JP3893464B2 - Method for producing gallium nitride nanotubes - Google Patents

Method for producing gallium nitride nanotubes Download PDF

Info

Publication number
JP3893464B2
JP3893464B2 JP2003138948A JP2003138948A JP3893464B2 JP 3893464 B2 JP3893464 B2 JP 3893464B2 JP 2003138948 A JP2003138948 A JP 2003138948A JP 2003138948 A JP2003138948 A JP 2003138948A JP 3893464 B2 JP3893464 B2 JP 3893464B2
Authority
JP
Japan
Prior art keywords
gallium nitride
nitride nanotubes
producing gallium
nanotubes
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003138948A
Other languages
Japanese (ja)
Other versions
JP2004339020A (en
Inventor
義雄 板東
ジンツィ・フウ
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003138948A priority Critical patent/JP3893464B2/en
Publication of JP2004339020A publication Critical patent/JP2004339020A/en
Application granted granted Critical
Publication of JP3893464B2 publication Critical patent/JP3893464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、窒化ガリウムナノチューブの製造方法に関するものである。さらに詳しくは、この出願の発明は、フルカラーの平面ディスプレイ、高電力用デバイス、青色発振レーザー、光通信分野への応用が期待されている窒化ガリウムのナノチューブを製造することのできる窒化ガリウムナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
窒化ガリウム(GaN)は、3.39eVのバンドギャップを有する半導体であり、青色発光や紫外発光を示す材料である。このことから、窒化ガリウムは、フルカラーの平面ディスプレイ、高電力用デバイス、青色発振レーザー、光通信分野への応用が期待されている。このような窒化ガリウムのナノワイヤー若しくはナノロッドは、鋳型を用いた合成法(たとえば、非特許文献1参照)、金属触媒を用いたレーザー加熱法(たとえば、非特許文献2参照)、熱フィラメントの気相−液相−固相成長法(たとえば、非特許文献3参照)、酸化ガリウムとアンモニアとの反応(たとえば、非特許文献4参照)等によって製造されている。
【0003】
【非特許文献1】
W.Q.Hann外,サイエンス(Science),1997年,第277巻,p.1287
【非特許文献2】
X.F.Duan外,ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ(J.Am.Chem.Soc.),2000年,第122巻,p.188
【非特許文献3】
X.Y.Peng外,ケミカル・フィジックス・レターズ(Chem.Phys.Lett.),2000年,第327巻,p.263
【非特許文献4】
C.C.Chen外,アドバンスト・マテリアルズ(Adv.Mater.),2000年,第12巻,p.738
【0004】
【発明が解決しようとする課題】
しかしながら、内部が中空になっている窒化ガリウムナノチューブはまだ製造されていない。
【0005】
この出願の発明は、このような事情に鑑みてなされたものであり、窒化ガリウムのナノチューブを製造することのできる窒化ガリウムナノチューブの製造方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、三酸化ガリウムを窒素ガス気流中で1200〜1300℃に加熱した後、窒素ガスをアンモニアガスに切り替え、アンモニアガス気流中で1350〜1450℃に加熱することを特徴とする窒化ガリウムナノチューブの製造方法(請求項1)を提供する。
【0007】
以下、実施例を示し、この出願の発明の窒化ガリウムナノチューブの製造方法についてさらに詳しく説明する。
【0008】
【発明の実施の形態】
この出願の発明の窒化ガリウムナノチューブの製造方法では、上述のとおり、三酸化ガリウムを窒素ガス気流中で1200〜1300℃に加熱した後、窒素ガスをアンモニアガスに切り替え、アンモニアガス気流中で1350〜1450℃に加熱する。その結果、均一な外径、内径及び肉厚を有する窒化ガリウムナノチューブが得られる。
【0009】
【実施例】
長さ50cm、外径12cm、肉厚0.25cmの透明な縦型石英管の中に、長さ25cm、外径4.5cm、内径3.5cmのグラファイト製の誘導加熱を行う円筒を配置した。なお、円筒は、カーボンファイバー製断熱材で被覆されており、ガス導入管とガス排出管とが取り付けられている。この円筒の中心部に外径2.5cm、肉厚3mm、高さ2cmのグラファイト製るつぼを配置し、その中に2.0gの三酸化ガリウム(Ga23)の粉末(純度99.9%)を入れた。
【0010】
石英管に窒素ガスを80sccmの流速で流しながら、三酸化ガリウムを1250℃に加熱し、この温度に1.5時間保持した。次いで、窒素ガスに替え、アンモニアガスを同じ流速で流し、1400℃で1時間加熱した。加熱終了後、室温まで冷却し、カーボンファイバー製断熱材に堆積した灰黒色の生成物を採取した。
【0011】
生成物のX線回折パターンを調べた結果、格子定数a=3.185Å、c=5.177Åの六方晶系のウルツ型構造である窒化ガリウムであることが確認された。生成物の代表的な透過型電子顕微鏡像を図1に示した。外側が暗く、内側が明るいことから中空部が存在し、ナノチューブ構造であることが確認された。ナノチューブは、長さが数マイクロメートルから数十マイクロメートルにわたっていて、均一な外径、内径及び肉厚を有していた。典型的なナノチューブでは、外径が50ナノメートル、肉厚が15ナノメートルであった。また、ナノチューブの約80%は、先端が開口した直線形状を有し、大部分は多結晶であった。
【0012】
一方、少量生成した先端が閉じたナノチューブの壁面の一部分を高分解能透過型電子顕微鏡で観察した結果、単結晶構造を示す格子像が得られた。これは面間距離が0.16ナノメートルであった。さらに電子線回折で調べると、ナノサイズの微結晶であり、完全には配列していないことが分かった。
【0013】
図2は、ナノチューブのX線エネルギー拡散スペクトルを示しているが、ガリウムと窒素の原子比は1:1.10であり、組成がGaNであることが確認された。なお、スペクトル中のCuのシグナルは、透過型電子顕微鏡の銅グリッドに由来するものである。また、Oのシグナルは、窒化ガリウムナノチューブの外側の酸化された薄層のGaOxのOに由来するものである。
【0014】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。窒化ガリウムナノチューブの製造に用いた装置の構成及び構造、窒素ガス及びアンモニアガスの流速の諸条件等の細部については様々な態様が可能であることはいうまでもない。
【0015】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、フルカラーの平面ディスプレイ、高電力用デバイス、青色発振レーザー、光通信分野への応用が期待されている窒化ガリウムのナノチューブが製造される。
【図面の簡単な説明】
【図1】実施例で得られた生成物の高倍率透過型電子顕微鏡像である。
【図2】実施例で得られた生成物のX線エネルギー拡散スペクトルである。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing a gallium nitride nanotube. More specifically, the invention of this application relates to the production of gallium nitride nanotubes capable of producing gallium nitride nanotubes that are expected to be applied to the field of full-color flat displays, high power devices, blue oscillation lasers, and optical communications. It is about the method.
[0002]
[Prior art]
Gallium nitride (GaN) is a semiconductor having a band gap of 3.39 eV, and is a material that emits blue light and ultraviolet light. For this reason, gallium nitride is expected to be applied to full-color flat displays, high power devices, blue oscillation lasers, and optical communication fields. Such gallium nitride nanowires or nanorods can be produced by a synthesis method using a template (for example, see Non-Patent Document 1), a laser heating method using a metal catalyst (for example, see Non-Patent Document 2), or a hot filament gas. It is manufactured by a phase-liquid phase-solid phase growth method (for example, see Non-Patent Document 3), a reaction between gallium oxide and ammonia (for example, see Non-Patent Document 4), or the like.
[0003]
[Non-Patent Document 1]
WQHann et al., Science, 1997, Vol. 277, p. 1287
[Non-Patent Document 2]
XFDuan et al., Journal of American Chemical Society (J. Am. Chem. Soc.), 2000, Vol. 122, p. 188
[Non-Patent Document 3]
XYPeng et al., Chemical Physics Letters (2000), Vol. 327, p. 263
[Non-Patent Document 4]
CCChen et al., Advanced Materials (Adv. Mater.), 2000, Vol. 12, p. 738
[0004]
[Problems to be solved by the invention]
However, gallium nitride nanotubes that are hollow inside have not yet been produced.
[0005]
The invention of this application has been made in view of such circumstances, and an object to be solved is to provide a method of manufacturing a gallium nitride nanotube capable of manufacturing a gallium nitride nanotube.
[0006]
[Means for Solving the Problems]
The invention of this application is to solve the above problems, after heating gallium trioxide to 1200-1300 ° C in a nitrogen gas stream, switching the nitrogen gas to ammonia gas, 1350-1450 ° C in the ammonia gas stream A method for producing gallium nitride nanotubes (Claim 1) is provided.
[0007]
Hereinafter, the method for producing gallium nitride nanotubes of the invention of this application will be described in more detail with reference to examples.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing gallium nitride nanotubes of the invention of this application, as described above, after heating gallium trioxide to 1200-1300 ° C. in a nitrogen gas stream, the nitrogen gas is switched to ammonia gas, and 1350-- Heat to 1450 ° C. As a result, a gallium nitride nanotube having a uniform outer diameter, inner diameter and wall thickness is obtained.
[0009]
【Example】
A cylinder made of graphite made of graphite having a length of 25 cm, an outer diameter of 4.5 cm, and an inner diameter of 3.5 cm was placed in a transparent vertical quartz tube having a length of 50 cm, an outer diameter of 12 cm, and a wall thickness of 0.25 cm. The cylinder is covered with a carbon fiber heat insulating material, and a gas introduction pipe and a gas discharge pipe are attached thereto. A graphite crucible with an outer diameter of 2.5 cm, a wall thickness of 3 mm, and a height of 2 cm is placed in the center of this cylinder, and 2.0 g of gallium trioxide (Ga 2 O 3 ) powder (purity 99.9%) is placed in it. It was.
[0010]
While flowing nitrogen gas through the quartz tube at a flow rate of 80 sccm, gallium trioxide was heated to 1250 ° C. and kept at this temperature for 1.5 hours. Next, nitrogen gas was replaced with ammonia gas at the same flow rate and heated at 1400 ° C. for 1 hour. After the heating, the product was cooled to room temperature, and a grayish black product deposited on the carbon fiber heat insulating material was collected.
[0011]
As a result of examining the X-ray diffraction pattern of the product, it was confirmed that the product was gallium nitride having a hexagonal wurtzite structure with lattice constants a = 3.185Å and c = 5.177Å. A typical transmission electron microscope image of the product is shown in FIG. Since the outer side was dark and the inner side was bright, a hollow portion was present, confirming the nanotube structure. The nanotubes ranged from several micrometers to several tens of micrometers and had uniform outer diameter, inner diameter and wall thickness. A typical nanotube had an outer diameter of 50 nanometers and a wall thickness of 15 nanometers. Further, about 80% of the nanotubes had a linear shape with an open end, and most were polycrystalline.
[0012]
On the other hand, as a result of observing a part of the wall surface of the nanotube with a small amount produced with a closed tip with a high-resolution transmission electron microscope, a lattice image showing a single crystal structure was obtained. This was a face-to-face distance of 0.16 nanometers. Further examination by electron beam diffraction revealed that the crystals were nano-sized microcrystals and were not completely aligned.
[0013]
FIG. 2 shows the X-ray energy diffusion spectrum of the nanotube. The atomic ratio of gallium to nitrogen was 1: 1.10, and it was confirmed that the composition was GaN. The Cu signal in the spectrum is derived from the copper grid of the transmission electron microscope. The O signal is derived from O of the thin oxidized layer of GaO x outside the gallium nitride nanotube.
[0014]
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible with respect to details such as the configuration and structure of the apparatus used for the production of gallium nitride nanotubes, and various conditions of the flow rates of nitrogen gas and ammonia gas.
[0015]
【The invention's effect】
As described above in detail, the invention of this application produces a full-color flat display, a high power device, a blue oscillation laser, and a gallium nitride nanotube that is expected to be applied to the field of optical communication.
[Brief description of the drawings]
FIG. 1 is a high-magnification transmission electron microscope image of a product obtained in an example.
FIG. 2 is an X-ray energy diffusion spectrum of the product obtained in the example.

Claims (1)

三酸化ガリウムを窒素ガス気流中で1200〜1300℃に加熱した後、窒素ガスをアンモニアガスに切り替え、アンモニアガス気流中で1350〜1450℃に加熱することを特徴とする窒化ガリウムナノチューブの製造方法。A method for producing gallium nitride nanotubes, comprising heating gallium trioxide to 1200 to 1300 ° C in a nitrogen gas stream, switching the nitrogen gas to ammonia gas, and heating to 1350 to 1450 ° C in an ammonia gas stream.
JP2003138948A 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes Expired - Lifetime JP3893464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138948A JP3893464B2 (en) 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138948A JP3893464B2 (en) 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes

Publications (2)

Publication Number Publication Date
JP2004339020A JP2004339020A (en) 2004-12-02
JP3893464B2 true JP3893464B2 (en) 2007-03-14

Family

ID=33528176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138948A Expired - Lifetime JP3893464B2 (en) 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes

Country Status (1)

Country Link
JP (1) JP3893464B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528938B2 (en) * 2004-12-24 2010-08-25 独立行政法人物質・材料研究機構 Manufacturing method of gallium nitride nanowire doped with manganese
JP4915764B2 (en) * 2005-04-28 2012-04-11 独立行政法人物質・材料研究機構 Gallium sulfide submicrometer tube and manufacturing method thereof
JP4756239B2 (en) * 2005-08-03 2011-08-24 独立行政法人物質・材料研究機構 Hollow spherical particles made of gallium nitride and method for producing the same
CN1319852C (en) * 2005-12-15 2007-06-06 太原理工大学 High purity gallium nitride nanometer line preparation method
JP5803654B2 (en) * 2011-12-21 2015-11-04 東ソー株式会社 Gallium nitride powder and method for producing the same

Also Published As

Publication number Publication date
JP2004339020A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
Shi et al. Microstructures of gallium nitride nanowires synthesized by oxide-assisted method
Xin et al. Morphological evolution of one-dimensional SiC nanomaterials controlled by sol–gel carbothermal reduction
Abdulgafour et al. Growth of zinc oxide nanoflowers by thermal evaporation method
Li et al. Direct growth of β-SiC nanowires from SiOx thin films deposited on Si (1 0 0) substrate
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP3893464B2 (en) Method for producing gallium nitride nanotubes
Fu et al. One-step synthesis and characterization of tree-like branched α-Si3N4 nano/submicron-structures by pyrolysis of a polymer precursor
JP5120797B2 (en) Silicon carbide nanostructure and manufacturing method thereof
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP3987932B2 (en) Method for producing indium nitride nanowires coated with indium phosphide
JP2004210562A (en) Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
JP4025869B2 (en) Gallium oxide nanowire and manufacturing method thereof
JP3834638B2 (en) Method for producing boron nitride nanotubes filled with nickel or nickel silicide
JP3837540B2 (en) Method for producing single crystal tubular zinc oxide whisker
Hu et al. The First Template‐Free Growth of Crystalline Silicon Microtubes
KR100670767B1 (en) Process for the growth of amorphous Silicone Oxide nanowires directly from NiO/Si and nanowires made from the process
JP4701451B2 (en) Zinc sulfide nanocable coated with silicon carbide film and method for producing the same
Yue et al. Growth and characterization of graphene, silicene, SiC, and the related nanostructures and heterostructures on silicon wafer
JP4576604B2 (en) Method for producing single crystal indium nitride nanotube
JP4930952B2 (en) Aluminum nitride nanoribbon
CN115287595B (en) Preparation method of vanadium doped single-layer tungsten disulfide film
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP4538620B2 (en) Method for producing zinc sulfide nanocable containing zinc
JP4581121B2 (en) Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Ref document number: 3893464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term