、本発明において繊維体とは短繊維(ステープル)、長繊維(フィラメント)、これらの繊維からなる各種の加工糸(フィラメント糸、紡績糸など)を云い、これらを広く含めて繊維体と云う。
【0009】
本発明の金属被覆繊維体の基体となる繊維(基体繊維と云う)としては、ポリエステル、ポリアミド、アクリル、ポリオレフィン、ナイロンなどの高分子材料を主成分とした合成繊維、木綿などの天然繊維、レーヨンなどのセルロース系繊維、これらの有機繊維のほかにガラスファイバーなどの無機繊維、またはこれらの複合繊維体などが挙げられる。これらの繊維体は二種以上を混紡したものでも良く、合成繊維と天然繊維を混紡したものでも良い。このうち、ポリエステル繊維、アクリル繊維、ナイロン繊維などの合成繊維を用いたものについて本発明は特に有用である。
【0010】
なお、ポリエステルの長繊維は従来から金属被覆を施すのが難しいが、本発明によれば密着強度の大きい金属被覆繊維体を得ることができる。これらの繊維は単繊維の太さが0.1〜15d(デニール)のものが適当である。この繊維径が0.1dより細いと繊維の強度が不足するので好ましくなく、また、15dより太いと金属被覆を施した際に繊維体が硬くなり可撓性が失われるので適当ではない。
【0011】
基体繊維の表面に設ける下地の金属被覆は、例えば、金、銀、銅、ニッケル、錫、亜鉛、白金、Os、Pd、またはこれらの合金の一種または二種以上からなる導電性金属被覆が好ましい。なお被覆方法ないし手段は限定されない。電解メッキや化学(無電解)メッキ、あるいは真空蒸着などを利用することができる。基体繊維表面に電解メッキあるいは化学メッキなどによって上記金属の被覆を設けると良い。なお、金属被覆を設ける際に、予め繊維体表面をアルカリ等によってエッチング処理し、粗面化すれば被覆されるメッキ金属がこの繊維体表面の粗面に入り込んでアンカー効果を発揮するので好ましい。
【0012】
上記金属被覆は、その表面にオレンジピールを有するものが好ましい。金属被覆がオレンジピールを有することによって密着強度が向上する。オレンジピール(orange peel)とはオレンジの皮に似た状態であって、表面粗さが概ね0.01〜1μmの表面状態を云い、ユズ肌ないし梨地肌と称されている。金属被覆の層厚が概ね数百ナノメータ(nm)以下であるとき、金属被覆がオレンジピールを有するものは被覆の裏側まで粗面状態になっており、基体繊維の表面がこの粗面状態の金属被覆裏面に入り込んでアンカー効果を発揮するので基体繊維と金属被覆との接着強度が向上する。さらに、金属被覆表面がオレンジピールを有することにより、その上側のケイ素化合物被覆ないしチタン化合物被覆との接着強度も向上する。
【0013】
本発明の金属被覆繊維体は上記金属被覆の上側にケイ素化合物被覆を有する。該金属被覆の厚さは特に制限されないが、繊維体の重量、折り曲げ強度などの関係から、概ね60〜500nmが適当である。このケイ素化合物被覆はアルコキシド溶液を用いて形成すると良い。具体的には、ケイ素またはケイ素化合物のアルコキシド溶液を用い、これを金属被覆表面に塗布し、あるいはこのアルコキシド溶液に金属被覆繊維体を浸して金属被覆表面にアルコキシド溶液を付着させ、乾燥後、焼結することにより、アルコキシドを加水分解させて、シリカ被覆を形成する。
【0014】
ケイ素化合物被覆としては、シリカ(SiO2)、一酸化ケイ素(SiO)、アルコキシシリケート化合物などが挙げられる。これらは一部に水酸基を含むものでも良い。なお、ケイ素化合物被覆は金属被覆との親和性が良く、コストの点からも有利である。さらに、シリカ窒化物、シラン化合物などを用いても良く、また、さらに樹脂になじみ易いシリケートゴム、シリケート樹脂、チタネートゴム、チタネート樹脂を用いても良い。
【0015】
上記アルコキシド溶液は硝酸性溶液が好ましい。硝酸酸性溶液としては、例えば、エチルシリケート化合物と硝酸1.0%以下の溶液などが好適である。硝酸酸性溶液を用いることによって、下地の金属被覆表面がエッチングを受け、金属被覆表面がオレンジピールの状態になり、その上側に形成するケイ素化合物被覆との接着強度が大きくなる。具体的には、例えば、基体繊維表面に金属被覆を設けた後に、加熱処理し、あるいは加熱処理前に、硝酸酸性エチルシリケート溶液等を金属被覆表面に塗布して乾燥する。このとき溶液のpHはあまり下がりすぎないよう1.0〜4.0程度に保ち、短時間に乾燥させるのが好ましい。乾燥後、焼結し、常温まで冷却する。
【0016】
ケイ素化合物被覆を乾燥した後の焼結温度は、後述するように、金属被覆を設けた後に加熱処理をしてケイ素化合物被覆を設けている場合には、基体繊維の結晶化温度以下で行う。この温度は基体繊維の種類にもよるが概ね焼結温度は150〜250℃である。なお、この場合、基体繊維は先に加熱処理されて結晶組織が整えられているので、先の加熱処理と同程度の温度で焼結しても基体繊維の結晶組織は崩れない。因みに、例えば、ポリエステル繊維については約240℃以下、ナイロン繊維については約180℃以下、アクリル繊維については200℃以下の温度で焼結処理すれば良い。一方、金属被覆を設けた後に加熱処理を行わずにケイ素化合物被覆を設けている場合には、ケイ素化合物被覆の焼結処理時に基体繊維の加熱処理を同時に兼用して行うことができる。
【0017】
金属被覆繊維体がその表層に、シリカなどのケイ素化合物被膜を有することにより、これが下地の金属被覆の保護層となり、耐腐蝕性が向上する。具体的には、例えば、この金属被覆繊維体を塩素系洗浄剤で洗濯した場合、この表面被覆によって塩素系洗浄剤の浸透を防止するので塩素系洗浄剤に対する耐腐蝕性に優れる。また、塵埃や汗などに含まれる硫化物等による硫化反応、あるいは空気中での酸化反応等による腐食に対しても優れた耐食性を示す。さらに、下地の金属被覆が外部に露出しないので皮膚に対する刺激が殆どなく、金属アレルギーなどを生じる虞がない。また、シリカ被覆は透明性が高いので適度な膜厚下において下地の金属被覆の色調が被覆表面に表れる。従って、白色系の導電性金属被覆を設けることにより、耐腐食性に優れ、かつ金属アレルギーを生じない白色導電性繊維体を得ることができる。
【0018】
本発明の金属被覆繊維体は、好ましくは、金属被覆を設けた後、あるいはケイ素化合物被覆を設けた後に、基体繊維の結晶化温度以上および融解温度未満の温度範囲で加熱処理したものである。この加熱処理によって基体繊維の組織を整え、具体的には、例えば基体繊維の再結晶化を進め、金属被覆の被覆強度を格段に高めると共に加熱による収縮を大幅に抑制することができる。
【0019】
一般に、ポリエステル、ナイロン、ポリアクリル等の合成繊維を加熱すると、加熱温度に応じてガラス転移、結晶化、融解(溶融)と次第に状態が変化し、多くの場合にはガラス転移によって軟化し、続いて結晶化の段階で大きく収縮する。金属被覆繊維体をその繊維の結晶化温度以上に加熱すると、繊維が軟化し、繊維表面が金属被覆の接触面の微細な凹凸に入り込み、アンカー効果によって金属被覆と繊維との密着性が向上し、大きな被覆強度を得ることができる。
【0020】
加熱温度は概ね120℃〜250℃が適当であり、具体的には、例えば、ポリエステル繊維については170〜240℃、ナイロン繊維については110〜180℃、アクリル繊維については150〜200℃が適当である。この加熱処理においては、繊維体が十分に軟化するように昇温後の温度を5〜200分程度保持するのが好ましい。なお、加熱温度が繊維体の融解温度を上回ると繊維体全体が溶融して結晶性が低下すると共に繊維体を破壊して金属被覆を保持できなくなるので好ましくない。
【0021】
繊維体の加熱処理により、冷却する過程で繊維体の組織が整えられ被覆強度が向上する。例えば、加熱により繊維の分子配列が揃って結晶化し、金属被覆に密着した状態で繊維体が収縮し、徐冷工程で金属被覆が繊維体との一体性を保って収縮することにより被覆強度が向上する。また、このような加熱冷却処理によって被覆強度が向上すると共に非伸縮性を有するようになる。一般に合成繊維は結晶化温度以上に加熱されると結晶構造が変化するので10%以上の熱収縮を生じることが多いが、以上のような加熱処理により、繊維体の結晶構造が整えられるので、その後に加熱しても結晶構造が変化し難く、熱収縮を殆ど生じない。
【0022】
加熱処理手段は加熱炉、熱風炉などの他に赤外線による加熱でも良い。また、メッキ槽内での加圧水蒸気による加熱処理でも良い。加熱処理雰囲気は空気中でも良いが、金属被覆の酸化による変色を防止するには、窒素やアルゴン等の不活性ガス雰囲気下で加熱処理するのが好ましい。
【0023】
また、本発明の金属被覆繊維体は、以上の加熱冷却処理を行うことにより、規格(JIS L 0849)に基づく剥離強度試験において4等級以上の剥離強度(単に4等級以上の強度と云う)を有することができる。因みに、上記規格試験(JIS L 0849)は繊維体や布の染色堅ろう度を示す試験であり、染色布に白色布を重ね、所定荷重下で規定回数擦り合わせた場合に生じる白色布の汚染度によって染色の付着性が判定される。汚染度の高い順(付着性の低い順)に1等級から5等級までの基準が定められており、5等級の汚染度が最も低く、従って染色の密着性が最も高い。上記加熱処理を施した金属被覆繊維体について、この剥離試験における白色布の汚染度によって金属被覆の付着強度(被覆強度)を同様に判定することができる。加熱処理前は3等級以下の被覆強度を有する金属被覆繊維体について、本発明の加熱徐冷処理を行うことによって4等級以上の高い被覆強度を有するものを得ることができる。
【0024】
さらに、本発明によれば導電性に優れた金属被覆繊維体を得ることができる。具体的には、例えば、繊維体1cmについて1デニール当たりの電気抵抗が10000Ω/cm・デニール以下、好ましくは1000Ω/cm・デニール以下、さらに好ましくは100Ω/cm・デニール以下の導電性繊維体を得ることができる。なお、金属被覆量を低減することによって電気抵抗が1万Ω/cm・デニール以上の繊維体とすることもできる。
【0025】
本発明の金属被覆繊維体は耐腐食性金属被覆の表面にさらに表面処理を施したものを含む。表面処理としては、パラフィンやワックスによる防錆処理ないしオイル処理(オイリング)などを施すことができる。なお、この防錆処理によって白色度の経時的な低下や密着性(剥離強度)の低下を防止することができる。また、オイル処理を施すことにより繊維体表面の滑り性が向上する。このオイル処理は繊維体を織機や編機によって加工する際にその滑りを良くするので金属被覆の密着性の保護にもなる。金属被覆繊維体は実際に使用する際に、摩擦、剪断力、曲げ等の物理的な力を受け、その強さや頻度によって金属被覆の剥離や欠落が生じる。それらの度合いは直接的には金属被覆と繊維体との密着強度に基づくが、上記表面処理を施すことによって摩擦や剪断力などが緩衝され、その結果として金属被覆の剥離が防止される。また、金属表面は一般に一部が酸化して水酸基を有しているので、表面処理によって酸化を防止し防錆するのが好ましい。表面処理剤の使用量は金属の種類や加熱冷却処理の条件等にもよるが、概ね0.1〜20wt%の範囲が有効である。
【0026】
本発明の金属被覆繊維体は短繊維や長繊維、あるいは紡績糸や加工糸など各種の糸にして用いられる。また、金属被覆繊維を単独に用いる他に、合成繊維や天然繊維、あるいは合成繊維と天然繊維の混合繊維に混紡した混合繊維として用いることができる。さらに、本発明の金属被覆繊維体は織布または不織布などの布地材料や編物材料などとして用いることができる。この場合、銀やスズ、ニッケルなどを用いたものは高い白色度を有するので染色した際に発色性に優れ、テキスタイルや衣料品の布材に適する。さらに、銀などをコーテングしたものは抗菌繊維体および抗菌衣料として利用することができる。具体的な用途としては、抗菌性の靴下、下着、上着、白衣、寝具、シーツ、ナプキン、手袋、シャツ、ズボン、絨毯、マット、あるいは作業衣などが挙げられる。
【0027】
また、本発明の金属被覆繊維体は布地材料等に限らず、その導電性を利用して電磁波シールド材、無塵服や手袋、靴、カバー、作業衣など静電防止材料、あるいは電極や電線の軽量化を図る代替材料などに用いることができる。さらに、導電性有機材料への表面被覆による複合導電材料や繊維体強化プラスチックの導電性補強材などに用いることができる。
【0028】
本発明の金属被覆繊維体を製造する手段として、基体繊維をチーズ巻の状態でタンク内に設置し、チーズ巻の内側から外側に向かってメッキ液が流れるようにしてメッキすると良い。具体的には、タンク内に基体繊維を支える軸を設け、軸の周面にはメッキ液が流れ出す多数の小孔を設け、軸にはメッキ液の導入管を接続する。この軸にチーズ巻の基体繊維を差し込み、メッキ液を供給する。メッキ液は軸の内部を流れて小孔から外部に流れ出し基体繊維を内側から外側に向かって通過する。このような製造手段によれば、繊維の間隙がメッキ液によって外側に押し広がられた状態となり、繊維相互の細部にまでメッキ液が浸透するので、チーズ巻きの状態でも繊維体の表面に金属メッキが均一に形成される。
【0029】
金属被覆(メッキ)を施した後にこの繊維体を乾燥し、上記温度範囲の加熱処理を施す。この加熱処理はメッキ槽内に加圧水蒸気を導入して行っても良い。またはメッキ槽から巻糸体を取り出して、電気炉などに移して加熱処理しても良い。なお、加熱処理雰囲気は空気中でも良いが、金属被覆の酸化による変色を防止するためには窒素やアルゴン等の不活性雰囲気下で加熱処理を行うと良い。
【0030】
【実施例】
以下、本発明を実施例によって具体的に示す。
【0031】
〔実施例1〕
前述のメッキ手段を用い、各表に示す高分子材料(ポリエステル、アクリル、ナイロン)からなる基体繊維(150デニール)をメッキ槽に入れ、以下の処理工程(イ)〜(ヘ)を経て金属被覆繊維体を得た。
【0032】
(イ)脱脂処理:脱脂液(エースクリーンA-220:奥野製薬工業社製品)の5wt%溶液を55℃でメッキ槽に5分間循環させた後、イオン交換水を通じて十分に洗浄した。
(ロ)アルカリ処理:脱脂処理後に20wt%水酸化ナトリウム溶液を70℃でメッキ槽に20分間循環させ、さらにイオン交換水を通じて十分に洗浄した後に5wt%濃塩酸溶液を室温でメッキ槽に2分間循環させた。
(ハ)活性化処理:アルカリ処理後に濃塩酸溶液と塩化パラジウム混合溶液(キャタリストC:輿野製薬工業社製品)をメッキ槽に室温で3分間循環させた後にイオン交換水を通じて十分に洗浄した。さらに10wt%硫酸溶液をメッキ槽に45℃で3分間循環させて活性化した。
(ニ)第一層金属被覆の形成:以上の前処理によって繊維体表面に触媒を付着させた後に、この基体繊維を銀、ニッケル、銅の各メッキ液に浸し、無電解メッキによって下地の第一層金属被覆を形成した。
(ホ)加熱処理:以上の工程を経て製造した金属被覆繊維体の一部を電気炉に装入し、基体繊維の結晶化温度以上および融解温度未満の温度条件で加熱冷却処理した。
(ヘ)表面層の形成:この金属被覆上にエチルシリケート化合物溶液、またはこれに代わるシリケート化合物溶液を塗布し、乾燥後、ポリエステル繊維については約240℃以下、ナイロン繊維については約180℃以下、アクリル繊維については200℃以下の温度で焼結処理してシリカ被覆を形成した。
【0033】
これらの金属被覆繊維体について、被覆の密着(剥離)強度を測定した。この密着強度は繊維体や布の染色堅ろう度を示す規格試験(JIS L 0849)に準じた剥離強度試験に基づいて測定した。強度は付着性の低い順に1等級から5等級までの基準に従って評価した。また、白色度および塩素漂白試験を行い腐蝕の有無を調べた。塩素漂白試験は塩素水溶液(商品名ハイター50%を含む水溶液)100ccの中に試料の銀被覆繊維を室温下で10分間浸し、発生する気泡を観察し、3段階評価を行った。白色度はハンターの式に基づきL値を求めた。これらの結果を表1〜表3に示した。
【0034】
表1〜表3に示すように、本発明の好ましい範囲に属する金属被覆繊維体は何れも塩素腐蝕に対して優れた耐食性を有しており、さらに被覆強度も高く、銀やニッケル被覆においては白色度も高い。
【0035】
【発明の効果】
本発明の金属被覆繊維体は耐腐食性に優れると共に被覆強度が大きい。具体的には、塩素漂白試験において優れた塩素腐蝕性を有している。さらに、被覆の剥離強度試験において4等級以上の基準強度を有することができる。また、加熱下でも伸縮率が小さく、外力に対する耐久性に優れる。従って、金属被覆の密着性や耐久性が十分でないために従来は適用できなかった分野にも本発明の金属被覆繊維体を用いることできる。
【0036】
【表1】

Figure 0004789081
【0037】
【表2】
Figure 0004789081
【0038】
【表3】
Figure 0004789081
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal-coated fiber body that is excellent in adhesion and corrosion resistance of a metal coating provided on a fiber body, is lightweight, can be manufactured at low cost, and has little influence on human skin.
[0002]
[Prior art]
Conventionally known are conductive fibers or yarns in which a metal thin film is coated on the surface of a synthetic fiber made of a polymer material such as nylon fiber or polyester fiber, and various methods are available for improving the adhesion of the metal coating film. Has been tried. For example, when coating copper sulfide, a method of pre-treating a polymer material with a dye having a copper ion-trapping group, and then sulfiding after binding copper ions to this (Japanese Patent Publication No. 01-37513) or alkali treatment For example, a method of attaching a copper ion capturing group to a roughened fiber surface and then bonding copper sulfide to the copper ion capturing group is known (Japanese Patent Laid-Open No. 06-298973). For materials that are difficult to be metal-plated, such as aramid fibers, a method of forming metal plating by attaching metal ions using polyvinylpyrrolidone (PVP) and reducing the metal ions (JP-A 06-506267 No.) is known.
[0003]
[Problems to be solved by the invention]
However, the plating method using PVP is not general because the types of fibers are limited. Further, the coating method for introducing a copper ion capturing group has a problem that the metal coating is limited to copper or a compound thereof, and the adhesion strength of the metal coating is not always sufficient. Note that if the fiber is roughened by alkali treatment, the adhesion strength of the metal coating can be generally increased, but sufficient effects cannot be obtained unless the degree of roughening and the state of the metal coating are appropriate. Moreover, when the metal-coated fiber is used for clothing or the like, it is necessary to withstand severe use conditions such as washing and wear. Further, from the viewpoint of electrical conductivity, the metal coating is required to have a highly reliable adhesion strength because a disconnection state is also caused by partial peeling of the metal coating.
[0004]
This invention solves the said problem in the conventional metal-coated fiber, Comprising: The metal-coated fiber body which has the outstanding coating strength is provided. In general, metal-coated fiber bodies often show surface corrosion due to chlorine and sulfides. In order to prevent this, there is a double metal-coated fiber body in which an anticorrosion metal coating is provided on the upper side of the underlying metal coating. However, this has a concern that the metal amount is high and the cost is increased. In the present invention, by providing a silicon compound coating such as silica on the upper coating, metal coating fiber resistance is provided which has a small amount of coated metal, excellent corrosion resistance, and little irritation to the skin.
[0005]
[Means for solving the problems]
The present invention is a fiber body having a metal coating, in which a metal coating provided on the surface of the fiber body is used as a base, and a surface coating made of a silicon compound is provided on the upper side, and a conductive metal coating is provided on the base. Provided is a metal-coated fiber body which has excellent conductivity and has high corrosion resistance due to an upper surface coating, and which is relatively light in weight and low in production cost with little irritation to the skin.
[0006]
The present invention relates to a metal-coated fiber body having the following configuration.
[1] The surface of the base fiber made of synthetic fiber has a metal coating and a silicon compound coating on the upper side of the metal coating, and is heat-treated at a temperature higher than the crystallization temperature of the base fiber and lower than the melting temperature; A metal-coated fibrous body characterized by having a higher coating strength than when not heat-treated.
[2] The metal-coated fiber body according to the above [1], wherein the base fiber is any one selected from acrylic fiber, nylon fiber, and polyester fiber.
[3] The metal-coated fibrous body according to the above [1] or [2], wherein the base metal coating has an orange peel and the upper silicon compound coating is paraffin-treated or wax-treated.
[0007]
Moreover, this invention relates to the manufacturing method of the metal-coated fiber body which consists of the following structures.
[4] After the metal coating is provided on the surface of the base fiber, or after the silicon compound coating is provided on the upper side of the metal cover, the temperature of the metal-coated fiber body is not less than the crystallization temperature of the base fiber and less than the melting temperature. A method for producing a metal-coated fibrous body, wherein the coating strength is increased by heat-treating and slow cooling.
[5] After providing a metal coating on the surface of the base fiber, heat treatment is performed at a temperature not lower than the crystallization temperature of the base fiber and lower than the melting temperature. The method for producing a metal-coated fiber body according to the above [4], wherein the metal-coated fiber body is formed at a temperature equal to or lower than the forming temperature.
[6] When the base fiber is any one selected from acrylic fiber, nylon fiber, and polyester fiber, the acrylic fiber is 150 to 200 ° C., the nylon fiber is 110 to 180 ° C., and the polyester fiber is 170 to The method for producing a metal-coated fiber body according to the above [4] or [5], wherein the heat treatment is performed by heating to 240 ° C. and maintaining the temperature after the temperature increase for about 5 to 200 minutes.
[7] The method for producing a metal-coated fibrous body according to any one of [4] to [6] above, wherein an alkoxide nitrate solution of a silicon compound is used as a silicon compound coating forming solution.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments.
The metal-coated fiber body of the present invention has a metal coating on the surface of a base fiber made of synthetic fiber and a silicon compound coating on the upper side of the metal coating, and is at a temperature not lower than the crystallization temperature of the base fiber and lower than the melting temperature. A metal-coated fibrous body that is heat-treated and has a higher coating strength than when the heat-treatment is not performed . In the present invention, the fiber body refers to short fibers (staples), long fibers (filaments), and various processed yarns (filament yarns, spun yarns, etc.) made of these fibers, and these are broadly referred to as fiber bodies. .
