JP4528938B2 - Manufacturing method of gallium nitride nanowire doped with manganese - Google Patents

Manufacturing method of gallium nitride nanowire doped with manganese Download PDF

Info

Publication number
JP4528938B2
JP4528938B2 JP2004373709A JP2004373709A JP4528938B2 JP 4528938 B2 JP4528938 B2 JP 4528938B2 JP 2004373709 A JP2004373709 A JP 2004373709A JP 2004373709 A JP2004373709 A JP 2004373709A JP 4528938 B2 JP4528938 B2 JP 4528938B2
Authority
JP
Japan
Prior art keywords
manganese
gallium nitride
doped
powder
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004373709A
Other languages
Japanese (ja)
Other versions
JP2006176383A (en
Inventor
義雄 板東
リュウ バオダン
タン チェンチュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004373709A priority Critical patent/JP4528938B2/en
Publication of JP2006176383A publication Critical patent/JP2006176383A/en
Application granted granted Critical
Publication of JP4528938B2 publication Critical patent/JP4528938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気、電子、光学分野の機能性デバイスとして、磁気センサー、アクチュエ
ーター、光記録、発光ダイオード等に利用されることが期待されているマンガンがドープ
された窒化ガリウムナノワイヤーの製造方法に関する。
The present invention relates to a method for producing manganese-doped gallium nitride nanowires that are expected to be used in magnetic sensors, actuators, optical recording, light-emitting diodes and the like as functional devices in the magnetic, electronic, and optical fields. .

マンガンがドープされた二次元の窒化ガリウム薄膜は、窒化ガリウム薄膜上にマンガン
をレーザー加熱法で堆積させた後、250〜800℃でアニールすることにより、マンガンを窒
化ガリウム中に拡散させて製造している(例えば、非特許文献1)。また、マンガンがド
ープされた一次元の窒化ガリウムナノワイヤーは、ガリウムのアセチルアセトン、マンガ
ンのアセチルアセトンおよびカーボンナノチューブの混合物をアンモニア気流中で、195
℃、1時間加熱した後、さらに260℃で1時間保持し、最後に950℃で4時間加熱すること
により製造されている(例えば、非特許文献2)。さらに、オートクレーブの中に、金属
ガリウム、リチウムアミド、マンガンを仕込み、アンモニアガスで満たして、500℃で反
応させることにより、マンガンがドープされた窒化ガリウムの微結晶を得る方法も知られ
ている(例えば、非特許文献3)。
Manganese-doped two-dimensional gallium nitride thin film is manufactured by depositing manganese on the gallium nitride thin film by laser heating and then annealing at 250-800 ° C to diffuse manganese into gallium nitride. (For example, Non-Patent Document 1). In addition, one-dimensional gallium nitride nanowires doped with manganese are prepared by mixing a mixture of gallium acetylacetone, manganese acetylacetone and carbon nanotubes in an ammonia stream.
It is manufactured by heating at 950 ° C. for 1 hour, holding at 260 ° C. for 1 hour, and finally heating at 950 ° C. for 4 hours (for example, Non-Patent Document 2). Furthermore, a method of obtaining gallium nitride microcrystals doped with manganese by charging metal gallium, lithium amide, manganese in an autoclave, filling with ammonia gas, and reacting at 500 ° C. is also known ( For example, Non-Patent Document 3).

M.L.Reed,ほか、Mater.Lett.51巻、500頁、2001年M.L.Reed, et al., Mater.Lett. 51, 500, 2001 F.L.Deepak,ほか、Chem.Phys.Lett.374巻、314頁、2003年F.L.Deepak, et al., Chem. Phys. Lett. 374, 314, 2003 M.Zajac,ほか、Appl.Phys.Lett.78巻、1276頁、2001年M. Zajac, et al., Appl. Phys. Lett. 78, 1276, 2001

本発明は、上記のようなカーボンナノチューブを鋳型として用いることなく、原料とし
て市販品の粉末を使用して加熱するだけの簡便な方法でマンガンがドープされた窒化ガリ
ウムナノワイヤーを製造する方法を提供することを解決すべき課題としている。
The present invention provides a method for producing gallium nitride nanowires doped with manganese by a simple method of heating using a commercially available powder as a raw material without using the above-mentioned carbon nanotube as a template. It is a problem to be solved.

本発明は、酸化ガリウム粉末、リン化マンガン粉末および二酸化マンガン粉末の三成分
混合物を100〜400sccmの流量のアンモニアガスを流しながら、1353〜1423Kの温度で0.5〜
1時間加熱することにより、直径100〜400ナノメートル、長さ数十マイクロメートルのマ
ンガンがドープされた窒化ガリウムナノワイヤーを製造する方法である。
In the present invention, a ternary mixture of gallium oxide powder, manganese phosphide powder and manganese dioxide powder is supplied at a temperature of 1353 to 1423 K while flowing ammonia gas at a flow rate of 100 to 400 sccm.
This is a method for producing gallium nitride nanowires doped with manganese having a diameter of 100 to 400 nanometers and a length of several tens of micrometers by heating for 1 hour.

本発明により、鋳型を使用することなく、簡便な方法で、機能性デバイス用として有用
なマンガンがドープされた窒化ガリウムナノワイヤーが製造可能となった。
According to the present invention, a gallium nitride nanowire doped with manganese useful for a functional device can be produced by a simple method without using a template.

酸化ガリウム粉末、リン化マンガン粉末および二酸化マンガン粉末の三成分混合物をア
ルミナボートに入れ、このアルミナボートを横型石英管状炉の中に設置する。反応の準備
段階としてアルゴンガスを200sccm程度の流量で流しながら、1073Kに加熱し、この温度に
達したとき、アルゴンガスを流すことをやめて、アンモニアガスを100〜400sccmの流量で
流しながら、1353〜1423Kの温度で、0.5〜1時間加熱する。
A ternary mixture of gallium oxide powder, manganese phosphide powder and manganese dioxide powder is placed in an alumina boat and the alumina boat is placed in a horizontal quartz tube furnace. As the preparatory stage of the reaction, the argon gas was heated to 1073 K while flowing at a flow rate of about 200 sccm, and when this temperature was reached, the argon gas was stopped flowing and the ammonia gas was flowed at a flow rate of 100 to 400 sccm, Heat at 1423K for 0.5-1 hour.

上記において、出発原料の三成分混合物のうち、二酸化マンガン(MnO2)粉末の重量は、酸化ガリウム粉末とリン化マンガン粉末の総重量に対して、0<MnO2<8重量%の範囲が好ましく、8重量%以上では、二酸化マンガンが生成した窒化ガリウムに更に溶解することはない。すなわち、8重量%以上の量を添加しても、二酸化マンガンの溶解度が、窒化ガリウム中ですでに最大溶解度に達してしまっているので、生成物の収量の増加は見込めない。0重量のときには、マンガンのドープ量はおよそ2atom%になる。
In the above, the weight of the manganese dioxide (MnO 2 ) powder in the ternary mixture of the starting materials is preferably in the range of 0 <MnO 2 <8% by weight with respect to the total weight of the gallium oxide powder and the manganese phosphide powder. If it is 8% by weight or more, manganese dioxide is not further dissolved in the gallium nitride produced. That is, even when an amount of 8 % by weight or more is added, the solubility of manganese dioxide has already reached the maximum solubility in gallium nitride, and therefore an increase in product yield cannot be expected . At 0 % by weight, the manganese doping amount is about 2 atom%.

アンモニアガスを流しながら加熱するときの温度は、1353〜1423Kの範囲が好ましく、1
423Kで十分に分解や反応が進行するので、これ以上の温度にする必要はない。1353K以下
の温度ではリン化マンガンの分解や酸化ガリウムの分解が起こらないので、マンガンを含
有した窒化ガリウムが生成しない。
The temperature when heating while flowing ammonia gas is preferably in the range of 1353 to 1423K, 1
Since decomposition and reaction proceed sufficiently at 423K, it is not necessary to raise the temperature further. At temperatures below 1353K, manganese phosphide and gallium oxide do not decompose, so gallium nitride containing manganese is not produced.

加熱時間は、0.5〜1時間の範囲が好ましく、1時間以上加熱すると生成するナノワイヤ
ーの直径が太くなりすぎる。0.5時間未満では、収量が低下するとともに、生成物の中に
粒子状の物質を含む。アンモニアガスの流量は100〜400sccmの範囲が好ましく、400sccm
以上の流量では、勢いが強すぎて生成物が下流に流されて、石英管を詰まらせて危険であ
る。100sccm以下では収量が低下する。
The heating time is preferably in the range of 0.5 to 1 hour, and when heated for 1 hour or longer, the diameter of the nanowire produced is too large. If it is less than 0.5 hour, the yield decreases and particulate matter is included in the product. The flow rate of ammonia gas is preferably in the range of 100 to 400 sccm, 400 sccm
At the above flow rate, the momentum is too strong and the product is caused to flow downstream and clog the quartz tube, which is dangerous. Yield decreases below 100 sccm.

上記の操作を施すことにより、淡黄色の繊維状物質がアルミナボート上に生成する。
生成した繊維状物質を分析することにより、直径100〜400ナノメートル、長さ数十マイク
ロメートルを有するマンガンがドープされた窒化ガリウムナノワイヤーであることが確認
される。
By performing the above operation, a light yellow fibrous material is generated on the alumina boat.
By analyzing the produced fibrous substance, it is confirmed that it is a gallium nitride nanowire doped with manganese having a diameter of 100 to 400 nanometers and a length of several tens of micrometers.

次に、実施例を示して、さらに具体的に説明する。
和光純薬工業(株)製の酸化ガリウム粉末(純度99.99%)0.397g、高純度化学研究所(
株)製のリン化マンガン粉末(純度99.9%)0.299gおよび和光純薬工業(株)製の二酸化
マンガン粉末(純度一級)0.032gの三成分混合物をアルミナボートに入れ、このアルミナ
ボートを横型石英管状炉内に設置した。アルゴンガスを200sccmの流量で流しながら、107
3Kまで昇温した。この温度に達したとき、アルゴンガスを流すことをやめ、アンモニアガ
スを300sccmの流量で流しながら、1423Kに温度を上げ、この温度に1時間保持した。アル
ミナボート内に淡黄色の繊維状物質が堆積した。
Next, an example is shown and it demonstrates still more concretely.
Wako Pure Chemical Industries, Ltd., gallium oxide powder (purity 99.99%) 0.397g, high purity chemical laboratory (
Co., Ltd. A ternary mixture of manganese phosphide powder (purity 99.9%) 0.299g and Wako Pure Chemical Industries Ltd. manganese dioxide powder (purity first grade) 0.032g was placed in an alumina boat. It was installed in a tubular furnace. While flowing argon gas at a flow rate of 200 sccm, 107
The temperature was raised to 3K. When this temperature was reached, the flow of argon gas was stopped and the temperature was raised to 1423 K while flowing ammonia gas at a flow rate of 300 sccm and held at this temperature for 1 hour. A pale yellow fibrous material was deposited in the alumina boat.

図1に、淡黄色の繊維状物質の透過型電子顕微鏡像の写真を示した。直径が100〜500ナ
ノメートルで、長さが数十マイクロメートルのナノワイヤーが生成していることが分かっ
た。
FIG. 1 shows a transmission electron microscope image of a pale yellow fibrous material. It was found that nanowires having a diameter of 100 to 500 nanometers and a length of several tens of micrometers were generated.

図2に、この堆積物のエネルギー分散型X線分析の結果を示した。ガリウム、マンガン、窒素及び少量の燐からなる成分が存在していることが分かった。窒素とガリウムの原子比において、窒素の比率は、ガリウム1に対して、1よりもわずかに大きく、マンガンの量は5.3〜9.4atom%であることが分かった。なお、銅のシグナルは試料を観測するために用いた銅グリッドに由来するものである。
FIG. 2 shows the result of energy dispersive X-ray analysis of the deposit. It was found that a component consisting of gallium, manganese, nitrogen and a small amount of phosphorus was present. In the atomic ratio of nitrogen and gallium, the ratio of nitrogen to gallium 1 was found to be slightly larger than 1, and the amount of manganese was found to be 5.3 to 9.4 atom%. The copper signal is derived from the copper grid used to observe the sample.

本発明により、マンガンがドープされた窒化ガリウムナノワイヤーの製造が可能となっ
たので、磁気センサー、アクチュエーター、発光ダイオードなどへの利用が期待される。
According to the present invention, it becomes possible to produce gallium nitride nanowires doped with manganese, so that it is expected to be used for magnetic sensors, actuators, light emitting diodes, and the like.

マンガンがドープされた窒化ガリウムナノワイヤーの透過型電子顕微鏡像の写真である。It is a photograph of the transmission electron microscope image of the gallium nitride nanowire doped with manganese. マンガンがドープされた窒化ガリウムナノワイヤーのエネルギー分散型X線分析の測定結果を示す図である。It is a figure which shows the measurement result of the energy dispersive X-ray analysis of the gallium nitride nanowire doped with manganese.

Claims (4)

酸化ガリウム粉末、リン化マンガン粉末および二酸化マンガン粉末の三成分混合物をアンモニアガス気流中で1353〜1423Kの温度範囲で加熱することを特徴とするマンガンがドープされた窒化ガリウムナノワイヤーの製造方法。 A method for producing a manganese-doped gallium nitride nanowire , comprising heating a ternary mixture of gallium oxide powder, manganese phosphide powder and manganese dioxide powder in an ammonia gas stream in a temperature range of 1353 to 1423K . 前記において、加熱時間を0.5〜1時間の範囲とすることを特徴とする請求項1に記載のマンガンがドープされた窒化ガリウムナノワイヤーの製造方法。   2. The method for producing manganese-doped gallium nitride nanowires according to claim 1, wherein the heating time is in the range of 0.5 to 1 hour. 前記において、アンモニアガスの流量を100〜400sccmの範囲とすることを特徴とする請求項1またはに記載のマンガンがドープされた窒化ガリウムナノワイヤーの製造方法。 In the method according to claim 1 or 2 GaN nanowires manganese doped according to, characterized in that the flow rate of the ammonia gas in the range of 100~400Sccm. 前記において、二酸化マンガン(MnO2)粉末の重量は、酸化ガリウム粉末とリン化マンガン粉末の合計量100重量部に対し、0〜8重量部の範囲とすることを特徴とする請求項1ないしの何れかに記載のマンガンがドープされた窒化ガリウムナノワイヤーの製造方法。
In the above, the weight of the manganese dioxide (MnO 2 ) powder is in the range of more than 0 to 8 parts by weight with respect to 100 parts by weight of the total amount of the gallium oxide powder and the manganese phosphide powder. 4. A method for producing a gallium nitride nanowire doped with manganese according to any one of 3 above.
JP2004373709A 2004-12-24 2004-12-24 Manufacturing method of gallium nitride nanowire doped with manganese Expired - Fee Related JP4528938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373709A JP4528938B2 (en) 2004-12-24 2004-12-24 Manufacturing method of gallium nitride nanowire doped with manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373709A JP4528938B2 (en) 2004-12-24 2004-12-24 Manufacturing method of gallium nitride nanowire doped with manganese

Publications (2)

Publication Number Publication Date
JP2006176383A JP2006176383A (en) 2006-07-06
JP4528938B2 true JP4528938B2 (en) 2010-08-25

Family

ID=36730847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373709A Expired - Fee Related JP4528938B2 (en) 2004-12-24 2004-12-24 Manufacturing method of gallium nitride nanowire doped with manganese

Country Status (1)

Country Link
JP (1) JP4528938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826308B1 (en) 2006-07-25 2008-04-30 연세대학교 산학협력단 GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256907A (en) * 1985-05-10 1986-11-14 Hitachi Ltd Preparation of alpha type silicon nitride
JPH02222829A (en) * 1988-11-02 1990-09-05 Centre Natl Rech Scient <Cnrs> Gallium nitride and oxy nitride ideal for reducing gas selection detector in atmospheric air, manufacture thereof and detector containing the same
JPH05508612A (en) * 1990-07-24 1993-12-02 イートン コーポレーション Silicon nitride production and results with densification aids
JP2000198978A (en) * 1998-12-28 2000-07-18 Futaba Corp Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
JP2004532133A (en) * 2001-03-30 2004-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Method for assembling nanostructures and nanowires and device assembled therefrom
JP2004339020A (en) * 2003-05-16 2004-12-02 National Institute For Materials Science Method for manufacturing gallium nitride nanotube
JP2006512218A (en) * 2002-12-09 2006-04-13 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Sacrificial template method for producing nanotubes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256907A (en) * 1985-05-10 1986-11-14 Hitachi Ltd Preparation of alpha type silicon nitride
JPH02222829A (en) * 1988-11-02 1990-09-05 Centre Natl Rech Scient <Cnrs> Gallium nitride and oxy nitride ideal for reducing gas selection detector in atmospheric air, manufacture thereof and detector containing the same
JPH05508612A (en) * 1990-07-24 1993-12-02 イートン コーポレーション Silicon nitride production and results with densification aids
JP2000198978A (en) * 1998-12-28 2000-07-18 Futaba Corp Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
JP2004532133A (en) * 2001-03-30 2004-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Method for assembling nanostructures and nanowires and device assembled therefrom
JP2006512218A (en) * 2002-12-09 2006-04-13 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Sacrificial template method for producing nanotubes
JP2004339020A (en) * 2003-05-16 2004-12-02 National Institute For Materials Science Method for manufacturing gallium nitride nanotube

Also Published As

Publication number Publication date
JP2006176383A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
Yao et al. Formation of ZnO nanostructures by a simple way of thermal evaporation
JP5170609B2 (en) Method for producing silicon carbide nanowire
Dolado et al. Zn2GeO4/SnO2 Nanowire Heterostructures Driven by Plateau–Rayleigh Instability
Luo et al. Synthesis of long indium nitride nanowires with uniform diameters in large quantities
Zhang et al. Fabrication, structural characterization and optical properties of semiconducting gallium oxide nanobelts
JP4528938B2 (en) Manufacturing method of gallium nitride nanowire doped with manganese
Li et al. Fabrication and characterization of ZnO micro and nanostructures prepared by thermal evaporation
Reiser et al. Controlled catalytic growth and characterization of zinc oxide nanopillars on a-plane sapphire
Xu et al. Preparation of novel saw-toothed and riblike α-Si3N4 whiskers
JP5120797B2 (en) Silicon carbide nanostructure and manufacturing method thereof
US20120068126A1 (en) Post-systhesis modification of colloidal nanocrystals
JP4452813B2 (en) Method for producing hexagonal zinc sulfide nanotubes
JP2004283961A (en) Zinc sulfide nano belt and its manufacturing method
Byeun et al. Single crystal growth of one-dimensional GaN nanostructures by halide vapor-phase epitaxy
Kim et al. Self-catalytic growth and characterization of composite (GaN, InN) nanowires
JP3918063B2 (en) Method for producing single crystal zinc oxide nanosheet
JP3987932B2 (en) Method for producing indium nitride nanowires coated with indium phosphide
Zhou Near UV photoluminescence of Hg-doped GaN nanowires
JP4576604B2 (en) Method for producing single crystal indium nitride nanotube
JP3834661B2 (en) Method for producing silicon carbide-silicon dioxide-carbon coaxial nanocable and nanochain in which silicon carbide nanorods and carbon nanotubes are alternately joined at the tips
Khan Synthesis, characterization and luminescence properties of zinc oxide nanostructures
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same
JP4604248B2 (en) Indium germanate submicron tube and manufacturing method thereof
JP3837569B2 (en) Silicon-zinc sulfide composite nanowire and manufacturing method thereof
Wang et al. A “chemical-scissors-assemble” route to titanium carbide nanorods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees