JP5539055B2 - Copper alloy material for electric / electronic parts and method for producing the same - Google Patents

Copper alloy material for electric / electronic parts and method for producing the same Download PDF

Info

Publication number
JP5539055B2
JP5539055B2 JP2010139249A JP2010139249A JP5539055B2 JP 5539055 B2 JP5539055 B2 JP 5539055B2 JP 2010139249 A JP2010139249 A JP 2010139249A JP 2010139249 A JP2010139249 A JP 2010139249A JP 5539055 B2 JP5539055 B2 JP 5539055B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
precipitates
content
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010139249A
Other languages
Japanese (ja)
Other versions
JP2012001781A (en
Inventor
佳紀 山本
登 萩原
Original Assignee
株式会社Shカッパープロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Shカッパープロダクツ filed Critical 株式会社Shカッパープロダクツ
Priority to JP2010139249A priority Critical patent/JP5539055B2/en
Priority to CN201110053297.4A priority patent/CN102286675B/en
Publication of JP2012001781A publication Critical patent/JP2012001781A/en
Application granted granted Critical
Publication of JP5539055B2 publication Critical patent/JP5539055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、例えばリードフレーム、コネクタや端子などの電気・電子部品の材料として好適に用いられる銅合金材、及びその製造方法に係わり、特に、高強度と高導電性を有するとともに、優れたエッチング性をも有する電気・電子部品用銅合金材、及びその製造方法に関するものである。   The present invention relates to a copper alloy material suitably used as a material for electrical and electronic parts such as lead frames, connectors and terminals, and a method for producing the same, and in particular, has high strength and high conductivity, and excellent etching. The present invention relates to a copper alloy material for electric / electronic parts having a property and a method for producing the same.

近年の半導体パッケージは、小型化や軽量化などが進んでいる。リードフレームには薄い板厚の材料が使用されており、それに伴い強度の高い材料が求められている。この半導体パッケージを更に薄型化するには、エッチングによってリードフレームの板厚を部分的に薄くするハーフエッチング技術が広く使用されている。このハーフエッチング技術を用いることでリードフレームを形成する場合は、エッチング表面が均一に溶解されやすい材料を用いることが重要である。   In recent years, semiconductor packages have been reduced in size and weight. A thin material is used for the lead frame, and accordingly, a material having high strength is required. In order to further reduce the thickness of the semiconductor package, a half etching technique for partially reducing the thickness of the lead frame by etching is widely used. When forming a lead frame by using this half-etching technique, it is important to use a material whose etching surface is easily dissolved uniformly.

この半導体パッケージのリードフレームにはCu合金材料が用いられる。この銅合金材料としては、Fe及びPを含有するCu−Fe−P系合金を用いるのが一般的である(例えば、特許文献1参照。)。   A Cu alloy material is used for the lead frame of the semiconductor package. As this copper alloy material, it is common to use a Cu-Fe-P alloy containing Fe and P (for example, refer to Patent Document 1).

このCu−Fe−P系合金の一例としては、例えばFe:0.05〜0.15質量%、P:0.025〜0.04質量%含有する銅合金(C19210)やFe:2.1〜2.6質量%、P:0.015〜0.15質量%、Zn:0.05〜0.2質量%含有する銅合金(C19400)が標準的な合金として広く知られている。この合金は、熱処理することで銅の母相中にFe、あるいはFe−P化合物を析出させ、それにより導電性、熱伝導性や強度のそれぞれを同時に向上させるという利点を有している。   As an example of this Cu—Fe—P alloy, for example, Fe: 0.05 to 0.15 mass%, P: 0.025 to 0.04 mass% containing copper alloy (C19210) or Fe: 2.1 A copper alloy (C19400) containing ˜2.6 mass%, P: 0.015 to 0.15 mass%, and Zn: 0.05 to 0.2 mass% is widely known as a standard alloy. This alloy has the advantage that the heat treatment causes precipitation of Fe or Fe-P compounds in the copper matrix, thereby simultaneously improving the conductivity, thermal conductivity and strength.

特開平1−139736号公報Japanese Patent Laid-Open No. 1-139736

一般的なCu−Fe−P系合金としては、引張強さが400〜500MPa程度である。しかしながら、半導体パッケージのリードフレームの薄板化の進行に伴い、リードフレームにますます強度の高い材料を必要とすると考えられる。半導体パッケージを薄型化するため、ハーフエッチングによってリードフレームの板厚を部分的に薄くする場合は、リードフレームの材料中に粗大な晶出物及び析出物が含まれると、エッチング表面の溶解が不均一になるという問題があった。従来のCu−Fe−P系合金の中でも、Feの含有量が高いものは、Feの粗大な晶出物及び析出物が生じやすくなり、均一なエッチング性を確保するうえで問題があった。   As a general Cu—Fe—P alloy, the tensile strength is about 400 to 500 MPa. However, with the progress of thinning of the lead frame of the semiconductor package, it is considered that a material with higher strength is required for the lead frame. In order to reduce the thickness of the semiconductor package, when the lead frame is partially thinned by half-etching, if the lead frame material contains coarse crystals and precipitates, the etching surface will not dissolve. There was a problem of uniformity. Among conventional Cu—Fe—P alloys, those having a high Fe content are liable to produce coarse crystallized precipitates and precipitates of Fe, which is problematic in ensuring uniform etching properties.

従って、本発明の目的は、高強度と高導電性を有するとともに、ハーフエッチング時においても、均一なエッチング性を確保することを可能とした電気・電子部品用銅合金材、及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a copper alloy material for electric / electronic parts that has high strength and high conductivity, and that can ensure uniform etching properties even during half-etching, and a method for producing the same. It is to provide.

本件発明者等は上記課題を解決すべく熱意検討を行った結果、本件請求項1及び2に係る発明である電気・電子部品用銅合金材と、請求項3に係る発明である電気・電子部品用銅合金材の製造方法によって効果的に達成することができることを見いだした。   As a result of enthusiastic investigations to solve the above problems, the inventors of the present invention have found that the copper alloy material for electric / electronic parts according to claims 1 and 2 and the electric / electronic of invention according to claim 3 It has been found that it can be effectively achieved by a method for producing a copper alloy material for parts.

[1]請求項1に係る発明は、0.05〜0.5質量%のFe、0.05〜0.5質量%のNi、0.02〜0.2質量%のPを含有し、FeとNiの合計とPの質量比(Fe+Ni)/Pが3〜10であり、FeとNiの質量比Fe/Niが0.8〜1.2であり、残部がCu及び不可避的不純物からなる銅合金であって、前記銅合金に含まれる粒径が10nm以上である晶出物及び析出物のうち、粒径が100nm以上である晶出物及び析出物の個数の割合が、1.0%以下であることを特徴とする電気・電子部品用銅合金材を提供する。 [1] The invention according to claim 1 contains 0.05 to 0.5 mass% Fe, 0.05 to 0.5 mass% Ni, 0.02 to 0.2 mass% P, The total mass of Fe and Ni and the mass ratio of P (Fe + Ni) / P is 3 to 10, the mass ratio of Fe to Ni is Fe / Ni is 0.8 to 1.2, and the balance is from Cu and inevitable impurities. The ratio of the number of crystallized substances and precipitates having a particle diameter of 100 nm or more among the crystallized substances and precipitates having a particle diameter of 10 nm or more contained in the copper alloy is 1. Provided is a copper alloy material for electric and electronic parts, characterized by being 0% or less.

[2]請求項2に係る発明は、0.05〜0.5質量%のFe、0.05〜0.5質量%のNi、0.02〜0.2質量%のPを含有し、FeとNiの合計とPの質量比(Fe+Ni)/Pが3〜10であり、FeとNiの質量比Fe/Niが0.8〜1.2であり、更にSn、Zn、Zr、Cr、Tiから選択された1種以上の成分を合計で0.03〜1.0質量%含有し、残部がCu及び不可避的不純物からなる銅合金であって、前記銅合金に含まれる粒径が10nm以上である晶出物及び析出物のうち、粒径が100nm以上である晶出物及び析出物の個数の割合が、1.0%以下であることを特徴とする電気・電子部品用銅合金材を提供する。 [2] The invention according to claim 2 contains 0.05 to 0.5 mass% Fe, 0.05 to 0.5 mass% Ni, 0.02 to 0.2 mass% P, The total ratio of Fe and Ni and the mass ratio of P (Fe + Ni) / P is 3 to 10, the mass ratio of Fe and Ni Fe / Ni is 0.8 to 1.2, and Sn, Zn, Zr, Cr In addition, a copper alloy containing at least 0.03 to 1.0% by mass of one or more components selected from Ti, with the balance being Cu and inevitable impurities, the particle size contained in the copper alloy is The ratio of the number of crystallized substances and precipitates having a particle size of 100 nm or more out of the crystallized substances and precipitates of 10 nm or more is 1.0% or less, copper for electric and electronic parts, Provide alloy materials.

[3]上記[1]又は[2]記載の銅合金の素材を熱間圧延し、熱間圧延以降の工程で加工度20%以上の冷間圧延と、400〜470℃で10秒〜10分間加熱する熱処理との組み合わせを少なくとも2回以上実施することを特徴とする電気・電子部品用銅合金材の製造方法を提供する。 [3] The copper alloy material according to the above [1] or [2] is hot-rolled, cold-rolled with a workability of 20% or more in the steps after hot rolling, and 10 to 10 seconds at 400 to 470 ° C. Provided is a method for producing a copper alloy material for electric / electronic parts, wherein the combination with a heat treatment for heating for minutes is performed at least twice.

本発明の銅合金材は、従来のCu−Fe−P系合金に比べて優れた強度を持ち、導電性においても良好な特性を維持する。それに加えて、材料中に粗大な晶出物及び析出物を含有させないことで均一なエッチング表面が得られる。   The copper alloy material of the present invention has excellent strength as compared with conventional Cu-Fe-P alloys, and maintains good characteristics in terms of conductivity. In addition, a uniform etching surface can be obtained by not including coarse crystals and precipitates in the material.

本発明の第1の実施の形態に係る電気・電子部品用銅合金材のFeの含有量、及びNiの含有量の関係を示すグラフである。It is a graph which shows the content of Fe of the copper alloy material for electrical / electronic components which concerns on the 1st Embodiment of this invention, and the content of Ni. 本発明の第1の実施の形態に係る電気・電子部品用銅合金材のFe及びNiの合計含有量とPの含有量との関係を示すグラフである。It is a graph which shows the relationship between the total content of Fe and Ni, and the content of P of the copper alloy material for electrical / electronic parts according to the first embodiment of the present invention.

以下、本発明の好適な実施の形態を添付図面に基づいて具体的に説明する。   Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings.

[第1の実施の形態]
この第1の実施の形態に係る電気・電子部品用の銅合金材は、例えば薄型の半導体パッケージのリードフレームの材料として好適に用いられる。
[First Embodiment]
The copper alloy material for electric / electronic parts according to the first embodiment is suitably used as a material for a lead frame of a thin semiconductor package, for example.

(銅合金の主成分)
この第1の実施の形態である銅合金は、0.05〜0.5質量%のFe、0.05〜0.5質量%のNi、0.02〜0.2質量%のPを含有し、FeとNiの合計とPの質量比(Fe+Ni)/Pが3〜10であり、FeとNiの質量比Fe/Niが0.8〜1.2であり、残部がCu及び不可避的不純物からなる銅合金をベース材料としている。このような銅合金の組成によって、従来のCu−Fe−P系合金よりも優れた強度を持ち、かつ、強度と導電性とをバランスよく兼備した材料を得ることができる。少ない合金元素の添加量で、効率的にP化合物の析出を促すことができるようになる。
(Main component of copper alloy)
The copper alloy according to the first embodiment contains 0.05 to 0.5 mass% Fe, 0.05 to 0.5 mass% Ni, and 0.02 to 0.2 mass% P. The mass ratio of Fe and Ni to P (Fe + Ni) / P is 3 to 10, the mass ratio of Fe to Ni is Fe to Ni, 0.8 to 1.2, and the balance is Cu and inevitable. The base material is a copper alloy made of impurities. With such a copper alloy composition, a material having a strength superior to that of a conventional Cu—Fe—P alloy and having a balance between strength and conductivity can be obtained. Precipitation of the P compound can be promoted efficiently with a small addition amount of the alloy element.

FeとNiは、高強度と高導電率の特性が得られることを期待して添加するものであるが、Feのみを添加したCu−Fe−P系合金では、低強度、及び高導電率の特性になりやすい。これとは逆に、Niだけを添加したCu−Fe−P系合金では、高強度、及び低導電率の特性になりやすい。よって、強度と導電率とのバランスがよい材料を得るためには、FeとNiとを組み合わせて添加することが有効である。その配合比率を検討した結果、ほぼ1対1の比率で添加することで、望ましい強度と導電率との特性が得られる。実用上に支障を生じない範囲としては、FeとNiの質量比Fe/Niを0.8〜1.2に規定することが好適である。   Fe and Ni are added with the expectation that characteristics of high strength and high conductivity can be obtained. However, Cu—Fe—P based alloys to which only Fe is added have low strength and high conductivity. Prone to become characteristic. On the other hand, Cu—Fe—P based alloys to which only Ni is added tend to have characteristics of high strength and low electrical conductivity. Therefore, in order to obtain a material having a good balance between strength and electrical conductivity, it is effective to add Fe and Ni in combination. As a result of studying the blending ratio, it is possible to obtain desirable strength and conductivity characteristics by adding at a ratio of about 1: 1. As a range that does not hinder practical use, it is preferable that the mass ratio Fe / Ni of Fe and Ni is regulated to 0.8 to 1.2.

このFe及びNiは、Pと一緒に添加することでP化合物を形成して材料中に分散析出し、材料の良好な導電率を維持しながら、強度を向上させる働きを有する。Fe、Ni、及びPの組成比を特定の範囲に規定することで、導電率を低下させるCu中の固溶元素量を抑えながら、析出物の分散による強度の向上を効果的に利用して、導電率及び強度を好ましいバランスで兼備した材料が得られる。   The Fe and Ni are added together with P to form a P compound and disperse and precipitate in the material, thereby improving the strength while maintaining good electrical conductivity of the material. By defining the composition ratio of Fe, Ni, and P in a specific range, the improvement in strength due to the dispersion of precipitates can be effectively utilized while suppressing the amount of solid solution elements in Cu that lower the conductivity. In addition, a material having a favorable balance of conductivity and strength can be obtained.

Pの添加量を0.02質量%未満にすると、十分な量のP化合物を形成することができず、満足できる強度が得られない。一方、0.2質量%を超えてPを添加すると、鋳造時や熱間加工時においてP化合物の偏析に起因する割れが起こりやすくなる。よって、Pの組成範囲としては、0.02〜0.2質量%に規定することが好適である。   If the addition amount of P is less than 0.02% by mass, a sufficient amount of P compound cannot be formed, and satisfactory strength cannot be obtained. On the other hand, when P is added in excess of 0.2% by mass, cracks due to segregation of the P compound easily occur during casting or hot working. Therefore, the composition range of P is preferably specified to 0.02 to 0.2% by mass.

このPの組成範囲に対して効果的に化合物を形成させ、高強度と高導電性とをバランスよく両立させるためには、Fe及びNiのそれぞれの組成範囲を0.05〜0.5質量%となるように規定するとともに、FeとNiの質量比Fe/Niを0.8〜1.2となるように規定する。そして、Fe及びNiの合計とPの質量比(Fe+Ni)/Pが3〜10となるように規定することが必要である。   In order to effectively form a compound with respect to the composition range of P and balance both high strength and high conductivity in a well-balanced manner, the respective composition ranges of Fe and Ni are 0.05 to 0.5% by mass. And the mass ratio Fe / Ni of Fe and Ni is defined to be 0.8 to 1.2. And it is necessary to prescribe | regulate so that the mass ratio (Fe + Ni) / P of the sum total of Fe and Ni and P may be set to 3-10.

Fe及びNiの含有量が組成範囲の下限を下回る場合は、P化合物の形成量が不十分になり、強度が不足する。一方、Fe及びNiの含有量が組成範囲の上限を超える場合は、余剰のFe及びNiがCu中に固溶して導電率を低下させるので好ましくない。   When the content of Fe and Ni is below the lower limit of the composition range, the amount of P compound formed becomes insufficient and the strength is insufficient. On the other hand, when the content of Fe and Ni exceeds the upper limit of the composition range, excess Fe and Ni are dissolved in Cu to lower the conductivity, which is not preferable.

Fe及びNiの合計含有量がPの添加量の3倍未満になる場合は、化合物形成時においてPが過剰になる。Fe及びNiの合計含有量がPの添加量の10倍を超える場合は、Fe及びNiが過剰になる。このような過剰成分はCu中に固溶状態で存在するため、導電率を阻害する結果となる。よって、過剰成分をより少なくするためには、Fe及びNiの合計とPの質量比(Fe+Ni)/Pが3〜6となる範囲を選択することが更に望ましい。   When the total content of Fe and Ni is less than 3 times the amount of P added, P becomes excessive during compound formation. When the total content of Fe and Ni exceeds 10 times the addition amount of P, Fe and Ni become excessive. Since such an excess component exists in the solid solution state in Cu, it will result in inhibiting electrical conductivity. Therefore, in order to reduce excess components, it is more desirable to select a range in which the mass ratio of Fe and Ni to P (Fe + Ni) / P is 3-6.

ここで、この第1の実施の形態に係る銅合金の主成分の数値規定を下記の表1にまとめて示す。   Here, the numerical values of the main components of the copper alloy according to the first embodiment are summarized in Table 1 below.

図1を参照すると、同図には、上記表1に示すFe及びNiの含有量の関係をまとめたグラフが示されている。このグラフにおいて、Feの含有量を横(X)軸に設定し、Niの含有量を縦(Y)軸に設定している。   Referring to FIG. 1, a graph summarizing the relationship between the contents of Fe and Ni shown in Table 1 is shown. In this graph, the Fe content is set on the horizontal (X) axis, and the Ni content is set on the vertical (Y) axis.

この図1に示したグラフに基づいて、Feの含有量由来に対する質量比Fe/Niの最大含有量由来(以下、「Y(Fe/Ni)Max由来」という。)、Feの含有量由来に対する質量比Fe/Niの最小含有量由来(以下、「Y(Fe/Ni)Min由来」という。)、Niの最大含有量由来(以下、「Y(Ni)Max由来」という。)、及びNiの最小含有量由来(以下、「Y(Ni)Min由来」という。)のそれぞれをグラフにプロットすることで、銅合金のFeの含有量、Niの含有量、及びFe/Niの質量比の数値限定範囲を求めた。   Based on the graph shown in FIG. 1, the mass ratio derived from the Fe content is derived from the maximum content of Fe / Ni (hereinafter referred to as “Y (Fe / Ni) Max derived”), and derived from the content of Fe. From the minimum content of mass ratio Fe / Ni (hereinafter referred to as “Y (Fe / Ni) Min”), from the maximum content of Ni (hereinafter referred to as “Y (Ni) Max”), and Ni By plotting each of the minimum content of Ni (hereinafter referred to as “Y (Ni) Min”) on a graph, the Fe content of the copper alloy, the Ni content, and the mass ratio of Fe / Ni A numerical limited range was determined.

図1に示した斜線部分は、Feの最小含有量(0.05質量%)、及びFeの最大含有量(0.5質量%)で囲まれた領域と、Y(Fe/Ni)Max由来、及びY(Fe/Ni)Min由来で囲まれた領域と、Y(Ni)Max由来、及びY(Ni)Min由来で囲まれた領域とが互いに重なり合った部分であり、この第1の実施の形態による銅合金のFeの含有量、Niの含有量、及びFe/Niの質量比の数値限定範囲である。   The hatched portion shown in FIG. 1 is derived from the region surrounded by the minimum Fe content (0.05% by mass) and the maximum Fe content (0.5% by mass), and Y (Fe / Ni) Max. And a region surrounded by Y (Fe / Ni) Min and a region surrounded by Y (Ni) Max and Y (Ni) Min are overlapped with each other. Is the numerical limitation range of the Fe content, the Ni content, and the mass ratio of Fe / Ni in the copper alloy according to the form.

次に、図2を参照すると、同図には、上記表1に示すP及び(Fe+Ni)の含有量の関係をまとめたグラフが示されている。このグラフにおいて、(Fe+Ni)の合計含有量を横(X)軸に設定し、Pの含有量を縦(Y)軸に設定している。   Next, referring to FIG. 2, a graph summarizing the relationship between the contents of P and (Fe + Ni) shown in Table 1 is shown. In this graph, the total content of (Fe + Ni) is set on the horizontal (X) axis, and the content of P is set on the vertical (Y) axis.

この図2に示したグラフに基づいて、(Fe+Ni)の合計含有量由来に対するPの最大含有量由来(以下、「Y(P)10由来」という。)、(Fe+Ni)の合計含有量由来に対するPの最小含有量由来(以下、「Y(P)3由来」という。)、Pの最大含有量(以下、「Y(P)Max由来」という。)、及びPの最小含有量(以下、「Y(P)Min由来」という。)のそれぞれをグラフにプロットすることで、銅合金のFeの含有量、Niの含有量、Pの含有量、及び(Fe+Ni)/Pの質量比の数値限定範囲を求めた。   Based on the graph shown in FIG. 2, the maximum content of P is derived from the total content of (Fe + Ni) (hereinafter referred to as “Y (P) 10”), and the total content of (Fe + Ni) is derived. The minimum content of P (hereinafter referred to as “Y (P) 3”), the maximum content of P (hereinafter referred to as “Y (P) Max”), and the minimum content of P (hereinafter, referred to as “Y (P) Max”). By plotting each of “derived from Y (P) Min” on a graph, the Fe content, the Ni content, the P content, and the mass ratio of (Fe + Ni) / P in the copper alloy A limited range was determined.

図2に示す斜線部分は、(Fe+Ni)の最小含有量(0.1質量%)、及び(Fe+Ni)の最大含有量(1.0質量%)で囲まれた領域と、Y(P)Max由来、及びY(P)Minで囲まれた領域と、Y(P)10由来、及びY(P)3由来で囲まれた領域とが互いに重なり合った部分であり、この第1の実施の形態による銅合金のFeの含有量、Niの含有量、Pの含有量、及び(Fe+Ni)/Pの質量比の数値限定範囲である。   The hatched portion shown in FIG. 2 indicates a region surrounded by the minimum content (0.1% by mass) of (Fe + Ni) and the maximum content (1.0% by mass) of (Fe + Ni), and Y (P) Max. The region surrounded by the origin and Y (P) Min and the region surrounded by the origin of Y (P) 10 and Y (P) 3 are overlapping portions, and this first embodiment Is the numerical limitation range of the Fe content, the Ni content, the P content, and the mass ratio of (Fe + Ni) / P in the copper alloy.

ここで、表1の記載内容、図1及び図2の図示内容からみて、Feの含有量、Niの含有量、質量比(Fe/Ni)、及び(Fe+Ni)の合計含有量の数値範囲を満足する銅合金の全てが、質量比{(Fe+Ni)/P}=3〜10の関係を満たすものではないということは注意すべきである。   Here, in view of the description in Table 1 and the illustrations in FIGS. 1 and 2, the numerical range of the total content of Fe content, Ni content, mass ratio (Fe / Ni), and (Fe + Ni) It should be noted that not all satisfactory copper alloys satisfy the relationship of mass ratio {(Fe + Ni) / P} = 3-10.

その一例としては、次の銅合金の組成が挙げられる。Fe:0.4質量%、Ni:0.4質量%、及びP:0.04質量%を含有する銅合金では、質量比(Fe/Ni)=1、及び合計含有量(Fe+Ni)=0.8質量%であり、Fe、Ni、及びPの含有量と同様に、上記表1の数値規定は満足する。しかしながら、この銅合金の組成は、質量比{(Fe+Ni)/P}=20となり、上記表1の数値規定の全てを満足しない。   As an example, the following copper alloy composition may be mentioned. In a copper alloy containing Fe: 0.4 mass%, Ni: 0.4 mass%, and P: 0.04 mass%, the mass ratio (Fe / Ni) = 1 and the total content (Fe + Ni) = 0 0.8% by mass, and the numerical values in Table 1 above are satisfied as well as the contents of Fe, Ni, and P. However, the composition of this copper alloy is mass ratio {(Fe + Ni) / P} = 20, which does not satisfy all the numerical values defined in Table 1 above.

よって、質量比{(Fe+Ni)/P}=3〜10の関係を満たすように、Feの含有量、Niの含有量、(Fe+Ni)の合計含有量、Pの含有量、及びFe/Niの質量比を決定することが肝要である。(Fe+Ni)の合計含有量としては、0.1〜1.0質量%の範囲内に規定することが望ましい。   Therefore, the content of Fe, the content of Ni, the total content of (Fe + Ni), the content of P, and the content of Fe / Ni so as to satisfy the relationship of mass ratio {(Fe + Ni) / P} = 3-10 It is important to determine the mass ratio. The total content of (Fe + Ni) is preferably specified within the range of 0.1 to 1.0% by mass.

(銅合金の副成分)
この第1の実施の形態に係る上記銅合金に更に、Sn、Zn、Zr、Cr、Tiから選択された1種以上の成分を、合計で0.03〜1.0質量%の範囲で添加してもよい。Sn、Zn、Zr、Cr、Tiの元素は、強度の向上に効果的に働くとともに、耐熱性を向上させて高温下での強度低下を防ぐ作用を持つので、更に優れた強度を持ち、導電性においても良好な特性を期待することができる。
(Subcomponent of copper alloy)
One or more components selected from Sn, Zn, Zr, Cr, and Ti are further added to the copper alloy according to the first embodiment in a range of 0.03 to 1.0% by mass in total. May be. Elements of Sn, Zn, Zr, Cr, and Ti effectively work to improve strength, and have the effect of improving heat resistance and preventing strength reduction at high temperatures. Good properties can also be expected in terms of properties.

Snは、少量の添加でも強度を大きく向上させる効果を持った添加元素であり、耐熱性を向上させる効果も大きい。ただし、Sn含有量が多くなると、導電性を低下させる悪影響が大きくなる。   Sn is an additive element having an effect of greatly improving the strength even when added in a small amount, and has a large effect of improving the heat resistance. However, when Sn content increases, the bad influence which reduces electroconductivity becomes large.

Znは、強度向上の効果を持つとともに、はんだ濡れ性やSnめっき密着性の改善に大きな効果がある副成分である。ただし、Zn含有量が多くなると、Snと同様に、導電性を低下させる悪影響が大きくなる。   Zn is a secondary component that has an effect of improving strength and has a great effect on improving solder wettability and Sn plating adhesion. However, when Zn content increases, the bad influence which reduces electroconductivity becomes large like Sn.

ZrやCrは、強度や耐熱性を向上させる働きを持つとともに、導電率に与える悪影響が比較的に少ない副成分である。Zr含有量とCr含有量が多すぎると、鋳造性の悪化などの悪影響が生じる。Tiも、強度や耐熱性を向上させる効果に優れた副成分である。   Zr and Cr are subcomponents that have a function of improving strength and heat resistance and have relatively few adverse effects on conductivity. When there is too much Zr content and Cr content, bad influences, such as deterioration of castability, will arise. Ti is also a subcomponent excellent in the effect of improving strength and heat resistance.

これらの元素を単独もしくは組み合わせて添加することで、高強度と高導電性を期待できるが、その合計含有量が1.0質量%を超えると、導電率の低下や鋳造性の悪化などの悪影響が顕著になるので、好ましくない。よって、Sn、Zn、Zr、Cr、Tiの合計の組成範囲としては、1.0質量%以下に規定することが望ましい。   By adding these elements alone or in combination, high strength and high conductivity can be expected, but if the total content exceeds 1.0% by mass, adverse effects such as a decrease in conductivity and a deterioration in castability. Is not preferable. Therefore, the total composition range of Sn, Zn, Zr, Cr, and Ti is preferably specified to be 1.0% by mass or less.

(銅合金材料中の晶出物及び析出物の個数の割合)
この第1の実施の形態に係る銅合金材料では、均一なエッチング性を確保するために、銅合金材料中に含まれる晶出物及び析出物の大きさに注目している。ここで、晶出とは液体の中から固体が形成される現象を指し、析出とは、既に固体になっているものの中で固体の第2相が形成される現象を指す。本実施の形態において、例えば、鋳造工程で溶銅が固まるときに晶出物が生じ、既に固体になっている銅中で熱処理によって析出物が生じる。本願では、「晶出物及び析出物」を、母相である銅の中に生じた合金元素・化合物からなる第2相を包括的に含む表現として用いる。エッチングに悪影響を及ぼす可能性がある粒径100nm以上の大きさの晶出物及び析出物を可能な限り生成しないように制御することが肝要である。
(Ratio of the number of crystallized substances and precipitates in the copper alloy material)
In the copper alloy material according to the first embodiment, attention is paid to the size of crystallized substances and precipitates contained in the copper alloy material in order to ensure uniform etching. Here, crystallization refers to a phenomenon in which a solid is formed from a liquid, and precipitation refers to a phenomenon in which a solid second phase is formed in what is already solid. In the present embodiment, for example, a crystallized product is generated when the molten copper is solidified in the casting process, and a precipitate is generated by heat treatment in the already solid copper. In the present application, “crystallized substance and precipitate” are used as an expression comprehensively including a second phase composed of alloy elements / compounds formed in copper as a parent phase. It is important to control the generation of crystallized substances and precipitates having a particle size of 100 nm or more that may adversely affect etching as much as possible.

この第1の実施の形態に係る銅合金については、その材料中に含まれる粒径が10nm以上である晶出物及び析出物のうち、粒径が100nm以上である粒子の個数の割合が1.0%以下になるように制御する。   About the copper alloy which concerns on this 1st Embodiment, the ratio of the number of the particle | grains whose particle size is 100 nm or more is 1 among the crystallized substances and the precipitates whose particle size is 10 nm or more contained in the material. Control to be 0% or less.

この析出物の大きさは、通常、透過型電子顕微鏡(TEM)を用いた観察結果によって判断することが多い。しかしながら、通常は、1万倍程度の観察では、粒径10nm以下の大きさの析出物を観察することは困難である。そこで、この第1の実施の形態では、1万倍程度の観察によって確認できる10nm以上の大きさの粒子を対象として、その中で100nm以上の大きさの粒子の数を1.0%以下に抑えることで、良好なエッチング性が確保される。100nmを超える大きさの粒子の数が1.0%を超える場合は、エッチング面に突起などの不均一部分が生じる可能性があるので、好ましくない。   In general, the size of the precipitate is often determined by observation results using a transmission electron microscope (TEM). However, it is usually difficult to observe precipitates having a particle size of 10 nm or less by observation of about 10,000 times. Therefore, in this first embodiment, the number of particles having a size of 100 nm or more is reduced to 1.0% or less, targeting particles having a size of 10 nm or more that can be confirmed by observation of about 10,000 times. By suppressing, good etching property is ensured. When the number of particles having a size exceeding 100 nm exceeds 1.0%, it is not preferable because uneven portions such as protrusions may be formed on the etched surface.

ハーフエッチングで材料の板厚を薄くする際に、銅合金材料中に粗大な晶出物及び析出物が存在すると、その周囲でエッチングされる速度が不均一になり、エッチング後の表面に突起が生じるなどの不具合が生じる。このような不具合の原因となる粒子は100nmを超えるような大きさのものであり、粒子が100nm以下であれば、実用上に問題は生じない。   When the thickness of the material is reduced by half-etching, if there are coarse crystals and precipitates in the copper alloy material, the etching rate becomes uneven at the periphery, and protrusions are formed on the etched surface. Inconvenience occurs. The particles that cause such a problem are those having a size exceeding 100 nm. If the particles are 100 nm or less, no practical problem occurs.

(第1の実施の形態の効果)
上記第1の実施の形態に係る銅合金は、従来のCu−Fe−P系合金に比べて、より優れた強度と導電性を維持する。銅合金材料中に粗大な晶出物及び析出物を含有しないので、ハーフエッチングで均一なエッチング表面が得られる。このような材料は、リードフレームとして最適であり、特に半導体パッケージの薄型化に対して高い信頼性を持つ。そのため、半導体パッケージの薄型化の進展を材料面から支え、その発展に大きく寄与することができる。
(Effects of the first embodiment)
The copper alloy which concerns on the said 1st Embodiment maintains the intensity | strength and electroconductivity more excellent compared with the conventional Cu-Fe-P type alloy. Since the copper alloy material does not contain coarse crystals and precipitates, a uniform etching surface can be obtained by half etching. Such a material is optimal as a lead frame, and has high reliability especially for thinning of a semiconductor package. Therefore, the progress of the thinning of the semiconductor package can be supported from the material side and can greatly contribute to the development.

[第2の実施の形態]
(銅合金材の製造方法)
次に、以上のように形成された銅合金材を得るための好適な製造方法の一例を説明する。この第2の実施の形態に係る製造方法は、冷間圧延による加工硬化と熱処理による析出とを一度に急激に実施するのではなく、少しずつ何回にも分けて実施していくことで、冷間圧延による加工硬化や熱処理による析出をバランスよく最大限に引き出すことに特徴部を有している。
[Second Embodiment]
(Manufacturing method of copper alloy material)
Next, an example of a suitable manufacturing method for obtaining the copper alloy material formed as described above will be described. In the manufacturing method according to the second embodiment, work hardening by cold rolling and precipitation by heat treatment are not carried out rapidly at once, but by carrying out several times little by little, It has a feature to maximize the balance of work hardening by cold rolling and precipitation by heat treatment in a balanced manner.

この第2の実施の形態では、上記組成を持つ銅合金の素材を熱間圧延した後、熱間圧延以降の工程で、加工度20%以上の冷間圧延と、400〜470℃で10秒〜10分間加熱する熱処理との組み合わせを少なくとも2回以上、好ましくは3回以上実施することが好適である。これにより、粗大な晶出物及び析出物などの粒子が生成されることを防止しつつ、良好な強度と優れた導電性を持った銅合金材を製造することができる。   In this second embodiment, after hot rolling a copper alloy material having the above composition, cold rolling with a workability of 20% or more, and 400 to 470 ° C. for 10 seconds in the steps after hot rolling. It is suitable to carry out the combination with the heat treatment of heating for 10 minutes at least 2 times, preferably 3 times or more. Thereby, it is possible to produce a copper alloy material having good strength and excellent conductivity while preventing generation of particles such as coarse crystals and precipitates.

この第2の実施の形態に係る典型的な製造方法は、先ず、所定の組成の銅合金素材を熱間圧延によって加工する。この熱間圧延時の加熱は、鋳造工程で生じた晶出物及び析出物をいったん母相中に固溶させる溶体化の効果を持つ。より好ましい溶体化状態を得るためには、加熱温度を900℃以上に設定することが望ましい。熱間圧延終了直後の温度としては、700℃以上を維持できることが望ましく、熱間圧延後は、できるだけ急速に冷却することが望ましい。   In the typical manufacturing method according to the second embodiment, first, a copper alloy material having a predetermined composition is processed by hot rolling. The heating during the hot rolling has the effect of forming a solution in which the crystallized product and precipitate generated in the casting process are once dissolved in the matrix. In order to obtain a more preferable solution state, it is desirable to set the heating temperature to 900 ° C. or higher. The temperature immediately after the hot rolling is desirably maintained at 700 ° C. or higher, and it is desirable to cool as quickly as possible after the hot rolling.

従来のCu−Fe−P系合金では、合金材料を400〜600℃で長時間保持する時効を行って強度と導電率の向上を図っていた。しかしながら、長時間の加熱は、析出物の成長を促進し、粗大な析出物が生じる原因となる。   In the conventional Cu-Fe-P-based alloy, aging of the alloy material at 400 to 600 ° C. for a long time is performed to improve strength and conductivity. However, heating for a long time promotes the growth of precipitates and causes coarse precipitates to be generated.

この第2の実施の形態に係る熱間圧延以降の工程においては、上述したように、冷間圧延による加工硬化と熱処理による析出とを組み合わせることで、強度と導電性との特性の向上を図る。析出物の成長を抑えつつ、強度と導電率を向上させるため、冷間圧延と短時間の熱処理とを繰り返して行う。その冷間圧延としては、その加工度が20%以上になる範囲で実施する。冷間圧延加工度が20%未満である場合は、銅合金素材の加工硬化が十分でないため、最終的に得られる銅合金の強度が低くなりやすい。   In the processes after the hot rolling according to the second embodiment, as described above, the characteristics of strength and conductivity are improved by combining work hardening by cold rolling and precipitation by heat treatment. . In order to improve the strength and conductivity while suppressing the growth of precipitates, cold rolling and short-time heat treatment are repeated. The cold rolling is performed in a range where the degree of processing becomes 20% or more. When the cold rolling degree is less than 20%, the work hardening of the copper alloy material is not sufficient, so that the strength of the finally obtained copper alloy tends to be low.

この冷間圧延では、繰り返しを重ねるほど、銅合金素材を加工硬化させ、その強度が向上していく。それに加えて、銅合金素材中には多数の格子欠陥が導入され、これが次の熱処理工程において、新たな析出物形成の起点として働くことから、均一に分散した析出を促進する効果をも持つ。これにより、初期の熱処理で生成した析出物が粗大化するのを抑え、新たな微細析出物を形成させることができる。   In this cold rolling, as the repetition is repeated, the copper alloy material is work-hardened and its strength is improved. In addition, a large number of lattice defects are introduced into the copper alloy material, which acts as a starting point for the formation of new precipitates in the next heat treatment step, and thus has an effect of promoting uniformly dispersed precipitation. Thereby, it can suppress that the precipitate produced | generated by the initial heat processing coarsens, and can form a new fine precipitate.

冷間圧延に引き続いて、400〜470℃で10秒〜10分間加熱する熱処理を行う。この熱処理では、直前の冷間圧延で低下した延性を回復させつつ、繰り返しを重ねるごとに数多くの析出物が形成されて導電率が向上していく。これにより、P化合物の析出を促進し、導電率と強度との特性を向上させることができる。熱処理条件が400〜470℃で10秒〜10分間の範囲より低温、短時間である場合は、析出が十分に起こらないために十分な導電率や強度を得ることができない。熱処理条件が400〜470℃で10秒〜10分間の範囲より高温、長時間である場合は、一度の熱処理で一気に析出が進行して析出物が粗大化するおそれがある。   Subsequent to the cold rolling, heat treatment is performed by heating at 400 to 470 ° C. for 10 seconds to 10 minutes. In this heat treatment, while the ductility lowered by the immediately preceding cold rolling is recovered, a large number of precipitates are formed each time the repetition is repeated, and the conductivity is improved. Thereby, precipitation of P compound can be accelerated | stimulated and the characteristic of electrical conductivity and intensity | strength can be improved. In the case where the heat treatment condition is 400 to 470 ° C. and a temperature lower than the range of 10 seconds to 10 minutes and a short time, since precipitation does not occur sufficiently, sufficient conductivity and strength cannot be obtained. When the heat treatment conditions are 400 to 470 ° C. and a temperature higher than 10 seconds to 10 minutes and a long time, precipitation may progress at once in one heat treatment and the precipitate may be coarsened.

(第2の実施の形態の効果)
上記第2の実施の形態に係る銅合金材の製造方法によれば、従来の合金材料に比べて良好な強度と導電率を維持しつつ、材料内部に含まれる粗大な晶出物及び析出物の発生を抑えることができるようになり、エッチング性を向上させることができる。材料内部に大きな晶出物及び析出物を含まないので、薄い板厚に安定して加工することができる。
(Effect of the second embodiment)
According to the method for producing a copper alloy material according to the second embodiment, coarse crystallized substances and precipitates contained in the material while maintaining good strength and conductivity as compared with conventional alloy materials. It becomes possible to suppress the occurrence of this, and the etching property can be improved. Since the material does not contain large crystals and precipitates, it can be stably processed to a thin plate thickness.

以下に、表2〜6を参照しながら、本発明の更に具体的な実施の形態として、実施例1〜11(試料No.1〜11)及び比較例1〜12(試料No.1〜12)を挙げて詳細に説明する。なお、この実施例では、上記実施の形態の典型的な一例を挙げており、本発明は、これらの実施例及び比較例に限定されるものではないことは勿論である。
Below, with reference to Table 2-6, as further specific embodiment of the present invention, Examples 1 to 11 (Sample Nanba1~11) and Comparative Example 1 to 12 (the sample Nanba1~ 12 ) Will be described in detail. In addition, in this Example, the typical example of the said embodiment is given and, of course, this invention is not limited to these Examples and Comparative Examples.

下記の表2は実施例1〜11、及び比較例1〜8として用いた試料の組成を、下記の表3は実施例1の第1〜第3回熱処理後の特性値を、下記の表4は実施例1〜11、及び比較例1〜8の特性値を、下記の表5は比較例9〜12の加工熱処理条件を、下記の表6は比較例9〜12の特性値をそれぞれ示す。
Table 2 below shows the compositions of the samples used as Examples 1 to 11 and Comparative Examples 1 to 8, Table 3 below shows the characteristic values after the first to third heat treatments of Example 1, and the following table. 4 examples 1 to 11, and the characteristic values of Comparative examples 1 to 8, Table 5 below the thermomechanical processing conditions of Comparative example 9-12, Table 6 below shows the characteristics values of the comparative examples 9-12 respectively Show.

(実施例1)
無酸素銅を母材として、Fe:0.2質量%、Ni:0.2質量%、P:0.1質量%を含有した銅合金素材を高周波溶解炉で溶製し、厚さ25mm、幅30mm、長さ150mmのインゴットに鋳造した。これを950℃に加熱して厚さ8mmまで熱間圧延した後、厚さ2mm(加工度75%)に冷間圧延して450℃で1分間焼鈍した。更に、これを厚さ0.7mm(加工度65%)に冷間圧延して450℃で1分間焼鈍した。更に、これを厚さ0.25mm(加工度64%)に冷間圧延して450℃で1分間焼鈍することにより、表2の試料No.1(実施例1)に示す銅合金を製作した。なお、この製作途中において、第1〜第3回の450℃熱処理後ごとに中間サンプルを採取し、その導電率、引張強さ、及び伸びの特性を確認した。
Example 1
Using oxygen-free copper as a base material, a copper alloy material containing Fe: 0.2% by mass, Ni: 0.2% by mass, P: 0.1% by mass was melted in a high-frequency melting furnace, Cast into an ingot having a width of 30 mm and a length of 150 mm. This was heated to 950 ° C. and hot-rolled to a thickness of 8 mm, then cold-rolled to a thickness of 2 mm (working degree 75%) and annealed at 450 ° C. for 1 minute. Further, this was cold-rolled to a thickness of 0.7 mm (working degree 65%) and annealed at 450 ° C. for 1 minute. Further, this was cold-rolled to a thickness of 0.25 mm (working degree: 64%) and annealed at 450 ° C. for 1 minute. 1 (Example 1) was produced. In the middle of this production, an intermediate sample was taken after each of the first to third heat treatments at 450 ° C., and its conductivity, tensile strength, and elongation characteristics were confirmed.

以上のように製作した実施例1の銅合金について、第1〜第3回の450℃熱処理後の導電率、引張強さ、及び伸びの特性結果を表3にまとめて示す。表3から明らかなように、冷間圧延と熱処理の組み合わせを繰り返すごとに、導電率は上昇し、引張強さも向上していることが分かる。   About the copper alloy of Example 1 manufactured as mentioned above, the electrical conductivity, the tensile strength, and the characteristic result of elongation after the 1st-3rd 450 degreeC heat processing are put together in Table 3, and are shown. As is apparent from Table 3, each time the combination of cold rolling and heat treatment is repeated, the conductivity increases and the tensile strength also increases.

第2回熱処理終了後には60%IACSを大きく超える良好な導電率と、580MPaを超える高強度とを併せ持った銅合金が得られ、第3回熱処理終了後には更に、導電率と強度が向上した銅合金が得られた。しかも、強度の上昇に伴う伸びの低下量はわずかであり、第3回熱処理後でも、10%の伸びが確保されるため、良好な曲げ加工性を有する銅合金が得られた。   After the completion of the second heat treatment, a copper alloy having a good conductivity greatly exceeding 60% IACS and a high strength exceeding 580 MPa was obtained, and the conductivity and strength were further improved after the completion of the third heat treatment. A copper alloy was obtained. In addition, the amount of decrease in elongation accompanying the increase in strength is slight, and 10% elongation is ensured even after the third heat treatment, so that a copper alloy having good bending workability was obtained.

(実施例2〜12)
表2に示す組成を有する試料No.2〜11(実施例2〜11)の銅合金を溶解鋳造し、上記実施例1と同じ工程で加工熱処理を行い、厚さ0.25mmの試料を製作した。各実施例2〜11における銅合金の特性を表4にまとめて示す。表4から明らかなように、実施例2〜11のいずれも、60%IACSを超える高い導電率と、550MPaを超える高強度を併せ持った銅合金が得られた。しかも、10%の伸びが確保されており、良好な曲げ加工性を有する銅合金が得られた。
(Examples 2 to 12)
Sample No. having the composition shown in Table 2 was used. Copper alloys of 2 to 11 (Examples 2 to 11) were melt-cast and subjected to thermomechanical processing in the same process as in Example 1 to prepare a sample having a thickness of 0.25 mm. The characteristics of the copper alloys in Examples 2 to 11 are summarized in Table 4. As is apparent from Table 4, in all of Examples 2 to 11, a copper alloy having both high conductivity exceeding 60% IACS and high strength exceeding 550 MPa was obtained. Moreover, 10% elongation was ensured, and a copper alloy having good bending workability was obtained.

上記実施例1〜11の銅合金について、透過型電子顕微鏡を用いて晶出物及び析出物を観察した。粒径が10nm以上、及び粒径が100nm以上である晶出物及び析出物をカウントし、粒径が100nm以上である粒子の個数の割合を求めた。   With respect to the copper alloys of Examples 1 to 11, crystallized substances and precipitates were observed using a transmission electron microscope. Crystallized substances and precipitates having a particle diameter of 10 nm or more and a particle diameter of 100 nm or more were counted, and the ratio of the number of particles having a particle diameter of 100 nm or more was determined.

その結果、表4に示すように、各実施例1〜11の銅合金材料中に含まれる粒径100nm以上の晶出物及び析出物の個数の割合は1.0%以下であり、エッチング性の良い材料であることが判明した。各実施例1〜11の銅合金は、例えば薄型半導体パッケージのリードフレームとして十分な導電性と強度が得られるということが分かった。   As a result, as shown in Table 4, the ratio of the number of crystallized substances and precipitates having a particle diameter of 100 nm or more contained in the copper alloy materials of Examples 1 to 11 was 1.0% or less, and the etching property It turned out to be a good material. It has been found that the copper alloys of Examples 1 to 11 can obtain sufficient conductivity and strength as a lead frame of a thin semiconductor package, for example.

[比較例]
次に、上記実施の形態に係る銅合金の組成の限定理由を、比較例を挙げて説明する。
[Comparative example]
Next, the reason for limiting the composition of the copper alloy according to the above embodiment will be described with reference to a comparative example.

表2に示す組成を有する比較例1〜8の銅合金を溶解鋳造し、上記実施例1と同じ工程で加工熱処理を行い、厚さ0.25mmの試料No.1〜8を製作した。各比較例1〜8における銅合金の特性を表4にまとめて示す。   The copper alloys of Comparative Examples 1 to 8 having the compositions shown in Table 2 were melt-cast and subjected to thermomechanical processing in the same process as in Example 1 above. 1-8 were produced. Table 4 summarizes the characteristics of the copper alloys in Comparative Examples 1 to 8.

(比較例1及び2)
比較例1及び2の銅合金は、表2に示すように、Fe、Ni、Pの含有量が上記実施の形態に係る銅合金の規定範囲から外れたものである。この比較例1の銅合金は、Fe、Ni、Pの含有量が低すぎる一例であり、表4に示すように、上記実施例に比べて引張強さが低く、十分な強度が得られない結果となった。この比較例2の銅合金は、Fe、Ni、Pの含有量が多すぎる一例である。この比較例2の銅合金では、特に、伸びの値が低くなっており、曲げ加工での割れが発生しやすいことから、本発明の初期の目的を満足させることはできない。
(Comparative Examples 1 and 2)
As shown in Table 2, in the copper alloys of Comparative Examples 1 and 2, the contents of Fe, Ni, and P deviate from the specified range of the copper alloy according to the above embodiment. The copper alloy of Comparative Example 1 is an example in which the contents of Fe, Ni, and P are too low, and as shown in Table 4, the tensile strength is lower than that of the above example, and sufficient strength cannot be obtained. As a result. The copper alloy of Comparative Example 2 is an example in which the contents of Fe, Ni, and P are too large. In the copper alloy of Comparative Example 2, in particular, the elongation value is low, and cracking in bending is likely to occur, so the initial object of the present invention cannot be satisfied.

(比較例3及び4)
比較例3及び4の銅合金は、表2に示すように、FeとNiの合計とPの質量比が規定範囲から外れた一例である。表4から明らかなように、比較例3及び4の銅合金は、Fe、Niの添加量が過剰になった場合やPの添加量が過剰になった場合でも、導電率が低下していることが分かる。比較例3及び4の銅合金の引張強さについても、上記実施例に比べて低い値となっていることが分かる。
(Comparative Examples 3 and 4)
As shown in Table 2, the copper alloys of Comparative Examples 3 and 4 are examples in which the mass ratio of P to the total of Fe and Ni deviates from the specified range. As is clear from Table 4, the copper alloys of Comparative Examples 3 and 4 have reduced conductivity even when the addition amount of Fe and Ni is excessive or when the addition amount of P is excessive. I understand that. It can be seen that the tensile strengths of the copper alloys of Comparative Examples 3 and 4 are also lower than those of the above Examples.

(比較例5及び6)
比較例5及び6の銅合金は、表2に示すように、FeとNiの質量比が規定範囲から外れた一例である。表4から明らかなように、Feの比率が高すぎる比較例5は、上記実施例に比べて引張強さが不足していることが分かる。Niの比率が高すぎる比較例6は、上記実施例に比べて導電率が低くなっていることが分かる。
(Comparative Examples 5 and 6)
As shown in Table 2, the copper alloys of Comparative Examples 5 and 6 are examples in which the mass ratio of Fe and Ni deviates from the specified range. As is clear from Table 4, it can be seen that Comparative Example 5 in which the ratio of Fe is too high is insufficient in tensile strength compared to the above Examples. It can be seen that the comparative example 6 in which the Ni ratio is too high has a lower conductivity than the above example.

(比較例7及び8)
比較例7及び8の銅合金は、表2に示すように、副成分として添加したSn、Znなどの含有量が過剰になった一例である。表4から明らかなように、比較例7及び8の銅合金のいずれもが、引張強さは良好であるが、上記実施例に比べて導電率が大きく低下していることが分かる。
(Comparative Examples 7 and 8)
As shown in Table 2, the copper alloys of Comparative Examples 7 and 8 are examples in which the contents of Sn, Zn and the like added as auxiliary components are excessive. As is apparent from Table 4, it can be seen that all of the copper alloys of Comparative Examples 7 and 8 have good tensile strength, but the conductivity is greatly reduced as compared with the above Examples.

(比較例9〜12
次に、比較例9〜12を挙げて、上記実施の形態に係る銅合金に適した製造方法における加工熱処理条件の限定理由を説明する。
(Comparative Example 9-12)
Next, the comparative reasons 9 to 12 will be given to explain the reason for limiting the thermomechanical processing conditions in the manufacturing method suitable for the copper alloy according to the above embodiment.

上記実施例1と同様の組成成分を有する銅合金に熱間圧延を行った後、表5に示す条件下で冷間圧延と熱処理との組み合わせを繰り返して実施し、試料No.9〜12(比較例9〜12)の銅合金を製作した。各比較例9〜12における銅合金の特性、及び析出物の観察結果を表6にまとめて表す。
After hot-rolling a copper alloy having the same composition as in Example 1, the combination of cold-rolling and heat treatment was repeated under the conditions shown in Table 5. Copper alloys of 9 to 12 (Comparative Examples 9 to 12 ) were manufactured. Table 6 summarizes the characteristics of the copper alloys and the observation results of the precipitates in Comparative Examples 9 to 12 .

(比較例9)
比較例9は、表5に示すように、冷間圧延の加工度が規定条件より低い一例である。この比較例9の銅合金では、表6に示すように、引張強さが低くなるのに伴い、導電率も、上記実施例の銅合金に比べて低くなっていることが分かる。
(Comparative Example 9)
As shown in Table 5, Comparative Example 9 is an example in which the degree of cold rolling work is lower than the specified condition. In the copper alloy of Comparative Example 9, as shown in Table 6, it can be seen that as the tensile strength is lowered, the conductivity is also lower than that of the copper alloy of the above example.

(比較例10)
比較例10は、表5に示すように、冷間圧延の加工度が規定条件より低い場合であって、冷間圧延及び熱処理の繰り返し実施回数を増やした一例である。この比較例10の銅合金は、表6に示すように、比較例9の銅合金に比べて引張強さ及び導電率ともに向上しているが、上記実施例の銅合金に比べて引張強さが劣る結果になったことが分かる。冷間圧延及び熱処理の繰り返し実施回数を増やせば、銅合金の特性を向上させることは期待できる。しかしながら、その繰り返し実施回数の増加は、製造コストの増加に直結するため、5回を超える冷間圧延及び熱処理の繰り返し処理は好ましくない。
(Comparative Example 10)
As shown in Table 5, Comparative Example 10 is an example in which the degree of cold rolling work is lower than the specified condition, and the number of repeated cold rolling and heat treatments is increased. As shown in Table 6, the copper alloy of Comparative Example 10 is improved in both tensile strength and electrical conductivity as compared with the copper alloy of Comparative Example 9, but the tensile strength is higher than that of the copper alloy of the above example. It turns out that the result became inferior. Increasing the number of repeated cold rolling and heat treatments can be expected to improve the properties of the copper alloy. However, since the increase in the number of repeated executions directly leads to an increase in manufacturing cost, the cold rolling and heat treatment repeated processing exceeding 5 times are not preferable.

(比較例11〜12
比較例11〜12は、表5に示すように、熱処理条件が規定範囲を外れた一例であるが、表6に示すように、十分な導電率が得られないということが分かる。
(Comparative Example 11 to 12)
As shown in Table 5, Comparative Examples 11 to 12 are examples in which the heat treatment conditions are outside the specified range, but as shown in Table 6, it can be seen that sufficient conductivity cannot be obtained.

比較例11は、表5に示すように、熱処理温度が低い一例である。この比較例11の銅合金は、表6に示すように、十分な導電率が得られないということが分かる。   Comparative Example 11 is an example in which the heat treatment temperature is low as shown in Table 5. As shown in Table 6, it can be seen that the copper alloy of Comparative Example 11 cannot obtain sufficient electrical conductivity.

比較例12は、表5に示すように、熱処理温度が高い一例である。この比較例12の銅合金は、表6に示すように、上記実施例と同等の良好な引張強さ、及び導電率が得られる。しかしながら、析出物の観察結果から、粒径100nm以上の大きな析出物が、より多く発生していることが分かり、上記実施例の銅合金のように均一なエッチング性を維持することはできない。   Comparative Example 12 is an example in which the heat treatment temperature is high as shown in Table 5. As shown in Table 6, the copper alloy of Comparative Example 12 has good tensile strength and electrical conductivity equivalent to those of the above examples. However, from the observation results of the precipitates, it can be seen that a larger amount of large precipitates having a particle size of 100 nm or more is generated, and it is not possible to maintain uniform etching properties as in the copper alloys of the above examples.

以上のように上記実施の形態で規定した条件範囲を外れた比較例の銅合金のいずれもが、上記実施例の銅合金に比べて不十分な特性しか得られないということが理解できる。   As described above, it can be understood that any of the copper alloys of the comparative examples that deviate from the condition range defined in the above embodiment can obtain only insufficient characteristics as compared with the copper alloys of the above examples.

上記実施の形態に係る銅合金は、従来よりも高強度を持つ圧延銅箔の製造が可能になる。半導体パッケージのリードフレーム、コネクタ、リレーやスイッチなどの電気・電子部品の材料として用いられるだけでなく、例えばプリント配線板や電池の集電体などの用途で使われる圧延銅箔の材料としても有効に活用できる。   The copper alloy which concerns on the said embodiment becomes possible [manufacture of the rolled copper foil with higher intensity | strength than before]. Not only is it used as a material for electrical and electronic parts such as semiconductor package lead frames, connectors, relays and switches, but it is also effective as a material for rolled copper foil used in applications such as printed wiring boards and battery current collectors. Can be used for

Claims (3)

0.05〜0.5質量%のFe、0.05〜0.5質量%のNi、0.02〜0.2質量%のPを含有し、FeとNiの合計とPの質量比(Fe+Ni)/Pが3〜10であり、FeとNiの質量比Fe/Niが0.8〜1.2であり、残部がCu及び不可避的不純物からなる銅合金であって、
前記銅合金に含まれる粒径が10nm以上である晶出物及び析出物のうち、粒径が100nm以上である晶出物及び析出物の個数の割合が、1.0%以下であり、導電率が60%IACS以上であり、引張強さが550MPaを超えることを特徴とする電気・電子部品用銅合金材。
0.05 to 0.5% by mass of Fe, 0.05 to 0.5% by mass of Ni, 0.02 to 0.2% by mass of P, and the mass ratio of the sum of Fe and Ni to P ( Fe + Ni) / P is 3 to 10, the mass ratio Fe / Ni is Fe / Ni is 0.8 to 1.2, and the balance is a copper alloy composed of Cu and inevitable impurities,
Of the crystals and precipitates having a particle size of 10 nm or more contained in the copper alloy, the ratio of the number of crystals and precipitates having a particle size of 100 nm or more is 1.0% or less, A copper alloy material for electrical and electronic parts, characterized in that the rate is 60% IACS or more and the tensile strength exceeds 550 MPa.
0.05〜0.5質量%のFe、0.05〜0.5質量%のNi、0.02〜0.2質量%のPを含有し、FeとNiの合計とPの質量比(Fe+Ni)/Pが3〜10であり、FeとNiの質量比Fe/Niが0.8〜1.2であり、更にSn、Zn、Zr、Cr、Tiから選択された1種以上の成分を合計で0.03〜1.0質量%含有し、残部がCu及び不可避的不純物からなる銅合金であって、
前記銅合金に含まれる粒径が10nm以上である晶出物及び析出物のうち、粒径が100nm以上である晶出物及び析出物の個数の割合が、1.0%以下であり、導電率が60%IACS以上であり、引張強さが550MPaを超えることを特徴とする電気・電子部品用銅合金材。
0.05 to 0.5% by mass of Fe, 0.05 to 0.5% by mass of Ni, 0.02 to 0.2% by mass of P, and the mass ratio of the sum of Fe and Ni to P ( Fe + Ni) / P is 3-10, Fe / Ni mass ratio Fe / Ni is 0.8-1.2, and one or more components selected from Sn, Zn, Zr, Cr, Ti Is a copper alloy containing 0.03 to 1.0% by mass in total, the balance being Cu and inevitable impurities,
Of the crystals and precipitates having a particle size of 10 nm or more contained in the copper alloy, the ratio of the number of crystals and precipitates having a particle size of 100 nm or more is 1.0% or less, A copper alloy material for electrical and electronic parts, characterized in that the rate is 60% IACS or more and the tensile strength exceeds 550 MPa.
上記銅合金を熱間圧延し、熱間圧延以降の工程で加工度20%以上の冷間圧延と、400〜470℃で10秒〜10分間加熱する熱処理との組み合わせを少なくとも2回以上実施することを特徴とする、請求項1又は2に記載の電気・電子部品用銅合金材の製造方法。
The copper alloy is hot-rolled, and a combination of cold rolling with a workability of 20% or more and heat treatment heated at 400 to 470 ° C. for 10 seconds to 10 minutes is performed at least twice or more in the steps after hot rolling. The method for producing a copper alloy material for electric / electronic parts according to claim 1 or 2 .
JP2010139249A 2010-06-18 2010-06-18 Copper alloy material for electric / electronic parts and method for producing the same Active JP5539055B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010139249A JP5539055B2 (en) 2010-06-18 2010-06-18 Copper alloy material for electric / electronic parts and method for producing the same
CN201110053297.4A CN102286675B (en) 2010-06-18 2011-03-03 Copper alloy material for electrical and electronic parts and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139249A JP5539055B2 (en) 2010-06-18 2010-06-18 Copper alloy material for electric / electronic parts and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012001781A JP2012001781A (en) 2012-01-05
JP5539055B2 true JP5539055B2 (en) 2014-07-02

Family

ID=45333428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139249A Active JP5539055B2 (en) 2010-06-18 2010-06-18 Copper alloy material for electric / electronic parts and method for producing the same

Country Status (2)

Country Link
JP (1) JP5539055B2 (en)
CN (1) CN102286675B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303678B1 (en) * 2012-01-06 2013-10-02 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP2013185232A (en) * 2012-03-09 2013-09-19 Hitachi Cable Ltd Copper alloy material and method for manufacturing copper alloy material
JP2013231224A (en) * 2012-05-01 2013-11-14 Sh Copper Products Co Ltd Copper alloy material for electric and electronic components having excellent bending processability
JP5475914B1 (en) * 2012-09-28 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
CN103667770B (en) * 2013-11-27 2015-11-11 余姚市士森铜材厂 A kind of precipitation hardenable copper alloy
CN103667774B (en) * 2013-11-27 2016-08-17 余姚市士森铜材厂 A kind of preparation method of Copper alloy semiconductor lead frame
JP5688178B1 (en) 2014-06-27 2015-03-25 株式会社Shカッパープロダクツ Copper alloy material, copper alloy material manufacturing method, lead frame and connector
JP2016014165A (en) 2014-07-01 2016-01-28 株式会社Shカッパープロダクツ Copper alloy material, method for producing copper alloy material, lead frame and connector
JP6081513B2 (en) * 2015-03-30 2017-02-15 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
KR101775894B1 (en) * 2015-07-10 2017-09-12 주식회사 네패스 Transparent exothermic film and method of manufacturing the same
CN105063418B (en) * 2015-07-24 2017-04-26 宁波金田铜业(集团)股份有限公司 Preparation method of low-alloying copper belt
WO2019244842A1 (en) * 2018-06-20 2019-12-26 古河電気工業株式会社 Resistance material for resistors and method for producing same, and resistor
CN113502408B (en) * 2021-06-17 2022-06-07 四川科派新材料有限公司 High-conductivity copper alloy containing tellurium and nickel and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139736A (en) * 1987-11-25 1989-06-01 Yazaki Corp Copper alloy
JP3900733B2 (en) * 1999-02-25 2007-04-04 日立電線株式会社 Manufacturing method of high strength and high conductivity copper alloy material
JP3699701B2 (en) * 2002-10-31 2005-09-28 日鉱金属加工株式会社 Easy-to-process high-strength, high-conductivity copper alloy
JP5098096B2 (en) * 2005-03-22 2012-12-12 Dowaメタルテック株式会社 Copper alloy, terminal or bus bar, and method for producing copper alloy
JP4314226B2 (en) * 2005-09-13 2009-08-12 本田技研工業株式会社 Particle-dispersed copper alloy and method for producing the same
JP4662834B2 (en) * 2005-10-12 2011-03-30 Jx日鉱日石金属株式会社 Copper or copper alloy foil for circuit
JP4916154B2 (en) * 2005-10-12 2012-04-11 Jx日鉱日石金属株式会社 Copper or copper alloy foil for circuit
JP5320638B2 (en) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ Rolled copper foil and method for producing the same
JP2009287062A (en) * 2008-05-28 2009-12-10 Hitachi Cable Ltd Copper alloy for backing plate and method for producing the same

Also Published As

Publication number Publication date
CN102286675A (en) 2011-12-21
CN102286675B (en) 2015-07-01
JP2012001781A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5539055B2 (en) Copper alloy material for electric / electronic parts and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP4787986B2 (en) Copper alloy and manufacturing method thereof
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP2006249516A (en) Copper alloy and its manufacturing method
WO2016171055A1 (en) Copper alloy material and method for producing same
US9076569B2 (en) Cu—Co—Si alloy material and manufacturing method thereof
JP2012087343A (en) Titanium copper superior in strength, electric conductivity and bending workability, and method for manufacturing the same
WO2011096632A2 (en) Copper alloy having high strength and high conductivity, and preparation method thereof
JP2010059543A (en) Copper alloy material
JP2012001780A (en) Copper alloy material for electric/electronic component, and method of manufacturing the same
JP2013173986A (en) Copper alloy
JP2013087338A (en) High strength and high conductive copper alloy and manufacturing method thereof
JP2014173145A (en) Copper alloy-plasticized material for electronic/electric appliances, component for electronic/electric appliances, and terminal
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP7242996B2 (en) Copper alloy
JP2013231224A (en) Copper alloy material for electric and electronic components having excellent bending processability
JP2011021225A (en) Copper alloy material for terminal/connector and method for producing the same
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property
JP4175920B2 (en) High strength copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5539055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430