[0009]
As a fiber (called a base fiber) as a base of the metal-coated fiber body of the present invention, a synthetic fiber mainly composed of a polymer material such as polyester, polyamide, acrylic, polyolefin, nylon, natural fiber such as cotton, rayon, etc. In addition to these organic fibers, inorganic fibers such as glass fibers, or composite fiber bodies thereof can be used. These fiber bodies may be a mixture of two or more, or may be a mixture of synthetic fibers and natural fibers. Among these, the present invention is particularly useful for those using synthetic fibers such as polyester fibers, acrylic fibers, and nylon fibers.
[0010]
Polyester long fibers are conventionally difficult to metallize, but according to the present invention, a metal-coated fiber body with high adhesion strength can be obtained. These fibers are suitably those having a single fiber thickness of 0.1 to 15 d (denier). If the fiber diameter is thinner than 0.1d, the strength of the fiber is insufficient, and it is not preferable. If it is thicker than 15d, the fiber body is hardened and the flexibility is lost when the metal coating is applied.
[0011]
The base metal coating provided on the surface of the base fiber is preferably a conductive metal coating made of one or more of gold, silver, copper, nickel, tin, zinc, platinum, Os, Pd, or alloys thereof. . The coating method or means is not limited. Electrolytic plating, chemical (electroless) plating, vacuum deposition, or the like can be used. It is preferable to provide the metal coating on the surface of the base fiber by electrolytic plating or chemical plating. When the metal coating is provided, it is preferable that the surface of the fiber body is etched in advance with an alkali or the like to roughen the surface because the plated metal to be coated enters the rough surface of the surface of the fiber body and exhibits an anchor effect.
[0012]
The metal coating preferably has orange peel on the surface. The adhesion strength is improved by having an orange peel in the metal coating. An orange peel is a state similar to an orange peel and has a surface roughness of about 0.01 to 1 μm, and is called yuzu skin or pear skin. When the thickness of the metal coating is approximately several hundred nanometers (nm) or less, the metal coating having an orange peel is in a rough state up to the back side of the coating, and the surface of the base fiber is a metal in the rough state. Since it enters the back surface of the coating and exhibits an anchor effect, the adhesive strength between the base fiber and the metal coating is improved. Furthermore, since the metal coating surface has orange peel, the adhesive strength with the silicon compound coating or titanium compound coating on the upper side is also improved.
[0013]
The metal-coated fiber body of the present invention has a silicon compound coating on the upper side of the metal coating . The thickness of the metal coating is not particularly limited, but approximately 60 to 500 nm is appropriate in view of the weight of the fiber body, the bending strength, and the like. This silicon compound coating is preferably formed using an alkoxide solution. Specifically, an alkoxide solution of silicon or a silicon compound is used and applied to the surface of the metal coating, or the metal-coated fiber body is immersed in the alkoxide solution to adhere the alkoxide solution to the surface of the metal coating, and is dried and baked. By ligating, the alkoxide is hydrolyzed to form a silica coating .
[0014]
Examples of the silicon compound coating include silica (SiO 2), silicon monoxide (SiO), and alkoxysilicate compounds. These may partially contain a hydroxyl group. The silicon compound coating has good affinity with the metal coating and is advantageous from the viewpoint of cost. Furthermore, silica nitride, a silane compound, or the like may be used, and a silicate rubber, a silicate resin, a titanate rubber, or a titanate resin that is more compatible with the resin may be used.
[0015]
The alkoxide solution is preferably a nitrate solution. As the nitric acid acidic solution, for example, an ethyl silicate compound and a nitric acid 1.0% or less solution are suitable. By using the nitric acid acidic solution, the underlying metal coating surface is etched, the metal coating surface is in an orange peel state, and the adhesive strength with the silicon compound coating formed on the upper side is increased. Specifically, for example, after a metal coating is provided on the surface of the base fiber, heat treatment is performed, or before the heat treatment, an acidic ethyl silicate solution or the like is applied to the metal coating surface and dried. At this time, it is preferable to keep the pH of the solution at about 1.0 to 4.0 so as not to drop too much and to dry in a short time. After drying, sinter and cool to room temperature.
[0016]
As described later, the sintering temperature after drying the silicon compound coating is not higher than the crystallization temperature of the base fiber when the silicon compound coating is provided by heat treatment after the metal coating is provided. Although this temperature depends on the type of substrate fiber, the sintering temperature is generally 150 to 250 ° C. In this case, since the base fiber is first heat-treated and the crystal structure is adjusted, the crystal structure of the base fiber does not collapse even when sintered at a temperature similar to the previous heat-treatment. For example, the polyester fiber may be sintered at a temperature of about 240 ° C. or lower, the nylon fiber at a temperature of about 180 ° C. or lower, and the acrylic fiber at a temperature of 200 ° C. or lower. On the other hand, when the silicon compound coating is provided without performing the heat treatment after the metal coating is provided, the heat treatment of the base fiber can be simultaneously performed during the sintering treatment of the silicon compound coating .
[0017]
When the metal-coated fiber body has a silicon compound film such as silica on its surface layer, this becomes a protective layer for the underlying metal coating, and the corrosion resistance is improved. Specifically, for example, when this metal-coated fibrous body is washed with a chlorine-based cleaning agent, penetration of the chlorine-based cleaning agent is prevented by this surface coating, so that the corrosion resistance to the chlorine-based cleaning agent is excellent. In addition, it exhibits excellent corrosion resistance against corrosion caused by sulfides contained in dust, sweat, etc., or oxidation reaction in the air. Furthermore, since the underlying metal coating is not exposed to the outside, there is almost no irritation to the skin, and there is no possibility of causing metal allergy or the like. Further, since the silica coating is highly transparent, the color tone of the underlying metal coating appears on the coating surface under an appropriate film thickness. Therefore, by providing a white conductive metal coating, it is possible to obtain a white conductive fiber body that is excellent in corrosion resistance and does not cause metal allergy.
[0018]
The metal-coated fiber body of the present invention is preferably heat-treated at a temperature range above the crystallization temperature and below the melting temperature of the base fiber after providing the metal coating or after providing the silicon compound coating . By this heat treatment, the structure of the base fiber can be adjusted. Specifically, for example, recrystallization of the base fiber can be promoted to significantly increase the coating strength of the metal coating and to greatly suppress shrinkage due to heating.
[0019]
In general, when synthetic fibers such as polyester, nylon, and polyacryl are heated, the state gradually changes depending on the heating temperature, such as glass transition, crystallization, and melting (melting). It shrinks greatly at the crystallization stage. When the metal-coated fiber body is heated above the crystallization temperature of the fiber, the fiber softens, the fiber surface enters into the fine irregularities on the contact surface of the metal coating, and the anchoring effect improves the adhesion between the metal coating and the fiber. A large coating strength can be obtained.
[0020]
The heating temperature is generally 120 to 250 ° C., specifically, for example, 170 to 240 ° C. for polyester fibers, 110 to 180 ° C. for nylon fibers, and 150 to 200 ° C. for acrylic fibers. is there. In this heat treatment, the temperature after the temperature rise is preferably maintained for about 5 to 200 minutes so that the fibrous body is sufficiently softened. If the heating temperature is higher than the melting temperature of the fibrous body, the entire fibrous body is melted and the crystallinity is lowered, and the fibrous body is destroyed and the metal coating cannot be retained.
[0021]
By heating the fiber body, the structure of the fiber body is prepared in the process of cooling, and the coating strength is improved. For example, by heating, the molecular arrangement of the fibers is aligned and crystallized, the fiber body contracts in a state of being in close contact with the metal coating, and the coating strength is reduced by shrinking the metal coating while maintaining the integrity with the fiber body in the slow cooling process. improves. Further, such heating and cooling treatment improves the coating strength and has non-stretchability. In general, when synthetic fibers are heated to a temperature higher than the crystallization temperature, the crystal structure changes and often causes thermal shrinkage of 10% or more, but the heat treatment as described above adjusts the crystal structure of the fibrous body. Even if it heats after that, a crystal structure does not change easily and heat shrinkage hardly arises.
[0022]
The heat treatment means may be heating by infrared rays in addition to a heating furnace, a hot air furnace or the like. Moreover, the heat processing by the pressurized water vapor | steam in a plating tank may be sufficient. The heat treatment atmosphere may be air, but in order to prevent discoloration due to oxidation of the metal coating, heat treatment is preferably performed in an inert gas atmosphere such as nitrogen or argon.
[0023]
In addition, the metal-coated fibrous body of the present invention has a peel strength of 4 or more in the peel strength test based on the standard (JIS L 0849) (simply called a strength of 4 or more) by performing the above heating and cooling treatment. Can have. By the way, the above standard test (JIS L 0849) is a test to show the fastness of dyeing of fiber bodies and fabrics, and the degree of contamination of white fabrics that occurs when a white fabric is layered on a dyed fabric and rubbed a specified number of times under a specified load. To determine the adherence of dyeing. Criteria from grade 1 to grade 5 are set in order of the degree of contamination (in order of low adhesion), and the degree of contamination of grade 5 is the lowest and therefore the adhesion of dyeing is the highest. With respect to the metal-coated fiber body subjected to the heat treatment, the adhesion strength (coating strength) of the metal coating can be similarly determined based on the degree of contamination of the white cloth in this peel test. Before the heat treatment, a metal-coated fiber body having a coating strength of 3 grades or less can be obtained having a high coating strength of 4 grades or more by performing the heating and slow cooling treatment of the present invention.
[0024]
Furthermore, according to the present invention, a metal-coated fiber body excellent in conductivity can be obtained. Specifically, for example, a conductive fiber body having an electric resistance per denier of 1 000 Ω / cm · denier or less, preferably 1000 Ω / cm · denier or less, more preferably 100 Ω / cm · denier or less per 1 cm of fiber body is obtained. be able to. In addition, by reducing the metal coating amount, a fiber body having an electrical resistance of 10,000 Ω / cm · denier or more can be obtained.
[0025]
The metal-coated fiber body of the present invention includes those obtained by further surface-treating the surface of the corrosion-resistant metal coating. As the surface treatment, rust prevention treatment or oil treatment (oiling) with paraffin or wax can be performed. In addition, this rust prevention treatment can prevent a decrease in whiteness over time and a decrease in adhesion (peeling strength). Moreover, the slipperiness of the fiber body surface improves by performing an oil process. This oil treatment improves slipping when the fiber body is processed by a loom or a knitting machine, and thus also protects the adhesion of the metal coating. When the metal-coated fiber body is actually used, it receives physical forces such as friction, shearing force, bending, and the like, and the metal coating is peeled or missing depending on its strength and frequency. The degree thereof is directly based on the adhesion strength between the metal coating and the fibrous body, but by applying the surface treatment, friction, shearing force and the like are buffered, and as a result, peeling of the metal coating is prevented. Further, since the metal surface is generally partially oxidized to have a hydroxyl group, it is preferable to prevent oxidation and prevent rust by surface treatment. The amount of the surface treatment agent used is generally in the range of 0.1 to 20 wt%, although it depends on the type of metal and the conditions of the heating and cooling treatment.
[0026]
The metal-coated fiber body of the present invention is used as various yarns such as short fibers and long fibers, or spun yarn and processed yarn. In addition to using the metal-coated fiber alone, it can be used as a synthetic fiber, a natural fiber, or a mixed fiber blended with a synthetic fiber and a natural fiber. Furthermore, the metal-coated fiber body of the present invention can be used as a fabric material such as a woven fabric or a non-woven fabric or a knitted material. In this case, those using silver, tin, nickel, etc. have high whiteness, so that they have excellent color developability when dyed and are suitable for textiles and clothing materials. Furthermore, what coated silver etc. can be utilized as an antimicrobial fiber body and antimicrobial clothing. Specific examples include antibacterial socks, underwear, outerwear, white robes, bedding, sheets, napkins, gloves, shirts, trousers, carpets, mats, and work clothes.
[0027]
In addition, the metal-coated fiber body of the present invention is not limited to a fabric material or the like, but uses an electroconductive property, such as an electromagnetic shielding material, dust-free clothing or gloves, shoes, covers, work clothes, or an antistatic material such as an electrode or an electric wire. It can be used as an alternative material for reducing the weight. Further, it can be used as a composite conductive material by surface coating on a conductive organic material, a conductive reinforcing material of a fiber reinforced plastic, or the like.
[0028]
As a means for producing the metal-coated fiber body of the present invention, the base fiber is preferably placed in a tank in a cheese winding state and plated so that the plating solution flows from the inside to the outside of the cheese winding. Specifically, a shaft for supporting the base fiber is provided in the tank, a large number of small holes through which the plating solution flows are provided on the peripheral surface of the shaft, and an introduction pipe for the plating solution is connected to the shaft. A base fiber of cheese winding is inserted into this shaft, and a plating solution is supplied. The plating solution flows inside the shaft, flows out from the small holes, and passes through the base fiber from the inside toward the outside. According to such a manufacturing means, the gap between the fibers is pushed outward by the plating solution, and the plating solution penetrates into the details of the mutual fibers. The plating is formed uniformly.
[0029]
After the metal coating (plating) is applied, the fiber body is dried and subjected to a heat treatment within the above temperature range. This heat treatment may be performed by introducing pressurized water vapor into the plating tank. Alternatively, the wound body may be taken out from the plating tank and transferred to an electric furnace or the like for heat treatment. Note that the heat treatment atmosphere may be air, but in order to prevent discoloration due to oxidation of the metal coating, the heat treatment may be performed in an inert atmosphere such as nitrogen or argon.
[0030]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0031]
[Example 1]
Using the above-mentioned plating means, the base fiber (150 denier) made of the polymer material (polyester, acrylic, nylon) shown in each table is put in the plating tank, and the metal coating is performed through the following processing steps (a) to (f). A fibrous body was obtained.
[0032]
(Ii) Degreasing treatment: A 5 wt% solution of a degreasing solution (Ascreen A-220: Okuno Pharmaceutical Co., Ltd.) was circulated in a plating tank at 55 ° C. for 5 minutes, and then thoroughly washed with ion-exchanged water.
(B) Alkali treatment: After degreasing treatment, 20 wt% sodium hydroxide solution is circulated in the plating tank at 70 ° C. for 20 minutes, and after thoroughly washing with ion exchange water, 5 wt% concentrated hydrochloric acid solution is placed in the plating tank at room temperature for 2 minutes. It was circulated.
(C) Activation treatment: After alkali treatment, concentrated hydrochloric acid solution and palladium chloride mixed solution (Catalyst C: Hadano Pharmaceutical Co., Ltd. product) was circulated in the plating bath at room temperature for 3 minutes and then thoroughly washed with ion-exchanged water. . Further, a 10 wt% sulfuric acid solution was circulated through the plating tank at 45 ° C. for 3 minutes for activation.
(D) Formation of the first layer metal coating: After the catalyst is attached to the surface of the fiber body by the above pretreatment, the base fiber is immersed in each of silver, nickel and copper plating solutions, and the base layer is coated by electroless plating. A single metal coating was formed.
(E) Heat treatment: A part of the metal-coated fiber body produced through the above steps was placed in an electric furnace and heat-cooled under a temperature condition not lower than the crystallization temperature of the base fiber and lower than the melting temperature.
(F) Formation of surface layer: An ethyl silicate compound solution or an alternative silicate compound solution is applied on this metal coating, and after drying, about 240 ° C. or less for polyester fibers, about 180 ° C. or less for nylon fibers, The acrylic fiber was sintered at a temperature of 200 ° C. or lower to form a silica coating.
[0033]
With respect to these metal-coated fiber bodies, the adhesion (peeling) strength of the coating was measured. This adhesion strength was measured based on a peel strength test in accordance with a standard test (JIS L 0849) showing the dyeing fastness of a fiber body or cloth. The strength was evaluated according to the criteria of grade 1 to grade 5 in ascending order of adhesion. Also, whiteness and chlorine bleaching tests were conducted to check for corrosion. In the chlorine bleaching test, the silver-coated fiber of the sample was immersed in 100 cc of an aqueous chlorine solution (an aqueous solution containing 50% of the trade name Hiter) at room temperature for 10 minutes, and the generated bubbles were observed and evaluated in three stages. The whiteness was determined as an L value based on Hunter's equation. These results are shown in Tables 1 to 3.
[0034]
As shown in Tables 1 to 3, all of the metal-coated fiber bodies belonging to the preferred range of the present invention have excellent corrosion resistance against chlorine corrosion, and also have high coating strength, and in silver and nickel coatings Whiteness is also high.
[0035]
【The invention's effect】
The metal-coated fiber body of the present invention is excellent in corrosion resistance and has high coating strength. Specifically, it has excellent chlorine corrosion properties in the chlorine bleaching test. Furthermore, it can have a reference strength of 4 grades or more in the peel strength test of the coating. In addition, the stretch rate is small even under heating, and the durability against external force is excellent. Therefore, the metal-coated fiber body of the present invention can also be used in a field that could not be applied conventionally because the adhesion and durability of the metal coating are not sufficient.
[0036]
[Table 1]
Figure 0004789081
[0037]
[Table 2]
Figure 0004789081
[0038]
[Table 3]
Figure 0004789081

Claims (7)

合成繊維からなる基体繊維の表面に金属被覆と該金属被覆の上側にケイ素化合物被覆を有し、基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理されており、該加熱処理しないときより高い被覆強度を有することを特徴とする金属被覆繊維体。The surface of the base fiber made of synthetic fiber has a metal coating and a silicon compound coating on the upper side of the metal coating, and is heat-treated at a temperature higher than the crystallization temperature of the base fiber and lower than the melting temperature. A metal-coated fibrous body characterized by having a higher coating strength when not. 基体繊維がアクリル繊維、ナイロン繊維、ポリエステル繊維から選択される繊維の何れかである請求項1に記載する金属被覆繊維体。The metal-coated fiber body according to claim 1, wherein the base fiber is any one selected from acrylic fiber, nylon fiber, and polyester fiber. 下地の金属被覆がオレンジピールを有し、上側のケイ素化合物被覆がパラフィン処理またはワックス処理されている請求項1または請求項2に記載する金属被覆繊維体。The metal-coated fiber body according to claim 1 or 2, wherein the base metal coating has an orange peel, and the upper silicon compound coating is paraffin-treated or wax-treated. 基体繊維の表面に金属被覆を設けた後、あるいは金属被覆の上側にケイ素化合物被覆を設けた後に、この金属被覆繊維体を基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理して徐冷することにより、被覆強度を高めることを特徴とする金属被覆繊維体の製造方法。After a metal coating is provided on the surface of the base fiber, or after a silicon compound coating is provided on the upper side of the metal cover, the metal-coated fiber body is heat-treated at a temperature higher than the crystallization temperature of the base fiber and lower than the melting temperature. And then gradually cooling to increase the coating strength, thereby producing a metal-coated fiber body. 基体繊維の表面に金属被覆を設けた後に、基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理し、次いで、この金属被覆表面にケイ素化合物被覆を基体繊維の結晶化温度以下で形成する請求項4に記載する金属被覆繊維体の製造方法。After providing a metal coating on the surface of the base fiber, heat treatment is performed at a temperature that is higher than the crystallization temperature of the base fiber and lower than the melting temperature, and then a silicon compound coating is applied to the metal-coated surface below the crystallization temperature of the base fiber. The manufacturing method of the metal-coated fiber body of Claim 4 formed by. 基体繊維がアクリル繊維、ナイロン繊維、ポリエステル繊維から選択される繊維の何れかであるとき、アクリル繊維については150〜200℃、ナイロン繊維については110〜180℃、ポリエステル繊維については170〜240℃に加熱し、昇温後の温度を5〜200分程度保持する加熱処理を行う請求項4または請求項5に記載する金属被覆繊維体の製造方法。When the base fiber is one selected from acrylic fiber, nylon fiber, and polyester fiber, the acrylic fiber is 150 to 200 ° C, the nylon fiber is 110 to 180 ° C, and the polyester fiber is 170 to 240 ° C. The method for producing a metal-coated fiber body according to claim 4 or 5, wherein heat treatment is performed to heat and maintain the temperature after the temperature rise for about 5 to 200 minutes. ケイ素化合物被覆の形成溶液として、ケイ素化合物のアルコキシド硝酸性溶液を用いる請求項4〜請求項6の何れかに記載する金属被覆繊維体の製造方法。The method for producing a metal-coated fiber body according to any one of claims 4 to 6, wherein an alkoxide nitrate solution of a silicon compound is used as a solution for forming a silicon compound coating.
JP2001096794A 2001-03-29 2001-03-29 Metal-coated fiber body and method for producing the same Expired - Fee Related JP4789081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096794A JP4789081B2 (en) 2001-03-29 2001-03-29 Metal-coated fiber body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096794A JP4789081B2 (en) 2001-03-29 2001-03-29 Metal-coated fiber body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002294553A JP2002294553A (en) 2002-10-09
JP4789081B2 true JP4789081B2 (en) 2011-10-05

Family

ID=18950670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096794A Expired - Fee Related JP4789081B2 (en) 2001-03-29 2001-03-29 Metal-coated fiber body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4789081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115506147A (en) * 2022-10-20 2022-12-23 安徽理工大学 Multifunctional antioxidant metal conductive fabric and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668578A (en) * 1984-11-13 1987-05-26 American Cyanamid Company Surface treated metallic filaments
JPH01298279A (en) * 1988-05-26 1989-12-01 Mitsubishi Rayon Co Ltd Metal-covered fiber
JP4543356B2 (en) * 2000-04-27 2010-09-15 三菱マテリアル株式会社 Metal-coated fiber body, its use and production method
JP4161287B2 (en) * 2001-03-29 2008-10-08 三菱マテリアル株式会社 Conductive resin composition and production method and use thereof

Also Published As

Publication number Publication date
JP2002294553A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
KR100808322B1 (en) Metal-coated fiber and electroconductive composition comprising the same, and method for production thereof and use thereof
KR101293275B1 (en) Two-layered Metal Fibers and Manufacturing Method thereof, Ply Yarn and Ply Method, and the Fabric using the Ply Yarn
JP3972127B2 (en) Metal-coated fiber body and method for producing the same
KR100639093B1 (en) Conductive fiber, manufacturing method therefor, apparatus, and application
JP4789081B2 (en) Metal-coated fiber body and method for producing the same
JP4329105B2 (en) Metal-coated fiber body and method for producing the same
JP3906903B2 (en) Metal-coated fiber body and method for producing the same
JP4560750B2 (en) Metal-coated fibers and their applications
JP4543356B2 (en) Metal-coated fiber body, its use and production method
JP4524725B2 (en) Metal-coated fiber body
KR102337315B1 (en) Acryl spun conductive yarns and fabrics using the same and manufacturing method thereof
EP1638699A2 (en) Enhanced metal ion release rate for anti-microbial applications
JP4161287B2 (en) Conductive resin composition and production method and use thereof
JP2001055631A (en) Antimicrobial polyamide potentially crimpable yarn and its production
JPS61102478A (en) Conductive cloth and its production
WO2021145180A1 (en) Metal-covered liquid crystal polyester multifilament
JP2019183178A (en) Plating fiber and electric wire
JPS62299567A (en) Production of metal coated fiber
JPH0377306B2 (en)
JP2008144304A (en) Conjugate yarn and fibrous structural material
JP2023104703A (en) Stretchable conductive fabric
JPH0749627B2 (en) Method for producing metal-coated fiber cloth
JPS6183374A (en) Acrylic precursor fiber bundle
JPH05302266A (en) Electrically conductive fiber excellent in durability
JPH07102476A (en) Production of metallized polyester fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20010329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20011010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees