JPH0635633B2 - Copper alloy for electric and electronic parts and method for producing the same - Google Patents

Copper alloy for electric and electronic parts and method for producing the same

Info

Publication number
JPH0635633B2
JPH0635633B2 JP61259337A JP25933786A JPH0635633B2 JP H0635633 B2 JPH0635633 B2 JP H0635633B2 JP 61259337 A JP61259337 A JP 61259337A JP 25933786 A JP25933786 A JP 25933786A JP H0635633 B2 JPH0635633 B2 JP H0635633B2
Authority
JP
Japan
Prior art keywords
copper alloy
copper
electric
electronic parts
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61259337A
Other languages
Japanese (ja)
Other versions
JPS63111151A (en
Inventor
元久 宮藤
功 細川
悟 花多山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61259337A priority Critical patent/JPH0635633B2/en
Publication of JPS63111151A publication Critical patent/JPS63111151A/en
Publication of JPH0635633B2 publication Critical patent/JPH0635633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気および電子部品用銅合金及びその製造方
法に関する。さらに詳しくは、端子、コネクター、ブス
バー等の電気部品用の銅合金材料およびトランジスタ
ー、リードフレーム、ICリードフレーム、抵抗器リー
ド等の電子部品用の銅合金及びその製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a copper alloy for electric and electronic parts and a method for producing the same. More specifically, the present invention relates to a copper alloy material for electric parts such as terminals, connectors and bus bars, a copper alloy for electronic parts such as transistors, lead frames, IC lead frames and resistor leads, and a method for producing the same.

[従来の技術] 電気および電子部品は、それらの部品を使用する装置が
小型、軽量化されるのに伴ない小型、軽量化されること
が要望されている。
[Prior Art] Electric and electronic components are required to be smaller and lighter as devices using those components are smaller and lighter.

電気および電子部品用中の銅合金材料の小型軽量化は銅
合金材料を薄板化、細線化することにより対応されてい
る。
The reduction in size and weight of copper alloy materials used in electric and electronic parts is achieved by thinning and thinning the copper alloy materials.

このように銅合金材料を薄板化、細線化すると、銅合金
材料には今まで以上に導電性に優れ、耐熱性がありかつ
機械的強度に優れた性質が望まれる。
When the copper alloy material is thinned and thinned in this way, it is desired that the copper alloy material has more excellent conductivity, heat resistance, and mechanical strength.

これに対応した、銅合金材料にはCu−0.1wt%F
e−0.03wt%PからなるKFCあるいはCu−
0.12wt%Sn−0.01wt%Pからなる錫入り
銅が知られている。
Corresponding to this, Cu-0.1wt% F is used for the copper alloy material.
e-0.03 wt% P KFC or Cu-
Tin-containing copper composed of 0.12 wt% Sn-0.01 wt% P is known.

これらの銅合金はリン脱酸銅と同等な価格であり、リン
脱酸銅と同一の製造プロセスで製造でき、機械的性質は
リン脱酸銅より高く、耐熱性にも優れている。
These copper alloys have the same price as phosphorous deoxidized copper, can be manufactured by the same manufacturing process as phosphorous deoxidized copper, have higher mechanical properties than phosphorous deoxidized copper, and have excellent heat resistance.

特に、KFCは焼鈍材の引張強度が30kgf/mm2
耐力が15kgf/mm2、伸びが38%、導電率が92
%IACSで、これらの物性値が伸びを除いて錫入り銅
を450℃で2時間焼鈍した時の引張強度:25kgf
/mm2、耐力:64kgf/mm2、伸び:48.5%、
導電率:90%IACSより優れている。
In particular, KFC has a tensile strength of 30 kgf / mm 2 of annealed material,
Proof strength 15kgf / mm 2 , elongation 38%, conductivity 92
% IACS, these physical properties have a tensile strength when tin-containing copper is annealed at 450 ° C. for 2 hours excluding elongation: 25 kgf
/ Mm 2 , yield strength: 64 kgf / mm 2 , elongation: 48.5%,
Conductivity: 90% better than IACS.

[発明が解決しようとする問題点] 電気および電子部品は小型、軽量化のほかに電流容量を
向上させることが要求され始めている。
[Problems to be Solved by the Invention] In addition to miniaturization and weight reduction of electric and electronic components, improvement of current capacity is beginning to be demanded.

電流容量を向上させると、銅合金材料の薄板化及び細線
化により、銅合金材料は今迄以上に発熱しやすくなる。
例えばパワートランジスタリードフレーム材料および端
子及びコネクタ用の材料がこれに当る。
When the current capacity is improved, the copper alloy material is more likely to generate heat than ever due to the thinning and thinning of the copper alloy material.
For example, power transistor leadframe materials and materials for terminals and connectors.

このような部品に用いる銅合金は耐熱性が今迄以上に必
要となってくる。
Copper alloys used for such parts are required to have higher heat resistance than ever.

従来からあるKFCは250〜550℃の間の所定の温
度で5分間加熱し、ビッカース硬さを測定した時の硬さ
の変化で軟化特性を求めると約400℃で硬さが低下し
始め上記のような部品に用いるには耐熱性が良くないと
いう問題点がある。
A conventional KFC is heated at a predetermined temperature between 250 and 550 ° C. for 5 minutes, and when the softening property is obtained by the change in hardness when Vickers hardness is measured, the hardness starts to decrease at about 400 ° C. There is a problem that the heat resistance is not good for use in such parts.

本発明はKFCと同等以上の機械的性質を有し、しかも
同等の導電率を備え、KFCよりも耐熱性が優れた銅合
金をリン脱酸銅と同一の工程で製造し供給することに特
徴がある。
The present invention is characterized by producing and supplying a copper alloy having mechanical properties equal to or higher than KFC, having the same electrical conductivity, and higher heat resistance than KFC in the same process as phosphorous deoxidized copper. There is.

[問題点を解決するための手段] 本願発明の第1の要旨は、重量%で、Fe:0.05〜
0.15%、P:0.04〜0.08%(但しP:0.
04%は含まず)、Mg:0.02〜0.12%を含
み、残部がCu及び不可避的不純物からなる銅合金中に
少なくともFePとMgとを導電率が85%I
ACS以上となるように均一かつ微細に析出させたこと
を特徴とする電気および電子部品用銅合金に存在する。
[Means for Solving Problems] The first gist of the present invention is, in weight%, Fe: 0.05 to
0.15%, P: 0.04-0.08% (however, P: 0.
04% is not included), Mg: 0.02 to 0.12% is contained, and the balance is at least Fe 2 P and Mg 3 P 2 in a copper alloy containing Cu and inevitable impurities, and the conductivity is 85% I.
It exists in a copper alloy for electric and electronic parts, which is characterized by being uniformly and finely precipitated so as to have ACS or more.

本願発明の第2の要旨は、重量%で、Fe:0.05〜
0.15%、P:0.04〜0.08%(但しP:0.
04%は含まず)、Mg:0.02〜0.12%を含
み、残部がCu及び不可避的不純物からなる銅合金を溶
製し鋳塊にした後に該銅合金を熱間加工により所定の形
状にした後、600℃以上の温度の状態から200℃以
下まで5℃/sec以上の速度で冷却し、その後65%
以上の圧下率で冷間加工を行ない、その後400〜60
0℃に昇温し、30分以上の焼鈍を行うことにより該銅
合金中にFePおよびMgを析出させることを
特徴とする電気および電子部品用銅合金の製造方法に存
在する。
The second gist of the present invention is, by weight%, Fe: 0.05 to
0.15%, P: 0.04-0.08% (however, P: 0.
04% is not included), Mg: 0.02 to 0.12% is contained, and the balance is made of a copper alloy having Cu and inevitable impurities, which is melted to form an ingot, and then the copper alloy is hot-worked to a predetermined amount. After shaping, cool from a temperature of 600 ° C or higher to 200 ° C or lower at a rate of 5 ° C / sec or more, then 65%
Cold working is performed at the above reduction rate, and then 400 to 60
There is a method for producing a copper alloy for electric and electronic parts, characterized in that Fe 2 P and Mg 3 P 2 are precipitated in the copper alloy by heating to 0 ° C. and annealing for 30 minutes or more. .

以下、本発明に係る電気及び電子部品用銅合金の含有成
分及び成分割合について説明する。
Hereinafter, the contained components and component ratios of the copper alloy for electric and electronic parts according to the present invention will be described.

Fe,P,MgをCuに添加するのは、Cu中にFe
PとMgとを析出させるためで、このときFe
PとMgを析出するためにはFe,P,MgをC
uに共添させなければならない。
Adding Fe, P and Mg to Cu is due to Fe 2
In order to precipitate P and Mg 3 P 2 , Fe 2 at this time
In order to precipitate P and Mg 3 P 2 , Fe, P and Mg are replaced with C
Must be co-applied with u.

Fe添加量が0.05%未満ではPが添加されても銅合
金の強度が望まれず、また0.15%を超えると加工硬
化が激しくなり、リン脱酸銅と同一工程では製造できな
くなる等の問題点が生じる。
If the Fe addition amount is less than 0.05%, the strength of the copper alloy is not desired even if P is added, and if it exceeds 0.15%, work hardening becomes severe, and it cannot be manufactured in the same step as phosphorous deoxidized copper. The problem of occurs.

Mgにより銅合金の強度を上昇させるには、0.02%
以上必要であるが、0.12%を超えて添加すると造塊
時の湯流れ性の低下、導電率の低下及びめっき性に問題
が生じてくる。
To increase the strength of copper alloy by Mg, 0.02%
The above is required, but if added in excess of 0.12%, problems will occur in the flowability of molten metal during ingot making, the decrease in conductivity, and the plating property.

PはFe及びMgとそれぞれリン化合物(FeP,M
)を形成して、強度及び耐熱性を向上する効果
がある。
P is Fe and Mg and phosphorus compounds (Fe 2 P, M
g 3 P 2 ) is formed to improve strength and heat resistance.

Feを0.05〜0.15%添加されている銅合金中に
FePの化合物を析出するためには、Pは0.02〜
0.04%必要である。
In order to precipitate a Fe 2 P compound in a copper alloy containing 0.05 to 0.15% Fe, P is 0.02 to
0.04% is required.

同時にMgを0.02〜0.12%添加されている銅合
金中にMgを形成するためにはPは0.02〜
0.10%必要である。
At the same time, P is 0.02 to form Mg 3 P 2 in the copper alloy in which 0.02 to 0.12% of Mg is added.
0.10% is required.

従ってFeP,Mgを同一銅合金中に析出させ
るにはPは総量で0.40〜0.14%必要となる。
Therefore, in order to precipitate Fe 2 P and Mg 3 P 2 in the same copper alloy, P needs to be 0.40 to 0.14% in total.

しかし、Pを多量に添加し、母相に固溶して残留するよ
うになると、銅合金の銅電率の低下及び応力腐食割れを
生じやすくなり、かつ0.08%を越えて添加すると鋳
造及び熱間圧延時に割れを生じやすくなる。
However, if a large amount of P is added and remains as a solid solution in the matrix phase, the copper electrical conductivity of the copper alloy will decrease and stress corrosion cracking will easily occur, and if it is added in excess of 0.08%, it will be cast. Also, cracks are likely to occur during hot rolling.

ここでMgは母相中に固溶して残留させても銅合金の機
械的性質等の特性の低下はPほど大きくない。
Here, even if Mg forms a solid solution in the mother phase and remains, the deterioration of the mechanical properties and other characteristics of the copper alloy is not so great as P.

したがって、Pの添加量は0.04%より多く0.08
%以下とした。
Therefore, the amount of P added is more than 0.04% and 0.08%.
% Or less.

上記のように規定された元素を含む銅合金中にFe
およびMgを析出させるには、溶製された銅合金
を熱間加工した後、600℃以上の温度から200℃以
下まで5℃/sec以上の冷却速度で冷却した後、その
後65%以上の圧下率の冷間加工を行い、400〜60
0℃で30分以上の焼鈍を行うことにより可能となる。
Fe 2 P in a copper alloy containing the elements defined above
In order to precipitate Mg 3 P 2 and Mg 3 P 2 , after hot working the molten copper alloy, it is cooled from 600 ° C. or higher to 200 ° C. or lower at a cooling rate of 5 ° C./sec or more, and then 65%. 400 to 60 by performing cold working with the above reduction rate
It becomes possible by annealing at 0 ° C. for 30 minutes or more.

熱間加工後、600℃以上の温度から銅合金を冷却する
理由は、Fe,P及びMgを母相中に強制的に固溶させ
るためである。
The reason why the copper alloy is cooled from a temperature of 600 ° C. or higher after hot working is to force Fe, P and Mg to form a solid solution in the parent phase.

冷却最終温度を200℃以下としたのは、200℃以下
の温度では、銅合金中にFeP又はMgを析出
物を生じないためである。
The cooling final temperature was set to 200 ° C. or lower because at a temperature of 200 ° C. or lower, Fe 2 P or Mg 3 P 2 does not precipitate in the copper alloy.

このとき、冷却速度を5℃/sec以上としてのは、冷
却速度が5℃/sec未満だと、冷却中にFeP又は
Mgが析出し、冷却中に生じたこの析出物は銅合
金の耐熱性等の機械的性質の強化に寄与しないためであ
る。
At this time, the cooling rate is set to 5 ° C./sec or more. When the cooling rate is less than 5 ° C./sec, Fe 2 P or Mg 3 P 2 is precipitated during cooling, and this precipitate generated during cooling is This is because it does not contribute to strengthening mechanical properties such as heat resistance of the copper alloy.

最後に、400〜600℃で30分以上の焼鈍を行なう
のは、焼鈍温度が400℃未満だとFeP又はMg
の析出物が銅合金中に均一かつ微細には生じないた
めである。
Finally, annealing at 400 to 600 ° C. for 30 minutes or more is because if the annealing temperature is lower than 400 ° C., Fe 2 P or Mg 3 is used.
This is because the P 2 precipitate does not occur uniformly and finely in the copper alloy.

また、600℃を超えるとFe,P,Mgの固溶領域と
なるため、銅合金中にFeP又はMgの析出量
が少なく、強度向上に寄与しないためである。
Further, when it exceeds 600 ° C., it becomes a solid solution region of Fe, P and Mg, so that the precipitation amount of Fe 2 P or Mg 3 P 2 in the copper alloy is small and it does not contribute to the strength improvement.

ここで、本発明の銅合金において、強度を向上させる目
的で適度の冷間加工を加えても析出物の効果は何ら失な
われない。
Here, in the copper alloy of the present invention, the effect of the precipitates is not lost even if appropriate cold working is performed for the purpose of improving the strength.

また、半導体リードフレーム材料等の用途に対して行な
われている250〜400℃の歪除去焼鈍を本発明の銅
合金に対して行っても析出物の効果は何ら失なわれな
い。
The effect of the precipitates is not lost even if the copper alloy of the present invention is subjected to strain relief annealing at 250 to 400 ° C., which is used for applications such as semiconductor lead frame materials.

なお、本発明合金にFeの代りにCoを、0.10%を
越えない範囲で添加しても機械的性質、導電率及び耐熱
性には何ら差し支えることはない。すなわち、CoはF
eと置換されて(Fe1-x CoPを生じ、Fe
Pと同様の効果をもたらす。
It should be noted that even if Co instead of Fe is added to the alloy of the present invention in a range not exceeding 0.10%, mechanical properties, electrical conductivity and heat resistance are not hindered. That is, Co is F
substituted with e to give (Fe 1-x Co x ) 2 P, Fe 2
It has the same effect as P.

[実施例] 第1表に示す組成の銅合金を下記のように溶製した。Example A copper alloy having the composition shown in Table 1 was melted as follows.

電解銅をクリプトル電気炉中で本炭被覆下で約120
0℃で溶解する。
Approximately 120 electrolytic copper was coated in the Cryptor electric furnace under the main coal coating.
Melt at 0 ° C.

金型へ装入する銅の約2割を残しておき、約8割を炉
中へ装入し第1表の組成に応じた重量のFeチップを同
じ炉中へ装入する。
Approximately 20% of the copper charged in the mold is left, about 80% is charged into the furnace, and Fe chips having a weight corresponding to the composition shown in Table 1 are charged into the same furnace.

Feチップの溶け落ちを確認した後、残部の銅を炉中
へ装入して溶湯温度を1180〜1190℃まで低下さ
せる。
After confirming that the Fe chips have burned out, the balance of the copper is charged into the furnace to lower the molten metal temperature to 1180 to 1190 ° C.

Cu−15%Pを所定量るつぼへ装入し、その後硼砂
で溶湯の表面を覆う。
A predetermined amount of Cu-15% P is charged into the crucible, and then the surface of the molten metal is covered with borax.

次に、Cu−50%Mgを所定定量添加し、撹拌、沈静
後金型に鋳込む。
Next, Cu-50% Mg is added in a predetermined amount, stirred and settled, and then cast into a mold.

ここで金型はサイブ60mmt×60mmw×120m
mLの物を用いた。
Here, the mold is a sibe 60 mmt × 60 mmw × 120 m
The thing of mL was used.

圧延は、本発明の実施例及び比較例に示す組成の合金の
鋳塊をスカルピング後、850〜900℃で熱間圧延し
て、厚さ15mmとして。圧下率は75%である。
The rolling was performed by hot rolling at 850 to 900 ° C. after scalping the ingots of the alloys having the compositions shown in the examples and comparative examples of the present invention to have a thickness of 15 mm. The rolling reduction is 75%.

熱処理は、第1表に示す各合金とも熱間圧延の終了温度
700〜720℃から100℃以下まで1分以内で約1
0℃/secの速度で水中冷却した。その後、冷間圧延
を行ない、厚さ0.45〜0.90mmとした後、50
0℃2時間の焼鈍を行った。
The heat treatment was carried out for each alloy shown in Table 1 from the end temperature of hot rolling 700 to 720 ° C. to 100 ° C. or less within about 1 minute within about 1 minute.
It was cooled in water at a rate of 0 ° C / sec. After that, cold rolling is performed to a thickness of 0.45 to 0.90 mm, and then 50
Annealing was performed at 0 ° C. for 2 hours.

第1表に示す組成の銅合金の機械的性質及び導電率の測
定には厚さ0.45mmの銅合金を用い、添付図に示す
軟化特性を測定した銅合金は、実施例では0.64mm
比較例では0.9mmの厚さのものを用いた。
A copper alloy having a thickness of 0.45 mm was used for measuring the mechanical properties and the electrical conductivity of the copper alloy having the composition shown in Table 1, and the copper alloy for which the softening characteristics shown in the attached drawings were measured was 0.64 mm in the examples.
In the comparative example, one having a thickness of 0.9 mm was used.

第1表から本発明の実施例にかかわる銅合金の機械的性
質及び導電率を従来例であるKFCと比較すると、機械
的性質については引張強さ、耐力、硬さの3項目ともK
FCより優れていることが分る。
From Table 1, comparing the mechanical properties and the electrical conductivity of the copper alloy according to the example of the present invention with that of the conventional example KFC, the mechanical properties are K, tensile strength, proof stress and hardness.
It turns out that it is superior to FC.

伸びについては、KFCの38.5%に対し最低の伸び
がNo4の実施例において32.0%であるがこの差は
機械的性質には何ら影響を与えない程度の値である。
Regarding the elongation, the lowest elongation is 32.0% in the example of No. 4 with respect to 38.5% of KFC, but this difference is a value that does not affect mechanical properties at all.

一方、導電率は%IACSで評価したが、KFCの9
2.0%IACSに対し、実施例の銅合金は87.1〜
90.2%IACSでKFCより低い値となっているが
この値は導電率としてはほぼ同等であると判断できる値
である。
On the other hand, the conductivity was evaluated by% IACS.
With respect to 2.0% IACS, the copper alloys of the examples are 87.1-
Although it is lower than KFC at 90.2% IACS, this value is a value that can be judged to be almost equivalent in conductivity.

次に添付図に示す軟化特性は、銅合金を250〜550
℃の間の所定の温度に5分間加熱後ビッカース硬度を荷
重0.5kgとして測定し、硬度変化により軟化特性を
求めたものである。
Next, the softening property shown in the attached figure is 250 to 550 for the copper alloy.
After heating for 5 minutes at a predetermined temperature between 0 ° C., Vickers hardness was measured with a load of 0.5 kg, and the softening property was determined by the change in hardness.

実施例No3と従来例であるKFCとを比較するとKF
Cが約400℃で軟化し始めるのに対し、実施例No3
は約450℃から軟化が始まり、全体として硬度の低下
がKFCより約50℃高い温度であることが分る。この
結果から実施例はKFCより耐熱性に優れていると判断
できる。
Comparing Example No. 3 with the conventional KFC, KF
C begins to soften at about 400 ° C., while Example No. 3
It can be seen that the softening starts at about 450 ° C., and the overall decrease in hardness is about 50 ° C. higher than KFC. From this result, it can be judged that the example has better heat resistance than KFC.

[発明の効果] 本発明により、従来から行われている安価な製造方法で
あるリン脱酸銅と同一の工程で製造でき、KFCの導電
率を殆んど低下させることなく、KFCと同等以上の機
械的性質を持ち、特に耐熱性に優れる銅合金を提供する
ことができる。
[Advantages of the Invention] According to the present invention, it can be manufactured in the same process as the phosphorous-deoxidized copper, which is an inexpensive manufacturing method that has been conventionally used, and the conductivity of KFC is almost equal to or higher than that of KFC. It is possible to provide a copper alloy having the above mechanical properties and particularly excellent heat resistance.

今日のように軽薄短小の技術動向の中で、しかも電流、
容流の向上に伴ない耐熱性をより必要とする電気・電子
部品材料として本発明がその特性を発揮し得ることは明
らかである。
In today's light, thin, short, and small technological trends, as well as current,
It is clear that the present invention can exhibit its characteristics as an electric / electronic component material that requires more heat resistance as the flow rate improves.

【図面の簡単な説明】 第1図は銅合金の耐熱性を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the heat resistance of copper alloys.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Fe:0.05〜0.15%、
P:0.04〜0.08%(但しP:0.04%は含ま
ず)、Mg:0.02〜0.12%を含み、残部がCu
及び不可避的不純物からなる銅合金中に少なくともFe
PとMgとを導電率が85%IACS以上とな
るように均一かつ微細に析出させたことを特徴とする電
気および電子部品用銅合金。
1. By weight%, Fe: 0.05 to 0.15%,
P: 0.04 to 0.08% (however, P: 0.04% is not included), Mg: 0.02 to 0.12% is included, and the balance is Cu.
And at least Fe in the copper alloy consisting of unavoidable impurities
A copper alloy for electrical and electronic parts, characterized in that 2 P and Mg 3 P 2 are uniformly and finely deposited so that the electrical conductivity is 85% IACS or more.
【請求項2】重量%で、Fe:0.05〜0.15%、
P:0.04〜0.08%(但しP:0.04%は含ま
ず)、Mg:0.02〜0.12%を含み、残部がCu
及び不可避的不純物からなる銅合金を溶製し鋳塊にした
後に該銅合金を熱間加工により所定の形状にした後、6
00℃以上の温度の状態から200℃以下まで5℃/s
ec以上の速度で冷却し、その後65%以上の圧下率で
冷間加工を行ない、その後400〜600℃に昇温し、
30分以上の焼鈍を行うことにより該銅合金中にFe
PおよびMgを析出させることを特徴とする電気
および電子部品用銅合金の製造方法。
2. Fe: 0.05 to 0.15% by weight,
P: 0.04 to 0.08% (however, P: 0.04% is not included), Mg: 0.02 to 0.12% is included, and the balance is Cu.
And a copper alloy consisting of unavoidable impurities is melted to form an ingot, and then the copper alloy is formed into a predetermined shape by hot working.
5 ° C / s from temperature of 00 ° C or higher to 200 ° C or lower
cooling at a rate of ec or more, then cold working at a reduction rate of 65% or more, and then raising the temperature to 400 to 600 ° C.,
Fe 2 is added to the copper alloy by annealing for 30 minutes or more.
A method for producing a copper alloy for electric and electronic parts, which comprises depositing P and Mg 3 P 2 .
JP61259337A 1986-10-29 1986-10-29 Copper alloy for electric and electronic parts and method for producing the same Expired - Lifetime JPH0635633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259337A JPH0635633B2 (en) 1986-10-29 1986-10-29 Copper alloy for electric and electronic parts and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259337A JPH0635633B2 (en) 1986-10-29 1986-10-29 Copper alloy for electric and electronic parts and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63111151A JPS63111151A (en) 1988-05-16
JPH0635633B2 true JPH0635633B2 (en) 1994-05-11

Family

ID=17332701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259337A Expired - Lifetime JPH0635633B2 (en) 1986-10-29 1986-10-29 Copper alloy for electric and electronic parts and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0635633B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525232B2 (en) * 1988-11-28 1996-08-14 株式会社住友金属セラミックス Ceramic package and method of manufacturing the same
KR940010455B1 (en) * 1992-09-24 1994-10-22 김영길 Copper alloy and making method thereof
JP3550233B2 (en) * 1995-10-09 2004-08-04 同和鉱業株式会社 Manufacturing method of high strength and high conductivity copper base alloy
JP4330517B2 (en) * 2004-11-02 2009-09-16 株式会社神戸製鋼所 Cu alloy thin film, Cu alloy sputtering target, and flat panel display
JP5075447B2 (en) * 2006-03-30 2012-11-21 Dowaメタルテック株式会社 Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
JP6140032B2 (en) * 2013-08-30 2017-05-31 Dowaメタルテック株式会社 Copper alloy sheet, method for producing the same, and current-carrying component
JP6031576B2 (en) * 2015-03-23 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
WO2016152648A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Copper alloy sheet for heat dissipating component and heat dissipating component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232244A (en) * 1983-06-16 1984-12-27 Mitsui Mining & Smelting Co Ltd Softening resistant copper alloy having high conductivity
JPS6075541A (en) * 1983-09-30 1985-04-27 Tatsuta Electric Wire & Cable Co Ltd Copper alloy having superior heat resistance, mechanical characteristic and electric conductivity
JPS6092439A (en) * 1983-10-25 1985-05-24 Nippon Mining Co Ltd Heat-resistant copper alloy with high strength and electric conductivity
JPS6152333A (en) * 1984-08-21 1986-03-15 Toshiba Corp Bonding wire

Also Published As

Publication number Publication date
JPS63111151A (en) 1988-05-16

Similar Documents

Publication Publication Date Title
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
JP2006009137A (en) Copper alloy
US4466939A (en) Process of producing copper-alloy and copper alloy plate used for making electrical or electronic parts
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2002241873A (en) High strength and highly electrically conductive copper alloy and method for producing copper alloy material
JPH0635633B2 (en) Copper alloy for electric and electronic parts and method for producing the same
JP3376840B2 (en) Manufacturing method of copper alloy material
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
JPS63307232A (en) Copper alloy
JP3900733B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
CN115652134A (en) High-strength high-bending-property copper-nickel-silicon alloy and preparation method thereof
JP2732355B2 (en) Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment
JP4175920B2 (en) High strength copper alloy
JP4132451B2 (en) High strength and high conductivity copper alloy with excellent heat resistance
JPS60114556A (en) Production of copper-base alloy
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH034612B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPS6146534B2 (en)
JPS6142772B2 (en)
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPH10152736A (en) Copper alloy material and its production