JP3900733B2 - Manufacturing method of high strength and high conductivity copper alloy material - Google Patents

Manufacturing method of high strength and high conductivity copper alloy material Download PDF

Info

Publication number
JP3900733B2
JP3900733B2 JP04806199A JP4806199A JP3900733B2 JP 3900733 B2 JP3900733 B2 JP 3900733B2 JP 04806199 A JP04806199 A JP 04806199A JP 4806199 A JP4806199 A JP 4806199A JP 3900733 B2 JP3900733 B2 JP 3900733B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
strength
conductivity
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04806199A
Other languages
Japanese (ja)
Other versions
JP2000239812A (en
Inventor
佳紀 山本
元 佐々木
健 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP04806199A priority Critical patent/JP3900733B2/en
Publication of JP2000239812A publication Critical patent/JP2000239812A/en
Application granted granted Critical
Publication of JP3900733B2 publication Critical patent/JP3900733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度・高導電性銅合金材の製造方法に係り、特に、半導体機器のリード材、端子、コネクタなどに使われる高強度で高導電性の銅合金材の製造方法に関するものである。
【0002】
【従来の技術】
近年におけるIC・LSIの高集積化および高速化の潮流は、半導体チップの発熱量増大の要因となっており、現在、半導体パッケージの合理的な放熱が問題となっている。
【0003】
半導体パッケージの放熱経路としては、絶縁モールドを通しての放散や、積極的にヒートシンクを取付けるといった方法の他、リード材を介して配線基板に放熱することも考えられる。
【0004】
リード材を介して配線基板に放熱する場合、リード材自体の熱伝導率(導電率で評価可能)が高いことが、直接、半導体パッケージの放熱性に影響してくることになる。この方法による放熱を行う場合、従来のリード材用合金である42合金(Fe−Ni系合金)は、導電率が約3%IACSと極めて低いため、半導体パッケージの設計上で大きな問題となっている。
【0005】
したがって、リード材用合金としては、より導電率の高い材料が求められており、42合金から銅合金への転換が行われている。この場合、銅合金に要求される特性は、高導電率であると共に、一般的なリード材としての特性を合わせ持っていること、かつ、42合金と同等の強度を有していることである。
【0006】
しかし、導電率が高い銅合金は熱放散性に優れているものの、42合金と比べると強度が比較的弱い。ここで、200ピンを越えるようなLSIパッケージが製造されるようになって以来、リード材の厚さはより薄く、かつ、インナーリードおよびアウターリードの幅はより細くしたいという需要・要求が強くなっており、リード材そのものの強度が重要視されている。
【0007】
このため、強度を高めた様々な銅合金の開発がなされてきており、例えば、Cu−Sn系、Cu−Ni−Si系、Cu−Cr系などの合金が挙げられる。
【0008】
【発明が解決しようとする課題】
しかしながら、SnをCuに固溶させて強度を高めたCu−Sn系銅合金は導電率が30%IACS程度しかなく、Cu−Ni−Si系銅合金も導電率が50%IACS程度である。また、Cu−Cr系銅合金においては、70%IACS以上の高導電率が得られるものの、強度の点でやや不十分であり、かつ、Crが難溶解材であると共に、耐火材であるCとCrが反応し易いことから溶解・鋳造が困難であるという問題がある。
発明者等は、42合金に匹敵する強度と60%IACS以上の高い導電率を備えた高強度・高導電性銅合金としてCu−Ni−Fe−P−Zn系銅合金を先に提案した(特願平10−225692号:以下、先願と呼ぶ)。それは次のようなものである。
FeとNiの重量%の合計(以下、Fe+Niと表示)が0.3〜1.0wt%、Pが0.05〜0.3wt%、FeとNiの合計重量%とPの重量%の比(以下、(Fe+Ni)/Pと表示)が3〜10、Feの重量%とNiの重量%との比(以下、Fe/Niと表示)が0.8〜1.2、Znが0.1〜1.0wt%、必要によりMg、Sn、Mnから選択される1種以上を合計で0.01〜0.3wt%、残部が銅で構成される銅合金材である。しかし、この銅合金材でも加工方法によって引張強度にバラツキが見受けられた。
【0009】
そこで本発明は、先願と同組成の銅合金材において、42合金に匹敵する約620MPa以上の引張強度および65%IACS以上の高導電率を有していると共に、製造が容易な高強度・高導電性銅合金材の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、
FeとNiの重量%の合計が0.3〜1.0wt%、
Pが0.05〜0.3wt%、
FeとNiの合計重量%とPの重量%との比((Fe+Ni)/P)が3〜10、Feの重量%とNiの重量%との比(Fe/Ni)が0.8〜1.2、
Znが0.1〜1.0wt%、
残部が銅で構成される銅合金材を溶製した後、その溶製後の銅合金材を800〜950℃に加熱後、300℃以下まで25℃/min以上の冷却速度で冷却して溶体化処理を施し、その溶体化処理後の銅合金材に、第1冷間圧延加工を施した後、400〜550℃×0.5〜5hr、好ましくは450〜500℃×1〜2hrの第1時効処理を施し、その第1時効処理後の銅合金材に、第2冷間圧延加工を施した後、300〜450℃×0.5〜5hr、好ましくは350〜400℃×1〜2hrの第2時効処理を施し、最後に、その第2時効処理後の銅合金材に、加工率40%以上の第3冷間圧延加工を施すものである。
【0011】
請求項2の発明は、
FeとNiの重量%の合計が0.3〜1.0wt%、
Pが0.05〜0.3wt%、
FeとNiの合計重量%とPの重量%との比((Fe+Ni)/P)が3〜10、Feの重量%とNiの重量%との比(Fe/Ni)が0.8〜1.2、
Znが0.1〜1.0wt%、
Mg又はSn或いはMnから選択される1種以上を合計して0.01〜0.3wt%、
残部が銅で構成される銅合金材を溶製した後、その溶製後の銅合金材を800〜950℃に加熱後、300℃以下まで25℃/min以上の冷却速度で冷却して溶体化処理を施し、その溶体化処理後の銅合金材に、第1冷間圧延加工を施した後、400〜550℃×0.5〜5hr、好ましくは450〜500℃×1〜2hrの第1時効処理を施し、その第1時効処理後の銅合金材に、第2冷間圧延加工を施した後、300〜450℃×0.5〜5hr、好ましくは350〜400℃×1〜2hrの第2時効処理を施し、最後に、その第2時効処理後の銅合金材に、加工率40%以上の第3冷間圧延加工を施すものである。
【0012】
上記数値範囲の限定理由を以下に説明する。
まず、FeおよびNiとPの関係について述べる。FeとNiは、それぞれPとの化合物を形成し、強度および導電率を向上させる性質を有している。Pの含有量として設定した0.015〜0.3重量%よりもPの量が少なくなると、燐化合物の生成量が不足することから良好な強度が得られず、逆に、0.3重量%を超えるときには、鋳造時に燐化合物が偏析して鋳造割れが発生するようになり、実用的でない。このPに課せられた0.05〜0.3重量%の規制内において、熱処理によって燐化合物を効率的に生成させるためには、FeとNiの量を合計で0.3〜1.0重量%の範囲内に設定する必要があり、これが0.3重量%を下回る時には、燐化合物の生成が不充分となり、逆に、1.0重量%を超過すると、余剰のFeとNiがCu中に固溶し、特に、導電率の面において特性を低下させるようになる。
燐化合物生成による導電率の向上効果を充分に得るためには、FeとNiの合計重量とPの重量の比率を(Fe+Ni)/P=3〜10となるように設定する必要がある。設定比率がこの範囲よりも下回るときにはPが過剰となり、逆に、この範囲を超えるときにはFe、Niが過剰となることから、燐化合物生成に関与しないこれら過剰の元素がCu中に固溶状態で存在することになり、その結果、特に、導電率が大きく阻害されるようになる。高い導電率を確保する上において、これらFeおよびNiとPの比率は特に重要であり、これをより限定された重量比に設定するとすれば、重量比でPが1に対し、FeおよびNiの合計量を4〜6に設定することができる。
FeとNiの最適な比率は、強度と導電率のバランスを考慮して決める必要がある。Feは、強度向上への貢献は少ないが、導電率を向上させる性質を有しており、一方、Niは、強度向上に効果大である反面、導電率の点ではFeに比べて高いものを得にくい。
従って、強度および導電率に調和の取れた材料を設計するためには、合計量が0.3〜1.0重量%の範囲内において、両者の重量比率を1対1にする必要があり、さらに、厳密な配合組成下での運転が必ずしも充分であるとはいい難い量産設備による溶解鋳造作業に配慮するときには、これをFe/Ni=0.8〜1.2の範囲内に設定する必要がある。
Fe/Niが0.8未満になると、Ni過剰のために導電率が不充分なものとなり、逆に、1.2を超過するときには、Feが過剰になって強度が不足するようになる。
Znの含有量を0.1〜1.0重量%に設定する理由は、0.1重量%未満では、この元素を含有させることによって得られるリードフレームの加工時のはんだ付け性と強度向上に充分なものが得られず、逆に、1.0重量%を超えると導電率の低下をもたらすことによる。
以上述べた各元素のほかに、Mg、Sn、Mnのうちの少なくとも1種を含有させることによって、一層の強度向上を図ることができる。これらの元素は、単独或は2種以上の併用の形で添加され、特に、後者の場合に、高い強度向上を示す。最適な含有量は0.01〜0.3重量%である。0.01重量%未満では効果が不充分となり、0.3重量%を超えると導電率の低下を招くことから、上記範囲を超えての含有は避ける必要がある。
【0013】
第1時効処理の処理温度および処理時間を、400〜550℃×0.5〜5hr、好ましくは450〜500℃×1〜2hrと限定したのは、この範囲よりも高温及び/又は長時間の場合、析出する化合物(Fe−P化合物およびNi−P化合物)が粗大化して十分な強度が得られなくなるためである。また、この範囲よりも低温及び/又は短時間の場合、化合物の析出が十分に進行せず、十分な強度および導電率が得られなくなるためである。
【0014】
第2時効処理の処理温度および処理時間を、300〜450℃×0.5〜5hr、好ましくは350〜400℃×1〜2hrと限定したのは、この範囲よりも高温及び/又は長時間の場合、析出する化合物(Fe−P化合物およびNi−P化合物)が粗大化して十分な強度が得られなくなるためである。また、この範囲よりも低温及び/又は短時間の場合、析出物の生成が十分に進行せず、十分な導電率が得られなくなるためである。
【0015】
第3冷間圧延加工の加工率を40%以上と限定したのは、加工率が40%未満の場合、十分な強度が得られないためである。
【0016】
以上の製造方法によれば、溶製後の銅合金材に、順に、溶体化処理→第1冷間圧延加工→第1時効処理→第2冷間圧延加工→第2時効処理→第3冷間圧延加工を施すと共に、各熱処理の処理温度・時間および各加工処理の加工率を所定の範囲に調整しているため、約620MPa以上の引張強度および65%IACS以上の高導電率を達成することができる。
【0017】
以下、本発明の好適一実施の形態を説明する。
【0020】
先ず、化学組成が、Fe+Niが0.3〜1.0wt%、Pが0.05〜0.3wt%、(Fe+Ni)/Pが3〜10、Fe/Niが0.8〜1.2、Znが0.1〜1.0wt%、残部が銅で構成される銅合金材を溶製する。
【0021】
次に、溶製後の銅合金材を所定の形状に形成した後、合金元素をCuマトリックス中に十分に固溶させるべく、800〜950℃に加熱後、300℃以下まで25℃/min以上の冷却速度で冷却して溶体化処理を施す。
【0022】
加熱温度を800〜950℃と高温に規定し、冷却速度を25℃/min以上に規定することによって、冷却中に粗大な析出物が形成することを防いでいる。
【0023】
次に、溶体化処理後の銅合金材に、第1冷間圧延加工を施した後、400〜550℃×0.5〜5hr、好ましくは450〜500℃×1〜2hrの第1時効処理を施す。
【0024】
第1冷間圧延によって、銅合金材中に析出物生成の起点となる格子欠陥が導入され、次の工程である第1時効処理において微細析出物が生成するのを促進する。また、第1時効処理によって、前工程の第1冷間圧延時に導入された格子欠陥を起点とし、Fe−P化合物およびNi−P化合物が、Cuマトリックス中に微細な形状で析出し、強度および導電率の向上が図られる。
【0025】
次に、第1時効処理後の銅合金材に、第2冷間圧延加工を施した後、300〜450℃×0.5〜5hr、好ましくは350〜400℃×1〜2hrの第2時効処理を施す。
【0026】
第2冷間圧延によって、銅合金材中に析出物生成の起点となる格子欠陥が新たに導入され、次の工程である第2時効処理において新たな微細析出物が生成するのを促進する。また、第2時効処理によって、前工程の第2冷間圧延時に導入された格子欠陥を起点とし、第1時効処理時に析出しきれなかった合金元素(Fe−P化合物およびNi−P化合物)がCuマトリックス中に微細な形状で析出し、更なる導電率の向上が図られる。
【0027】
その後、第1時効処理および第2時効処理により十分に導電率が向上した銅合金材に、加工率40%以上の第3冷間圧延加工を施すものである。この第3冷間圧延加工の加工硬化によって、十分な強度向上が得られる。
【0028】
溶体化処理の加熱手段および第1〜第3冷間圧延加工の加工手段としては、一般の溶体化処理および冷間圧延加工に用いられるものであればよく、特に限定するものではない。
【0029】
第1冷間圧延加工の加工率は特に限定するものではないが、加工率が50〜80%が好ましく、特に60〜70%が望ましい。
【0030】
第2冷間圧延加工の加工率は特に限定するものではないが、加工率が40〜70%が好ましく、特に50〜60%が望ましい。
【0031】
本実施の形態の高強度・高導電性銅合金材の製造方法によれば、溶製後の銅合金材に施す溶体化処理の処理温度と時間、時効処理の処理温度と時間、および冷間圧延加工の加工率を、所定の範囲に調整しているため、42合金に匹敵する約620MPa以上の引張強度と、65%IACS以上の高導電率の両方の達成が可能な銅合金材を得ることができる。
【0032】
また、銅合金材の組成中に溶解・鋳造が困難なCrを含有していないため、製造が容易であり、製造コストを低く抑えることができる。
【0033】
さらに、本実施の形態の製造方法で得られた高強度・高導電性銅合金材を用いることで、放熱性に優れた多ピンのリードフレームを低コストで作製することができ、ICやLSIの高集積化・高速化に大きく貢献する。
【0034】
次に、本発明の他の実施の形態を説明する。
【0036】
本実施の形態では、前記の実施形態における添加元素の外にMg又はSn或はMnから選択される1種以上を合計して0.01〜0.3wt%を含み、残部が銅で構成される銅合金材を用いるものである。この銅合金材を用いる以外、各熱処理(溶体化処理および時効処理)の条件および各加工処理の条件は、前記の実施形態と同じとする。
【0037】
本実施の形態の高強度・高導電性銅合金材の製造方法においても、前記の実施形態と同様の効果を奏することは言うまでもなく、更に強度を高めることができるという新たな効果を発揮する。
【0038】
【実施例】
(実施例1)
Feが0.4wt%、Niが0.4wt%、Fe+Niが0.8wt%、Pが0.2wt%、(Fe+Ni)/Pが4、Fe/Niが1.0、Znが0.3wt%、残部が無酸素銅で構成される銅合金素材を、高周波溶解炉で溶製した後、鋳型に流し込んで直径30mm、長さ250mmのインゴットを鋳造する。
【0039】
次に、このインゴットを850℃に加熱した後、押出加工を施して幅20mm、厚さ8mmの銅合金板に形成する。その後、銅合金板に冷間圧延加工を施して厚さ2.0mmの銅合金薄板を形成する。
【0040】
その後、この銅合金薄板を900℃に加熱して10min保持した後、水中に投入すると共に室温(約25℃)まで約300℃/minの冷却速度で冷却して溶体化処理を施す。
【0041】
次に、溶体化処理後の銅合金薄板に第1冷間圧延加工を施して厚さ0.7mmに形成した後、470℃×2hrの第1時効処理を施す。
【0042】
その後、第1時効処理後の銅合金薄板に第2冷間圧延加工を施して厚さ0.3mmに形成した後、380℃×2hrの第2時効処理を施す。
【0043】
最後に、第2時効処理後の銅合金薄板に加工率50%の第3冷間圧延加工を施して厚さ0.15mmに形成し、高強度・高導電性銅合金薄板を作製する。
【0044】
(実施例2)
Feが0.4wt%、Niが0.4wt%、Fe+Niが0.8wt%、Pが0.2wt%、(Fe+Ni)/Pが4、Fe/Niが1.0、Znが0.3wt%、Mgが0.05wt%、Snが0.05wt%、残部が無酸素銅で構成される銅合金素材を用いる以外は、実施例1と同様にして、高強度・高導電性銅合金薄板を作製する。
【0045】
(比較例1)
溶体化処理の処理温度を750℃とする以外は、実施例1と同様にして、銅合金薄板を作製する。
【0046】
(比較例2)
第1時効処理の処理温度を380℃とする以外は、実施例1と同様にして、銅合金薄板を作製する。
【0047】
(比較例3)
第1時効処理の処理温度を570℃とする以外は、実施例1と同様にして、銅合金薄板を作製する。
【0048】
(比較例4)
第2時効処理の処理温度を280℃とする以外は、実施例1と同様にして、銅合金薄板を作製する。
【0049】
(比較例5)
第2時効処理の処理温度を470℃とする以外は、実施例1と同様にして、銅合金薄板を作製する。
【0050】
(比較例6)
第3冷間圧延加工の加工率を30%とする以外は、実施例1と同様にして、銅合金薄板を作製する。
【0051】
実施例1,2の高強度・高導電性銅合金薄板および比較例1〜比較例6の銅合金薄板の製造条件(熱処理および加工処理)を表1に示し、実施例1,2の高強度・高導電性銅合金薄板および比較例1〜比較例6の銅合金薄板の特性(引張強さ(MPa)および導電率(%IACS))を表2に示す。
【0052】
【表1】

Figure 0003900733
【0053】
【表2】
Figure 0003900733
【0054】
表2に示すように、本発明の製造方法により作製された高強度・高導電性銅合金薄板においては、いずれも、引張強さが620MPa(620MPa、644MPa)以上、導電率が65%IACS(70%IACS、68%IACS)であった。
【0055】
これに対して、比較例1の銅合金薄板は、導電率は70%IACSと良好であるものの、溶体化処理の処理温度が規定範囲より低い750℃であるため、強度が不十分となり、引張強さが570MPaであった。
【0056】
比較例2の銅合金薄板は、第1時効処理の処理温度が規定範囲より低い380℃であるため、強度がやや不十分、および導電率が不十分となり、引張強さが586MPa、導電率が58%IACSであった。また、比較例3の銅合金薄板は、導電率は74%IACSと良好であるものの、第1時効処理の処理温度が規定範囲より高い570℃であるため、強度が不十分となり、引張強さが538MPaであった。
【0057】
比較例4の銅合金薄板は、引張強さは624MPaと良好であるものの、第2時効処理の処理温度が規定範囲より低い280℃であるため、導電率があまり良好ではなく、60%IACSであった。また、比較例5の銅合金薄板は、導電率は74%IACSと良好であるものの、第2時効処理の処理温度が規定範囲より高い470℃であるため、強度がやや不十分となり、引張強さが578MPaであった。
【0058】
比較例6の銅合金薄板は、導電率は70%IACSと良好であるものの、第3冷間圧延加工の加工率が規定範囲未満の30%であるため、強度がやや不十分となり、引張強さが596MPaであった。
【0059】
本発明の製造方法により得られた高強度・高導電性銅合金材は、小型・多ピンのリードフレーム材として用いる以外に、約620MPa以上の引張強度および65%IACS以上の高導電率が要求される部材、例えば、半導体機器の端子材又はコネクタ材、電子機器用材などにも適用することができることは言うまでもない。
【0060】
【発明の効果】
以上要するに本発明によれば、溶製後の銅合金材に施す溶体化処理の処理温度と時間、時効処理の処理温度と時間、および冷間圧延加工の加工率を、所定の範囲に調整することで、42合金に匹敵する約620MPa以上の引張強度と、65%IACS以上の高導電率の両方の達成が可能な銅合金材を得ることができるという優れた効果を発揮する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength, high-conductivity copper alloy material, and more particularly to a method for producing a high-strength, high-conductivity copper alloy material used for lead materials, terminals, connectors, etc. of semiconductor devices. is there.
[0002]
[Prior art]
The trend toward higher integration and higher speed of IC / LSI in recent years has caused an increase in the amount of heat generated by semiconductor chips, and at present, rational heat dissipation of semiconductor packages has become a problem.
[0003]
As a heat dissipation path of the semiconductor package, it is conceivable to dissipate heat to the wiring substrate through a lead material, in addition to the method of dissipating through an insulating mold or actively attaching a heat sink.
[0004]
When heat is radiated to the wiring board through the lead material, the high thermal conductivity (evaluable by conductivity) of the lead material itself directly affects the heat dissipation of the semiconductor package. When performing heat dissipation by this method, the conventional alloy for lead material 42 (Fe—Ni alloy) has a very low conductivity of about 3% IACS, which is a major problem in the design of semiconductor packages. Yes.
[0005]
Therefore, as a lead material alloy, a material having higher conductivity is required, and conversion from 42 alloy to copper alloy is performed. In this case, the characteristics required for the copper alloy are high conductivity, combined with characteristics as a general lead material, and have the same strength as the 42 alloy. .
[0006]
However, although a copper alloy having a high electrical conductivity is excellent in heat dissipation, the strength is relatively weak compared to 42 alloy. Here, since LSI packages with more than 200 pins have been manufactured, there is a strong demand and demand for thinner lead materials and thinner inner and outer leads. Therefore, the strength of the lead material itself is regarded as important.
[0007]
For this reason, various copper alloys with increased strength have been developed, and examples thereof include Cu-Sn, Cu-Ni-Si, and Cu-Cr alloys.
[0008]
[Problems to be solved by the invention]
However, the Cu—Sn based copper alloy in which Sn is dissolved in Cu to increase the strength has a conductivity of only about 30% IACS, and the Cu—Ni—Si based copper alloy has a conductivity of about 50% IACS. In addition, although a high conductivity of 70% IACS or higher is obtained in the Cu—Cr-based copper alloy, it is slightly insufficient in terms of strength, and Cr is a hardly soluble material and C is a refractory material. There is a problem that melting and casting are difficult because Cr and Cr are likely to react.
The inventors previously proposed a Cu-Ni-Fe-P-Zn-based copper alloy as a high-strength, high-conductivity copper alloy having a strength comparable to 42 alloy and a high conductivity of 60% IACS or higher ( Japanese Patent Application No. 10-225692: hereinafter referred to as prior application). It is as follows.
The total of the weight percent of Fe and Ni (hereinafter referred to as Fe + Ni) is 0.3 to 1.0 wt%, P is 0.05 to 0.3 wt%, the ratio of the total weight percent of Fe and Ni to the weight percent of P (Hereinafter referred to as (Fe + Ni) / P) is 3 to 10, the ratio of the weight percent of Fe to the weight percent of Ni (hereinafter referred to as Fe / Ni) is 0.8 to 1.2, and Zn is 0. 1 to 1.0 wt%, and if necessary, one or more selected from Mg, Sn, and Mn is a total of 0.01 to 0.3 wt%, and the balance is made of copper. However, even in this copper alloy material, variations in tensile strength were observed depending on the processing method.
[0009]
Therefore, the present invention is a copper alloy material having the same composition as the previous application, and has a tensile strength of about 620 MPa or more comparable to 42 alloy and a high conductivity of 65% IACS or more, and is easy to manufacture. It is providing the manufacturing method of a highly conductive copper alloy material.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1
The total weight percent of Fe and Ni is 0.3 to 1.0 wt%,
P is 0.05 to 0.3 wt%,
The ratio of the total weight percent of Fe and Ni to the weight percent of P ((Fe + Ni) / P) is 3 to 10, and the ratio of the weight percent of Fe to the weight percent of Ni (Fe / Ni) is 0.8 to 1. .2,
Zn is 0.1 to 1.0 wt%,
After the copper alloy material composed of copper is melted, the copper alloy material after the melting is heated to 800 to 950 ° C. and then cooled to 300 ° C. or less at a cooling rate of 25 ° C./min or more. After the first cold rolling process is performed on the copper alloy material after the solution treatment, the first temperature of 400 to 550 ° C. × 0.5 to 5 hours, preferably 450 to 500 ° C. × 1 to 2 hours. After performing the first aging treatment and subjecting the copper alloy material after the first aging treatment to the second cold rolling, 300 to 450 ° C. × 0.5 to 5 hours, preferably 350 to 400 ° C. × 1 to 2 hours. The second aging treatment is performed, and finally, the third cold rolling process with a processing rate of 40% or more is performed on the copper alloy material after the second aging process.
[0011]
The invention of claim 2
The total weight percent of Fe and Ni is 0.3 to 1.0 wt%,
P is 0.05 to 0.3 wt%,
The ratio of the total weight percent of Fe and Ni to the weight percent of P ((Fe + Ni) / P) is 3 to 10, and the ratio of the weight percent of Fe to the weight percent of Ni (Fe / Ni) is 0.8 to 1. .2,
Zn is 0.1 to 1.0 wt%,
0.01-0.3 wt% in total of one or more selected from Mg, Sn, or Mn,
After the copper alloy material composed of copper is melted, the copper alloy material after the melting is heated to 800 to 950 ° C. and then cooled to 300 ° C. or less at a cooling rate of 25 ° C./min or more. After the first cold rolling process is performed on the copper alloy material after the solution treatment, the first temperature of 400 to 550 ° C. × 0.5 to 5 hours, preferably 450 to 500 ° C. × 1 to 2 hours. After performing the first aging treatment and subjecting the copper alloy material after the first aging treatment to the second cold rolling, 300 to 450 ° C. × 0.5 to 5 hours, preferably 350 to 400 ° C. × 1 to 2 hours. The second aging treatment is performed, and finally, the third cold rolling process with a processing rate of 40% or more is performed on the copper alloy material after the second aging process.
[0012]
The reason for limiting the numerical range will be described below.
First, the relationship between Fe and Ni and P will be described. Fe and Ni each have a property of forming a compound with P and improving strength and electrical conductivity. If the amount of P is less than 0.015 to 0.3% by weight set as the content of P, good strength cannot be obtained because the amount of phosphorus compound produced is insufficient, and conversely 0.3% by weight. If it exceeds 50%, the phosphorus compound segregates during casting and casting cracks occur, which is not practical. In order to efficiently produce a phosphorous compound by heat treatment within the 0.05 to 0.3 wt% regulation imposed on P, the total amount of Fe and Ni is 0.3 to 1.0 wt%. %, And when this is less than 0.3% by weight, the formation of phosphorus compounds becomes insufficient. Conversely, if it exceeds 1.0% by weight, excess Fe and Ni are contained in Cu. In particular, the characteristics deteriorate in terms of conductivity.
In order to sufficiently obtain the effect of improving the conductivity due to the generation of the phosphorus compound, it is necessary to set the ratio of the total weight of Fe and Ni and the weight of P to be (Fe + Ni) / P = 3-10. When the set ratio is lower than this range, P is excessive. Conversely, when it exceeds this range, Fe and Ni are excessive. Therefore, these excessive elements that are not involved in the formation of the phosphorus compound are in a solid solution state in Cu. As a result, in particular, the conductivity is greatly hindered. The ratio of Fe and Ni and P is particularly important in securing high electrical conductivity. If this is set to a more limited weight ratio, the weight ratio of P to 1 is 1 for Fe and Ni. The total amount can be set to 4-6.
The optimum ratio of Fe and Ni needs to be determined in consideration of the balance between strength and conductivity. Fe contributes little to improving the strength, but has the property of improving the conductivity. On the other hand, Ni is effective in improving the strength, but it has a higher conductivity than Fe. Hard to get.
Therefore, in order to design a material in which the strength and the electrical conductivity are harmonized, it is necessary to make the weight ratio of the two in a one-to-one relationship within the total amount of 0.3 to 1.0% by weight. Furthermore, when considering the operation of melting and casting by mass production equipment, which is not necessarily sufficient under a strict blending composition, it is necessary to set this within the range of Fe / Ni = 0.8 to 1.2. There is.
When Fe / Ni is less than 0.8, the conductivity becomes insufficient due to Ni excess, and conversely, when it exceeds 1.2, Fe becomes excessive and the strength becomes insufficient.
The reason for setting the Zn content to 0.1 to 1.0% by weight is that if it is less than 0.1% by weight, it improves solderability and strength during processing of the lead frame obtained by containing this element. Insufficient product is obtained, and conversely, if it exceeds 1.0% by weight, the conductivity is lowered.
In addition to each element described above, at least one of Mg, Sn, and Mn can be contained to further improve the strength. These elements are added singly or in combination of two or more, and particularly in the latter case, a high strength improvement is exhibited. The optimum content is 0.01 to 0.3% by weight. If it is less than 0.01% by weight, the effect is insufficient, and if it exceeds 0.3% by weight, the conductivity is lowered. Therefore, it is necessary to avoid the content exceeding the above range.
[0013]
The treatment temperature and treatment time of the first aging treatment are limited to 400 to 550 ° C. × 0.5 to 5 hours, preferably 450 to 500 ° C. × 1 to 2 hours. In this case, the precipitated compounds (Fe—P compound and Ni—P compound) are coarsened and sufficient strength cannot be obtained. Further, when the temperature is lower than this range and / or for a short time, precipitation of the compound does not proceed sufficiently, and sufficient strength and electrical conductivity cannot be obtained.
[0014]
The treatment temperature and treatment time of the second aging treatment were limited to 300 to 450 ° C. × 0.5 to 5 hours, preferably 350 to 400 ° C. × 1 to 2 hours. In this case, the precipitated compounds (Fe—P compound and Ni—P compound) are coarsened and sufficient strength cannot be obtained. Further, when the temperature is lower than this range and / or for a short time, the formation of precipitates does not proceed sufficiently, and sufficient conductivity cannot be obtained.
[0015]
The reason why the processing rate of the third cold rolling process is limited to 40% or more is that sufficient strength cannot be obtained when the processing rate is less than 40%.
[0016]
According to the above manufacturing method, the solution treatment → first cold rolling process → first aging process → second cold rolling process → second aging process → third cold treatment is sequentially applied to the copper alloy material after melting. In addition to performing the hot rolling process, the processing temperature and time of each heat treatment and the processing rate of each processing process are adjusted within a predetermined range, so that a tensile strength of about 620 MPa or more and a high conductivity of 65% IACS or more are achieved. be able to.
[0017]
Hereinafter, a preferred embodiment of the present invention will be described.
[0020]
First, chemical composition, Fe + Ni is 0.3~1.0wt%, P is 0.05~0.3wt%, (Fe + Ni) / P is 3 to 10, Fe / Ni is 0.8 to 1.2, A copper alloy material composed of 0.1 to 1.0 wt% of Zn and the balance of copper is melted.
[0021]
Next, after forming the copper alloy material after melting into a predetermined shape, the alloy element is heated to 800 to 950 ° C. to sufficiently dissolve the alloy element in the Cu matrix, and then 25 ° C./min or more to 300 ° C. or less. The solution is subjected to a solution treatment by cooling at a cooling rate of 1.
[0022]
By defining the heating temperature as high as 800 to 950 ° C. and the cooling rate as 25 ° C./min or more, the formation of coarse precipitates during cooling is prevented.
[0023]
Next, the first aging treatment of 400 to 550 ° C. × 0.5 to 5 hours, preferably 450 to 500 ° C. × 1 to 2 hours is performed after the first cold rolling process is performed on the copper alloy material after the solution treatment. Apply.
[0024]
The first cold rolling introduces a lattice defect that becomes a starting point of precipitate generation in the copper alloy material, and promotes the formation of fine precipitates in the first aging treatment as the next step. In addition, the first aging treatment starts from lattice defects introduced during the first cold rolling in the previous step, and the Fe—P compound and the Ni—P compound are precipitated in a fine shape in the Cu matrix. The conductivity is improved.
[0025]
Next, after subjecting the copper alloy material after the first aging treatment to the second cold rolling process, the second aging of 300 to 450 ° C. × 0.5 to 5 hours, preferably 350 to 400 ° C. × 1 to 2 hours is performed. Apply processing.
[0026]
The second cold rolling newly introduces a lattice defect as a starting point of precipitate generation in the copper alloy material, and promotes the generation of new fine precipitates in the second aging treatment as the next step. In addition, alloy elements (Fe-P compound and Ni-P compound) that have not been precipitated during the first aging treatment, starting from the lattice defects introduced by the second aging treatment during the second cold rolling in the previous step. It precipitates in a fine shape in the Cu matrix, and the conductivity is further improved.
[0027]
Thereafter, a third cold rolling process with a processing rate of 40% or more is performed on the copper alloy material whose conductivity is sufficiently improved by the first aging treatment and the second aging treatment. A sufficient strength improvement is obtained by the work hardening of the third cold rolling process.
[0028]
The heating means for the solution treatment and the processing means for the first to third cold rolling processes are not particularly limited as long as they are used for general solution treatment and cold rolling processes.
[0029]
The processing rate of the first cold rolling is not particularly limited, but the processing rate is preferably 50 to 80%, and particularly preferably 60 to 70%.
[0030]
The processing rate of the second cold rolling is not particularly limited, but the processing rate is preferably 40 to 70%, and particularly preferably 50 to 60%.
[0031]
According to the manufacturing method of the high-strength and high-conductivity copper alloy material of the present embodiment, the treatment temperature and time of the solution treatment applied to the copper alloy material after melting, the treatment temperature and time of the aging treatment, and the cold Since the processing rate of the rolling process is adjusted to a predetermined range, a copper alloy material capable of achieving both a tensile strength of about 620 MPa or higher comparable to 42 alloy and a high conductivity of 65% IACS or higher is obtained. be able to.
[0032]
Moreover, since the composition of the copper alloy material does not contain Cr that is difficult to melt and cast, the production is easy and the production cost can be kept low.
[0033]
Furthermore, by using the high-strength and high-conductivity copper alloy material obtained by the manufacturing method of the present embodiment, a multi-pin lead frame with excellent heat dissipation can be manufactured at low cost, and an IC or LSI Greatly contributes to higher integration and higher speed.
[0034]
Next, another embodiment of the present invention.
[0036]
In the present embodiment, in addition to the additive element in the above-described embodiment, one or more selected from Mg, Sn, or Mn is included in a total of 0.01 to 0.3 wt% , and the balance is made of copper. A copper alloy material is used. Except for using this copper alloy material, the conditions for each heat treatment (solution treatment and aging treatment) and the conditions for each processing treatment are the same as those in the above embodiment .
[0037]
Also in the manufacturing method of the high-strength and high-conductivity copper alloy material of the present embodiment, it goes without saying that the same effect as that of the above-described embodiment is exhibited, and a new effect that the strength can be further increased is exhibited.
[0038]
【Example】
Example 1
Fe 0.4 wt%, Ni 0.4 wt%, Fe + Ni 0.8 wt%, P 0.2 wt%, (Fe + Ni) / P 4, Fe / Ni 1.0, Zn 0.3 wt% A copper alloy material composed of oxygen-free copper is melted in a high frequency melting furnace, and then poured into a mold to cast an ingot having a diameter of 30 mm and a length of 250 mm.
[0039]
Next, after heating this ingot to 850 ° C., extrusion is performed to form a copper alloy plate having a width of 20 mm and a thickness of 8 mm. Thereafter, the copper alloy sheet is cold-rolled to form a 2.0 mm thick copper alloy sheet.
[0040]
Thereafter, the copper alloy thin plate is heated to 900 ° C. and held for 10 minutes, and then poured into water and cooled to room temperature (about 25 ° C.) at a cooling rate of about 300 ° C./min for solution treatment.
[0041]
Next, the copper alloy thin plate after solution treatment is subjected to a first cold rolling process to form a thickness of 0.7 mm, and then a first aging treatment at 470 ° C. × 2 hr is performed.
[0042]
Thereafter, the copper alloy thin plate after the first aging treatment is subjected to a second cold rolling process to form a thickness of 0.3 mm, and then a second aging treatment of 380 ° C. × 2 hr is performed.
[0043]
Finally, the copper alloy sheet after the second aging treatment is subjected to a third cold rolling process with a processing rate of 50% to form a thickness of 0.15 mm to produce a high-strength, high-conductivity copper alloy sheet.
[0044]
(Example 2)
Fe 0.4 wt%, Ni 0.4 wt%, Fe + Ni 0.8 wt%, P 0.2 wt%, (Fe + Ni) / P 4, Fe / Ni 1.0, Zn 0.3 wt% A high-strength, high-conductivity copper alloy thin plate was prepared in the same manner as in Example 1 except that a copper alloy material composed of 0.05 wt% Mg, 0.05 wt% Sn, and the remaining oxygen-free copper was used. Make it.
[0045]
(Comparative Example 1)
A copper alloy thin plate is produced in the same manner as in Example 1 except that the solution treatment temperature is 750 ° C.
[0046]
(Comparative Example 2)
A copper alloy thin plate is produced in the same manner as in Example 1 except that the treatment temperature of the first aging treatment is 380 ° C.
[0047]
(Comparative Example 3)
A copper alloy thin plate is produced in the same manner as in Example 1 except that the treatment temperature of the first aging treatment is 570 ° C.
[0048]
(Comparative Example 4)
A copper alloy thin plate is produced in the same manner as in Example 1 except that the treatment temperature of the second aging treatment is 280 ° C.
[0049]
(Comparative Example 5)
A copper alloy thin plate is produced in the same manner as in Example 1 except that the treatment temperature of the second aging treatment is 470 ° C.
[0050]
(Comparative Example 6)
A copper alloy thin plate is produced in the same manner as in Example 1 except that the processing rate of the third cold rolling process is set to 30%.
[0051]
The production conditions (heat treatment and processing) of the high strength and high conductivity copper alloy thin plates of Examples 1 and 2 and the copper alloy thin plates of Comparative Examples 1 to 6 are shown in Table 1, and the high strength of Examples 1 and 2 Table 2 shows the properties (tensile strength (MPa) and conductivity (% IACS)) of the highly conductive copper alloy sheet and the copper alloy sheets of Comparative Examples 1 to 6.
[0052]
[Table 1]
Figure 0003900733
[0053]
[Table 2]
Figure 0003900733
[0054]
As shown in Table 2, in the high strength and high conductivity copper alloy thin plate produced by the production method of the present invention, the tensile strength is 620 MPa (620 MPa, 644 MPa) or more, and the conductivity is 65% IACS ( 70% IACS, 68% IACS).
[0055]
On the other hand, the copper alloy thin plate of Comparative Example 1 has a good electrical conductivity of 70% IACS, but the solution treatment temperature is 750 ° C., which is lower than the specified range. The strength was 570 MPa.
[0056]
The copper alloy thin plate of Comparative Example 2 has a first aging treatment temperature of 380 ° C. which is lower than the specified range, so that the strength is slightly insufficient and the conductivity is insufficient, the tensile strength is 586 MPa, and the conductivity is 58% IACS. Further, although the copper alloy thin plate of Comparative Example 3 has good conductivity of 74% IACS, the treatment temperature of the first aging treatment is 570 ° C. which is higher than the specified range, so that the strength is insufficient and the tensile strength is high. Was 538 MPa.
[0057]
Although the copper alloy thin plate of Comparative Example 4 has a tensile strength as good as 624 MPa, the treatment temperature of the second aging treatment is 280 ° C., which is lower than the specified range, so the conductivity is not so good, with 60% IACS. there were. In addition, although the copper alloy thin plate of Comparative Example 5 has a good conductivity of 74% IACS, the processing temperature of the second aging treatment is 470 ° C., which is higher than the specified range, so that the strength is slightly insufficient and the tensile strength is high. Was 578 MPa.
[0058]
Although the copper alloy thin plate of Comparative Example 6 has a good electrical conductivity of 70% IACS, the processing rate of the third cold rolling is 30%, which is less than the specified range, so that the strength is slightly insufficient, and the tensile strength is high. Was 596 MPa.
[0059]
The high-strength, high-conductivity copper alloy material obtained by the production method of the present invention requires a tensile strength of about 620 MPa or more and a high conductivity of 65% IACS or more, in addition to being used as a small-sized, multi-pin lead frame material. Needless to say, the present invention can also be applied to a member to be used, for example, a terminal material or connector material of a semiconductor device, a material for an electronic device, or the like.
[0060]
【The invention's effect】
In short, according to the present invention, the processing temperature and time of the solution treatment applied to the copper alloy material after melting, the processing temperature and time of the aging treatment, and the processing rate of the cold rolling are adjusted to a predetermined range. Thus, an excellent effect is obtained that a copper alloy material capable of achieving both a tensile strength of about 620 MPa or more comparable to 42 alloy and a high conductivity of 65% IACS or more can be obtained.

Claims (2)

FeとNiの重量%の合計が0.3〜1.0wt%、Pが0.05〜0.3wt%、FeとNiの合計重量%とPの重量%との比((Fe+Ni)/P)が3〜10、Feの重量%とNiの重量%との比(Fe/Ni)が0.8〜1.2、Znが0.1〜1.0wt%、残部が銅で構成される銅合金材を溶製した後、その溶製後の銅合金材を800〜950℃に加熱後、300℃以下まで25℃/min以上の冷却速度で冷却して溶体化処理を施し、その溶体化処理後の銅合金材に、第1冷間圧延加工を施した後、400〜550℃×0.5〜5hrの第1時効処理を施し、その第1時効処理後の銅合金材に、第2冷間圧延加工を施した後、300〜450℃×0.5〜5hrの第2時効処理を施し、最後に、その第2時効処理後の銅合金材に、加工率40%以上の第3冷間圧延加工を施すことを特徴とする高強度・高導電性銅合金材の製造方法。The total weight percent of Fe and Ni is 0.3 to 1.0 wt%, P is 0.05 to 0.3 wt%, and the ratio of the total weight percent of Fe and Ni to the weight percent of P ((Fe + Ni) / P ) Is 3 to 10, the ratio of Fe wt% to Ni wt% (Fe / Ni) is 0.8 to 1.2, Zn is 0.1 to 1.0 wt%, and the balance is copper. After melting the copper alloy material, the molten copper alloy material is heated to 800 to 950 ° C., then cooled to 300 ° C. or less at a cooling rate of 25 ° C./min or more, and subjected to a solution treatment. After performing the first cold rolling process on the copper alloy material after the aging treatment, the first aging treatment of 400 to 550 ° C. × 0.5 to 5 hours is performed, and the copper alloy material after the first aging treatment is applied, It was subjected to secondary cold rolling, subjected to a second aging treatment of 300 to 450 ° C. × 0.5 to 5 hr, finally, the copper alloy material after the second aging treatment , The method of producing a high strength and high conductivity copper alloy material characterized by applying a third cold rolling process of more working ratio of 40%. FeとNiの重量%の合計が0.3〜1.0wt%、Pが0.05〜0.3wt%、FeとNiの合計重量%とPの重量%との比((Fe+Ni)/P)が3〜10、Feの重量%とNiの重量%との比(Fe/Ni)が0.8〜1.2、Znが0.1〜1.0wt%、Mg又はSn或いはMnから選択される1種以上を合計して0.01〜0.3wt%、残部が銅で構成される銅合金材を溶製した後、その溶製後の銅合金材を800〜950℃に加熱後、300℃以下まで25℃/min以上の冷却速度で冷却して溶体化処理を施し、その溶体化処理後の銅合金材に、第1冷間圧延加工を施した後、400〜550℃×0.5〜5hrの第1時効処理を施し、その第1時効処理後の銅合金材に、第2冷間圧延加工を施した後、300〜450℃×0.5〜5hrの第2時効処理を施し、最後に、その第2時効処理後の銅合金材に、加工率40%以上の第3冷間圧延加工を施すことを特徴とする高強度・高導電性銅合金材の製造方法。The total weight percent of Fe and Ni is 0.3 to 1.0 wt%, P is 0.05 to 0.3 wt%, and the ratio of the total weight percent of Fe and Ni to the weight percent of P ((Fe + Ni) / P ) Is 3 to 10, the ratio of Fe wt% to Ni wt% (Fe / Ni) is 0.8 to 1.2, Zn is 0.1 to 1.0 wt%, Mg, Sn or Mn is selected After melting a copper alloy material composed of 0.01 to 0.3 wt% in total, the balance being made of copper, after heating the molten copper alloy material to 800 to 950 ° C The solution is cooled to a temperature of 300 ° C. or less at a cooling rate of 25 ° C./min or more and subjected to a solution treatment. After the solution treatment, the first cold rolling process is performed on the copper alloy material, and then 400 to 550 ° C. × 0.5 subjecting the first aging treatment 5 hr, its first aging treatment the copper alloy material after, after subjected to the second cold rolling process, 300-45 ° C. × subjected to the second aging treatment 0.5 to 5 hr, finally, high, wherein the subjecting its second aging copper alloy material after the third cold rolling process of more working ratio of 40% A manufacturing method of strength and high conductivity copper alloy material.
JP04806199A 1999-02-25 1999-02-25 Manufacturing method of high strength and high conductivity copper alloy material Expired - Fee Related JP3900733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04806199A JP3900733B2 (en) 1999-02-25 1999-02-25 Manufacturing method of high strength and high conductivity copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04806199A JP3900733B2 (en) 1999-02-25 1999-02-25 Manufacturing method of high strength and high conductivity copper alloy material

Publications (2)

Publication Number Publication Date
JP2000239812A JP2000239812A (en) 2000-09-05
JP3900733B2 true JP3900733B2 (en) 2007-04-04

Family

ID=12792844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04806199A Expired - Fee Related JP3900733B2 (en) 1999-02-25 1999-02-25 Manufacturing method of high strength and high conductivity copper alloy material

Country Status (1)

Country Link
JP (1) JP3900733B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039758A (en) * 2015-06-11 2015-11-11 大连理工大学 Precipitation strengthening type high-strength and high-conductivity CuZr alloy and preparing method thereof
CN109321779A (en) * 2018-10-26 2019-02-12 浙江星康铜业有限公司 A kind of Flexural-resistant and compressive-resistancopper copper plate and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714943B2 (en) * 2008-02-08 2011-07-06 三井住友金属鉱山伸銅株式会社 Method for producing precipitation hardening type copper alloy strip
JP5236973B2 (en) * 2008-03-18 2013-07-17 株式会社神戸製鋼所 Copper alloy plate for QFN package with excellent dicing workability
JP2010285671A (en) * 2009-06-15 2010-12-24 Hitachi Cable Ltd High-strength and high-electrical conductivity copper alloy and method of producing the same
JP5539055B2 (en) * 2010-06-18 2014-07-02 株式会社Shカッパープロダクツ Copper alloy material for electric / electronic parts and method for producing the same
CN106435249B (en) * 2016-12-07 2018-12-11 常州恒丰特导股份有限公司 A kind of multicomponent microalloying copper alloy with high strength and high conductivity and its preparation process
CN115044846B (en) * 2022-06-23 2023-06-02 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039758A (en) * 2015-06-11 2015-11-11 大连理工大学 Precipitation strengthening type high-strength and high-conductivity CuZr alloy and preparing method thereof
CN109321779A (en) * 2018-10-26 2019-02-12 浙江星康铜业有限公司 A kind of Flexural-resistant and compressive-resistancopper copper plate and preparation method thereof

Also Published As

Publication number Publication date
JP2000239812A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP2522629B2 (en) Copper alloy for electric parts and electronic parts and method for producing the same
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JP3900733B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP2016014165A (en) Copper alloy material, method for producing copper alloy material, lead frame and connector
JP3465541B2 (en) Lead frame material manufacturing method
JP3376840B2 (en) Manufacturing method of copper alloy material
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP2956696B1 (en) High strength and high conductivity copper alloy and its processing method
JP3379380B2 (en) High strength and high conductivity copper alloy
JP4750601B2 (en) Copper alloy excellent in hot workability and manufacturing method thereof
JPH0635633B2 (en) Copper alloy for electric and electronic parts and method for producing the same
JPS6250426A (en) Copper alloy for electronic appliance
JP3755272B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JPS6250428A (en) Copper alloy for electronic appliance
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPH05311364A (en) Manufacture of high strength and high conductivity copper alloy
JPH10152736A (en) Copper alloy material and its production
TW448235B (en) High-strength and high-conductivity Cu-(Ni, Co)-Si copper alloy for use in leadframes and method of making the same
JP4132451B2 (en) High strength and high conductivity copper alloy with excellent heat resistance
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP6203486B2 (en) Manufacturing method of alloy material for manufacturing terminal and manufacturing method of terminal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Ref document number: 3900733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees