JP3899684B2 - 非水二次電池 - Google Patents

非水二次電池 Download PDF

Info

Publication number
JP3899684B2
JP3899684B2 JP16744598A JP16744598A JP3899684B2 JP 3899684 B2 JP3899684 B2 JP 3899684B2 JP 16744598 A JP16744598 A JP 16744598A JP 16744598 A JP16744598 A JP 16744598A JP 3899684 B2 JP3899684 B2 JP 3899684B2
Authority
JP
Japan
Prior art keywords
lithium
metal
silicon
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16744598A
Other languages
English (en)
Other versions
JP2000003730A (ja
Inventor
明博 松藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP16744598A priority Critical patent/JP3899684B2/ja
Publication of JP2000003730A publication Critical patent/JP2000003730A/ja
Application granted granted Critical
Publication of JP3899684B2 publication Critical patent/JP3899684B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水二次電池、特に高容量でサイクル寿命の長いリチウム二次電池に関する。
【0002】
【従来の技術】
リチウム金属を含まない負極材料とリチウムを含有する正極活物質を用いるリチウム二次電池では、まず、正極活物質に含まれるリチウムを負極材料に挿入して負極材料の活性を上げる。これが充電反応であり、その逆の負極材料からリチウムイオンを正極活物質へ挿入させる反応が放電反応である。このタイプのリチウム電池負極材料として、カーボンが用いられている。カーボン(C6 Li)の理論容量は372mAh/gであり、さらなる高容量負極材料が望まれている。
リチウムと金属間化合物を形成するケイ素の理論容量は4000mAh/gをこえ、カーボンのそれより大きいことはよく知られている。例えば、特開平5−74463では、単結晶のケイ素を開示しており、特開平7−29602では、非晶質ケイ素を開示している。また、ケイ素を含んだ合金では、Li−Al合金にケイ素を含む例が、特開昭63−66369(ケイ素が19重量%)、同63−174275(ケイ素が0.05〜1.0重量%)、同63−285865(ケイ素が1〜5重量%)に開示されている。ただし、これらの合金特許出願はいずれもリチウムを主体としているため、正極活物質にはリチウムを含有しない化合物が用いられていた。また、特開平4−109562では、ケイ素が0.05〜1.0重量%の合金が開示されている。しかし、いずれもサイクル寿命が劣り、実用されるには至っていない。ケイ素のサイクル寿命が劣る理由として、その電子伝導性が低いこと、リチウム挿入により体積が膨張し、粒子が微粉化することによる電気抵抗の増加が問題であった。また、特開昭60−124357号では、アルカリ金属イオンを吸蔵・放出する金属または合金に金属粉を添加する方法、特開昭62−226563では、リチウムと合金可能な金属と黒鉛粉末を混合する方法が開示されているが、まだ容量は十分なものではない。容量の大きなケイ素化合物を使用するにあたっては電子電導性を確保することが重要な課題である。
【0003】
【発明が解決しようとする課題】
本発明の目的は、リチウム二次電池のエネルギー量を高め、かつサイクル寿命を高めることにある。
【0004】
【課題を解決しようとする手段】
本発明の課題は、正極活物質、負極材料、非水電解質からなる非水二次電池に於いて、該正極活物質が、リチウムを含有する遷移金属酸化物であり、該負極材料として、リチウムと反応しないセラミックとケイ素化合物との分散混合物を500〜1200℃の範囲で加熱することにより、該セラミックを該ケイ素化合物に付着させたものを用い、該ケイ素化合物が、ケイ素単体、ケイ素合金、ケイ化物から選ばれる少なくとも一種のリチウムの挿入放出可能なケイ素原子を含む化合物であり、負極合剤に体積固有抵抗が102 Ω・cm以下の銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、金、白金、アルミニウム、銀から選ばれる一種以上の金属を導電剤として混合し用いることにより解決できた。
【0005】
【発明の実施の形態】
以下に本発明の態様について説明するが、本発明はこれらに限定されるものではない。
(1)正極活物質、負極材料、非水電解質からなる非水二次電池に於いて、該正極活物質がリチウム含有遷移金属酸化物であり、該負極材料がリチウムと反応しないセラミックとケイ素化合物との分散混合物を500〜1200℃の範囲で加熱することにより、該セラミックを該ケイ素化合物に付着させたものであり、該ケイ素化合物が、ケイ素単体、ケイ素合金、ケイ化物から選ばれる少なくとも一種のリチウムの挿入放出可能なケイ素原子を含む化合物であり、負極合剤中に体積固有抵抗が102 Ω・cm以下の銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、金、白金、アルミニウム、銀から選ばれる一種以上の金属を導電剤として含有することを特徴とする非水二次電池。
(2)項(1)に記載のケイ素化合物の平均粒子サイズが、0.01μm以上、100μm以下である非水二次電池。
(3)項(1)に記載のケイ素化合物が合金である非水二次電池。
(4)項(3)に記載の合金のケイ素以外の金属がアルカリ土類金属、遷移金属、半金属から選ばれた少なくとも1種である非水二次電池。
(5)項(3)または(4)に記載のケイ素以外の金属が、Ge、Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znから選ばれた少なくとも1種である非水二次電池。
(6)項(3)〜(5)に記載のケイ素に対するケイ素以外の金属の重量比率が5〜90%である非水二次電池。
(7)項(1)に記載のケイ素化合物が金属ケイ化物から金属を除去したケイ素である非水二次電池。
(8)項(7)に記載の金属ケイ化物がリチウムケイ化物である非水二次電池。
(9)項(8)のリチウムケイ化物のリチウム含量が、ケイ素に対して、100〜420原子%である非水二次電池。
(10)項(1)に記載のケイ素化合物が、リチウムと反応しないセラミックと付着している非水二次電池。
(11)項(10)に記載のセラミックがAl2 O3 、SiO2 、TiO2 、SiC、Si3 N4 である非水二次電池。
(12)項(10)または(11)に記載のケイ素化合物に対する該セラミックの重量比が2〜50%である非水二次電池。
(13)項(10)〜(12)に記載のケイ素化合物に該セラミックを付着させる方法が、500〜1200℃に加熱する工程を有する方法である負極の製造方法。
(14)負極合剤中の導電剤として体積固有抵抗が102 Ω・cm以下の物質を含有している非水二次電池用負極。
(15)項(1)または(14)に記載の導電剤が、体積固有抵抗が102 Ω・cm以下の金属粉、金属フレーク、金属繊維から選ばれる形状の金属である非水二次電池。
(16)該導電剤が、体積固有抵抗が102 Ω・cm以下のカーボンブラック、グラファイト、炭素繊維等の炭素化合物から選ばれる炭素化合物を含有する非水二次電池。
(17)該導電剤が、金属粉、炭素化合物の少なくとも一種以上の物質を含有している非水二次電池。
(18)該導電剤が、ケイ素化合物との体積換算比で0.01から10含まれている非水二次電池。
(19)該導電剤の粒子サイズが、0.01μm以上、20μm以下である非水二次電池。
(20)該導電剤として用いられる金属粉が、銅、ニッケル、アルミニウム、銀から選ばれる少なくとも1種である非水二次電池。
(21)該導電剤として用いられる炭素化合物が、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等の炭素材料から選ばれた少なくとも1種である非水二次電池。
(22)項(1)に記載のケイ素化合物が、あらかじめ熱可塑性樹脂で被覆されているケイ素化合物である非水二次電池。
(23)項(22)に記載の熱可塑性樹脂がポリフッ化ビニリデン、ポリテトラフルオロエチレンである非水二次電池。
(24)項(22)または(23)に記載のケイ素化合物に対する熱可塑性樹脂の重量比が2〜30%である負極を用いた非水二次電池。
(25)項(21)から(24)に記載の熱可塑性樹脂の被覆率が5〜100%である負極を用いた非水二次電池。
(26)項(1)に記載のケイ素化合物の充放電範囲が、ケイ素に挿入放出するリチウムの当量比として、Lix Siで表すとxが0から4.2の範囲内である非水二次電池。
(27)項(1)に記載のケイ素化合物の充放電範囲が、Lix Siで表すとxが0から3.7の範囲内である非水二次電池。
(28)項(1)に記載の正極活物質が、Liy MO2 (M=Co、Ni、Fe、Mn y=0〜1.2)を含む材料、またはLiz N2 O4 (N=Mn z=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いた非水二次電池。
(29)項(3)〜(27)で用いられる、リチウムと反応できるケイ素単体、ケイ素合金、ケイ化物から選ばれるケイ素含有化合物の粒子の平均サイズが0.01μm以上、100μm以下である非水二次電池。
【0006】
本発明で用いられる正極(あるいは負極)は、正極合剤(あるいは負極合剤)を集電体上に塗設、成形して作ることができる。正極合剤(あるいは負極合剤)には、正極活物質(あるいは負極材料)の他、導電剤、結着剤、分散剤、フィラー、イオン導電剤、圧力増強剤や各種添加剤を含むことができる。これらの電極は、円盤状、板状であってもよいが、柔軟性のあるシート状であることが好ましい。
【0007】
以下に本発明の構成および材料について詳述する。
本発明の負極材料で用いられるリチウムの挿入放出できるケイ素原子を含む化合物は、ケイ素単体、ケイ素合金、ケイ化物を意味する。ケイ素単体としては、単結晶、多結晶、非晶質のいずれも使用することができる。単体の純度は85重量%以上が好ましく、特に、95重量%以上が好ましい。さらに、99重量%以上が特に好ましい。その平均粒子サイズは0.01〜100μmが好ましい。特に、0.01〜50μmが好ましい。さらに、0.01〜5μmが好ましい。
【0008】
ケイ素合金は、リチウムを挿入放出した際に生じるケイ素の膨張収縮による微粉化を抑制したり、ケイ素の伝導性の低さを改良するので有効であると考えている。合金としては、アルカリ土類金属、遷移金属あるいは半金属との合金が好ましい。特に、固溶性合金や共融性合金が好ましい。固溶性合金は固溶体を形成する合金をいう。Geの合金が固溶性合金である。共融性合金とは、ケイ素とどんな割合でも共融するが、冷却して得られる固体はケイ素と金属の混合体である合金を言う。Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znが共融性合金を形成する。
この中でも特に、Ge、Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znの合金が好ましい。またこれらの2種以上の合金も好ましい。特に、Ge、Ag、Al、Cd、In、Sb、Sn、Znを含む合金が好ましい。これらの合金の混合比率は、ケイ素に対して5〜70重量%が好ましい。特に、10〜60重量%が好ましい。この場合、電気伝導性が向上するが電池性能、特に、放電容量、ハイレート特性、サイクル寿命の点で、比伝導度が合金前のケイ素またはケイ素化合物の比伝導度の10倍以上になることが好ましい。合金の平均粒子サイズは0.01〜40μmが好ましい。特に、0.03〜5μmが好ましい。
【0009】
ケイ化物は、ケイ素と金属の化合物を言う。ケイ化物としては、CaSi、CaSi2、Mg2Si、BaSi2、SrSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、TiSi2、Ti5Si3、Cr3Si、NbSi2、NdSi2、CeSi2、SmSi2、DySi2、ZrSi2、WSi2、W5Si3、TaSi2、Ta5Si3、TmSi2、TbSi2、YbSi2、YSi2、YSi2、ErSi、ErSi2、GdSi2、 PtSi、V3Si、VSi2、HfSi2、PdSi、PrSi2、HoSi2、EuSi2、LaSi、RuSi、ReSi、RhSi等が用いられる。
【0010】
該ケイ素化合物として、金属ケイ化物から金属を除去したケイ素を用いることができる。このケイ素の形状としては、空洞が大きく、ケイ素の一次粒子のようにかなり微細な形状をもっている。このケイ素を用いるとサイクル寿命が改良される理由としては、微粉化されにくいと考えている。該金属ケイ化物の金属はアルカリ金属、アルカリ土類金属であることが好ましい。なかでも、Li、Ca、Mgであることが好ましい。特に、Liが好ましい。該リチウムケイ化物のリチウム含量は、ケイ素に対して、100〜420モル%が好ましい。特に、200〜420が好ましい。アルカリ金属やアルカリ土類金属のケイ化物からアルカリ金属やアルカリ土類金属を除去する方法は、アルカリ金属やアルカリ土類金属と反応し、かつ、反応生成物が溶解させる溶媒で処理させることが好ましい。溶媒としては、水、アルコール類が好ましい。特に、脱気し、かつ、脱水したアルコール類が好ましい。アルコール類としては、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−プロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、t−ブチルアルコール、1−ペンチルアルコール、2−ペンチルアルコール、3−ペンチルアルコールが好ましい。特に、1−プロピルアルコール、2−プロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、t−ブチルアルコールが好ましい。CaやMgの除去は、水が好ましい。特に中性付近に保つようなpH緩衝剤を用いることが好ましい。
【0011】
ケイ素化合物に付着させたセラミックはケイ素の微粉化の抑制に有効であると考えられる。セラミックとしては、リチウムと反応しない化合物である。特に、Al2 O3 、SiO2 、TiO2 、SiC、Si3 N4 が好ましい。ケイ素とセラミックを付着させる方法としては、混合、加熱、蒸着、CVDが用いられるが、特に、混合と加熱の併用が好ましい。特に、Al2 O3 やSiO2 ゾルとケイ素を分散混合させた後、加熱し、固溶した固まりを粉砕してケイ素とAl2 O3 やSiO2 の付着物を得ることができる。この場合、Al2 O3 やSiO2 の付着物とは、それらの表面にケイ素粉末が覆われていたり、それらの固まりの内部に閉じこめられていたり、ケイ素の表面にそれらが覆われていたりする状態を言う。混合分散は、機械的撹拌、超音波、混練により達成できる。加熱は不活性ガス中で500℃〜1200℃の範囲で行う。不活性ガスはアルゴン、窒素、水素が上げられる。これらの混合ガスも用いられる。粉砕法はボールミル、振動ミル、遊星ボールミル、ジェットミルなどよく知られた方法が用いられる。この粉砕も不活性ガス中で行われることが好ましい。ケイ素に対するセラミックスの混合比は2〜50重量%の範囲が好ましいが、特に3〜40%が好ましい。ケイ素の電子顕微鏡観察から求めた平均粒子サイズは、0.01〜40μmが好ましい。特に、0.03〜5μmが好ましい。
【0012】
本発明で用いられるケイ素化合物を熱可塑性樹脂で被覆することが好ましい。
熱可塑性樹脂は含フッ素高分子化合物、イミド系高分子、ビニル系高分子、アクリレート系高分子、エステル系高分子、ポリアクリロニトリルなどが用いられる。特に、熱可塑性樹脂は電解液に膨潤しにくい樹脂が好ましい。具体例としては、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシエチル(メタ)アクリレート、スチレン−マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルロロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることが出来る。特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。
これらの化合物は単独または混合して用いることが出来る。特に、含フッ素高分子化合物が好ましい。なかでもポリテトラフルオロエチレン、ポリフッ化ビニリデンが好ましい。あらかじめ被覆する方法としては、熱可塑性樹脂を溶剤に溶解させておき、その溶液にケイ素化合物を混合、混練する。その溶液を乾燥し、得られた固形物を粉砕する方法が好ましい。ケイ素化合物に対する熱可塑性樹脂の使用量としては、2〜30重量%が好ましい。特に、3〜20重量%が好ましい。被覆率は5〜100%が好ましいが、特に、5〜90%が好ましい。被覆された粒子の平均サイズは、0.01μm〜40μmが好ましい。特に、0.03〜5μmが好ましい。
【0013】
ケイ素化合物負極材料の充放電範囲としては、挿入放出できるリチウムとケイ素原子の比をLix Siで表すとき、x=0〜4.2が好ましい。ケイ素のサイクル寿命改良を鋭意検討した結果、x=0〜3.7の範囲に留めるとサイクル寿命が大きく改良することを見いだした。充電電位では、リチウム金属対極に対して、x=4.2では、過電圧を含めて、0.0Vであるのに対し、x=3.7では、約0.05Vであった。このとき、放電曲線の形状は変化し、0.0V充電折り返しでは0.5V(対リチウム金属)付近に平坦な放電曲線が得られるのに対し、0.05V以上、特に0.08V以上(x=3.6)では、約0.4Vに平均電圧をもつなだらかな曲線が得られる。即ち、充電終始電圧を上げた方が放電電位が下がるという特異的な現象を見いだし、かつ、充放電反応の可逆性も向上したことを見いだしたことを示している。
【0014】
ケイ素化合物の高容量を維持しつつ、サイクル寿命を改良する効果を持つ方法を個々に記述してきたが、さらに好ましい態様は、上記方法の組み合わせによりさらに高い改良効果を得ることを見いだした。
本発明では、負極材料として、本発明のケイ素化合物の他炭素質材料、酸化物材料、窒化物材料、硫化物材料、リチウム金属、リチウム合金などリチウムを挿入放出できる化合物と組み合わせることができる。
【0015】
本発明の負極合剤中の導電剤は、体積固有抵抗が102 Ω・cm以下の銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、金、白金、アルミニウム、銀から選ばれる一種以上の金属を含有し、体積固有抵抗が102 Ω・cm以下のその他の金属、炭素化合物、酸化物等多くの物質を含有することも出来る。体積固有抵抗が102 Ω・cm以下の物質としては、金属粉、金属フレーク、金属繊維等の形状の金属、カーボンブラック、グラファイト、炭素繊維等の炭素化合物等があげられる。金属としては、リチウムとの反応性が低い金属、即ちリチウム合金を作りにくい金属が好ましく、具体的には、銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、金、白金、アルミニウム、銀等が好ましい。中では銅、ニッケルが好ましい。形状は針状、柱状、板状、塊状粉末、鱗片状のフレーク、あるいは繊維状のものが好ましいが、粉末状が好ましい。また実質的に金属が表面に付着させたものでも可能であり、具体的には粒状あるいは繊維状の樹脂あるいはセラミック等に金属メッキ等を施したものであっても良い。炭素化合物としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等の炭素材料、炭素繊維が好ましい。炭素化合物の中では、黒鉛、アセチレンブラックが好ましい。これらの導電剤は単独でも用いても良いが、2種以上の金属あるいは炭素化合物を混合して使用してもよく、さらに金属と炭素化合物を混合して用いることも出来る。負極合剤中の導電剤量は、ケイ素化合物の体積に対して、0.01から10、好ましくは0.1から5が好ましい。添加量が少ないと導電性向上の効果が少なく、添加量が多くなると充放電の体積容量が減少し好ましくない。導電剤の粒子サイズの好ましい範囲は、0.01μmから20μm、好ましくは0.1μm〜10μmである。
【0016】
本発明で用いられる正極材料はリチウム含有遷移金属酸化物である。好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。より好ましくは、V、Cr、Mn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。なお主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。
【0017】
上記の正極活物質の中で、一般式LixMO2(M=Co、Ni、Fe、Mn x=0〜1.2)、またはLiy24(N=Mn y=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることがこのましい。具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a 2、LixCob1-b z 、LixCobFe1-b 2、LixMn24、LixMncCo2-c 4、LixMncNi2-c 4、LixMnc2-c 4、LixMncFe2-c 4 (ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)である。
最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a 2 、Lix Mn2 4 、Lix Cob 1-b z(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)があげられる。なおxの値は充放電開始前の値であり、充放電により増減する。
【0018】
本発明で用いる正極活物質は、リチウム化合物と遷移金属化合物を混合、焼成する方法や溶液反応により合成することができるが、特に焼成法が好ましい。焼成の為の詳細は、特開平6−60,867号の段落35、特開平7−14,579号等に記載されており、これらの方法を用いることができる。焼成によって得られた正極活物質は水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
更に、遷移金属酸化物に化学的にリチウムイオンを挿入する方法としては、リチウム金属、リチウム合金やブチルリチウムと遷移金属酸化物と反応させることにより合成する方法であっても良い。
【0019】
本発明で用いる正極活物質の平均粒子サイズは特に限定されないが、0.1〜50μmが好ましい。0.5〜30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることが更に好ましい。比表面積としては特に限定されないが、BET法で0.01〜50m2/gが好ましく、特に0.2m2/g〜1m2/gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。
【0020】
本発明の正極活物質を焼成によって得る場合、焼成温度としては500〜1500℃であることが好ましく、さらに好ましくは700〜1200℃であり、特に好ましくは750〜1000℃である。焼成時間としては4〜30時間が好ましく、さらに好ましくは6〜20時間であり、特に好ましくは6〜15時間である。
【0021】
本発明では電極合剤を保持するために結着剤を用いる。結着剤の例としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマー等が挙げられる。好ましい結着剤としては、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸Na、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシエチル(メタ)アクリレート、スチレンーマレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルロロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレンーブタジエン共重合体、アクリロニトリルーブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることが出来る。特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。これらの結着剤は、微小粉末を水に分散したものを用いるのが好ましく、分散液中の粒子の平均サイズが0.01〜5μmのものを用いるのがより好ましく、0.05〜1μmのものを用いるのが特に好ましい。
これらの結着剤は単独または混合して用いることが出来る。結着剤の添加量が少ないと電極合剤の保持力・凝集力が弱い。多すぎると電極体積が増加し電極単位体積あるいは単位重量あたりの容量が減少する。このような理由で結着剤の添加量は1〜30重量%が好ましく、特に2〜10重量%が好ましい。
【0022】
充填剤は、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。
イオン導電剤は、無機及び有機の固体電解質として知られている物を用いることができ、詳細は電解液の項に記載されている。
圧力増強剤は、電池の内圧を上げる化合物であり、炭酸リチウム等の炭酸塩が代表例である。
【0023】
本発明で使用できる集電体は正極はアルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、負極は銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金である。集電体の形態は箔、エキスパンドメタル、パンチングメタル、もしくは金網である。特に、正極にはアルミニウム箔、負極には銅箔が好ましい。
【0024】
箔の厚みとしては7μm〜100μmが好ましく、さらに好ましくは7μm〜50μmであり、特に好ましくは7μm〜20μmである。エキスパンドメタル、パンチングメタル、金網の厚みとしては7μm〜200μmが好ましく、さらに好ましくは7μm〜150μmであり、特に好ましくは7μm〜100μmである。
集電体の純度としては98%以上が好ましく、さらに好ましくは99%以上であり、特に好ましくは99.3%以上である。
集電体の表面は酸、アルカリ、有機溶剤などにより洗浄してもよい。
【0025】
集電体は、厚さを薄くするため、プラスチックシートの両面上に金属層を形成したものがさらに好ましい。プラスチックは、延伸性及び耐熱性に優れたものが好ましく、例えばポリエチレンテレフタレートである。金属だけでは、弾性がほとんどないので、外力に弱い。プラスチック上に金属層を形成すれば、衝撃に強くなる。より具体的には、集電体は、合成樹脂フィルムや紙等の基材を電子伝導性の物質で被覆した複合集電体であっても良い。基材となる合成樹脂フィルムとしては、フッ素樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリ塩化ビニル、ポリスチレン、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミド、セルロース誘電体、ポリスルホンを挙げることができる。基材を被覆する電子伝導性の物質としては、黒鉛やカーボンブラック等の炭素質材料、アルミニウム、銅、ニッケル、クロム、鉄、モリブデン、金、銀等の金属元素及びこれらの合金を挙げることができる。特に好ましい電子伝導性の物質は金属であり、アルミニウム、銅、ニッケル、ステンレス鋼である。複合集電体は、基材のシートと金属シートを張り合わせる形態であってもよいし、蒸着等により金属層を形成してもよい。
【0026】
次に本発明における正負電極の構成について説明する。正負電極は集電体の両面に電極合剤を塗布した形態であることが好ましい。この場合、片面あたりの層数は1層であっても2層以上から構成されていても良い。片面あたりの層の数が2以上である場合、正極活物質(もしくは負極材料)含有層が2層以上であっても良い。より好ましい構成は、正極活物質(もしくは負極材料)を含有する層と正極活物質(もしくは負極材料)を含有しない層から構成される場合である。
正極活物質(もしくは負極材料)を含有しない層には、正極活物質(もしくは負極材料)を含有する層を保護するための保護層、分割された正極活物質(もしくは負極材料)含有層の間にある中間層、正極活物質(もしくは負極材料)含有層と集電体との間にある下塗り層等があり、本発明においてはこれらを総称して補助層と言う。
【0027】
保護層は正負電極の両方または正負電極のいずれかにあることが好ましい。負極において、リチウムを電池内で負極材料に挿入する場合は負極は保護層を有する形態であることが望ましい。保護層は、少なくとも1層からなり、同種又は異種の複数層により構成されていても良い。また、集電体の両面の合剤層の内の片面にのみ保護層を有する形態であっても良い。これらの保護層は、水不溶性の粒子と結着剤等から構成される。結着剤は、前述の電極合剤を形成する際に用いられる結着剤を用いることが出来る。水不溶性の粒子としては、種種の導電性粒子、実質的に導電性を有さない有機及び無機の粒子を用いることができる。水不溶性粒子の水への溶解度は、100ppm以下、好ましくは不溶性のものが好ましい。保護層に含まれる粒子の割合は2.5重量%以上、96重量%以下が好ましく、5重量%以上、95重量%以下がより好ましく、10重量%以上、93重量%以下が特に好ましい。
【0028】
水不溶性の導電性粒子としては、金属、金属酸化物、金属繊維、炭素繊維、カーボンブラックや黒鉛等の炭素粒子を挙げることが出来る。これらの水不溶導電性粒子の中で、アルカリ金属特にリチウムとの反応性が低いものが好ましく、金属粉末、炭素粒子がより好ましい。粒子を構成する元素の20℃における電気抵抗率としては、5×109 Ω・m以下が好ましい。
【0029】
金属粉末としては、リチウムとの反応性が低い金属、即ちリチウム合金を作りにくい金属が好ましく、具体的には、銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、タンタルが好ましい。これらの金属粉末の形は、針状、柱状、板状、塊状のいずれでもよく、最大径が0.02μm以上、20μm以下が好ましく、0.1μm以上、10μm以下がより好ましい。これらの金属粉末は、表面が過度に酸化されていないものが好ましく、酸化されているときには還元雰囲気で熱処理することが好ましい。
【0030】
炭素粒子としては、従来電極活物質が導電性でない場合に併用する導電材料として用いられる公知の炭素材料を用いることが出来る。具体的には電極合剤を作る際に用いられる導電剤が用いられる。
【0031】
実質的に導電性を持たない水不溶性粒子としては、テフロンの微粉末、SiC、窒化アルミニウム、アルミナ、ジルコニア、マグネシア、ムライト、フォルステライト、ステアタイトを挙げることが出来る。これらの粒子は、導電性粒子と併用してもよく、導電性粒子の0.01倍以上、10倍以下で使うと好ましい。
【0032】
正(負)の電極シートは正(負)極の合剤を集電体の上に塗布、乾燥、圧縮する事により作成する事ができる。
合剤の調製は正極活物質(あるいは負極材料)および導電剤を混合し、結着剤(溶液状あるいは樹脂粉体のサスペンジョンまたはエマルジョン状のもの)、および分散媒を加えて混練混合し、引続いて、ミキサー、ホモジナイザー、ディゾルバー、プラネタリミキサー、ペイントシェイカー、サンドミル等の攪拌混合機、分散機で分散して行うことが出来る。分散媒としては水もしくは有機溶媒が用いられるが、水が好ましい。このほか、適宜充填剤、イオン導電剤、圧力増強剤等の添加剤を添加しても良い。分散液のpHは負極では5〜10、正極では7〜12が好ましい。
【0033】
塗布は種々の方法で行うことが出来るが、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、スライド法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法を挙げることが出来る。エクストルージョンダイを用いる方法、スライドコーターを用いる方法が特に好ましい。塗布は、0.1〜100m/分の速度で実施されることが好ましい。この際、合剤ペーストの液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることが出来る。電極層が複数の層である場合にはそれらの複数層を同時に塗布することが、均一な電極の製造、製造コスト等の観点から好ましい。その塗布層の厚み、長さや巾は、電池の大きさにより決められる。典型的な塗布層の厚みは乾燥後圧縮された状態で10〜1000μmである。
塗布後の電極シートは、熱風、真空、赤外線、遠赤外線、電子線及び低湿風の作用により乾燥、脱水される。これらの方法は単独あるいは組み合わせて用いることが出来る。乾燥温度は80〜350℃の範囲が好ましく、特に100〜260℃の範囲が好ましい。乾燥後の含水量は2000ppm以下が好ましく、500ppm以下がより好ましい。
電極シートの圧縮は、一般に採用されているプレス方法を用いることが出来るが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は、特に限定されないが、10kg/cm2 〜3t/cm2 が好ましい。カレンダープレス法のプレス速度は、0.1〜50m/分が好ましい。プレス温度は、室温〜200℃が好ましい。
【0034】
本発明で使用できるセパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微孔性フィルムが用いられる。 特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとテフロンの混合体、ポリエチレンとテフロンの混合体が好ましく、形態として微孔性フィルムであるものが好ましい。特に、孔径が0.01〜1μm、厚みが5〜50μmの微孔性フィルムが好ましい。これらの微孔性フィルムは単独の膜であっても、微孔の形状や密度等や材質等の性質の異なる2層以上からなる複合フィルムであっても良い。例えば、ポリエチレンフィルムとポリプロピレンフィルムを張り合わせた複合フィルムを挙げることができる。
【0035】
電解液は一般に支持塩と溶媒から構成される。リチウム二次電池における支持塩はリチウム塩が主として用いられる。
本発明で使用出来るリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、L iOSO2n2n+1で表されるフルオロスルホン酸(nは6以下の正の整数)、LiN(SO2n2n+1)(SO2m2m+1)で表されるイミド塩(m、nはそれぞれ6以下の正の整数)、LiC(SO2p2p+1)(SO2q2q+1)(SO2r2r+1)で表されるメチド塩(p、q、rはそれぞれ6以下の正の整数)、低級脂肪族カルボン酸リチウム、LiAlCl4 、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどのLi塩を上げることが出来、これらの一種または二種以上を混合して使用することができる。なかでもLiBF4及び/あるいはLiPF6を溶解したものが好ましい。
支持塩の濃度は、特に限定されないが、電解液1リットル当たり0.2〜3モルが好ましい。
【0036】
本発明で使用できる溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、炭酸トリフルオロメチルエチレン、炭酸ジフルオロメチルエチレン、炭酸モノフルオロメチルエチレン、六フッ化メチルアセテート、三フッ化メチルアセテート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、2,2−ビス(トリフルオロメチル)−1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、ホウ酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、3−アルキルシドノン(アルキル基はプロピル、イソプロピル、ブチル基等)、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。これらのなかでは、カーボネート系の溶媒が好ましく、環状カーボネートと非環状カーボネートを混合して用いるのが特に好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートをが好ましい。
本発明で使用できる電解液としては、エチレンカーボネート、プロピレンカ−ボネ−ト、1,2−ジメトキシエタン、ジメチルカーボネートあるいはジエチルカーボネートを適宜混合した電解液にLiCF3SO3、LiClO4、LiBF4および/またはLiPF6を含む電解液が好ましい。特にプロピレンカーボネートもしくはエチレンカーボネートの少なくとも一方とジメチルカーボネートもしくはジエチルカーボネートの少なくとも一方の混合溶媒に、LiCF3SO3、LiClO4、もしくはLiBF4の中から選ばれた少なくとも一種の塩とLiPF6を含む電解液が好ましい。これら電解液を電池内に添加する量は特に限定されず、正極材料や負極材料の量や電池のサイズに応じて用いることができる。
【0037】
また、電解液の他に次の様な固体電解質も併用することができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。
無機固体電解質には、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li3N、LiI、Li5I2、Li3N−LiI−LiOH、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4(1-x) Li4SiO4、Li2SiS3、硫化リン化合物などが有効である。
【0038】
有機固体電解質では、ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体あるいは該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマー、非プロトン性極性溶媒を含有させた高分子マトリックス材料が有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法も知られている。
【0039】
また、放電や充放電特性を改良する目的で、他の化合物を電解質に添加しても良い。例えば、ピリジン、ピロリン、ピロール、トリフェニルアミン、フェニルカルバゾール、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN, N’−置換イミダリジノン、エチレングリコールジアルキルエーテル、第四級アンモニウム塩、ポリエチレングリコ−ル、ピロール、2−メトキシエタノール、AlCl3、導電性ポリマー電極活物質のモノマー、トリエチレンホスホルアミド、トリアルキルホスフィン、モルホリン、カルボニル基を持つアリール化合物、12−クラウン−4のようなクラウンエーテル類、ヘキサメチルホスホリックトリアミドと4−アルキルモルホリン、二環性の三級アミン、オイル、四級ホスホニウム塩、三級スルホニウム塩などを挙げることができる。特に好ましいのはトリフェニルアミン、フェニルカルバゾールを単独もしくは組み合わせて用いた場合である。
【0040】
また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを電解液に含ませることができる。また、高温保存に適性をもたせるために電解液に炭酸ガスを含ませることができる。
【0041】
電解液は、水分及び遊離酸分をできるだけ含有しないことが望ましい。このため、電解液の原料は充分な脱水と精製をしたものが好ましい。また、電解液の調整は、露点がマイナス30℃以下の乾燥空気中もしくは不活性ガス中が好ましい。電解液中の水分及び遊離酸分の量は、0.1〜500ppm、より好ましくは0.2〜100ppmである。
【0042】
電解液は、全量を1回で注入してもよいが、2回以上に分けて注入することが好ましい。2回以上に分けて注入する場合、それぞれの液は同じ組成でも、違う組成(例えば、非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入した後、前記溶媒より粘度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入)でも良い。また、電解液の注入時間の短縮等のために、電池缶を減圧したり、電池缶に遠心力や超音波をかけることを行ってもよい。
【0043】
本発明で使用できる電池缶および電池蓋は材質としてニッケルメッキを施した鉄鋼板、ステンレス鋼板(SUS304、SUS304L、SUS304N、SUS316、SUS316L、SUS430、SUS444等)、ニッケルメッキを施したステンレス鋼板(同上)、アルミニウムまたはその合金、ニッケル、チタン、銅であり、形状として、真円形筒状、楕円形筒状、正方形筒状、長方形筒状である。特に、外装缶が負極端子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場合は、ステンレス鋼板、アルミニウムまたはその合金が好ましい。電池缶の形状はボタン、コイン、シート、シリンダー、角などのいずれでも良い。
電池缶の内圧上昇の対策として封口板に安全弁を用いることができる。この他、電池缶やガスケット等の部材に切り込みをいれる方法も利用することが出来る。この他、従来から知られている種々の安全素子(例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子等)を備えつけても良い。
【0044】
本発明で使用するリード板には、電気伝導性をもつ金属(例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウム等)やそれらの合金を用いることが出来る。電池蓋、電池缶、電極シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることが出来る。封口用シール剤は、アスファルト等の従来から知られている化合物や混合物を用いることが出来る。
【0045】
本発明で使用できるガスケットは、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ポリアミドであり、耐有機溶媒性及び低水分透過性から、オレフィン系ポリマーが好ましく、特にプロピレン主体のポリマーが好ましい。さらに、プロピレンとエチレンのブロック共重合ポリマーであることが好ましい。
【0046】
以上のようにして組み立てられた電池は、エージング処理を施すのが好ましい。エージング処理には、前処理、活性化処理及び後処理などがあり、これにより高い充放電容量とサイクル性に優れた電池を製造することができる。前処理は、電極内のリチウムの分布を均一化するための処理で、例えば、リチウムの溶解制御、リチウムの分布を均一にするための温度制御、揺動及び/または回転処理、充放電の任意の組み合わせが行われる。活性化処理は電池本体の負極に対してリチウムを挿入させるための処理で、電池の実使用充電時のリチウム挿入量の50〜120%を挿入するのが好ましい。後処理は活性化処理を十分にさせるための処理であり、電池反応を均一にするための保存処理と、判定のための充放電処理当があり、任意に組み合わせることができる。
【0047】
本発明の活性化前の好ましいエージング条件(前処理条件)は次の通りである。
温度は30℃以上70℃以下が好ましく、30℃以上60℃以下がより好ましく、40℃以上60℃以下がさらに好ましい。また、開路電圧は2.5V以上3.8V以下が好ましく、2.5V以上3.5V以下がより好ましく、2.8V以上3.3V以下がさらに好ましい。エージング期間は1日以上20日以下が好ましく、1日以上15日以下が特に好ましい。
活性化の充電電圧は4.0V以上が好ましく、4.05V以上4.3V以下がより好ましく、4.1V以上4.2V以下が更に好ましい。
活性化後のエージング条件としては、開路電圧が3.9V以上4.3V以下が好ましく、4.0V以上4.2V以下が特に好ましく、温度は30℃以上70℃以下が好ましく、40℃以上60℃以下が特に好ましい。エージング期間は0.2日以上20日以下が好ましく、0.5日以上5日以下が特に好ましい。
【0048】
本発明の電池は必要に応じて外装材で被覆される。外装材としては、熱収縮チューブ、粘着テープ、金属フィルム、紙、布、塗料、プラスチックケース等がある。また、外装の少なくとも一部に熱で変色する部分を設け、使用中の熱履歴がわかるようにしても良い。
【0049】
本発明の電池は必要に応じて複数本を直列及び/または並列に組み電池パックに収納される。電池パックには正温度係数抵抗体、温度ヒューズ、ヒューズ及び/または電流遮断素子等の安全素子の他、安全回路(各電池及び/または組電池全体の電圧、温度、電流等をモニターし、必要なら電流を遮断する機能を有す回路)を設けても良い。また電池パックには、組電池全体の正極及び負極端子以外に、各電池の正極及び負極端子、組電池全体及び各電池の温度検出端子、組電池全体の電流検出端子等を外部端子として設けることもできる。また電池パックには、電圧変換回路(DC−DCコンバータ等)を内蔵しても良い。また各電池の接続は、リード板を溶接することで固定しても良いし、ソケット等で容易に着脱できるように固定しても良い。さらには、電池パックに電池残存容量、充電の有無、使用回数等の表示機能を設けても良い。
【0050】
本発明の電池は様々な機器に使用される。特に、ビデオムービー、モニター内蔵携帯型ビデオデッキ、モニター内蔵ムービーカメラ、デジタルカメラ、コンパクトカメラ、一眼レフカメラ、レンズ付きフィルム、ノート型パソコン、ノート型ワープロ、電子手帳、携帯電話、コードレス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等に使用されることが好ましい。
【0051】
【実施例】
以下に具体例をあげ、本発明をさらに詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。尚、表1中、電池番号1〜18は参考例であり、電池番号19〜22が本発明の実施例である。
【0052】
実施例及び比較例負極材料として多結晶ケイ素単体(化合物−1)、多結晶ケイ素とコロイダルシリカを混合し、1000℃で加熱して得られた固形物をアルゴンガス中で振動ミルにて粉体にしたSi−SiO2 (化合物−2 重量比90−10)を用いた。上記負極材料(化合物1〜)の平均粒子サイズはいずれも0.05〜4μmの範囲の粒子を用いた。これらのケイ素化合物と所定の体積比の表1に記載の導電剤(アセチレンブラック、鱗片状人造黒鉛、ニッケル超微粉)と混合して得られた粉体をポリ沸化ビニリデンのN−メチル−ピロリドン溶液に分散して、負極ペーストを作成、乾燥後合剤をかき取り圧縮成形(13mmφ)し合剤ペレットを作成した。尚、各材料の体積は、密度計(島津製作所マルチボリュームピクノメータ1305型)を使用して測定した粉体の密度から算出した。
【0053】
露点;−50℃以下の乾燥空気中で遠赤外線ヒーターにて充分脱水乾燥後、対極に15mmφのLi箔を用い、電解質として1mol/リットルのLiPF6(プロピレンカーボネートとジメトキシエタンの等容量混合液)を用い、更に、セパレーターとして微孔性のポリプロピレンシートとポリプロピレン不織布を用いて、コイン型リチウム電池を作成した。
【0054】
上記のコイン形電池を2mAで充電する。この場合、充電は0.05Vまで定電流で充電し、充電開始から2.5時間が経過するまで0.05Vで一定に保つように充電電流を制御した。放電は0.2C、1C電流に相当する電流量にて0.7Vまで定電流で実施した。そのときの第1サイクルの放電容量(負極材料中のSiあたりの容量に換算)、1C/0.2Cの放電容量比、また、充放電を繰り返した30サイクル目の容量維持率を表1に示した。
【0055】
Figure 0003899684
Figure 0003899684
【0056】
【発明の効果】
正極活物質、負極材料、非水電解質からなる非水二次電池において、該正極活物質は、リチウムを含有する遷移金属酸化物であり、該負極材料として、ケイ素原子を含む化合物を用い、負極合剤に体積固有抵抗が102Ω・cm以下の物質を混合して用いることによりエネルギー量やサイクル寿命の向上した非水二次電池を得ることができた。

Claims (3)

  1. 正極活物質、負極材料、非水電解質からなる非水二次電池に於いて、該正極活物質がリチウム含有遷移金属酸化物であり、該負極材料がリチウムと反応しないセラミックとケイ素化合物との分散混合物を500〜1200℃の範囲で加熱することにより、該セラミックを該ケイ素化合物に付着させたものであり、該ケイ素化合物が、ケイ素単体、ケイ素合金、ケイ化物から選ばれる少なくとも一種のリチウムの挿入放出可能なケイ素原子を含む化合物であり、負極合剤中に体積固有抵抗が102 Ω・cm以下の銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、金、白金、アルミニウム、銀から選ばれる一種以上の金属を導電剤として含有することを特徴とする非水二次電池。
  2. 体積固有抵抗が102 Ω・cm以下の金属が、金属粉、金属フレーク、金属繊維から選ばれる形状の金属であることを特徴とする請求項1に記載の非水二次電池。
  3. リチウムと反応しないセラミックが、Al2 O3 、SiO2 、TiO2 、SiC、Si3 N4 から選ばれる一種以上の物質であることを特徴とする請求項1または2に記載の非水二次電池。
JP16744598A 1998-06-15 1998-06-15 非水二次電池 Expired - Fee Related JP3899684B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16744598A JP3899684B2 (ja) 1998-06-15 1998-06-15 非水二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16744598A JP3899684B2 (ja) 1998-06-15 1998-06-15 非水二次電池

Publications (2)

Publication Number Publication Date
JP2000003730A JP2000003730A (ja) 2000-01-07
JP3899684B2 true JP3899684B2 (ja) 2007-03-28

Family

ID=15849846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16744598A Expired - Fee Related JP3899684B2 (ja) 1998-06-15 1998-06-15 非水二次電池

Country Status (1)

Country Link
JP (1) JP3899684B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501142B1 (ko) * 2000-09-01 2005-07-18 산요덴키가부시키가이샤 리튬 2차 전지용 음극 및 그 제조 방법
JP4225727B2 (ja) * 2001-12-28 2009-02-18 三洋電機株式会社 リチウム二次電池用負極及びリチウム二次電池
WO2003096449A1 (fr) * 2002-05-08 2003-11-20 Japan Storage Battery Co., Ltd. Pile secondaire a electrolyte non aqueux
JP5060010B2 (ja) * 2002-10-18 2012-10-31 株式会社Gsユアサ 非水電解質二次電池
JP4654589B2 (ja) * 2004-03-30 2011-03-23 Tdk株式会社 電池パック
JP5317407B2 (ja) * 2006-10-17 2013-10-16 三星エスディアイ株式会社 非水二次電池
JP4844849B2 (ja) 2008-04-23 2011-12-28 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5434157B2 (ja) * 2009-03-11 2014-03-05 日産自動車株式会社 リチウムイオン二次電池
JP5601536B2 (ja) * 2011-10-07 2014-10-08 株式会社Gsユアサ 非水電解質二次電池
JP2013168328A (ja) * 2012-02-16 2013-08-29 Hitachi Chemical Co Ltd 負極材料、負極材料の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6097643B2 (ja) * 2012-08-21 2017-03-15 積水化学工業株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6988169B2 (ja) 2017-05-26 2022-01-05 トヨタ自動車株式会社 非水電解質二次電池用負極の製造方法、および非水電解質二次電池の製造方法

Also Published As

Publication number Publication date
JP2000003730A (ja) 2000-01-07

Similar Documents

Publication Publication Date Title
JP3941235B2 (ja) 非水二次電池
JP3661417B2 (ja) 非水二次電池
JP4085473B2 (ja) 非水二次電池の充電方法
JP4728458B2 (ja) 非水二次電池
JP5637258B2 (ja) 非水二次電池
JP4329743B2 (ja) 非水二次電池とその製造方法
US6235427B1 (en) Nonaqueous secondary battery containing silicic material
JP3945023B2 (ja) 非水二次電池
JP4078714B2 (ja) 非水二次電池の充電或いは放電方法
JP4844550B2 (ja) 非水二次電池
JP5229239B2 (ja) 非水二次電池
JP3899684B2 (ja) 非水二次電池
JP3627516B2 (ja) 非水二次電池
JP2000012091A (ja) 非水二次電池とその製造方法
JP2005166684A (ja) 非水二次電池
JP5000979B2 (ja) 非水二次電池
JP4003298B2 (ja) 非水二次電池
JP4967839B2 (ja) 非水二次電池
JP4055254B2 (ja) 非水二次電池
JP4725489B2 (ja) 非水二次電池
JP4725562B2 (ja) 非水二次電池
JP3690122B2 (ja) 非水二次電池
JP4702321B2 (ja) 非水二次電池
JP4221774B2 (ja) 非水二次電池
JP3959801B2 (ja) 非水二次電池

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees