JP4853224B2 - Steel sheet cooling equipment and cooling method - Google Patents

Steel sheet cooling equipment and cooling method Download PDF

Info

Publication number
JP4853224B2
JP4853224B2 JP2006284644A JP2006284644A JP4853224B2 JP 4853224 B2 JP4853224 B2 JP 4853224B2 JP 2006284644 A JP2006284644 A JP 2006284644A JP 2006284644 A JP2006284644 A JP 2006284644A JP 4853224 B2 JP4853224 B2 JP 4853224B2
Authority
JP
Japan
Prior art keywords
steel plate
cooling
steel sheet
cooling water
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006284644A
Other languages
Japanese (ja)
Other versions
JP2008100255A5 (en
JP2008100255A (en
Inventor
直樹 中田
高志 黒木
晃夫 藤林
悟史 上岡
昭博 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006284644A priority Critical patent/JP4853224B2/en
Publication of JP2008100255A publication Critical patent/JP2008100255A/en
Publication of JP2008100255A5 publication Critical patent/JP2008100255A5/ja
Application granted granted Critical
Publication of JP4853224B2 publication Critical patent/JP4853224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼板の冷却設備および冷却方法に関するものである。   The present invention relates to a steel sheet cooling facility and a cooling method.

鋼板(特に厚鋼板)の熱間圧延ラインにおいては、合金元素の削減や材質の向上および生産能率の向上を目的に、加速冷却装置や制御冷却装置など種々の冷却装置が用いられている。これら厚鋼板の冷却方法は、厚鋼板を搬送ロール上を搬送させながら上下面に冷却水を供給するのが一般的であり、いずれの冷却装置においても板幅方向、搬送方向に均一な冷却を行うことが重要である。   In a hot rolling line for steel plates (particularly thick steel plates), various cooling devices such as an acceleration cooling device and a control cooling device are used for the purpose of reducing alloy elements, improving material quality, and improving production efficiency. In these cooling methods for thick steel plates, cooling water is generally supplied to the upper and lower surfaces while transporting the thick steel plates on a transport roll. In any cooling device, uniform cooling is performed in the plate width direction and the transport direction. It is important to do.

そのために、例えば特許文献1に記載されたような冷却装置が提案されている。特許文献1に記載の冷却装置は、上下一対の鋼板拘束ロール二組からなる冷却ユニットを厚鋼板の搬送方向に複数配設した冷却装置において、出側拘束ロールや出側拘束ロールの出側に設けたエアースリットノズルだけではロールと鋼板の隙間から漏出する冷却水を完全に除去することができないので、出側拘束ロールの出側に板幅方向へ延びる冷却ヘッダを配設し、ヘッダに厚鋼板の搬送方向に相対向させ、かつ搬送方向に対し左右相反方向へ噴射口を向け冷却液噴射ノズルを傾斜配設した冷却装置である。   Therefore, for example, a cooling device as described in Patent Document 1 has been proposed. The cooling device described in Patent Document 1 is a cooling device in which a plurality of cooling units each composed of a pair of upper and lower steel plate restraining rolls are arranged in the conveying direction of the thick steel plate, on the exit side of the exit side restraint roll and the exit side restraint roll. Since the cooling water leaking from the gap between the roll and the steel plate cannot be completely removed with the provided air slit nozzle alone, a cooling header extending in the plate width direction is disposed on the exit side of the exit side restraining roll, and the header is thick. This is a cooling device that is opposed to the conveying direction of the steel sheet, and in which cooling liquid injection nozzles are inclinedly arranged with the injection ports facing in the opposite direction to the conveying direction.

すなわち、特許文献1に記載の冷却装置では、出側拘束ロールの出側で完全な水切りを行うために板幅方向へ多数ノズルを配設し、噴出する冷却水によって漏出した冷却水を強制的に厚鋼板の板幅方向へ押し流し、さらにエアースリットノズルより圧縮エアーを噴射して厚鋼板上の残留水を皆無にしている。   That is, in the cooling device described in Patent Document 1, in order to completely drain water on the exit side of the exit-side restraining roll, a large number of nozzles are arranged in the plate width direction, and the cooling water leaked by the ejected cooling water is forced. Then, the steel sheet is washed away in the width direction of the thick steel plate, and further compressed air is sprayed from the air slit nozzle to eliminate any residual water on the thick steel plate.

しかし、その際に、冷却ユニットにおける水量密度を大きくすると十分に水が切れず、水切り能力を上げるためには設備を大きくしなければならず、また、厚鋼板の形状が悪い場合には、厚鋼板がノズルに衝突する危険性がある。   However, at that time, if the water density in the cooling unit is increased, the water cannot be sufficiently drained, and the equipment must be enlarged in order to increase the drainage capacity. There is a risk of the steel plate colliding with the nozzle.

そこで、本出願人は、特願2006−227404(未公開出願1)において、新たな鋼板の冷却技術を提案している。   Therefore, the present applicant has proposed a new steel plate cooling technique in Japanese Patent Application No. 2006-227404 (Unpublished Application 1).

すなわち、図1に側面図、図2に平面図を示すように、鋼板10の上面に対して冷却水(棒状冷却水)23を所定の噴射角度(伏角)θで噴射する上ノズル群22を有する上ヘッダ21を鋼板搬送方向に一対配置し、それぞれの上ヘッダ21a、21bの上ノズル群22a、22bから噴射される冷却水23a、23bが鋼板搬送方向に鋼板上で所定の間隔を置いて互いに対向するようにするとともに、上方から見た噴射線が鋼板搬送方向となす角で定義される角度(外向き角)αを有するようにしている。   That is, as shown in a side view in FIG. 1 and a plan view in FIG. 2, an upper nozzle group 22 for injecting cooling water (rod-like cooling water) 23 at a predetermined injection angle (deflection angle) θ with respect to the upper surface of the steel plate 10 is provided. A pair of upper headers 21 are arranged in the steel plate conveying direction, and cooling waters 23a and 23b sprayed from the upper nozzle groups 22a and 22b of the upper headers 21a and 21b are placed at a predetermined interval on the steel plate in the steel plate conveying direction. While facing each other, the spray line seen from above has an angle (outward angle) α defined by an angle formed with the steel plate conveyance direction.

一例として、図2においては、冷却水23の外向き角αを一定とし、冷却水23が鋼板10に衝突する位置(衝突点)が鋼板幅方向に等間隔となるように各ノズルを設置している。その際、鋼板幅方向中央付近では、左右の両幅方向外側に向けて噴射するノズルを設置しなくてはならないので、ノズルを取り付ける穴の加工が可能となるように、鋼板幅方向左端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて上方向に噴射速度成分をもつノズル列)と鋼板幅方向右端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて下方向に噴射速度成分をもつノズル列)を、鋼板搬送方向に交互に所定間隔ずらして設置している。ここで、鋼板幅方向中央部近傍では、鋼板幅方向左端外側に向けて噴射するノズルからの冷却水の噴射線と鋼板幅方向右端外側に向けて噴射するノズルからの冷却水の噴射線が交差している。   As an example, in FIG. 2, the nozzles are installed so that the outward angle α of the cooling water 23 is constant and the positions where the cooling water 23 collides with the steel plate 10 (collision points) are equally spaced in the steel plate width direction. ing. In that case, in the vicinity of the center in the width direction of the steel plate, a nozzle that sprays toward the outside in the width direction of both the left and right must be installed, so that the hole for attaching the nozzle can be processed on the outer left side in the width direction of the steel plate. Nozzle row (for example, a nozzle row having a jet velocity component upward in the upper headers 21a and 21b in FIG. 2) and a nozzle row (for example, in FIG. In the upper headers 21a and 21b, nozzle rows having a jet velocity component in the downward direction are alternately shifted by a predetermined interval in the steel plate conveyance direction. Here, in the vicinity of the central portion in the width direction of the steel sheet, the injection line of the cooling water from the nozzle that injects toward the outer left end in the width direction of the steel sheet intersects the injection line of the cooling water from the nozzle that injects toward the outer right end in the width direction of the steel sheet. is doing.

これにより、未公開出願1においては、供給された冷却水23自身が鋼板10上の滞留冷却水24を堰き止めて適切に水切りを行うことになり、安定した冷却領域が得られ、鋼板10を均一に冷却することができる。
特開昭60−206516号公報
As a result, in the unpublished application 1, the supplied cooling water 23 itself dams up the staying cooling water 24 on the steel plate 10 and appropriately drains water, and a stable cooling region is obtained. It can cool uniformly.
JP 60-206516 A

ただし、前記未公開出願1において、上ノズル22を鋼板幅方向外側に向けて噴射することによって冷却水23に鋼板幅方向成分を持たせると、冷却水23の排水性はよくなるが、鋼板10の厚みが変わると、冷却水23の衝突点が鋼板幅方向に移動するという問題がある。   However, in the unpublished application 1, when the cooling water 23 has a steel plate width direction component by spraying the upper nozzle 22 toward the outer side in the steel plate width direction, the drainage of the cooling water 23 is improved. When the thickness changes, there is a problem that the collision point of the cooling water 23 moves in the steel plate width direction.

すなわち、図3に示すように、噴射高さ(テーブルローラ上端から上ノズル先端までの高さ)Hの上ノズル22からの冷却水噴射線aについてみれば、板厚h1の鋼板1から板厚h2の鋼板2(ここでは、h1<h2)に変わると、鋼板1に対する衝突点Aから鋼板2に対する衝突点Bに変化することになり、伏角θの影響で衝突点は鋼板搬送方向に移動することになるが、それとともに、図4に示すように、外向き角αの影響で衝突点が鋼板幅方向中央部側に移動することになる。そのため、鋼板1に対して鋼板幅方向で冷却水の衝突点が等間隔となるように上ノズル22が設置されている場合には、鋼板2に対して一部で衝突点の間隔が等間隔でない個所が生じることになる。   That is, as shown in FIG. 3, when the cooling water injection line a from the upper nozzle 22 of the injection height (height from the upper end of the table roller to the upper nozzle tip) is seen, the plate thickness from the steel plate 1 having the plate thickness h1 is obtained. When the steel plate 2 changes to h2 (here, h1 <h2), it changes from the collision point A to the steel plate 1 to the collision point B to the steel plate 2, and the collision point moves in the steel plate conveyance direction due to the influence of the depression angle θ. At the same time, as shown in FIG. 4, the collision point is moved to the center side in the steel sheet width direction due to the influence of the outward angle α. Therefore, when the upper nozzle 22 is installed so that the collision points of the cooling water are equally spaced in the steel sheet width direction with respect to the steel sheet 1, the distance between the collision points is partially equal to the steel sheet 2. This will give rise to some parts that are not.

具体的には、図4において、鋼板1に対する衝突点Aの間隔Wが等間隔となっているとすると、鋼板2に対する衝突点Bは、衝突点Aよりも鋼板幅方向中央側にΔWだけ移動することになり、その際に、鋼板幅方向中央部近傍以外では、同方向に噴射しているので、各衝突点が同方向にΔW移動することから、衝突点間隔はWを維持することになるが、鋼板幅方向中央部近傍では、異なる方向に噴射しているので、それらの衝突点が互いに接近する方向にΔWずつ移動し、衝突点間隔がW−2ΔWとなって狭くなることになる。   Specifically, in FIG. 4, assuming that the distance W between the collision points A with respect to the steel plate 1 is equal, the collision point B with respect to the steel plate 2 moves by ΔW to the center side in the steel plate width direction from the collision point A. At that time, since the jetting is performed in the same direction except in the vicinity of the central portion in the steel plate width direction, each collision point moves ΔW in the same direction, so that the collision point interval is maintained at W. However, in the vicinity of the central portion in the width direction of the steel sheet, since the injection is performed in different directions, the collision points move by ΔW in the direction in which they approach each other, and the collision point interval becomes W−2ΔW and becomes narrower. .

その結果、鋼板2に対しては、鋼板幅方向中央部の冷却水供給量が他の部分に比べて多くなり、鋼板幅方向中央部が過冷却となって、鋼板幅方向に不均一な温度分布となり、品質の高い鋼板を製造できなくなる。   As a result, for the steel plate 2, the amount of cooling water supplied in the central portion in the width direction of the steel plate is larger than in other portions, the central portion in the width direction of the steel plate is overcooled, and the temperature is not uniform in the width direction of the steel plate. It becomes distribution, and it becomes impossible to manufacture a high-quality steel sheet.

本発明は、上記のような事情に鑑みてなされたものであり、鋼板の熱間圧延ラインにおいて、鋼板の板厚が変わっても冷却水を鋼板幅方向に均一に供給でき、鋼板全体を均一に冷却することができる鋼板の冷却設備および冷却設備方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and in a hot rolling line for steel sheets, even if the thickness of the steel sheet changes, cooling water can be supplied uniformly in the width direction of the steel sheet, and the entire steel sheet is uniform. It is an object of the present invention to provide a steel plate cooling facility and a cooling facility method that can be cooled to each other.

上記課題を解決するために、本発明者らは鋭意検討を行った結果、鋼板の板厚が変わった場合でも、上ヘッダを昇降あるいは回転させて、上ノズルの先端から鋼板上面までの噴射線の長さ(上ノズルの噴射長さ)を一定に保持すれば、幾何学的な関係から、鋼板上面の衝突点の板幅方向位置は同じになるので、上ヘッダをそのように調整することによって、鋼板上面の衝突点間隔を等間隔な状態に維持できるとの考えに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, even when the thickness of the steel sheet has changed, the upper header is moved up and down or rotated so that the jet line from the tip of the upper nozzle to the upper surface of the steel sheet If the length (injection length of the upper nozzle) is kept constant, the position in the plate width direction of the collision point on the upper surface of the steel plate will be the same from the geometrical relationship, so adjust the upper header as such This led to the idea that the distance between the collision points on the upper surface of the steel sheet can be maintained at an equal interval.

上記のような考え方に基づいて、本発明は以下のような特徴を有している。   Based on the above concept, the present invention has the following features.

[1]鋼板の熱間圧延ラインで使用する冷却設備であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダと、
鋼板の厚みに応じて前記ヘッダの設置高さを上下させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持するためのヘッダ昇降装置を有することを特徴とする鋼板の冷却設備。
[1] A cooling facility used in a hot rolling line for steel plates,
With respect to the upper surface of the steel plate, a header having a nozzle row for injecting cooling water with a component directed outward in the steel plate width direction;
A steel plate characterized by having a header lifting device for raising and lowering the installation height of the header according to the thickness of the steel plate, and maintaining a constant length of the spray line from the tip of the nozzle to the upper surface of the steel plate. Cooling equipment.

[2]鋼板の熱間圧延ラインで使用する冷却設備であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダと、
鋼板の厚みに応じて前記ヘッダを回転させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持するためのヘッダ回転装置を有することを特徴とする鋼板の冷却設備。
[2] A cooling facility used in a hot rolling line for steel sheets,
With respect to the upper surface of the steel plate, a header having a nozzle row for injecting cooling water with a component directed outward in the steel plate width direction;
A cooling system for a steel sheet, comprising: a header rotating device for rotating the header according to the thickness of the steel sheet to maintain a constant length of the spray line from the tip of the nozzle to the upper surface of the steel sheet.

[3]前記冷却水が棒状冷却水であることを特徴とする前記[1]または[2]に記載の鋼板の冷却設備。   [3] The steel sheet cooling facility according to [1] or [2], wherein the cooling water is a rod-shaped cooling water.

[4]前記冷却水の噴射線が鋼板の搬送方向に対して斜めであることを特徴とする前記[1]乃至[3]のいずれかに記載の鋼板の冷却設備。   [4] The steel sheet cooling facility according to any one of [1] to [3], wherein the cooling water spray line is oblique with respect to a conveying direction of the steel sheet.

[5]鋼板の熱間圧延ラインで使用する冷却方法であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダを用い、
鋼板の厚みに応じて前記ヘッダの設置高さを上下させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持することを特徴とする鋼板の冷却方法。
[5] A cooling method used in a hot rolling line for steel sheets,
With respect to the upper surface of the steel plate, using a header having a nozzle row for injecting cooling water with a component toward the outside in the width direction of the steel plate,
A method of cooling a steel sheet, wherein the installation height of the header is raised and lowered according to the thickness of the steel sheet, and the length of the spray line from the tip of the nozzle to the upper surface of the steel sheet is kept constant.

[6]鋼板の熱間圧延ラインで使用する冷却方法であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダを用い、
鋼板の厚みに応じて前記ヘッダを回転させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持することを特徴とする鋼板の冷却方法。
[6] A cooling method used in a hot rolling line for steel plates,
With respect to the upper surface of the steel plate, using a header having a nozzle row for injecting cooling water with a component toward the outside in the width direction of the steel plate,
A method of cooling a steel sheet, wherein the header is rotated according to the thickness of the steel sheet, and the length of the spray line from the tip of the nozzle to the steel sheet upper surface is kept constant.

[7]前記冷却水が棒状冷却水であることを特徴とする前記[5]または[6]に記載の鋼板の冷却方法。   [7] The method for cooling a steel sheet according to [5] or [6], wherein the cooling water is rod-shaped cooling water.

[8]前記冷却水の噴射線が鋼板の搬送方向に対して斜めであることを特徴とする前記[5]乃至[7]のいずれかに記載の鋼板の冷却方法。   [8] The method for cooling a steel sheet according to any one of [5] to [7], wherein the jet line of the cooling water is inclined with respect to the conveying direction of the steel sheet.

本発明を用いることにより、鋼板の板厚が変わっても冷却水を鋼板幅方向に均一な流量分布で供給でき、鋼板全体を均一に冷却することができる。その結果、品質の高い鋼板を製造することができる。   By using this invention, even if the plate | board thickness of a steel plate changes, cooling water can be supplied with a uniform flow volume distribution in the steel plate width direction, and the whole steel plate can be cooled uniformly. As a result, a high quality steel plate can be manufactured.

本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態における鋼板の冷却設備の基本的構成は、図1に側面図、図2に平面図を示したものである。
(First embodiment)
The basic configuration of the steel sheet cooling facility in the first embodiment of the present invention is shown in a side view in FIG. 1 and a plan view in FIG.

すなわち、第1の実施形態に係る冷却設備は、鋼板の熱間圧延ライン上に設置される通過式の冷却設備であり、鋼板10の上面に向けて冷却水を供給するための一対の上ヘッダ21(第1上ヘッダ21a、第2上ヘッダ21b)と、鋼板10の下面に向けて冷却水を供給するための2個の下ヘッダ31を備えている。なお、図1中、13はテーブルローラである。   That is, the cooling facility according to the first embodiment is a passing-type cooling facility installed on a hot rolling line for steel plates, and a pair of upper headers for supplying cooling water toward the upper surface of the steel plate 10. 21 (first upper header 21 a and second upper header 21 b) and two lower headers 31 for supplying cooling water toward the lower surface of the steel plate 10. In FIG. 1, reference numeral 13 denotes a table roller.

そして、それぞれの上ヘッダ21a、21bには複数列の円管ノズル22(第1上ノズル22a、第2上ノズル22b)が取り付けられており、第1上ノズル22aから噴射角度(伏角)θで供給される棒状の冷却水23aと第2上ノズル22bから噴射角度(伏角)θで供給される棒状の冷却水23bが鋼板搬送方向に鋼板上で所定の間隔を置いて互いに対向するようにするとともに、棒状冷却水23(23a、23b)が鋼板幅方向外側に向かう速度成分を持つように、鋼板幅方向両外側に向けて所定の噴射角度(外向き角)αを有するようにしている。   A plurality of rows of circular tube nozzles 22 (first upper nozzle 22a and second upper nozzle 22b) are attached to the upper headers 21a and 21b, respectively, and an injection angle (deflection angle) θ from the first upper nozzle 22a. The supplied rod-shaped cooling water 23a and the rod-shaped cooling water 23b supplied from the second upper nozzle 22b at an injection angle (deflection angle) θ are made to face each other at a predetermined interval on the steel plate in the steel plate conveyance direction. At the same time, the rod-shaped cooling water 23 (23a, 23b) has a predetermined injection angle (outward angle) α toward both outer sides in the steel plate width direction so as to have a velocity component toward the outer side in the steel plate width direction.

そして、その外向き角αを一定にし、棒状冷却水23が鋼板10に衝突する位置(衝突点)が鋼板幅方向に等間隔となるように各ノズル22を設置している。その際、鋼板幅方向中央付近では、左右の両幅方向外側に向けて噴射するノズルを設置しなくてはならないので、ノズルを取り付ける穴の加工が可能となるように、鋼板幅方向左端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて上方向に噴射速度成分をもつノズル列)と鋼板幅方向右端外側に向けて噴射するノズル列(例えば、図2中の上ヘッダ21a、21bにおいて下方向に噴射速度成分をもつノズル列)を、鋼板搬送方向に交互に所定間隔ずらして設置している。ここで、鋼板幅方向中央部近傍では、鋼板幅方向左端外側に向けて噴射するノズルからの冷却水の噴射線と鋼板幅方向右端外側に向けて噴射するノズルからの冷却水の噴射線が交差している。また、鋼板幅方向中央を境にして、供給した冷却水23が鋼板幅端へ流れ出る方向(矢印Z)が異なるようになっている。   And each nozzle 22 is installed so that the outward angle | corner (alpha) may be made constant and the position (collision point) where the rod-shaped cooling water 23 collides with the steel plate 10 may become equal intervals in the steel plate width direction. In that case, in the vicinity of the center in the width direction of the steel plate, a nozzle that sprays toward the outside in the width direction of both the left and right must be installed, so that the hole for attaching the nozzle can be processed on the outer left side in the width direction of the steel plate. Nozzle row (for example, a nozzle row having a jet velocity component upward in the upper headers 21a and 21b in FIG. 2) and a nozzle row (for example, in FIG. In the upper headers 21a and 21b, nozzle rows having a jet velocity component in the downward direction are alternately shifted by a predetermined interval in the steel plate conveyance direction. Here, in the vicinity of the central portion in the width direction of the steel sheet, the injection line of the cooling water from the nozzle that injects toward the outer left end in the width direction of the steel sheet intersects the injection line of the cooling water from the nozzle that injects toward the outer right end in the width direction of the steel sheet. is doing. Moreover, the direction (arrow Z) from which the supplied cooling water 23 flows out to the steel plate width end differs from the center in the steel plate width direction.

一方、下ヘッダ31については、ここでは、2個の下ヘッダ31が配置されており、それぞれに円管ノズル群32が取り付けられ、テーブルローラ13の隙間から棒状の冷却水33を噴射して、通過する鋼板10の全幅に冷却水を供給するようになっている。その際、各円管ノズル群32は、それぞれの棒状冷却水33が鋼板10に衝突する位置(衝突点)が鋼板幅方向に等間隔となるように設置されている。   On the other hand, for the lower header 31, here, two lower headers 31 are arranged, and a circular tube nozzle group 32 is attached to each, and a rod-shaped cooling water 33 is sprayed from the gap between the table rollers 13, Cooling water is supplied to the entire width of the passing steel plate 10. At that time, each circular tube nozzle group 32 is installed such that the positions (collision points) at which the respective rod-shaped cooling waters 33 collide with the steel plate 10 are equally spaced in the steel plate width direction.

ちなみに、本発明の棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口から噴射される冷却水のことを指している。また、本発明の棒状冷却水は、スプレー状の噴流や膜状のラミナーフローでなく、ノズル噴出口から鋼板に衝突するまでの水流の断面がほぼ円形に保たれ、連続性で直進性のある水流の冷却水をいう。   Incidentally, the rod-shaped cooling water of the present invention refers to cooling water that is injected from a circular (including elliptical or polygonal) nozzle outlet. In addition, the rod-shaped cooling water of the present invention is not a spray-like jet or a film-like laminar flow, but the cross section of the water flow from the nozzle outlet to the steel plate is maintained in a substantially circular shape, and is continuous and straight. Refers to water cooling water.

その上で、この実施形態においては、上ヘッダ21の設置高さを鋼板10の板厚に応じて上下させて、上ノズル22の先端から鋼板上面までの噴射線の長さ(上ノズル22の噴射線長さ)を一定に保持するための上ヘッダ昇降装置(図示せず)を備えている。ちなみに、この場合は、鋼板上面から上ノズル22の先端(噴射口)までの高さHnを一定に保持すれば、上ノズル22の噴射線長さも一定に保持される。   In addition, in this embodiment, the installation height of the upper header 21 is increased or decreased according to the plate thickness of the steel plate 10, and the length of the injection line from the tip of the upper nozzle 22 to the upper surface of the steel plate (of the upper nozzle 22). An upper header lifting / lowering device (not shown) is provided to keep the spray line length) constant. Incidentally, in this case, if the height Hn from the upper surface of the steel plate to the tip (injection port) of the upper nozzle 22 is kept constant, the injection line length of the upper nozzle 22 is also kept constant.

ここで、前述したように、例えば、板厚h1の鋼板1に対する衝突点Aの間隔が等間隔Wとなっているとした場合、そのままでは、板厚h2の鋼板2に対する衝突点Bの間隔が、鋼板幅方向中央部近傍ではW−2ΔWとなり、冷却水供給量が鋼板幅方向で不均一になってしまう。   Here, as described above, for example, when the interval between the collision points A with respect to the steel plate 1 with the plate thickness h1 is equal to the interval W, the interval between the collision points B with respect to the steel plate 2 with the plate thickness h2 remains as it is. In the vicinity of the central portion in the steel plate width direction, W−2ΔW, and the cooling water supply amount becomes non-uniform in the steel plate width direction.

ちなみに、衝突点の鋼板幅方向移動量ΔWは下記の式で表される。   Incidentally, the movement amount ΔW of the collision point in the steel plate width direction is represented by the following equation.

Figure 0004853224
Figure 0004853224

そこで、この実施形態においては、鋼板10の板厚が変化した場合に、上記の上ヘッダ昇降装置を用いて上ヘッダ21の設置高さを調整して、図5に側面図、図6に正面図を示すように、鋼板上面から上ノズル22の先端までの高さHnを一定に保持するようにしており、これによって、板厚h1の鋼板1から板厚h2の鋼板2に変わっても、上ノズル22の高さ位置が板厚変化分Δh(=h2−h1)だけ変わるから、冷却水の噴射線が噴射線bから噴射線cのようになって、鋼板2に対する衝突点Cが鋼板1に対する衝突点Aの真上に位置するようになる。すなわち、鋼板上面に対する衝突点が鋼板搬送方向および鋼板幅方向には移動しないことになる。   Therefore, in this embodiment, when the plate thickness of the steel plate 10 changes, the installation height of the upper header 21 is adjusted using the upper header lifting device described above, and FIG. 5 is a side view and FIG. 6 is a front view. As shown in the figure, the height Hn from the upper surface of the steel plate to the tip of the upper nozzle 22 is kept constant, so that even if the steel plate 1 with the plate thickness h1 is changed to the steel plate 2 with the plate thickness h2, Since the height position of the upper nozzle 22 changes by a thickness change Δh (= h2−h1), the injection line of the cooling water changes from the injection line b to the injection line c, and the collision point C against the steel sheet 2 is the steel sheet. 1 is located directly above the collision point A with respect to 1. That is, the collision point with respect to the upper surface of the steel plate does not move in the steel plate conveyance direction and the steel plate width direction.

したがって、図6(a)に示すように、板厚h1の鋼板1の場合に鋼板上面の衝突点が鋼板幅方向に等間隔であれば、図6(b)に示すように、板厚h2の鋼板2の場合においても、鋼板上面の衝突点が鋼板幅方向に等間隔である状態が維持される。なお、鋼板下面の衝突点は鋼板10の板厚には影響されないので、鋼板下面の衝突点も鋼板幅方向に等間隔である。   Accordingly, as shown in FIG. 6A, if the collision points on the upper surface of the steel sheet are equally spaced in the steel sheet width direction in the case of the steel sheet 1 having the thickness h1, as shown in FIG. 6B, the thickness h2 In the case of the steel plate 2, the state where the collision points on the upper surface of the steel plate are equally spaced in the steel plate width direction is maintained. The collision points on the lower surface of the steel plate are not affected by the plate thickness of the steel plate 10, so that the collision points on the lower surface of the steel plate are equally spaced in the width direction of the steel plate.

これによって、鋼板10の板厚が変わっても棒状冷却水22を鋼板幅方向に均一な流量分布で供給でき、鋼板10全体を均一に冷却することができる。その結果、品質の高い鋼板を製造することができる。   Thereby, even if the plate | board thickness of the steel plate 10 changes, the rod-shaped cooling water 22 can be supplied by the uniform flow volume distribution in the steel plate width direction, and the steel plate 10 whole can be cooled uniformly. As a result, a high quality steel plate can be manufactured.

しかも、冷却を行わない時は、上ヘッダ21を上方に上げて退避させておくことができるので、反りが大きい鋼板が衝突して上ヘッダ21を破損させるなどの危険性を小さくすることができるし、鋼板からの輻射熱による上ヘッダ21の熱変形を防止することができるなど、設備保全上の効果も大きい。   In addition, when the cooling is not performed, the upper header 21 can be lifted up and retracted, so that it is possible to reduce the risk of the upper header 21 being damaged by a collision with a steel plate having a large warp. And the effect on equipment maintenance, such as being able to prevent the thermal deformation of the upper header 21 by the radiant heat from a steel plate, is also large.

(第2の実施形態)
本発明の第2の実施形態における鋼板の冷却設備の基本的構成も、図1に側面図、図2に平面図を示したものである。
(Second Embodiment)
The basic configuration of the steel sheet cooling facility in the second embodiment of the present invention is also shown in a side view in FIG. 1 and a plan view in FIG.

そして、この実施形態においては、上ヘッダ21を鋼板搬送方向と平行な垂直面内で回転させて、上ノズル22の噴射角度(伏角)θを鋼板10の板厚に応じて変化させることで、上ノズル2の先端から鋼板上面までの噴射線の長さ(上ノズル2の噴射線長さ)を一定に保持するための上ヘッダ回転装置(図示せず)を備えている。ちなみに、この場合は、上ノズル2の噴射線を鋼板搬送方向と平行な垂直面に投影した長さ(上ノズル噴射線の搬送方向垂直面への投影長さ)を一定に保持すれば、上ノズル2の噴射線長さも一定に保持される。   In this embodiment, the upper header 21 is rotated in a vertical plane parallel to the steel plate conveyance direction, and the injection angle (deflection angle) θ of the upper nozzle 22 is changed according to the thickness of the steel plate 10. An upper header rotating device (not shown) is provided to keep the length of the injection line from the tip of the upper nozzle 2 to the upper surface of the steel plate (the injection line length of the upper nozzle 2) constant. Incidentally, in this case, if the length of the jet line of the upper nozzle 2 projected on the vertical plane parallel to the steel plate transport direction (projection length of the upper nozzle spray line on the vertical plane of the transport direction) is kept constant, The jet line length of the nozzle 2 is also kept constant.

したがって、板厚h0(標準板厚)の鋼板に対して鋼板上面の衝突点位置が鋼板幅方向で等間隔になる噴射角をθ0(標準噴射角)とすると、任意の板厚hの鋼板に対する噴射角θは、以下の式に基づいて設定すればよい。なお、噴射高さHは一定である。   Accordingly, when the injection angle at which the collision point positions on the upper surface of the steel plate are equally spaced in the steel plate width direction with respect to the steel plate having the thickness h0 (standard thickness) is θ0 (standard injection angle), The injection angle θ may be set based on the following formula. The injection height H is constant.

Figure 0004853224
Figure 0004853224

上記の上ヘッダ回転装置を用いて、図7に側面図を示すように、板厚h1の鋼板1から板厚h2の鋼板2に変わった場合、上ノズル2の噴射線長さが一定になるように、すなわち、上ノズル噴射線の搬送方向垂直面への投影長さが一定になるように、上ノズル22の噴射角度θを調整して、冷却水の噴射線を噴射線bから噴射線dとする。これにより、鋼板上面に対する衝突点が鋼板幅方向には移動しないことになる。   When the upper header rotating device is used and the steel plate 1 having the thickness h1 is changed to the steel plate 2 having the thickness h2 as shown in a side view in FIG. 7, the jet line length of the upper nozzle 2 becomes constant. That is, that is, the injection angle θ of the upper nozzle 22 is adjusted so that the projection length of the upper nozzle injection line on the vertical surface in the conveyance direction is constant, and the injection line of the cooling water is changed from the injection line b to the injection line. Let d. Thereby, the collision point with respect to the steel plate upper surface does not move in the steel plate width direction.

したがって、板厚h1の鋼板1の場合に鋼板上面の衝突点が鋼板幅方向に等間隔であれば、板厚h2の鋼板2の場合においても、鋼板上面の衝突点が鋼板幅方向に等間隔である状態が維持される。なお、鋼板下面の衝突点は鋼板10の板厚には影響されないので、鋼板下面の衝突点も鋼板幅方向に等間隔である。   Therefore, if the collision points on the upper surface of the steel sheet are equally spaced in the width direction of the steel sheet in the case of the steel sheet 1 having the thickness h1, the collision points on the upper surface of the steel sheet are equally spaced in the width direction of the steel sheet even in the case of the steel sheet 2 having the thickness h2. This state is maintained. The collision points on the lower surface of the steel plate are not affected by the plate thickness of the steel plate 10, so that the collision points on the lower surface of the steel plate are equally spaced in the width direction of the steel plate.

これによって、鋼板10の板厚が変わっても棒状冷却水22を鋼板幅方向に均一な流量分布で供給でき、鋼板10全体を均一に冷却することができる。その結果、品質の高い鋼板を製造することができる。   Thereby, even if the plate | board thickness of the steel plate 10 changes, the rod-shaped cooling water 22 can be supplied by the uniform flow volume distribution in the steel plate width direction, and the steel plate 10 whole can be cooled uniformly. As a result, a high quality steel plate can be manufactured.

なお、上記の第1の実施形態および第2の実施形態では、棒状冷却水を外向きに噴射する場合を示したが、本発明はこれに限るものではなく、例えばスプレーノズルなどの噴霧状冷却水を外向きに噴射する場合に用いてもよい。その場合には、ノズルをはめ込む配管の軸心を噴射方向と考えればよい。   In the first embodiment and the second embodiment described above, the case where the rod-shaped cooling water is jetted outward has been shown. However, the present invention is not limited to this, and for example, spray cooling such as a spray nozzle is performed. It may be used when water is jetted outward. In that case, the axis of the pipe into which the nozzle is fitted may be considered as the injection direction.

また、本発明においては、板厚が変わっても冷却水衝突点の相対的な位置が板幅方向で変わらなければよいので、上ヘッダの高さ位置と上ノズルの噴射角の両方を変更することで、上ノズルの噴射線長さを一定に保持するようにしてもよい。   In the present invention, even if the plate thickness changes, the relative position of the cooling water collision point does not have to change in the plate width direction, so both the height position of the upper header and the injection angle of the upper nozzle are changed. Thus, the jet line length of the upper nozzle may be kept constant.

また、ここでは、下面冷却ノズルが、冷却水の噴射方向が板幅方向外側に向かう成分をもたせるように設置してあるが、本発明はこれに限るものではなく、板幅方向外側に向かう成分をもたせなくともよい。ちなみに、鋼板下面の高さ位置は、板厚によって変わらないので、下面冷却ノズルを調整する必要はない。   In addition, here, the lower surface cooling nozzle is installed so that the cooling water injection direction has a component toward the outside in the plate width direction, but the present invention is not limited to this, and the component toward the outside in the plate width direction You don't have to. Incidentally, since the height position of the lower surface of the steel plate does not change depending on the plate thickness, it is not necessary to adjust the lower surface cooling nozzle.

本発明の実施例を以下に述べる。   Examples of the present invention are described below.

ここでは、図1、図2に示す基本的構成を備えた冷却設備を用いて、板厚が20mm、60mm、100mmの鋼板に対して、その順序で冷却を行った。   Here, using the cooling equipment having the basic configuration shown in FIG. 1 and FIG. 2, the steel plates having thicknesses of 20 mm, 60 mm, and 100 mm were cooled in that order.

その際、初期設定として、上ノズル22の噴射角度θを45°、外向き角αを20°、噴射高さHを1020mmとし、その時に板厚20mmの鋼板において、鋼板上面の冷却水衝突点が鋼板幅方向に60mmピッチで等間隔になるようにした。   At that time, as an initial setting, the injection angle θ of the upper nozzle 22 is 45 °, the outward angle α is 20 °, and the injection height H is 1020 mm. Were arranged at equal intervals at a pitch of 60 mm in the steel plate width direction.

そして、本発明例1として、上記の本発明の第1の実施形態に基づいて、上ヘッダ21の高さ位置を調整して(すなわち、噴射高さHを調整して)冷却を行った。   And as this invention example 1, based on said 1st Embodiment of this invention, the height position of the upper header 21 was adjusted (namely, injection height H was adjusted), and it cooled.

また、本発明例2として、上記の本発明の第2の実施形態に基づいて、上ノズル22の噴射角度θを調整して冷却を行った。   Further, as Invention Example 2, cooling was performed by adjusting the injection angle θ of the upper nozzle 22 based on the second embodiment of the present invention described above.

これに対して、比較例として、上ノズル22の噴射高さHも噴射角度θも調整せずに冷却を行った。   On the other hand, as a comparative example, cooling was performed without adjusting the injection height H and the injection angle θ of the upper nozzle 22.

なお、冷却開始温度は800℃とし、冷却終了温度が目標の600℃となるように、冷却水量や冷却時間を調整した。   The cooling water amount and the cooling time were adjusted so that the cooling start temperature was 800 ° C. and the cooling end temperature was the target 600 ° C.

その結果を表1および図8に示す。   The results are shown in Table 1 and FIG.

Figure 0004853224
Figure 0004853224

まず、比較例においては、板厚が20mmの時には、板幅最端部(耳きり対象で製品にならない部分)を除いた部分(製品部)の冷却終了時の温度ムラが10℃であったが、板厚が厚くなるとともに、板幅方向中央部への冷却水供給量が多くなったために、板幅方向中央部が過冷却となり、板幅方向温度分布が図8(a)に示すようになって、冷却終了時の製品部の温度ムラが大きくなった。すなわち、板厚60mmの時には60℃、板厚100mmの時には100℃になっている。   First, in the comparative example, when the plate thickness is 20 mm, the temperature unevenness at the end of cooling of the portion (product portion) excluding the extreme end portion of the plate width (the portion that does not become a product in the ear picking target) was 10 ° C. However, as the plate thickness is increased and the amount of cooling water supplied to the central portion in the plate width direction is increased, the central portion in the plate width direction is overcooled, and the temperature distribution in the plate width direction is as shown in FIG. As a result, the temperature unevenness of the product part at the end of cooling became large. That is, the temperature is 60 ° C. when the plate thickness is 60 mm, and 100 ° C. when the plate thickness is 100 mm.

これに対して、本発明例1においては、板厚が60mm、100mmと厚くなっても、鋼板上面から上ノズル22先端までの高さHnが一定になるように、すなわち、噴射高さHを板厚増加分だけ大きくなるように調整したので、鋼板上面の冷却水衝突点が鋼板幅方向に60mmピッチで等間隔の状態が維持され、板幅方向温度分布が図8(b)に示すように均一になった。これにより、製品部の温度ムラが10℃に抑えられた。   On the other hand, in Example 1 of the present invention, the height Hn from the upper surface of the steel plate to the tip of the upper nozzle 22 is constant even when the plate thickness is increased to 60 mm and 100 mm, that is, the injection height H is set to be constant. Since the adjustment is made so that the increase in the plate thickness is increased, the cooling water collision point on the upper surface of the steel plate is maintained at a regular interval at a pitch of 60 mm in the steel plate width direction, and the temperature distribution in the plate width direction is as shown in FIG. It became uniform. Thereby, the temperature nonuniformity of the product part was suppressed to 10 degreeC.

また、本発明例2においては、板厚が60mm、100mmと厚くなっても、上ノズル22先端から鋼板上面までの噴射線の長さが一定になるように、噴射角度θを42.75°40.58°と調整したので、鋼板上面の冷却水衝突点が鋼板幅方向に60mmピッチで等間隔の状態が維持され、板幅方向温度分布が図8(b)に示すように均一になった。これにより、製品部の温度ムラが10℃に抑えられた。 Further, in Example 2 of the present invention, the injection angle θ is set to 42.75 ° so that the length of the injection line from the tip of the upper nozzle 22 to the upper surface of the steel plate is constant even when the plate thickness is increased to 60 mm and 100 mm . , 40.58 ° and so adjusted, the cooling water impact points of the steel sheet upper surface is maintained equidistant state 60mm pitch in the steel plate width direction, plate width direction temperature distribution uniform as shown in FIG. 8 (b) became. Thereby, the temperature nonuniformity of the product part was suppressed to 10 degreeC.

以上のことから、本発明の有効性を確認することができた。   From the above, the effectiveness of the present invention could be confirmed.

本発明の実施形態における冷却設備の基本的構成を示す側面図である。It is a side view which shows the basic composition of the cooling equipment in embodiment of this invention. 本発明の実施形態における冷却設備の基本的構成を示す平面図である。It is a top view which shows the basic composition of the cooling equipment in embodiment of this invention. 冷却水の衝突点を表す側面図である。It is a side view showing the collision point of cooling water. 冷却水の衝突点を表す平面図である。It is a top view showing the collision point of cooling water. 本発明の第1の実施形態における冷却水の衝突点を表す側面図である。It is a side view showing the collision point of the cooling water in the 1st Embodiment of this invention. 本発明の第1の実施形態における冷却水の衝突点を表す正面図である。It is a front view showing the collision point of the cooling water in the 1st Embodiment of this invention. 本発明の第2の実施形態における冷却水の衝突点を表す側面図である。It is a side view showing the collision point of the cooling water in the 2nd Embodiment of this invention. 本発明の実施例における鋼板幅方向温度分布を示す図である。It is a figure which shows the steel plate width direction temperature distribution in the Example of this invention.

符号の説明Explanation of symbols

10 鋼板
13 テーブルローラ
21 上ヘッダ
21a 第1上ヘッダ
21b 第2上ヘッダ
22 上ノズル
22a 第1上ノズル
22b 第2上ノズル
23 棒状冷却水
23a 棒状冷却水
23b 棒状冷却水
24 滞留冷却水
31 下ヘッダ
32 下ノズル
33 棒状冷却水
DESCRIPTION OF SYMBOLS 10 Steel plate 13 Table roller 21 Upper header 21a 1st upper header 21b 2nd upper header 22 Upper nozzle 22a 1st upper nozzle 22b 2nd upper nozzle 23 Rod-shaped cooling water 23a Rod-shaped cooling water 23b Rod-shaped cooling water 24 Retention cooling water 31 Lower header 32 Lower nozzle 33 Rod cooling water

Claims (8)

鋼板の熱間圧延ラインで使用する冷却設備であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダと、
鋼板の厚みに応じて前記ヘッダの設置高さを上下させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持するためのヘッダ昇降装置を有することを特徴とする鋼板の冷却設備。
A cooling facility used in a hot rolling line for steel sheets,
With respect to the upper surface of the steel plate, a header having a nozzle row for injecting cooling water with a component directed outward in the steel plate width direction;
A steel plate characterized by having a header lifting device for raising and lowering the installation height of the header according to the thickness of the steel plate, and maintaining a constant length of the spray line from the tip of the nozzle to the upper surface of the steel plate. Cooling equipment.
鋼板の熱間圧延ラインで使用する冷却設備であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダと、
鋼板の厚みに応じて前記ヘッダを回転させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持するためのヘッダ回転装置を有することを特徴とする鋼板の冷却設備。
A cooling facility used in a hot rolling line for steel sheets,
With respect to the upper surface of the steel plate, a header having a nozzle row for injecting cooling water with a component directed outward in the steel plate width direction;
A cooling system for a steel sheet, comprising: a header rotating device for rotating the header according to the thickness of the steel sheet to maintain a constant length of the spray line from the tip of the nozzle to the upper surface of the steel sheet.
前記冷却水が棒状冷却水であることを特徴とする請求項1または2に記載の鋼板の冷却設備。   The steel sheet cooling equipment according to claim 1 or 2, wherein the cooling water is a rod-shaped cooling water. 前記冷却水の噴射線が鋼板の搬送方向に対して斜めであることを特徴とする請求項1乃至3のいずれかに記載の鋼板の冷却設備。   The steel sheet cooling equipment according to any one of claims 1 to 3, wherein the cooling water spray line is oblique to the direction of conveyance of the steel sheet. 鋼板の熱間圧延ラインで使用する冷却方法であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダを用い、
鋼板の厚みに応じて前記ヘッダの設置高さを上下させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持することを特徴とする鋼板の冷却方法。
A cooling method used in a hot rolling line for steel sheets,
With respect to the upper surface of the steel plate, using a header having a nozzle row for injecting cooling water with a component toward the outside in the width direction of the steel plate,
A method of cooling a steel sheet, wherein the installation height of the header is raised and lowered according to the thickness of the steel sheet, and the length of the spray line from the tip of the nozzle to the upper surface of the steel sheet is kept constant.
鋼板の熱間圧延ラインで使用する冷却方法であって、
鋼板の上面に対して、鋼板幅方向外側に向かう成分を持って冷却水を噴射するノズル列を有するヘッダを用い、
鋼板の厚みに応じて前記ヘッダを回転させて、前記ノズルの先端から鋼板上面までの噴射線の長さを一定に保持することを特徴とする鋼板の冷却方法。
A cooling method used in a hot rolling line for steel sheets,
With respect to the upper surface of the steel plate, using a header having a nozzle row for injecting cooling water with a component toward the outside in the width direction of the steel plate,
A method of cooling a steel sheet, wherein the header is rotated according to the thickness of the steel sheet, and the length of the spray line from the tip of the nozzle to the steel sheet upper surface is kept constant.
前記冷却水が棒状冷却水であることを特徴とする請求項5または6に記載の鋼板の冷却方法。   The method for cooling a steel sheet according to claim 5 or 6, wherein the cooling water is a rod-shaped cooling water. 前記冷却水の噴射線が鋼板の搬送方向に対して斜めであることを特徴とする請求項5乃至7のいずれかに記載の鋼板の冷却方法。   The method for cooling a steel sheet according to any one of claims 5 to 7, wherein the jet line of the cooling water is oblique with respect to the conveying direction of the steel sheet.
JP2006284644A 2006-10-19 2006-10-19 Steel sheet cooling equipment and cooling method Active JP4853224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284644A JP4853224B2 (en) 2006-10-19 2006-10-19 Steel sheet cooling equipment and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284644A JP4853224B2 (en) 2006-10-19 2006-10-19 Steel sheet cooling equipment and cooling method

Publications (3)

Publication Number Publication Date
JP2008100255A JP2008100255A (en) 2008-05-01
JP2008100255A5 JP2008100255A5 (en) 2009-09-03
JP4853224B2 true JP4853224B2 (en) 2012-01-11

Family

ID=39434971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284644A Active JP4853224B2 (en) 2006-10-19 2006-10-19 Steel sheet cooling equipment and cooling method

Country Status (1)

Country Link
JP (1) JP4853224B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217750B2 (en) * 2008-08-05 2013-06-19 Jfeスチール株式会社 Steel plate cooling equipment
JP5217769B2 (en) * 2008-08-18 2013-06-19 Jfeスチール株式会社 Thick steel plate cooling device
JP5663848B2 (en) * 2009-06-30 2015-02-04 新日鐵住金株式会社 Hot-rolled steel sheet cooling device and operation control method thereof
JP5613997B2 (en) * 2009-06-30 2014-10-29 新日鐵住金株式会社 Hot-rolled steel sheet cooling device, hot-rolled steel sheet manufacturing apparatus and manufacturing method
KR101219195B1 (en) * 2010-03-15 2013-01-09 신닛테츠스미킨 카부시키카이샤 Thick steel plate manufacturing device
KR101514932B1 (en) * 2011-07-21 2015-04-23 신닛테츠스미킨 카부시키카이샤 Cooling apparatus, and manufacturing apparatus and manufacturing method of hot-rolled steel sheet
KR101431035B1 (en) * 2013-05-23 2014-08-18 주식회사 포스코 Apparatus for cooling strip
CN103736756B (en) * 2013-12-18 2017-01-18 东北大学 After-moderate-thickness-plate-rolling ultra-fast cooling device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206516A (en) * 1984-03-30 1985-10-18 Nippon Steel Corp Cooling device of thick steel plate
JPS62179107A (en) * 1986-01-31 1987-08-06 Mitsumi Electric Co Ltd Rotary transformer
JPS6385309A (en) * 1986-09-30 1988-04-15 Kawasaki Steel Corp Method and apparatus for measuring thickness of liquid film on plate-like material
JP3407589B2 (en) * 1997-03-25 2003-05-19 住友金属工業株式会社 Cooling method for steel

Also Published As

Publication number Publication date
JP2008100255A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
KR100973691B1 (en) Cooling facility and cooling method of steel plate, and hot rolling facility and hot rolling method using the same
JP4586682B2 (en) Steel sheet hot rolling equipment and hot rolling method
JP4449991B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP4905051B2 (en) Steel sheet cooling equipment and cooling method
JP4779749B2 (en) Steel plate cooling method and cooling equipment
KR100935357B1 (en) Cooling facility and production method of steel plate
KR101219195B1 (en) Thick steel plate manufacturing device
JP2007090428A (en) Equipment and method for hot-rolling steel sheet
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP4876781B2 (en) Steel sheet cooling equipment and cooling method
JP4905180B2 (en) Steel cooling device and cooling method
JP4398898B2 (en) Thick steel plate cooling device and method
CN106794500B (en) Manufacturing equipment and manufacturing method of thick steel plate
JP4876783B2 (en) Steel sheet cooling equipment and cooling method
JP4720198B2 (en) Thick steel plate cooling device and cooling method
JP4858113B2 (en) Steel sheet cooling equipment and cooling method
JP5597916B2 (en) Steel cooling equipment
JP5515440B2 (en) Thick steel plate cooling equipment and cooling method thereof
JP6460071B2 (en) Steel plate top surface cooling device and top surface cooling method
JP4061286B2 (en) Metal plate cooling device and cooling method
JP4858139B2 (en) Steel sheet cooling equipment and cooling method
JP2010042444A (en) Cooling equipment and cooling method of hot steel sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250