JP3892441B2 - 仮想コンカチネーション伝送方法及び装置 - Google Patents

仮想コンカチネーション伝送方法及び装置 Download PDF

Info

Publication number
JP3892441B2
JP3892441B2 JP2003544950A JP2003544950A JP3892441B2 JP 3892441 B2 JP3892441 B2 JP 3892441B2 JP 2003544950 A JP2003544950 A JP 2003544950A JP 2003544950 A JP2003544950 A JP 2003544950A JP 3892441 B2 JP3892441 B2 JP 3892441B2
Authority
JP
Japan
Prior art keywords
virtual concatenation
low
speed
frame
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003544950A
Other languages
English (en)
Other versions
JPWO2003043240A1 (ja
Inventor
隆 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2003043240A1 publication Critical patent/JPWO2003043240A1/ja
Application granted granted Critical
Publication of JP3892441B2 publication Critical patent/JP3892441B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0623Synchronous multiplexing systems, e.g. synchronous digital hierarchy/synchronous optical network (SDH/SONET), synchronisation with a pointer process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • H04J2203/0094Virtual Concatenation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

技術分野
本発明は、仮想コンカチネーション伝送方法及び装置に関し、特に、低速フレームのトラフィックを仮想コンカチネーション(Virtual Concatenation)に基づき高速フレームに多重化する仮想コンカチネーション伝送方法及び装置に関する。
近年、例えば、SONET/SDH光伝送システムでは、インターネット等の情報サービスの急速な普及に伴い、各種データ通信回線の需要が増大している。これらのデータ通信回線においては、多様な種類/容量のデータをトラフィックとして扱うことが求められている。特に、ここ数年のインターネットを通じて行われる情報サービスにおいては、その扱うデータの種類は文字情報のみでなく、音声、画像、及び動画と次々とメディアを拡張し続けており、将来、さらにデータの多様化が進むものと推測されている。
このデータの多様化に対応するためには、伝送システムは、マルチメディアデータを効率的且つ柔軟に伝送可能なシステムであることが要求される。
背景技術
図21は、従来のSONET/SDH光伝送システムにおけるSTS−N(Nは1,3,12,48,192,768)フレームを示している。このSTS−Nフレームは、9行×(3×N)列バイトのオーバヘッド(Overhead:以後、OHと略称することがある)と9行×(87×N)列バイトのペイロード(Synchronous Payload Envelope:以後、SPEと略称する事がある。)で構成された9行×(90×N)列バイトのフレームである。
OHは、1行目に位置するフレーム同期用のA1,A2バイト、及び4行目に位置するH1〜H3バイトから成るAUポインタ(Administrative Unit Pointer:以後、PTRと略称することがある。)等で構成されている。
図22は、上記のSTS−Nフレームにおいて、N=1とした場合の低速STS−1フレームを示している。このSTS−1フレームは、1組のH1,H2,H3バイト等を含む9行×3列バイトのTOH(Transport Overhead)と、9行×87列バイトのSPEとで構成された9行×90列のフレームである。従って、STS−1フレームのビットレートは、9×90×8ビット/125μs=51.84Mbpsである。
さらに、同図には、STS−1フレームに収容される仮想コンテナが示されており、この仮想コンテナは、J1,B3,C2バイト等から成る9行×1列バイトのパスオーバヘッド(Path Overhead:以後、POHと略称することがある)と9行×86列バイトのペイロード部とで構成されている。
図23は、上記のH1,H2,C2,B3バイト等に基づき検出するパスアラーム例を示している。パスアラームには、H1,H2バイトに基づくLOP(Loss Of Pointer)及びPAIS(Path Alarm Indication Signal)、並びにC2バイトに基づくUNEQ(STS Path Unequiped)、PLM(STS Payload Label Mismatch)及びPDI(STS Payload Defect Indication)、並びにB3バイトに基づくB3MAJ(B3(CV−P;Code Violation−Path)Major Alarm)及びB3MIN(B3(CV−P;Code Violation−Path)Minor Alarm)等がある。
図22と同様に、図21のSTS−Nフレームにおいて、N=192とした場合が、高速STS−192フレームであり、このSTS−192フレームは、192組のH1,H2,H3バイトから成るAUポインタ等を含む9行×(3×192)列バイトのOHと、9行×(87×192)列バイトからなるSPEで構成された9行×(90×192)列バイトのフレームである。従って、STS−192フレームのビットレートは、9×90×192チャネル×8ビット/125μs=9.95Gbpsである。
図24は、STS−1を1チャネル(Channel)として、192チャネルをSTS−192フレームで伝送する場合の伝送順序(多重化(Multiplex))を示している。STS−1×192チャネル(CH1〜CH192)は、順次、バイトインタリーブでSTS−3,STS−12,STS−48,及びSTS−192に階層化された形で多重化される。
従来のSONET/SDH光伝送システム(OC−N(N=1,3,12,48,192))では、STS−Mc(M=1,2,…,N)相当の容量を持つデータトラフィック(Data Traffic)を伝送する為にSTS−Lc(L=1,3,12,48,192)のコンカチネーション(Concatenation)領域を確保する必要があった。
さらに、このSTS−LcのOC−Nへのマッピングは任意のSTS−1×Lチャネル(Channel)に対して可能なものではなく、CHK,CH(K+1),…,CH(K+L−1)(K=j*L+1;j=0,1,2,…,N/L−1)の連続チャネルに対してのみ可能であった。
従って、OC−NにLチャネル以上の空きチャネルが存在するにも関わらずSTS−Lcをマッピング出来ない場合があり、システムとして柔軟性を欠いていた。
その為、オペレータ(Operator)には、事前の予測に基づき計画的にデータトラフィックをチャネルに割り当てる手作業が要求されていた。
また、不測の要求に対応してコンカチネーション回線を新規提供しようとする際、コンカチネーション領域の確保の為に既サービス回線の再配置が必要となるケースも存在していた。
図25は、STS−192(OC−192)フレームに1.2Gbps(STS−24:24CH)のデータトラフィックをSTS−48cのコンカチネーションでマッピングする場合を示している。なお、CH1〜CH192のSTS−1は、図24に示したようにSTS−192に多重化されるが、図25においては、理解し易くするためチャネルCH1〜CH192が順次多重化されるものとしている。
同図(1)は、現在のチャネル占有状態を示しており、チャネルCH2,CH82,CH140,及びCH159が占有状態であり、他のチャネルは空き状態である。
同図(4)の24チャネル分に相当する1.2Gbpsのデータトラフィックをコンカチネーションで伝送するためには、STS−12cのコンカチネーション領域では、容量不足であるため、その上のSTS−48cのコンカチネーション領域を確保しなければならない。
そこで、同図(2)において、連続したチャネルCH145〜CH192の領域をSTS−48cコンカチネーション領域として確保するためには、既存サービスチャネルCH159をチャネルCH124に再配置する。その後、同図(3)のようにチャネルCH145〜CH192の領域をSTS−48cコンカチネーション領域として確保し、1.2Gbps(STS−24:24CH)のデータトラフィックをSTS−48cコンカチネーション領域にマッピング(Mapping)する。
これを実行するためには、次のような問題が発生する。(1)オペレータは、計画的にチャネル割当を行うための手作業が要求される。(2)光伝送システム内に1.2Gbpsのデータをマッピングし伝送する場合、2.4GbpsのSTS−48cを割り当てる必要があり、1.2Gbps(≒2.4Gbps−1.2Gbps)分のチャネルが浪費される。(3)チャネルCH159をチャネルCH124に再配置に伴う既サービスチャネルの瞬断が発生する。また、従来の仮想コンカチネーション方式は、終端点において、仮想コンカチネーションされたチャネルの位相同期をとって、バルクとして扱う。
この方式では仮想従属チャネル同士が独立にポインタアクション(Pointer Action)を生じることから、ネットワークを伝送中にペイロード位相のズレが生じていた。従って、このズレを吸収する為のメモリ回路が必要であり、また、そのメモリ容量の制限から各仮想従属チャネル間のポインタ値の差が規定され、光伝送ネットワークの構築上の制約となっていた。
従って、本発明は、伝送効率の良い仮想コンカチネーションを提供し、具体的にはチャネルを浪費しない、オペレータの労力が少ない、瞬断が発生しない、メモリ容量を必要としない、仮想コンカチネーション伝送方法及び装置を提供することを課題とする。
発明の開示
(1)上記の課題を解決するため、本発明の仮想コンカチネーション伝送方法は、高速フレーム内の任意の位置に多重化されて仮想コンカチネーションを構成する複数の低速フレームを位相関係を保って、該低速フレームの位置の連結状態を示す仮想コンカチネーション情報と共に伝送することを特徴としている。
図1及び図2を参照して本発明の原理を以下に説明する。ここではSONET/SDHネットワークにおけるOC−192高速フレームを例に挙げて説明する。なお、同図(1)は、図25(1)に示した従来例と同様であり、OC−192フレームの内のチャネルCH2、CH82、CH40、及びCH159の位置の低速フレームがデータを伝送するために既に用いられているものとする。
図1(2)は、同図(3)に示した1.1Gbpsの一連のデータを分割して、22個の低速フレームにマッピングしてOC−192高速フレームに多重化した例を示している。
この多重化に際しての低速フレームの順番は、データの先頭からチャネルCH50,CH15,CH31〜CH33,CH76,CH47,CH163,CH109〜CH120,CH177,CH143となっている。この内のチャネルCH31〜CH33及びチャネルCH109〜CH120については、後述する。
図2は、仮想コンカチネーション情報例を示している。この仮想コンカチネーション情報は、低速フレームが多重化された位置、すなわち、チャネルの連結状態(チャネルCH50−CH15−CH31〜CH33−CH76−CH47−CH163−CH109〜CH120−CH177−CH143)を示している。
本発明の仮想コンカチネーション伝送方法は、このように高速フレーム内に多重化されて仮想コンカチネーションを構成する複数(22個)の低速フレーム間の位相関係を一定に保って伝送する。
このような本発明の仮想コンカチネーション伝送方法によれば、低速フレームのチャネル位置を空いた位置(分散した位置、及び連続した位置も含む)に任意に多重化できるため、従来のコンカチネーション(Concatenation)のように、既に用いられているチャネルのデータを別のチャネルに移動して、連続したチャネル位置を確保する必要はなく、チャネル移動による瞬断は発生しない。
また、一連のデータを送信するためには、それを収容することが可能な最小の低速フレーム数だけのチャネルを確保すればよく、無駄なチャネルの浪費がない。また、仮想コンカチネーション情報に基づき、仮想コンカチネーションされた低速フレームから容易に元のデータに戻す事が可能である。
さらに、仮想コンカチネーションを構成する低速フレームは、位相関係を保って伝送されるため、従来の仮想コンカチネーションのように、分解されたデータを、受信側でデータを組み立てるためのバッファメモリを必要としない。
(2)また、本発明は上記の発明(1)において、該仮想コンカチネーションを構成する該複数の低速フレームを、該高速フレームから別の高速フレームに該仮想コンカチネーション情報に基づき該連結状態及び該位相関係を保って多重化することが可能である。
すなわち、例えば、受信クロックから装置内クロックへの乗換えを行う場合、受信クロックに同期して動作する高速フレームから装置内クロックで動作する別の高速フレームに仮想コンカチネーションを構成する該複数の低速フレームを乗せ替える必要がある。
このような場合においても、本発明に係る仮想コンカチネーションを構成する低速フレームは、仮想コンカチネーション情報が示す連結状態及び位相関係を保ったまま、別の高速フレームに乗せ替えることが可能である。
(3)また、本発明は上記の発明(1)又は(2)において、該仮想コンカチネーションを構成する該複数の低速フレーム間の位相関係が同一位相とすることも可能である。
これによれば、分解されたデータを、受信側で組み立てるためのバッファメモリを必要とせず、組み立てが容易になる。
なお、同一位相の意味は、例えば、SONET/SDHフレームにおけるポインタ値が同じことを意味し、全く位相が一致することを意味しない。
(4)また、本発明は上記の発明(2)において、先頭の低速フレームの位置を基準として、該位相関係を保つ位置に他の低速フレームを多重化することができる。
(5)また、本発明は上記の発明(2)において、該仮想コンカチネーション情報の内の該位置情報を、該別の高速フレームに多重化された該複数の低速フレームの位置情報に付け替えることが可能である。
すなわち、仮想コンカチネーションを構成する該複数の低速フレームが、別の高速フレームのチャネル位置に乗り替えた場合、前のチャネル位置(例えばチャネル番号)と乗り替え後のチャネル位置が異なる場合がある。
そこで、乗り替えた高速フレームに対応した位置情報(チャネル番号)に仮想コンカチネーション情報の位置情報を付け替える。
これにより、仮想コンカチネーション情報は、乗り替えた高速フレームに対応した情報とすることが可能になる。
(6)また、本発明は上記の発明(2)において、先頭の該低速フレームの正負スタッフに連動して、他の該低速フレームの正負スタッフ処理を行い多重化することが可能である。これにより、正負スタッフ処理が発生した場合においても、仮想コンカチネーションを構成する低速フレーム間の位相関係は、一定に保つことが可能になる。
(7)また、本発明は上記の発明(1)において、該低速フレームを、複数の低速フレームをコンカチネーションした低速フレームとすることが可能である。
すなわち、図2に示したように、チャネルCH31〜CH33及びチャネルCH109〜CH120は、それぞれ、従来の連続したコンカチネーションSTS−3cCH11及びSTS−12cCH10の低速フレームを構成している。このように、本発明に係る仮想コンカチネーションは、従来の連続したコンカチネーションされた低速フレームを構成要素とすることができる。
(8)また、本発明は上記の発明(1)において、該仮想コンカチネーション情報を該高速フレームのオーバヘッドに挿入することが可能である。
図3は、仮想コンカチネーション情報を、高速フレームのオーバヘッドの空き領域に挿入した例を示しており、仮想コンカチネーション▲1▼が、図2に示した仮想コンカチネーション情報に対応している。
(9)また、本発明は上記の発明(8)において、該仮想コンカチネーション情報を該オーバヘッドの各低速フレームの先頭位置を示すポインタに挿入し、該ポインタに設定されるオフセット値の範囲以外の値で、各低速フレームに連結された次の低速フレームが多重化されている位置を指定する線形リストとすることが可能である。
図4は、本発明の原理を示しており、図2に示した仮想コンカチネーション情報がポインタに挿入された例を示している。各チャネル(低速フレームの位置)の連結状態は、例えば、チャネルCH163に対応するポインタにこのチャネルCH163に先頭チャネルCH50への方向で連結するチャネルCH47を挿入することで示されている。
先頭チャネルCH50(先頭低速フレーム)のポインタには、通常のポインタ値(norm:オフセット値)が挿入され、先頭チャネルであることが判別できる。
図5は、本発明に係る仮想コンカチネーション情報(線形リスト)例を示している。この線形リストは、SONET/SDHのポインタ(H1/H2バイト)に、後述する図7に示したポインタの定義に基づき、例えば、チャネルCH177(低速フレーム)に対応するポインタ(H1/H2バイト)に、ポインタに設定される通常のオフセット値の範囲(0〜782)以外の値(783〜1023)で、低速フレーム(チャネルCH177)に連結された前の低速フレームが多重化されている位置(チャネルCH109(=0393h))を指定している。(10)また、本発明は上記の発明(9)において、該仮想コンカチネーションを構成する該複数の低速フレームに対応するいずれかの該ポインタがアラーム表示したとき、他の該低速フレームに対応する該ポインタをアラーム表示にしてもよい。
すなわち、仮想コンカチネーションを構成する低速フレームのアラーム表示は、仮想コンカチネーション単位のアラーム表示とみなす。
(11)また、本発明は上記の発明(9)において、該仮想コンカチネーション情報が、循環連結状態を示すとき、該仮想コンカチネーションを構成する全ての低速フレームに対応する該ポインタをアラーム表示にすることができる。
すなわち、仮想コンカチネーション情報が、図3の循環連結状態(チャネルCH12−チャネルCH8−チャネルCH35−チャネルCH12)▲3▼を示すとき、全てのチャネルCH12,CH8,CH35のポインタをアラーム表示する。
(12)また、本発明は上記の発明(1)において、該仮想コンカチネーションを構成する低速フレームで発生したアラーム表示を各低速フレーム単位又は仮想コンカチネーション単位で処理することが可能である。
(13)また、本発明は上記の発明(1)において、タイムスロット割当設定情報に基づき、該仮想コンカチネーションを構成する該複数の低速フレームの位置を変換すると共に、該仮想コンカチネーション情報の内の該位置情報を付け替えることが可能である。
すなわち、タイムスロット割当設定がなされている場合、このタイムスロット割当設定に基づき仮想コンカチネーションを構成する複数の低速フレームの位置(チャネル)が変換される。この変換に伴って、仮想コンカチネーション情報の内の該位置情報を付け替えする必要がある。
(14)また、本発明は上記の発明(1)において、該仮想コンカチネーションを構成する該低速フレーム内のいずれか1つがアラーム表示したとき、該仮想コンカチネーション単位で別のパスに切り替えることが可能である。
すなわち、該仮想コンカチネーションを構成する低速フレームの内の1つが、パス切替を必要とするアラーム表示をしたとき、アラーム表示した低速フレームのみのパス切替を行うのではなく、仮想コンカチネーションを構成する全ての低速フレームのパス切替を行う。
(15)また、本発明は上記の発明(1)において、該仮想コンカチネーションを構成する該複数の低速フレームは、仮想コンカチネーション単位で先頭の低速フレームのパスと同一方向のパスに切り替えることが可能である。
これにより、仮想コンカチネーションを構成する複数の低速フレーム同士が、互いに異なった方向のパスで送受信されることがなくなり、低速フレーム間の位相関係を保って伝送することが可能になる。
(16)また、本発明は上記の発明(1)において、該高速フレーム及び該低速フレームをSONET/SDHフレームとすることが可能である。
(17)また、本発明は上記の発明(16)において、該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報にN/2を加算する位置付替を行うことにより、ライン切替を行うことが可能である。これらにより、リングネットワーク上の仮想コンカチネーション情報が保たれることになる。
(18)また、本発明は上記の発明(16)において、該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報からN/2を減算する位置付替を行うことにより、ライン切替を行うことが可能である。これらにより、リングネットワーク上の仮想コンカチネーション情報が保たれることになる。
(19)また、本発明は上記の発明(1)において、該仮想コンカチネーション情報を設定することが可能である。
(20)さらに、上記の伝送方法を実現するため、本発明の仮想コンカチネーション伝送装置は、高速フレーム内の任意の位置に多重化されて仮想コンカチネーションを構成する複数の低速フレームを位相関係を保って、該低速フレームの位置の連結状態を示す仮想コンカチネーション情報と共に伝送することを特徴としている。
(21)また、本発明は上記の発明(20)において、該複数の低速フレームを、該高速フレームから別の高速フレームに該仮想コンカチネーション情報に基づき分散した位置に該位相関係を保って多重化するフレーム処理部を備えることが可能である。
なお、このフレーム処理部を後述する実施例ではポインタ処理部と称することがある。
(22)また、本発明は上記の発明(20)又は(21)において、該仮想コンカチネーションを構成する該複数の低速フレーム間の位相関係を同一位相にすることができる。
(23)また、本発明は上記の発明(21)において、該フレーム処理部が、先頭の該低速フレームの位置を基準として、該位相関係を保つ位置に他の該低速フレームを多重化することが可能である。
(24)また、本発明は上記の発明(21)において、該仮想コンカチネーション情報の内の該位置情報を、該別の高速フレームに多重化された該複数の低速フレームの位置情報に付け替える仮想コンカチネーション情報変換部を備えることが可能である。
(25)また、本発明は上記の発明(21)において、該フレーム処理部が、先頭の該低速フレームの正負スタッフに連動して、他の該低速フレームの正負スタッフ処理を行い多重化することができる。
(26)また、本発明は上記の発明(20)において、該低速フレームを複数の低速フレームをコンカチネーションした低速フレームとすることが可能である。
(27)また、本発明は上記の発明(20)において、該仮想コンカチネーション情報を該高速フレームのオーバヘッドに挿入することが可能である。
(28)また、本発明は上記の発明(27)において、該仮想コンカチネーション情報を、該オーバヘッドの各低速フレームの先頭位置を示すポインタに挿入され、該ポインタに設定されるオフセット値の範囲以外の値で、各低速フレームに連結された次の低速フレームが多重化されている位置を指定する線形リストとすることが可能である。
(29)また、本発明は上記の発明(28)において、該仮想コンカチネーションを構成する該複数の低速フレームに対応するいずれかの該ポインタがアラーム表示したとき、他の該低速フレームに対応する該ポインタをアラーム表示にすることができる。
(30)また、本発明は上記の発明(28)において、該仮想コンカチネーション情報が、循環連結状態を示すとき、該仮想コンカチネーションを構成する全ての低速フレームに対応する該ポインタをアラーム表示にすることができる。
(31)また、本発明は上記の発明(20)において、該仮想コンカチネーションを構成する低速フレームで発生したアラーム表示を各低速フレーム単位又は仮想コンカチネーション単位で処理することが可能である。
(32)また、本発明は上記の発明(20)において、所定のタイムスロット割当設定情報に基づき、該仮想コンカチネーションを構成する該複数の低速フレームの位置を変換すると共に、該仮想コンカチネーション情報の内の該位置情報を付け替えるタイムスロット割当部(以後、TSA部と称することがある。)を備えることができる。
(33)また、本発明は上記の発明(20)において、該仮想コンカチネーションを構成する該低速フレーム内のいずれか1つがアラーム表示したとき、該仮想コンカチネーション単位で別のパスに切り替えるパススイッチを備えることが可能である。
(34)また、本発明は上記の発明(20)において、該仮想コンカチネーションを構成する該低速フレーム内のいずれか1つがアラーム表示したとき、該仮想コンカチネーション単位でパス切替を行うサービスセレクタを備えることが可能である。
(35)また、本発明は上記の発明(20)において、該仮想コンカチネーションを構成する該複数の低速フレームを、パス切替時、仮想コンカチネーション単位で先頭の低速フレームのパスと同一方向のパスに切り替えるサービスセレクタを備えることが可能である。
(36)また、本発明は上記の発明(20)において、該仮想コンカチネーションを構成する該複数の低速フレームを、パス切替時、仮想コンカチネーション単位で先頭の低速フレームのパスと同一方向のパスに切替るパススイッチを備えることが可能である。
(37)また、本発明は上記の発明(20)において、該高速フレーム及び該低速フレームを、SONET/SDHフレームとすることが可能である。
(38)また、本発明は上記の発明(37)において、該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報にN/2を加算する位置付替を行うことにより、ライン切替を行うリングブリッジを備えることが可能である。
(39)また、本発明は上記の発明(37)において、該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報からN/2を減算する位置付替を行うことにより、ライン切替を行うリングスイッチを備えることが可能である。
(40)また、本発明は上記の発明(20)において、該仮想コンカチネーション情報が、設定可能であることを特徴とした仮想コンカチネーション伝送装置。
以上の手段により、仮想コンカチネーションを構成する低速フレーム(チャネル)間の位相関係を保ったまま、例えば、BLSR/UPSRリングネットワークを含む各種SONET/SDH光ネットワーク上をエンド・ツー・エンド(End to End)伝送する機能が実現できる。
発明を実施するための最良の形態
図6は、SONET/SDHネットワーク例を示している。このネットワークは、本発明に係る仮想コンカチネーション光伝送装置100_1〜100_3(以後、符号100で総称することがある。)を光ファイバ90_1〜90_3でリング状に接続したリングネットワーク(Ring Network)である。なお、同図においては、現用リングのみが示され、予備リングは便宜上省略されている。
各光伝送装置100は、挿入/分岐多重変換装置(ADM:Add/Drop Multiplexer)であり、縦続接続されたOC−192受信側ポインタ処理部(以後、PTR(R)と略称することがある。)13、TSA(Time Slot Assignment)部14、及びOC−192送信側ポインタ処理部(フレーム処理部:以後、PTR(S)と略称することがある。)17、並びにTSA部14に接続されたOC−12挿入側ポインタ処理部(以後、PTR(A)と略称することがある。)22及びOC−12分岐側ポインタ処理部(以後、PTR(D)と略称することがある。)24を備えている。
なお、同図中では、各光伝送装置100の挿入側ポインタ処理部22及び分岐側ポインタ処理部24の内の一方又は両方が便宜上図示されていない。
光伝送装置100は、装置間でトラフィックをOC−192(9.95Gbps)インタフェースで伝送し、トリビュタリ(Tributary)側とトラフィックをOC−12(622Mbps)インタフェースで挿入(Add)/分岐(Drop)する。
以下に、光伝送装置100_1のOC−12トリビュタリ(Tributary)側から挿入された仮想コンカチネーションSTS−5c(以後、Virt−STS−5cと称する。)のトラフィック(Traffic)をOC−192リングネットワーク内で伝送し、光伝送装置100_3のOC−12トリビュタリ側へV−STS−5cのまま分岐する動作を説明する。
光伝送装置100_1において、PTR(A)22は、トリビュタリ側からSTS−1の先頭チャネルCH2、STS−1の仮想従属チャネルCH12、及びSTS−3c(STS−1のチャネルCH7〜CH9のコンカチネーション)の仮想従属チャネルCH3から成る仮想コンカチネーション(Virt−STS−5c:同図中の情報701の(2)参照、以後、Virt−STS−5cと称することがある。)701b、並びにこのVirt−STS−5c701bの線形リスト情報(仮想コンカチネーション情報)701a(同図中の情報701の(1)参照)を入力する。
PTR(A)22において、挿入されるVirt−STS−5c701bの線形リスト情報701aに基づき、STS−1仮想従属チャネルCH12、及びSTS−3c仮想従属チャネルCH3のポインタ処理が先頭チャネルCH2のポインタ処理に連動して行われる。
同図中のタイミングT11は、PTR(A)22中のESメモリ(ES Memory、図示せず)31のライト/リードタイミングを示している。タイミングT11(1)のライトタイミングT11aw、タイミングT11(2)のライトタイミングT11bw、及びタイミングT11(3)のライトタイミングT11cwで、それぞれ、先頭チャネルCH2、仮想従属チャネルCH12、及び仮想従属チャネルCH7〜CH9(=STS−3cCH3)がESメモリ31に書き込まれる。
そして、タイミングT11(1)のリードタイミングT11ar、タイミングT11(2)のリードタイミングT11br、及びタイミングT11(3)のリードタイミングT11crでそれぞれ、先頭チャネルCH2、仮想従属チャネルCH12、及び仮想従属チャネルCH7〜CH9(=STS−3cCH3)がESメモリ31から読み出されて、OC−192インタフェースのチャネルCH50、チャネルCH15、及びチャネルCH31〜CH33に位相関係(同図の情報702(2)中では同一位相)を保ったまま多重化される。
これにより、先頭チャネルCH2、STS−1仮想従属チャネルCH12、及びSTS−3c仮想従属チャネルCH3のPOH(Path Overhead)のパストレース(Path Trace)J1間の位相の一致が保たれる。
次に、光伝送装置100_1において、TSA部14は、TSA部14前のOC−12トリビュタリ側のチャネル番号(CH2,CH12,CH7〜CH9)からTSA部14後のOC−192側のチャネル番号(CH50,CH15,CH31〜CH33)の線形リストの付替を実施する。
この付替後に線形リスト情報が、同図中の情報702の(1)線形リスト情報702aに示されている。
これにより、OC−192ネットワークにおいて、仮想コンカチネーションVirt−STS−5cが保たれる。
その後、光伝送装置100_1のPTR(S)17、光伝送装置100_2のPTR(R)13及びPTR(S)17、光伝送装置100_3のPTR(R)13では付替後の線形リスト情報702aに従って仮想従属チャネルCHのポインタ処理が先頭チャネルCHのポインタ処理に連動制御されて、各チャネルのPOHのパストレースJ1間の位相の一致が保持されたまま、光伝送装置100_3のTSA部14に入力される。
光伝送装置100_3において、TSA部14は、TSA部14前のチャネル番号からTSA部14後のチャネル番号の線形リスト付替を行い(情報701の(1)線形リスト情報701a参照)。PTR(D)24は、再々付替後の線形リスト情報701aに基づきポインタ処理を行い、Virt−STS−5cをトリビュタリ側に分岐する(情報701の(2)Virt−STS−5c701b参照)。
このように、本発明に係る仮想コンカチネーション伝送装置100で構成されたネットワークにおいては、ネットワーク上の全てのポインタ処理部(PTR(R)13、PTR(S)17、PTR(A)、及びPTR(D))が、受信した線形リスト情報に基づいて仮想従属チャネルのポインタ処理が先頭チャネルのポインタ処理に連動されることになる。
また、低速側と高速側との間のADM機能を含むTSA部14では、回線設定に従いTSA部14前のチャネル番号からTSA部後のチャネル番号への線形リストの付替が実施される。
すなわち、仮想コンカチネーションを表示する線形リストが保持され、さらにネットワーク上の全てのポインタ処理が連動制御される。これにより、ネットワークのエンド・ツー・エンド(End to End)における仮想コンカチネーションを構成する各チャネルのパストレースJ1間の位相一致が実現される。
図7は、線形リスト情報をH1/H2バイトの10ビットポインタ値(10bit Pointer Value(IDIDIDIDID))領域に挿入する実施例を示している。同図(1)は、SONET/SDHフレーム中のH1/H2/H3ポインタの定義を示し、同図(2)は、本発明に係る仮想コンカチネーションに対応したポインタバイトの定義を示し、同図(3)は、仮想コンカチネーションチャネルの具体的な指定方法を示している。
H1/H2/H3ポインタは、同図(1)に示すように、H1バイト、H2バイト、及びH3バイトで構成され、H1バイトのビットb1〜b4は、新規データフラグビット(NDF:New Data Flag bit)601であり、H1バイトのビットb5,b6は、SSビット(ssbit)602であり、H1バイトのビットb7,b8、及びH2バイトのビットb1〜b8は、10ビットポインタ値(10bit Pointer Value)603であり、H3バイトは、負ジャスティフィケーション位置(Negative Justification Opportunity)604、H3バイトの後のSPE内の1バイトは、正ジャスティフィケーション位置(Positive Justification Opportunity)605である。
10ビットポインタ値の内のH1バイトのビットb7、及びH2バイトのビットb1,b3,b5,b7は、インクリメントビット(I bit:Increment bit)であり、H1バイトのビットb8、及びH2バイトのビットb2,b4,b6,b8は、デクリメントビット(Dbit:Decrement bit)である。
同図(2)項(11)〜(16)、(18)のポインタバイトの定義は、既存の定義であり、説明を省略する。なお、NDF(NNNN)のNDFイネーブルは、“1001”に3ビット以上一致するコード=“1001”,“0001”,“1101”,“1011”,“1000”であり、ノーマルNDFは、NDFイネーブル以外のコードである。また、SSビットの“−−”はドントケアである。
項(17)に本発明に係る仮想コンカチネーションの線形リスト情報の定義が示されている。線形リスト情報はH1/H2バイトに挿入し、NDF=“NDFイネーブル”、SSビット=“ドントケア(通常“00h”)”、及び10ビットポインタ値=“前に結合されているチャネル番号のビット反転”を設定する。
この設定により、項(18)の無効ポインタの第1条件の一部のコードを、項(17)の本発明の仮想コンカチネーション表示として割り当てている。また、項(12)NDFイネブル及び項(16)項の従来のコンカチ表示が先頭チャネルで重複しない様にするため、逆順序線形リストを採用している。この定義による線形リスト情報は、STS−3〜STS−192フレームに対応できる。
同図(3)項(19)〜(22)は、それぞれ、同図(2)項(16)〜(18)、(12)に示した定義を具体的に示しており、H1/H2バイト(NDFビット、SSビット、10ビットポインタ値(IDIDIDIDID))の具体的な値とその意味、及び受信状態を示している。
従って、項(20)に本発明に係る仮想コンカチネーションの線形リスト情報の具体例が示されている。なお、同項(20)、(21)に示された“N”は仮想コンカチネーションに含めることができる最大のチャネル数であり、OC−Nの“N”と同じ値である。例えばOC−192ではN=192である。
なお、低速フレームとして、複数の低速フレームをコンカチネーション低速フレームを用いた場合、仮想コンカチネーションに含めることができる最大のチャネル数は、増加する。
この様にH1/H2バイトの内の無効ポインタ(Invalid Pointer)値の一部を仮想コンカチネーション用に割り当てることにより、新たにOH上に線形リスト用の領域を設定する必要がなくなる。
上述した図4は、上記の定義に基づき、図1(2)に示した1.1Gbpsデータのマッピングに対応する線形リスト情報を、H1/H2バイトに挿入した概念図あり、図5は、H1/H2バイトの具体的な値を示した図である。例えば、チャネルCH143のH1/H2バイトには、NDF=“1001”、SSビット=“00”、及び10ビットポインタ値=“チャネルCH143に前のチャネル番号=177(=“0010110001”)のビット反転値“1101001110”が設定される。
また、従来のコンカチネーションSTS−3c、STS−12cをそれぞれ構成するチャネルCH31〜CH33、及びチャネルCH109〜CH120の先頭チャネルCH31,CH109には、それぞれ、図7(2)項(17)に基づき前のチャネル番号のビット反転を設定し、それ以外のチャネルCH32,CH33,CH110〜CH120のH1/H2バイトには、図7(2)項(16)の従来のコンカチネーション表示(Concatenation Indicatoin)=“1001SS1111111111”=“93h,FFh(SS=“00”の場合)”を設定する。また、先頭チャネルCH50のH1/H2バイトには同図(2)項(11)で定義されたアクティブポインタを設定する。
このように、仮想従属チャネルのH1/H2バイトに挿入した逆方向の線形リストを採用することで、仮想従属チャネルのH1/H2バイトから先頭チャネルのH1/H2バイトが容易に検索できるとともに、検索した先頭チャネルのH1/H2バイトに設定されたアクティブポインタに基づき、先頭チャネル及びこれに線形リストで連結された仮想従属チャネルの連動処理が可能になる。
図8は、図7に示した光伝送装置100をより詳細に示した実施例である。
光伝送装置100においては、イースト側から入力されたOC−Nフレームは、OHドロップ部11_1で終端され、リングスイッチ(Ring Switch)12_1を経由した後、受信側ポインタ処理部13_1でポイント処理が実行され、スルーの場合、TSA部14でOC−Nフレームの各チャネルが時間スイッチングされた後、サービスセレクタ(Service selector)15_1及びリングブリッジ(Ring bridge)16_1経由した後、送信側ポインタ処理部17_1でポイント処理が実行され、OH挿入部18_1でOHが付加されてウェスト側のOC−Nフレームとして出力される。
ドロップの場合、OC−Nフレームに含まれる所定のチャネルは、TSA部14からパススイッチ(Path Switch)23を経由してポインタ処理部24でポインタ処理が実行され、OH挿入部25でOHが付加されてトリビュタリ側のOC−Mフレームで出力される。
ウエスト側から入力されたOC−Nフレームも、同様に、スルーの場合、OHドロップ部11_2、リングスイッチ12_2、受信側ポインタ処理部13_2、TSA部14、サービスセレクタ15_2、リングブリッジ16_2、送信側ポインタ処理部17_2、及びOH挿入部18_2経由してイースト側のOC−Nフレームとして出力される。
ドロップの場合、OC−Nフレームに含まれる所定の各チャネルは、同様に、ポインタ処理部24及びOH挿入部25を経由してトリビュタリ側のOC−Mフレームとして出力される。
なお、以後、符号11_1及び11_2、…、符号13_1及び13_2、符号15_1及び15_2、…、符号18_1及び18_2を、それぞれ、符号11,…,13,15,…18で総称することがある。
トリビュタリ側から入力されたOC−Mフレームは、OHドロップ部21で終端され、ポインタ処理部22でポインタ処理が実行された後、TSA部14で挿入され、それぞれ、サービスセレクタ15、リングブリッジ16、ポインタ処理部17、OH挿入部18を経由して、ウエスト側又はイースト側のOC−Nフレームに多重化されて出力される。
この光伝送装置100は、2F−BLSR(Bidirectional Line Switched Ring)/UPSR(Unidirectional Path Switched Ring)リングネットワークのADMに対応しており、高速OC−Nリングネットワーク、低速OC−Mインタフェースを持っている。本発明の光伝送装置100は、従来の光伝送装置(図示せず)と基本的な構成は、同じであるが、同図中で網掛けを施した[1]ポインタ処理部13,17,22,24、[2]TSA部14、[3−1]2F/4F−BLSRの受信切替用リングブリッジ16、[3−2]2F/4F−BLSRの送信切替用リングスイッチ12、[4]UPSRの受信切替用パススイッチ23、及び[5]サービスセレクタ15が、それぞれ、図9、図11、図13、図15、図17、及び図19に示すように本発明で機能追加/変更(網掛けを施した部分)される。
[1]ポインタ処理部
図9は、図8に示したポインタ処理部13,17,22,24をより詳細に示している。このポインタ処理部は、STS−1チャネルCH1〜CHn(低速フレーム)を多重化した受信側高速フレームSTS−Nで伝送される入力データ(R)711を受信し、このデータ(R)711に含まれ各STS−1チャネルに対応する受信ポインタP(R)1〜P(R)Nを、送信側高速フレームSTS−Nに対応する送信ポインタP(S)1〜P(S)Nに付け替えたデータ(S)713を送出する。
本発明に係るポインタ処理部は、従来のポインタ処理部と基本的な構成は同じである。
すなわち、ポインタ処理部は、入力データ(R)711に多重化されたSTS−1チャネルCH1〜CHnにそれぞれ対応する17バイトのESメモリ31_1〜31_n(以後、符号31で総称することがある。)と、受信ポインタP(R)1〜P(R)Nを検出すると共に、STS−1チャネルCH1〜CHnデータを対応するESメモリ31へ書き込む制御を行う受信側処理部30と、各ESメモリ31からSTS−1チャネルCH1〜CHnを読み出す制御を行うと共に、これらのSTS−1チャネルCH1〜CHnに生成した送信ポインタP(S)1〜P(S)Nを挿入したデータ(S)713を送出する送信側処理部40とで構成されている。
受信側処理部30は、それぞれ、STS−1チャネルCH1〜CHnに対応したポインタ検出部32_1〜32_n、アクティブポインタ部33_1〜33_n、J1カウンタ34_1〜34_n、SPEタイミング(R)部36_1〜36_n、書込カウンタ37_1〜37_n、セレクタ(R)38_1〜38_n、及びSPEオフセットカウンタ(R)35で構成されている。
送信側処理部40は、それぞれ、STS−1チャネルCH1〜CHnに対応したポインタ挿入部41_1〜41_n、NDF生成部42_1〜42_n、オフセット生成部43_1〜43_n、ポインタ生成部44_1〜44_n、SPEタイミング(S)部46_1〜46_n、読出カウンタ47_1〜47_n、セレクタ(S)48_1〜48_n、位相比較回路49_1〜49_n、及びSPEオフセットカウンタ(S)45で構成されている。
なお、以後、受信側処理部30及び送信側処理部40の構成要素の内で各STS−1チャネルCH1〜CHnに対応した各構成要素の符号を、それぞれ、符号32〜34,36〜38、符号41〜44,46〜49で総称することがある。
本発明に係るポインタ処理部が従来のポインタ処理部の構成及び動作と異なる点を以下に説明する。
受信側処理部30のポインタ検出部32及びセレクタ(R)38(図9の網掛した部分)、並びに送信側処理部40のポインタ生成部44及びセレクタ(S)48(同図の網掛した部分)の内部構成は、本発明に係る仮想コンカチネーションに対応するように変更されている。
コンカチネーション設定には、自動コンカチネーション(Auto Concatenation)及び設定コンカチネーション(Provisioning Concatenation)とがサポートされており、ポインタ検出部32及びポインタ生成部44は以下のように変更されている。
自動コンカチネーション:ポインタ検出部32は、H1/H2バイトに挿入された仮想コンカチネーションの線形リスト情報をCONC/Virt.CONC情報717として検出て、ポインタ生成部44に与える。この線形リスト情報をポインタ生成部44は、送信側のH1/H2バイトに再挿入する。
設定コンカチネーション:ポインタ生成部44が外部から設定された仮想コンカチネーションの線形リストをH1/H2バイトに挿入する。
セレクタ(R)38は、CONC/Virt.CONC情報717に基づき、本発明の仮想コンカチネーションを構成する仮想従属チャネルのESメモリへのライトタイミング及びスタッフ(Stuff)処理が、先頭チャネルのポインタ処理に連動するように変更され、同様に、セレクタ(S)48は、仮想従属チャネルのESメモリからのリードタイミング及びスタッフ処理が先頭チャネルのポインタ処理に連動するように変更されている。
仮想コンカチネーションに関するアラーム表示が、以下のように追加されている。
仮想コンカチネーションを構成するチャネルにLOP/PAISが検出された場合、ポインタ挿入部41は、LOPv/PAISvとしてPAISを仮想コンカチネーションを構成する各チャネルに送出する。ただし、オプション的に仮想コンカチネーション単位でのLOPv/PAISvの通知もサポートする。なお、詳細なLOPv/PAISv検出条件は従来のLOPc/PAIScと同様とする。
本発明に係るポインタ処理部のより詳細な動作を以下に説明する。
受信側処理部30は、受信側クロック(R)721とフレームタイミング(R)信号722とに同期して、送信側処理部40は、送信側クロック(S)731とフレームタイミング(S)信号732とに同期して動作する。
受信側処理部30において、SPEオフセットカウンタ(R)35は、フレームタイミング(R)信号722を基準として、受信データ(R)711のSPE位置(高速フレームのSPE位置)を示すSPEタイミング(R)信号723を生成し、SPEタイミング(R)部36に出力する。
また、SPEオフセットカウンタ(R)35は、フレームタイミング(R)信号722を基準として、SPEのオフセット(Offset)位置を示す1/783カウンタ値720を生成し、各J1カウンタ34に与える。
各ポインタ検出部32は、それぞれ、フレームタイミング(R)信号722を基準として、受信データ(R)711から自分に対応するSTS−1チャネルのH1/H2バイトを検出し、このH1/H2バイトを図7(2)項(11)〜(18)に示した定義に基づいて解釈し各チャネルCHのアクティブポインタ(Active Pointer)値、INC/DEC表示、AIS表示、LOP表示、及び従来のコンカチネーション表示等を検出する。
さらに、各ポインタ検出部32は、それぞれ、本発明に係る線形リスト及びこのリストに基づき仮想コンカチネーションを検索する。これらの検索機能が従来のポインタ検出部に追加された機能である。
そして、ポインタ検出部32は、検出したアクティブポインタでアクティブポインタ部33を更新し、正負スタッフを検出したとき、INC/DEC(R)情報718をSPEタイミング(R)部36に与え、AIS又はLOPを検出したとき、LOP/PAIS(PAIS INS)情報716をポインタ挿入部41に与え、従来のコンカチネーション表示、及び本発明の仮想コンカチネーションを検出したとき、CONC/Virt.CONC情報717をセレクタ(R)38、セレクタ(S)48、ポインタ生成部44に与える。
各J1カウンタ34は、それぞれ、カウンタ値720を基準として、アクティブポインタP(R)1〜P(R)NからSTS−1チャネルCH1〜CHnのJ1位置(パストレース)を示すJ1イネーブル(R)信号714_1〜714_nを生成する。
各STS−1チャネルCHのESメモリ31への書込アドレス(R)726の生成を以下に説明する。
SPEタイミング(R)部36は、受信データ(R)711のSPE位置を示すSPEタイミング(R)信号723とポインタ検出部32からのINC/DEC(R)情報718とに基づき、INC(R)情報受信時のH3バイトの次のバイト分、DEC(R)情報受信時のH3バイトの分を考慮したESメモリ31のタイミング信号724を生成する。
次段の書込カウンタ37は、タイミング信号724を1/17分周してESメモリ31への書込アドレス(R)725を生成する。但し、書込カウンタ37で生成されるアドレス(R)は、従来のコンカチネーション及び本発明に係る仮想コンカチネーションを考慮しておらず、各チャネルCH毎に独立した書込アドレスが生成される。
そこで、セレクタ(R)38は、仮想コンカチネーションを構成する従属チャネルの書込アドレスを先頭チャネルの書込アドレスに一致させるため、CONC/Virt.CONC情報717に基づき、従属チャネルの書込アドレスとして、先頭チャネルの書込アドレスを選択する。
CONC/Virt.CONC情報717の内のVirt.CONC情報(線形リスト)に基づき、従属チャネルの書込アドレスとして、先頭チャネルの書込アドレスを選択するセレクタ(R)38の機能は、本発明の仮想コンカチネーション処理のために追加された機能であり、セレクタ(R)38の構成及び動作は、後述する図10において、より詳細に説明する。
送信側処理部における各ESメモリ31からのSTS−1チャネルCHの読出アドレス(S)736の生成を以下に説明する。
SPEオフセットカウンタ(S)45は、送信側フレームタイミング(S)信号732を基準として、SPEのオフセット位置を示すカウンタ値730を生成してオフセット生成部43に与え、さらに、送信データ(S)713のSPE位置を示すSPEタイミング(S)信号733を生成し、SPEタイミング(S)部46へ出力する。
SPEタイミング(S)部46は、位相比較回路49からのINC/DEC要求719とSPEタイミング(S)信号733とに基づき、受信側クロック(R)721と送信側クロック(S)731との間の位相変動を考慮した、すなわち、INC(S)送信時のH3バイトへのデータ挿入(正スタッフ:positive stuffing)及びDEC(S)送信時のH3バイトの次のバイトにデータ不挿入(負スタッフ:negative stuffing)を考慮したESメモリ31へのタイミング信号734を生成する。
次段の読出カウンタ47は、タイミング信号734を1/17分周したアドレス(S)735を生成する。このアドレス(S)735は、従来のコンカチネーション及び本発明に係る仮想コンカチネーションを考慮しておらず、各チャネル毎に独立した読出アドレスである。
そこで、次段のセレクタ(S)48は、コンカチネーション信号に関して、従属チャネルの読出アドレスを先頭チャネルの読出アドレスに一致させるため、コンカチネーション設定を示したCONC/Virt.CONC情報717に基づき、従属チャネルに対しては先頭チャネルの読出アドレスを選択する。
CONC/Virt.CONC情報717の内のVirt.CONC情報に基づく、セレクタ(S)48の動作は、本発明の仮想コンカチネーション処理のために追加された機能である。この機能は、基本的には上述したセレクタ(R)38と同様であり、後述する図10において、より詳細に説明する。
上記のINC/DEC要求719は、位相比較回路49によって生成される。位相比較回路49は、書込カウンタ37からの書込タイミング信号727と読出カウンタ47からの読出タイミング信号737との間の位相差に基づき、通常一定間隔を保持している書込アドレスと読出アドレスとが近づいたことを検出し、通常の間隔に戻すような正/負スタッフを要求するINC/DEC要求719を送出する。
この正/負スタッフにより、受信側クロックと送信側クロックとの間の位相変動が吸収され、ESメモリ31において、受信側フレームから送信側フレームへのSTS−1チャネルCH1〜CHnの乗せ替えが正常に行われる。
データ712、及びこのデータ12と同様にフレーム乗せ替え処理されたJ1イネーブル(S)信号715は、読出アドレス(S)736でESメモリ31から読み出される。
各NDF生成部42は、現フレームのJ1イネーブル(S)信号715と1つ前のフレームのJ1イネーブル(S)信号715の位置比較を行い、変動した場合にはNDFイネーブル信号739を生成し、ポインタ生成部に与える。
また、各オフセット生成部43は、SPEオフセットカウンタ(S)45のカウンタ値730を基準として、J1イネーブル(S)信号の発生位置のオフセットを算出し、各チャネルに対応した10ビットポインタ値738を生成する。
各ポインタ生成部44は、NDFイネーブル信号739、10ビットポインタ値738、INC/DEC(S)要求719、及びCONC/Virt.CONC情報717に基づき、送信側H1/H2バイト740を生成し、これをポインタ挿入部41に与える。
この送信側H1/H2バイト740には、通常のコンカチネーション設定情報だけでなく、CONC/Virt.CONC情報717の内のVirt.CONC情報に基づき生成された本発明の仮想コンカチネーション設定情報(線形リスト情報)も含まれている。すなわち、ポインタ生成部44には、本発明の仮想コンカチネーション設定情報をH1/H2バイトに含めるための機能が追加されている。
ポインタ挿入部41は、送信側H1/H2バイト740を、乗せ替え処理後の主信号データ712に挿入したデータ(S)713を出力する。
これにより、ポインタ処理部は、ESメモリ31において、高速フレームのオーバヘッドの書込/読出タイミングの位相差変動を吸収することにより、受信側高速フレームから送信側高速フレームへの低速フレームの乗せ替えを行ったことになる。
また、特に、仮想コンカチネーションを構成する従属低速フレームは、その先頭の低速フレームと同一位相で送信側高速フレームに乗せ替えが行われたことになる。
図10(1)は、図9で示したチャネルCHkの受信側セレクタ(R)38_k及び送信側セレクタ(S)48_kの実施例を示しており、これらのセレクタ(R)38_k及びセレクタ(S)48_kは、従来のコンカチネーションSTS−48cまで対応可能である。両者の構成及び動作は同様であるので、受信側セレクタ(R)38_kの動作のみを以下に説明する。
一般に、チャネルCHkの受信側セレクタ(R)38及び送信側セレクタ(S)48は、STS−1,STS−3c,STS−12c,STS−48cのコンカチネーション設定情報に基づき、それぞれ、先頭チャネルの書込/読出アドレスを従属チャネルの書込/読出アドレスを選択する。さらに、本発明に係るに受信側セレクタ(R)38_k及び送信側セレクタ(S)48_kは、チャネルCHkが仮想コンカチネーションの仮想従属チャネルである場合、その先頭チャネルの書込/読出アドレスを選択する。
セレクタ(R)38_kは、CONC/Virt.CONC情報717に基づき、書込カウンタ37_1〜37_nからのアドレス(R)725_1〜725_nの内の1つを選択してチャネルCHkの書込アドレス(R)726_kとして出力する。
同図(2)は、書込アドレスを選択するチャネル番号(コンカチネーションの場合は先頭チャネル)を決定する論理を示しており、「設定」には、CONC/Virt.CONC情報717で通知された“コンカチの種別(コンカチでない(STS−1),コンカチSTS−3c,STS−12c,STS−48c,及び仮想コンカチネーション)”が示され、「選択タイミング」には、“コンカチの種別”に対応した各選択タイミング(アドレス)を指定するチャネル番号が、それぞれ、チャネルCHk,CHj,CHi,CHh、及び順方向リストの検索結果の先頭チャネルCHであることが示されている。
チャネルCHk,CHj,CHi,CHhは、受信側セレクタ(R)38_k毎に異なっており、例えば、受信側セレクタ(R)38_kが、チャネル33の受信側セレクタ(R)38_33である場合、チャネルCHk,CHj,CHi,CHhは、それぞれ、チャネル33を含むSTS−1,STS−3c,STS−12c,及びSTS−48cの先頭チャネルであるチャネルCH33,CH31,CH25,及びCH1に設定されている。
セレクタ(R)38_kにおいて、CONC/Virt.CONC情報717(従来のコンカチネーション情報及び本発明の線形リスト情報)に基づき、セレクタ51〜53は、それぞれ、コンカチネーションSTS−3cCHj’、STS−12cCHi’、STS−48cCHh’である場合、“1”側の入力を選択し、そうでない場合、“0”側の入力を選択して出力する。
仮想コンカチ判定部54は、仮想コンカチネーションを検出した場合、セレクタ56の“1”側の入力を選択し、そうでない場合、“0”側の入力を出力する。順方向線形リスト検索部55は、CONC/Virt.CONC情報717の内のVirt.CONC情報に基づき仮想コンカチネーションの線形リストを順方向に検索する。
従って、例えば、セレクタ(R)38_33は、従来のコンカチネーション及び本発明に係る仮想コンカチネーションが共に設定されていない場合、セレクタ51〜56が全て“0”側の入力を選択することによりチャネルCHkが選択され、セレクタ57は指定されたチャネルCHkのアドレス725_33を選択する。
また、セレクタ(R)38_33は、仮想コンカチネーションが設定されていない場合で、且つチャネルCH33が従来のSTS−3cのコンカチネーションの従属チャネルである場合、従来と同様に、このコンカチネーションの先頭チャネルCH31の書込アドレス726_31を選択する。上記の2例は、従来のセレクタ(R)と同様である。
また、セレクタ(R)38_33は、図4に示した仮想コンカチネーションが設定されている場合で、且つチャネルCH33が従来のSTS−3cのコンカチネーションの従属チャネルである場合、仮想コンカチネーションの先頭チャネルCH50の書込アドレス726_50を選択する。
この受信側セレクタ(R)38の選択処理においては、図8のポインタ処理部で述べたように、先頭チャネルのポインタバイトにおけるINC(R)/DEC(R)検出に基づく正/負スタッフ処理を行われており、先頭チャネルに連動した仮想従属チャネルの正/負スタッフ処理も実現される。
同様に、送信側セレクタ(S)48においても、CONC/Virt.CONC情報717に基づき、先頭チャネルのアドレスに連動して従属チャネルの読出アドレス(S)736が決定され、仮想従属チャネルの正/負スタッフ処理も実現される。
[2]TSA部
図11は、本発明に係るTSA部14の実施例を示しており、この実施例では、従来のTSA部14aの各出力側に、TSA設定コマンド741に基づきTSA部14a前のチャネルCH番号からTSA部14a後のチャネルCH番号への付替処理を行う線形リスト変換部61_1,61_2,62_1,62_2,63_1,63_2が、追加されている。
例えば、SONET/SDH光ネットワーク内のクロスコネクト処理を行うTSA部14においては、チャネルCHの乗り替えが行われるため、線形リスト変換部の付替処理は、本発明の仮想コンカチネーションを伝送するために、必要な機能である。
図12は、線形リスト変換部の付替処理例を示している。同図(1)は、TSA部14に入力される前の仮想コンカチネーション(STS−1チャネルCH2←STS−1チャネルCH12←STS−3cチャネルCH3)を示している。
この線形リスト付替処理は、例えば、仮想コンカチネーションのクロスコネクションを設定するためのTSA設定コマンド741:“ENT−CRS−STS5V::LS1−CH2&LS1−CH12&LS1−3c−CH3,HS1−CH50&HS1−CH15&HS1−3c−CH11:CTAG;”で実行される。
このコマンド741は、“低速LS1−CH2→高速HS1−CH50、低速LS1−CH12→高速HS1−CH15、低速LS1−3c−CH3→高速HS1−3c−CH11”の線形リスト付替えを意味する。なお、チャネルCH50は、先頭チャネルであるため、線形リストの付替は発生しない。
同図(2)は、TSA部14でクロスコネクトされた仮想コンカチネーション(STS−1チャネルCH50,STS−1チャネルCH15,STS−3cチャネルCH11)を示している。この仮想コンカチネーションの線形リストは、TSA部14に入力される前の仮想コンカチネーションの線形リストであり、STS−1チャネルCH50,STS−1チャネルCH15,STS−3cチャネルCH11は連結されていない。
そこで、線形リスト変換部は、同図(3)に示すような線形リストの付替えを行い、仮想コンカチネーション(STS−1チャネルCH50←STS−1チャネルCH15←STS−3cチャネルCH11)に対応した線形リストを生成する。
なお、BLSRのスルー局を含み、TSA部14がスルー(Through)設定されている場合、線形リスト付替処理は省略可能である。
[3]リングブリッジ及びリングスイッチ
2ファイバ方式のOC−N 2F−BLSRリングネットワークは、時計方向伝送用ファイバと反時計方向伝送用ファイバが各々1本あり、1本のファイバ内のSTS−NフレームにおけるチャネルCHの内のN/2個が現用チャネル(Work Channel)で、残りのN/2個が他方のファイバの予備用チャネル(Protection Channel)となる。例えば、OC−192の場合、時計方向伝送用ファイバのSTS−192フレーム内のチャネルCH1〜CH96が現用チャネルであり、この現用チャネルの予備用チャネルは、反計方向伝送用ファイバのチャネルCH97〜CH192である。
例えば、図8の光伝送装置100において、リングブリッジ16_2は、ウエスト側の送信OC−Nに障害が発生した場合、イースト側のOC−Nから入力された現用チャネルCH1〜CH96のデータを、OHドロップ部11_1、リングスイッチ12_1、ポインタ処理部13_1、TSA部14、及びサービスセレクタ15_1経由して受信し、イースト側のOC−Nの予備チャネルCH98〜CH192でループバックする。このとき、リングブリッジ16_2は、線形リスト付替を行う必要がある。
一方、上記の光伝送装置100から現用チャネルCH1〜CH96でデータを受信していた光伝送装置100は、イースト側のOC−Nフレームに故障が発生したため、上記のループバックされた予備チャネルCH97〜CH192のデータをウエスト側のOC−Nフレームから受信する。
データを受信した光伝送装置100において、リングスイッチ12_1は、OHドロップ部11_2を経由して、予備チャネルCH98〜CH192のデータを受信し、このデータを現用チャネルCH1〜CH96で送出する。このとき、リングスイッチ12_2は、線形リストの付替を行う必要がある。
なお、4ファイバ方式のOC−N 4F−BLSRリングネットワークにおいては、障害発生時、現用ファイバから予備用ファイバに一括して切り替わるため、チャネル番号が変更されないため、線形リスト付替は必要でない。
[3−1]リングブリッジ
図13は、本発明に係るリングブリッジ16の実施例を示している。このリングブリッジ16は、セレクタ65a,66a,67aで構成された従来のリングブリッジの出力側に線形リスト変換部68a(網掛け部)が追加されている。2F−BLSRリングネットワークにおいて、2F/4F設定信号745は“2F設定”に設定されている。
一方のファイバに障害が発生した場合に、リングブリッジ制御信号743(図8の743_1,743_2参照)は“予備”を示し、リングブリッジ16のセレクタ66a,67aは現用チャネルCH1〜CH96から予備用チャネルCH97〜CH192に切り替えるが、線形リストは現用チャネルCH1〜CH96に対応したリストである。そこで、線形リスト変換部68aは、現用チャネル番号に対応する線形リストを予備チャネル番号に対応する線形リストに付え替える。
図14は、図13に示した線形リスト変換部68aの線形リストの付替動作例を示している。同図(1)は、線形リスト変換部68aに入力される現用チャネルの仮想コンカチネーション(STS_1チャネルCH50←STS−1チャネルCH15←STS−3cチャネルCH11(先頭CHチャネル:STS−1チャネルCH31))を示している。
同図(2)は、線形リスト変換部68aに入力された予備用チャネルの仮想コンカチネーション(STS−1チャネルCH146,STS−1チャネルCH111,STS−3cチャネルCH43(先頭チャネル:STS−1チャネルCH127))を示しており、STS−1チャネルCH146,STS−1チャネルCH111,STS−3cチャネルCH43は線形リストでコンカチネーションされていない。
そこで、線形リスト変換部68aは、同図(3)に示すように線形リストの付替を実行し、仮想コンカチネーション(STS−1チャネルCH146←STS−1チャネルCH111←STS−3cチャネルCH43)の線形リストを設定する。
すなわち、線形リスト変換部68aは、前の線形リストのチャネル番号(CH15,CH50)に、“96(=N/2(N=192の場合))”を単に加算することにより、予備チャネル番号(CH111,CH146)に対応する線形リストへの付替を実現している。
[3−2]リングスイッチ
図15は、本発明に係るリングスイッチ12の実施例を示している。このリングスイッチ12の構成は、図13に示したリングブリッジ16の構成と同様であり、セレクタ65b,66b,67bで構成された従来のリングスイッチの出力側に線形リスト変換部68b(網掛け部)が追加されている。
2F−BLSRリングネットワークにおいて、2F/4F設定信号744は“2F設定”に設定されている。一方のファイバに障害が発生した場合に、リングスイッチ制御信号742(図8の信号742_1,742_1参照)が“予備”を示し、リングスイッチ12のセレクタ66b,67bは、予備チャネルCH97〜CH192から送られて来たデータを現用チャネルCH1〜CH96に切戻す。このとき、セレクタ67bから出力される現用チャネルCH1〜CH96には、予備チャネルCH97〜CH192に対応した線形リストである。そこで、線形リスト変換部68bは、予備チャネル番号に対応する線形リストを現用チャネル番号に対応する線形リストに付え替える。
図16は、図15に示した線形リスト変換部68bの線形リストの付替動作例を示している。同図(1)は、予備用チャネルの仮想コンカチネーション(STS−1チャネルCH146←STS〜1チャネルCH111←STS−3cチャネルCH43(先頭チャネル:STS−1チャネルCH127)を示している。
同図(2)は、線形リスト変換部68bへ入力前の現用チャネルの仮想コンカチネーション(STS−1チャネルCH50,STS−1チャネルCH15,STS−3cチャネルCH11(先頭チャネル:STS−1チャネルCH31)を示しており、STS−1チャネルCH50,STS−1チャネルCH15,STS−3cチャネルCH11はコンカチネーションされていない。
そこで、線形リスト変換部68bは、同図(3)に示すように線形リストの付替を実行し、仮想コンカチネーション(STS−1チャネルCH146←STS−1チャネルCH111←STS−3cチャネルCH43)の線形リストを設定する。
なお、線形リスト変換部68bは、前の線形リストの予備チャネル番号からN/2=“96(N=192の場合)”を単に減算することにより、現用チャネル番号に対応する線形リストへの付替ができる。
[4]パススイッチ
図17は、本発明に係るパススイッチ23の実施例を示している。このパススイッチ23は、イースト側又はウエスト側からのチャネルデータをチャネル単位で選択して出力する(図8参照)。パススイッチの一般的な動作例を以下に説明する。
UPSRリングネットワークにおいては、送信側の光伝送装置100は、例えば、イースト側の現用チャネルへ送出したデータと同一のデータをウエスト側の予備用チャネルにも送出する。受信側の光伝送装置100において、パススイッチ23は、ウエスト側の現用チャネル及びイースト側の予備用チャネルから同一のデータを受信するが、通常、現用チャネルからデータを受信する。
ウエスト側の現用チャネルに障害が発生した場合、パススイッチ23は、現用チャネルから予備用チャネルへ受信切替を行う。
また、従来のパススイッチは、従来のコンカチネーション(先頭チャネル及びその従属チャネル)をコンカチネーション単位で同一方向(イースト/ウエスト)から受信するようにチャネルセレクタを制御している。
本発明のパススイッチ23は、図17に示すように、セレクタ89、コンカチ制御部88(網掛が施されたブロック)、セレクタ87、OR回路81e,81w、及び比較部86で構成される従来のパススイッチに、さらに、OR回路82e〜85e、及びOR回路82w〜85w(網掛が施された回路)が付加されている。
この内のコンカチ制御部88は、コンカチ/仮想コンカチ信号746の内のコンカチ信号に基づき従来のコンカチネーションを同一方向(イースト/ウエスト)のチャネルから選択する従来の選択機能の他に、コンカチ/仮想コンカチ信号746の内の仮想コンカチ信号に基づき、本発明に用いる仮想コンカチネーションの従属チャネルをその先頭チャネルと同一方向のチャネルから選択するようにセレクタ89を制御する。
ここで、本発明に用いる仮想コンカチネーションを構成するチャネル(低速フレーム)にパスオーバヘッド(POH)が挿入されている場合におけるB3バイト及びC2バイトに関する処理を以下に説明する。なお、この処理はパススイッチ23及び後述するサービスセレクタ15に共通する処理である。
・B3パフォーマンス、B3Major/B3Minorについては構成チャネル毎に検出する。すなわち、B3バイトは構成チャネル毎に挿入されるものとする。
・C2バイト通知やUNEQ/PLM/PDIの検出・通知については構成チャネル毎に処理する。すなわち、C2バイトは、構成チャネル毎に挿入されるものとする。
・各構成チャネル毎に検出された“B3エラー”の個数を加算して、仮想コンカチネーション単位でのパフォーマンスとして通知する。
・各構成チャネル毎のB3Major/B3Minor検出結果のOR演算し、仮想コンカチネーション単位でのB3MAJv/B3MINvとして通知する。
・各構成チャネル毎のUNEQ/PLM/PDIの検出結果のOR演算し、仮想コンカチネーション単位でのUNEQv/PLMv/PDIv表示として通知する。
また、サービスセレクタ15及びパススイッチ23の自動切替条件は、(1)LOP,PAIS,UNEQ,PLM,B3MAJ,PDI,B3MIN表示の各判定条件は、仮想コンカチネーションを構成する全チャネルの表示をOR演算した結果を用いるように変更する。
これらの演算処理は、上記のOR回路81e,81w,82e〜85e,82w〜85w及び比較部で行われる。比較部86は、仮想コンカチネーションでない場合、従来と同様に、イースト側のLOP,PAIS,UNEQ,及びPLMをOR回路81eでOR演算した結果、並びにB3MAJ,PDI,及びB3MIN(図21参照)と、ウエスト側のLOP,PAIS,UNEQ,及びPLMをOR回路81wでOR演算した結果,並びにB3MAJ,PDI,及びB3MINとを比較し、正常なルート(イースト又はウエスト)を自動的に決定する。
セレクタ87は、PSWモードが“自動”に設定されている場合、比較部86が決定したイースト又はウエスト方向からのチャネルを選択するようにセレクタ89に対して、コンカチ制御部88を経由して、指定する。
本発明のイースト/ウエスト選択判定が、従来の判定と異なる点は、比較部86に入力されるイースト及びウエスト側のLOP,PAIS,UNEQ,及びPLMのOR演算結果、並びにB3MAJ,PDI,及びB3MINが、それぞれ、仮想コンカチネーションを構成する全てのチャネルのLOP,PAIS,UNEQ,及びPLMのOR演算結果、並びにB3MAJ,PDI,及びB3MINを、OR回路82e〜85e、及びOR回路82w〜85wでOR演算した結果に基づき判定することである。
すなわち、パススイッチ23は、仮想コンカチネーションを構成する全てのチャネルの各LOP,PAIS,UNEQ,PLM,B3MAJ,PDI,及びB3MINの判定条件をOR演算した結果に基づき、イースト/ウエスト選択判定を行っている。
図18に示すように、例えば、仮想従属チャネルCH15が“B3MAJ”である場合、この仮想従属チャネルCH15と、同一方向(イースト/ウエスト)で、仮想コンカチネーションを構成する先頭チャネルCH50及び仮想従属チャネルCH31〜CH33が“B3MAJ”として扱われる。
セレクタ87が、PSWモードが“スイッチ制御”に設定されている場合、スイッチが指定したイースト又はウエスト方向からのチャネルを選択するようにセレクタ89に対して指定することは、従来と同様である。
[5]サービスセレクタ
図19は、図8に示した本発明に係るサービスセレクタ15の実施例を示している。このサービスセレクタ15の構成は、図17に示したパススイッチ23と同様であるが、セレクタ79にスルー(Through)及び挿入(Add)のチャネルが入力されることと、LOP,PAIS,UNEQ,PLM,B3MAJ,PDI,及びB3MINがスルー及び挿入のチャネルのアラーム信号であることが異なっている。
図8に示したように、例えば、サービスセレクタ15_1は、イーストサイド側からスルーで送られて来たチャネルデータ及びトリビュタリ側から挿入されて来たチャネルデータをチャネル単位で選択する機能を有している。
本発明のサービスセレクタ15は、従来のコンカチネーションの従属チャネルをその先頭チャネルと同一方向(スルー/挿入)から選択する機能に加えて、コンカチ/仮想コンカチ信号747が仮想コンカチを示すとき、仮想コンカチネーションの仮想従属チャネルをその先頭チャネルと同一方向(スルー/挿入)から選択する機能を備えている。
また、サービスセレクタ15は、パススイッチ23と同様に、仮想コンカチネーションでない場合、スルー及び挿入のLOP,PAIS,UNEQ,B3MAJ,PDI,及びB3MINに基づき正常な方のルート(スルー又は挿入)を自動的に決定し、仮想コンカチネーションである場合、スルー及び挿入の仮想コンカチネーションされた先頭チャネル及び従属チャネルのLOP,PAIS,UNEQ,PLM,B3MAJ,PDI,及びB3MINに基づき、正常な方のルート(スルー又は挿入)を自動的に決定する。
すなわち、サービスセレクタ15は、仮想コンカチネーションを構成する全てのチャネルの各LOP,PAIS,UNEQ,及びPLMのOR演算結果、並びにB3MAJ,PDI,及びB3MINの判定条件をOR演算した結果に基づき、スルー/挿入選択判定を行っている。
図20は、サービスセレクタ15が、例えば、仮想従属チャネルCH15が“LOP”である場合に、このチャネルCH15と同一方向(スルー/挿入)の各仮想コンカチネーションを構成するチャネルCH50及びチャネルCH31〜CH33が“LOP”として扱われることを示している。
以上説明したように、本発明に係る仮想コンカチネーション伝送方法及び装置によれば、高速フレーム内の任意の位置に複数の低速フレームを多重化して仮想コンカチネーションを構成し、位相関係を保って、該低速フレームの位置の連結状態を示す仮想コンカチネーション情報と共に伝送するようにしたので、一連の送信データを収容することが可能な最小の低速フレーム数だけのチャネルを確保すればよく、無駄なチャネルの浪費がなくなると共に、連続したチャネル位置を確保するために、既に用いられているチャネルのデータを別のチャネルに移動することによる瞬断は発生しない。また、位相関係を保って伝送されるため、受信側でデータを組み立てるためのバッファメモリを必要としない。
また、本発明の仮想コンカチネーション伝送方法及び装置は、容易にSONET/SDHネットワークに対応することが可能である。例えば、ポインタ処理回路における回路変更・追加は小規模である。仮想コンカチネーション情報をH1/H2バイトに挿入することも可能であり、新たに、仮想コンカチネーション情報のための領域を確保する必要はない。
すなわち、本発明の仮想コンカチネーション伝送方法及び装置によれば、SONET/SDH光伝送ネットワークにおいて、既存のコンカチネーション階層の制限を受けないSTS−Mc(M=1,2,…,N)コンカチネーションの回線を提供することが可能になる。これにより、現在もなお急速に発展しつづけている情報サービス産業が扱う様々なマルチメディアデータを柔軟に伝送する回線使用効率及び自由度の高い光伝送ネットワークの構築に寄与するところが大きい。
【図面の簡単な説明】
図1は、本発明に係る仮想コンカチネーション伝送方法の原理を示した図である。
図2は、本発明に係る仮想コンカチネーション伝送方法の原理を示した図である。
図3は、本発明に係る仮想コンカチネーション伝送方法の原理に基づき割り当てられた仮想コンカチネーションチャネル例を示した図である。
図4は、本発明に係る仮想コンカチネーション伝送方法の原理を示した図である。
図5は、本発明に係る仮想コンカチネーション伝送方法における仮想コンカチネーション情報(線形リスト)例を示した図である。
図6は、本発明に係る仮想コンカチネーション伝送装置で構成されたリングネットワーク例における仮想コンカチネーションの伝送例を示したブロック図である。
図7は、本発明に係る仮想コンカチネーション伝送方法におけるH1/H2/H3バイトの定義を示した図である。
図8、本発明に係る仮想コンカチネーション伝送装置の実施例を示したブロック図である。
図9は、本発明に係る仮想コンカチネーション伝送装置におけるポインタ処理部の実施例を示したブロック図である。
図10は、本発明に係る仮想コンカチネーション伝送装置のポインタ処理部における送信側及び受信側のチャネルCHkセレクタの実施例を示したブロック図である。
図11は、本発明に係る仮想コンカチネーション伝送装置における線形リスト変換機能付きTSA部の実施例を示したブロック図である。
図12は、本発明に係る仮想コンカチネーション伝送装置の線形リスト変換機能付きTSA部における線形リスト付替処理例を示した図である。
図13は、本発明に係る仮想コンカチネーション伝送装置における線形リスト変換機能付きリングブリッジの実施例を示したブロック図である。
図14は、本発明に係る仮想コンカチネーション伝送装置における線形リスト変換機能付きリングブリッジにおける線形リスト付替処理例を示した図である。
図15は、本発明に係る仮想コンカチネーション伝送装置における線形リスト変換機能付きリングスイッチの実施例を示したブロック図である。
図16は、本発明に係る仮想コンカチネーション伝送装置の線形リスト変換機能付きリングスイッチにおける線形リスト付替処理例を示した図である。
図17は、本発明に係る仮想コンカチネーション伝送装置におけるパススイッチの実施例を示したブロック図である。
図18は、本発明に係る仮想コンカチネーション伝送装置のパススイッチにおけるアラーム表示(B3MAJ)発生時の処理例を示した図である。
図19は、本発明に係る仮想コンカチネーション伝送装置におけるサービスセレクタの実施例を示したブロック図である。
図20は、本発明に係る仮想コンカチネーション伝送装置のサービスセレクタにおけるアラーム表示(LOP)発生時の処理例を示した図である。
図21は、従来のSONET/SDHネットワークのSTS−Nフレームを示した図である。
図22は、従来のSONET/SDHネットワークのSTS−1フレーム及びV3仮想コンテナ例を示した図である。
図23は、従来のSONET/SDHネットワークにおけるパス(チャネル)アラームを示した図である。
図24は、従来のSONET/SDHネットワークのSTS−192フレームにおける192×STS−1チャネル多重化順序を示した図である。
図25は、従来のコンカチネーションに基づくデータ多重化例を示した図である。
符号の説明
100,100_1〜100_3 伝送装置
11,11_1,11_2 OHドロップ部
12,12_1,12_2 リングスイッチ
13,13_1,13_2 受信側ポインタ処理部、PTR(R)
14,14a TSA部 15,15_1,15_2 サービスセレクタ
16,16_1,16_2 リングブリッジ
17,17_1,17_2 送信側ポインタ処理部、PTR(S)
18,18_1,18_2 OH挿入部 21 OHドロップ部
22 挿入側ポインタ処理部、PTR(A) 23 パススイッチ
24 分岐側ポインタ処理部、PTR(D) 25 OH挿入部
30 受信側処理部
31,31_1〜31_n エラスティックストアメモリ、ESメモリ
32,32_1〜32_n ポインタ検出部
33,33_1〜33_n アクティブポインタ部
34,34_1〜34_n J1カウンタ
35 受信側SPEオフセットカウンタ(R)
36,36_1〜36_n SPEタイミング(R)部
37,37_1〜37_n 書込カウンタ、WCTR
38,38_1〜38_n 受信側セレクタ(R)
40 送信側処理部
41,41_1〜41_n ポインタ挿入部
42,42_1〜42_n NDF生成部
43,43_1〜43_n オフセット生成部
44,44_1〜44_n ポインタ生成部
45 送信側SPEオフセットカウンタ(S)
46,46_1〜46_n SPEタイミング(S)部
47,47_1〜47_n 読出カウンタ、RCTR
48,48_1〜48_n 送信側セレクタ(S)49 位相比較回路、PC
51,52,53 セレクタ 54 仮想コンカチ判定部
55 順方向線形リスト検索部 56,57 セレクタ
61_1,61_2,62_1,62_2,63_1,63_2 線形リスト変換部
65a〜67a,65b〜67b セレクタ
68a,68b 線形リスト変換部
71a〜75a,71t〜75t OR回路 76 比較部
77,79 セレクタ 78 コンカチ制御部
81e〜85e,81w〜85w OR回路 86 比較部
87,89 セレクタ 88 コンカチ制御部
90_1〜90_3 光ファイバ
601 ニューデータフラグビット 602 SSビット
603 10ビットポインタ値 604 負ジャスティフィケーション位置
605 正ジャスティフィケーション位置
701a,702a 線形リスト情報
701b,702b 仮想コンカチネーション
711 データ(R) 712 データ
713 データ(S)
714,714_1〜714_n J1イネーブル(R)信号
715,715_1〜715_n J1イネーブル(S)信号
716 LOP/PAIS(PAIS INS)情報
717 コンカチ/仮想コンカチ情報、CONC/Virt.CONC情報
718 INC/DEC(R)情報 719 INC/DEC(S)要求
720 カウンタ値
721 クロック(R) 722 フレームタイミング(R)信号
723 SPEタイミング(R)信号 724 タイミング信号
725,725_1〜725_k〜725_n アドレス(R)
726,726_1〜736_k〜726_n 書込アドレス(R)
727 書込タイミング信号 730 カウンタ値
731 クロック(S) 732 フレームタイミング(S)信号
733 SPEタイミング(S)信号 734 タイミング信号
735,735_1〜735_k〜725_n アドレス(S)
736,736_1〜736_k〜736_n 読出アドレス(S)
737 読出タイミング信号 738 10ビットポインタ値
739 NDFイネーブル信号 740 送信側H1/H2バイト
741 TSA設定コマンド
742,742_1,742_2 リングスイッチ制御信号
743,743_1,743_2 リングブリッジ制御信号
744,745 2F/4F設定信号
746,747 コンカチ/仮想コンカチ信号
T11,T11a〜T11c,T13,T13a〜T13c ESメモリライト/リードタイミング
T11ar〜T11cr,T13ar〜T13cr ESメモリライトタイミング
T11aw〜T11cw,T13aw〜T13cw ESメモリリードタイミング
図中、同一符号は同一又は相当部分を示す。

Claims (40)

  1. 高速フレーム内の任意の位置に多重化されて仮想コンカチネーションを構成する複数の低速フレームを位相関係を保って、該低速フレームの位置の連結状態を示す仮想コンカチネーション情報と共に伝送することを特徴とした仮想コンカチネーション伝送方法。
  2. 請求の範囲1において、
    該仮想コンカチネーションを構成する該複数の低速フレームを、該高速フレームから別の高速フレームに該仮想コンカチネーション情報に基づき該連結状態及び該位相関係を保って多重化することを特徴とした仮想コンカチネーション伝送方法。
  3. 請求の範囲1又は2において、
    該仮想コンカチネーションを構成する該複数の低速フレーム間の位相関係が同一位相であることを特徴とした仮想コンカチネーション伝送方法。
  4. 請求の範囲2において、
    先頭の低速フレームの位置を基準として、該位相関係を保つ位置に他の低速フレームを多重化することを特徴とした仮想コンカチネーション伝送方法。
  5. 請求の範囲2において、
    該仮想コンカチネーション情報の内の該位置情報を、該別の高速フレームに多重化された該複数の低速フレームの位置情報に付え替えることを特徴とした仮想コンカチネーション伝送方法。
  6. 請求の範囲2において、
    先頭の該低速フレームの正負スタッフに連動して、他の該低速フレームの正負スタッフ処理を行い多重化することを特徴とした仮想コンカチネーション伝送方法。
  7. 請求の範囲1において、
    該低速フレームが、複数の低速フレームでコンカチネーションされた低速フレームであることを特徴とした仮想コンカチネーション伝送方法。
  8. 請求の範囲1において、
    該仮想コンカチネーション情報が、該高速フレームのオーバヘッドに挿入されていることを特徴とした仮想コンカチネーション伝送方法。
  9. 請求の範囲8において、
    該仮想コンカチネーション情報が、該オーバヘッドの各低速フレームの先頭位置を示すポインタに挿入され、該ポインタに設定されるオフセット値の範囲以外の値で、各低速フレームに連結された次の低速フレームが多重化されている位置を指定する線形リストであることを特徴とした仮想コンカチネーション伝送方法。
  10. 請求の範囲9において、
    該仮想コンカチネーションを構成する該複数の低速フレームに対応するいずれかの該ポインタがアラーム表示したとき、他の該低速フレームに対応する該ポインタをアラーム表示にすることを特徴とした仮想コンカチネーション伝送方法。
  11. 請求の範囲9において、
    該仮想コンカチネーション情報が、循環連結状態を示すとき、該仮想コンカチネーションを構成する全ての低速フレームに対応する該ポインタをアラーム表示にすることを特徴とした仮想コンカチネーション伝送方法。
  12. 請求の範囲1において、
    該仮想コンカチネーションを構成する低速フレームで発生したアラーム表示を各低速フレーム単位又は仮想コンカチネーション単位で処理することを特徴とした仮想コンカチネーション伝送方法。
  13. 請求の範囲1において、
    タイムスロット割当設定情報に基づき、該仮想コンカチネーションを構成する該複数の低速フレームの位置を変替すると共に、該仮想コンカチネーション情報の内の該位置情報を付え替えることを特徴とした仮想コンカチネーション伝送方法。
  14. 請求の範囲1において、
    該仮想コンカチネーションを構成する該低速フレーム内のいずれか1つがアラーム表示したとき、該仮想コンカチネーション単位で別のパスに切り替えることを特徴とした仮想コンカチネーション伝送方法。
  15. 請求の範囲1において、
    該仮想コンカチネーションを構成する該複数の低速フレームは、パス切替時、仮想コンカチネーション単位で先頭の低速フレームのパスと同一方向のパスに切り替えることを特徴とした仮想コンカチネーション伝送方法。
  16. 請求の範囲1において、
    該高速フレーム及び該低速フレームが、SONET/SDHフレームであることを特徴とした仮想コンカチネーション伝送方法。
  17. 請求の範囲16において、
    該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報にN/2を加算する位置付替を行うことにより、ライン切替を行うことを特徴とした仮想コンカチネーション伝送方法。
  18. 請求の範囲16において、
    該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報からN/2を減算する位置付替を行うことにより、ライン切替を行うことを特徴とした仮想コンカチネーション伝送方法。
  19. 請求の範囲1において、
    該仮想コンカチネーション情報が、設定可能であることを特徴とした仮想コンカチネーション伝送方法。
  20. 高速フレーム内の任意の位置に多重化されて仮想コンカチネーションを構成する複数の低速フレームを位相関係を保って、該低速フレームの位置の連結状態を示す仮想コンカチネーション情報と共に伝送することを特徴とした仮想コンカチネーション伝送装置。
  21. 請求の範囲20において、
    該複数の低速フレームを、該高速フレームから別の高速フレームに該仮想コンカチネーション情報に基づき分散した位置に該位相関係を保って多重化するフレーム処理部を備えたことを特徴とする仮想コンカチネーション伝送装置。
  22. 請求の範囲20又は21において、
    該仮想コンカチネーションを構成する該複数の低速フレーム間の位相関係が同一位相であることを特徴とした仮想コンカチネーション伝送装置。
  23. 請求の範囲21において、
    該フレーム処理部が、先頭の該低速フレームの位置を基準として、該位相関係を保つ位置に他の該低速フレームを多重化することを特徴とした仮想コンカチネーション伝送装置。
  24. 請求の範囲21において、
    該仮想コンカチネーション情報の内の該位置情報を、該別の高速フレームに多重化された該複数の低速フレームの位置情報に付け替える仮想コンカチネーション情報変換部を備えたことを特徴とする仮想コンカチネーション伝送装置。
  25. 請求の範囲21において、
    該フレーム処理部が、先頭の該低速フレームの正負スタッフに連動して、他の該低速フレームの正負スタッフ処理を行い多重化することを特徴とした仮想コンカチネーション伝送装置。
  26. 請求の範囲20において、
    該低速フレームが、複数の低速フレームをコンカチネーションした低速フレームであることを特徴とした仮想コンカチネーション伝送装置。
  27. 請求の範囲20において、
    該仮想コンカチネーション情報が、該高速フレームのオーバヘッドに挿入されていることを特徴とした仮想コンカチネーション伝送装置。
  28. 請求の範囲27において、
    該仮想コンカチネーション情報が、該オーバヘッドの各低速フレームの先頭位置を示すポインタに挿入され、該ポインタに設定されるオフセット値の範囲以外の値で、各低速フレームに連結された次の低速フレームが多重化されている位置を指定する線形リストであることを特徴とした仮想コンカチネーション伝送装置。
  29. 請求の範囲28において、
    該仮想コンカチネーションを構成する該複数の低速フレームに対応するいずれかの該ポインタがアラーム表示したとき、他の該低速フレームに対応する該ポインタをアラーム表示にすることを特徴とした仮想コンカチネーション伝送装置。
  30. 請求の範囲28において、
    該仮想コンカチネーション情報が、循環連結状態を示すとき、該仮想コンカチネーションを構成する全ての低速フレームに対応する該ポインタをアラーム表示にすることを特徴とした仮想コンカチネーション伝送装置。
  31. 請求の範囲20において、
    該仮想コンカチネーションを構成する低速フレームで発生したアラーム表示を各低速フレーム単位又は仮想コンカチネーション単位で処理することを特徴とした仮想コンカチネーション伝送装置。
  32. 請求の範囲20において、
    所定のタイムスロット割当設定情報に基づき、該仮想コンカチネーションを構成する該複数の低速フレームの位置を変換すると共に、該仮想コンカチネーション情報の内の該位置情報を付け替えるタイムスロット割当部を備えたことを特徴とする仮想コンカチネーション伝送装置。
  33. 請求の範囲20において、
    該仮想コンカチネーションを構成する該低速フレーム内のいずれか1つがアラーム表示したとき、該仮想コンカチネーション単位で別のパスに切り換えを行うパススイッチを備えたことを特徴とする仮想コンカチネーション伝送装置。
  34. 請求の範囲20において、
    該仮想コンカチネーションを構成する該低速フレーム内のいずれか1つがアラーム表示したとき、該仮想コンカチネーション単位でパス切替を行うサービスセレクタを備えたことを特徴とする仮想コンカチネーション伝送装置。
  35. 請求の範囲20において、
    該仮想コンカチネーションを構成する該複数の低速フレームは、パス切替時、仮想コンカチネーション単位で先頭の低速フレームのパスと同一方向のパスに切替るサービスセレクタを備えたことを特徴とする仮想コンカチネーション伝送装置。
  36. 請求の範囲20において、
    該仮想コンカチネーションを構成する該複数の低速フレームは、パス切替時、仮想コンカチネーション単位で先頭の低速フレームのパスと同一方向のパスに切替るパススイッチを備えたことを特徴とする仮想コンカチネーション伝送装置。
  37. 請求の範囲20において、
    該高速フレーム及び該低速フレームが、SONET/SDHフレームであることを特徴とした仮想コンカチネーション伝送装置。
  38. 請求の範囲37において、
    該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報にN/2を加算する位置付替を行うことにより、ライン切替を行うリングブリッジを備えたことを特徴とする仮想コンカチネーション伝送装置。
  39. 請求の範囲37において、
    該高速フレームがSTS−N(N=12,48,192,768)フレームである2F−BLSRリングネットワークにおいて、該仮想コンカチネーション情報の内の位置情報からN/2を減算する位置付替を行うことにより、ライン切替を行うリングスイッチを備えたことを特徴とする仮想コンカチネーション伝送装置。
  40. 請求の範囲20において、
    該仮想コンカチネーション情報が、設定可能であることを特徴とした仮想コンカチネーション伝送装置。
JP2003544950A 2001-11-13 2001-11-13 仮想コンカチネーション伝送方法及び装置 Expired - Fee Related JP3892441B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/009917 WO2003043240A1 (fr) 2001-11-13 2001-11-13 Procede et dispositif de transmission de concatenation virtuelle

Publications (2)

Publication Number Publication Date
JPWO2003043240A1 JPWO2003043240A1 (ja) 2005-03-10
JP3892441B2 true JP3892441B2 (ja) 2007-03-14

Family

ID=11737937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003544950A Expired - Fee Related JP3892441B2 (ja) 2001-11-13 2001-11-13 仮想コンカチネーション伝送方法及び装置

Country Status (3)

Country Link
US (1) US8068518B2 (ja)
JP (1) JP3892441B2 (ja)
WO (1) WO2003043240A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424036B1 (en) * 2002-08-26 2008-09-09 Pmc-Sierra, Inc. Efficient virtual concatenation datapath for SONET/SDH
US20050147106A1 (en) * 2002-09-26 2005-07-07 Kazumasa Sonoda Transmission system
US7843922B1 (en) 2002-12-18 2010-11-30 Cypress Semiconductor Corporation Method and apparatus for separation of control and data packets
US7400620B1 (en) 2002-12-19 2008-07-15 Cypress Semiconductor Corporation Method and apparatus for handling small packets
US7493392B1 (en) 2002-12-20 2009-02-17 Cypress Semiconductor Corporation Method and apparatus for assembly of virtually concatenated data
US7420975B1 (en) 2002-12-20 2008-09-02 Cypress Semiconductor Corporation Method and apparatus for a high-speed frame tagger
US7324562B1 (en) * 2002-12-20 2008-01-29 Cypress Semiconductor Corporation Method and apparatus for introducing differential delay between virtually concatenated tributaries
EP1524788B1 (en) * 2003-10-14 2008-07-09 Alcatel Lucent Enhanced management of pointer processing in case of concatenated payload in SDH and SONET frames
US7782805B1 (en) * 2005-02-08 2010-08-24 Med Belhadj High speed packet interface and method
ITMI20051972A1 (it) * 2005-10-18 2007-04-19 Marconi Comm Spa Adattamento automatico della connettivita' per traffico a pacchetti in una rete di trasporto
US8135972B2 (en) 2009-03-10 2012-03-13 Cortina Systems, Inc. Data interface power consumption control
JP5091895B2 (ja) * 2009-03-13 2012-12-05 株式会社東芝 送信装置、および受信装置
US8723827B2 (en) 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
JP5821667B2 (ja) * 2012-02-01 2015-11-24 富士通株式会社 伝送装置およびスイッチ切替え方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9718831D0 (en) * 1997-09-05 1997-11-12 Plessey Telecomm Data transmission in an sdh network
JP3490611B2 (ja) * 1998-07-02 2004-01-26 富士通株式会社 バーチャルコンカチチャネル管理方法及びこれに用いられる伝送装置
US6917630B1 (en) * 1998-10-06 2005-07-12 Nortel Networks Limited Concatenation of containers in synchronous digital hierarchy network
JP3765520B2 (ja) * 1998-12-24 2006-04-12 富士通株式会社 クロスコネクト方法及びクロスコネクト装置
JP2000278235A (ja) * 1999-03-19 2000-10-06 Fujitsu Ltd Sdhコンカチネーション信号伝送方法と装置
AT407319B (de) * 1999-06-10 2001-02-26 Siemens Ag Oesterreich Verfahren und vorrichtung zum umwandeln virtuell verketteter datenströme in kontingent verkettete
US7002986B1 (en) * 1999-07-08 2006-02-21 Nortel Networks Limited Mapping arbitrary signals into SONET
US6952396B1 (en) * 1999-09-27 2005-10-04 Nortel Networks Limited Enhanced dual counter rotating ring network control system
US7085293B2 (en) * 2000-03-28 2006-08-01 Telsima Inc. Scaleable transport of TDM channels in a synchronous frame
US6999470B2 (en) * 2001-06-28 2006-02-14 Nortel Networks Limited Methods and apparatus for transmitting synchronous data
US7177314B2 (en) * 2001-08-30 2007-02-13 Pmc-Sierra, Inc. Transmit virtual concatenation processor
US6987766B2 (en) * 2001-09-06 2006-01-17 Packetlight Networks Ltd. Transport of SONET signals over an optical communications network

Also Published As

Publication number Publication date
JPWO2003043240A1 (ja) 2005-03-10
US8068518B2 (en) 2011-11-29
WO2003043240A1 (fr) 2003-05-22
US20040196847A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US5721727A (en) Control method and apparatus for path switching in ring network
JP3892441B2 (ja) 仮想コンカチネーション伝送方法及び装置
US7167442B2 (en) Hitless protection switching
US6201788B1 (en) Transmission device and system having the same
US6999468B2 (en) Method and apparatus for line and path selection within SONET/SDH based networks
JPH0993305A (ja) Sdh/sonet相互接続用インターフェース装置
US6917584B2 (en) Channel reassignment method and circuit for implementing the same
JPH10163999A (ja) Sdh伝送方式における受信ポインタ処理装置
IE904295A1 (en) Method for transmitting a digital broadband signal in a¹tributary unit concatenation via a network of a synchronous¹digital multiplex hierarchy
US6094440A (en) Multiplex type transmitting apparatus
EP0969617B1 (en) Method and device for controlling virtually concatenated channels
JP4244150B2 (ja) 双方向線路切替えリングネットワーク
EP1211834A2 (en) Improved interface system for synchronous hierarchy telecommunications networks
US20070206646A1 (en) Flexible tributary interface with serial control line
EP1164729A1 (en) Transmitter and tributary interface board
JP4181867B2 (ja) 同期網確立方法及びその装置
US7542484B2 (en) Managing payload specific latencies in a cross-connect system
US20030053494A1 (en) Transmission device
JP2006203439A (ja) 無線伝送装置及び方法
JPH07264224A (ja) 光伝送装置
JP2004304367A (ja) 伝送装置及びコンカチネーション設定方法
US9325501B2 (en) Method to implement two fiber shared protection ring with extra traffic on STM-1/OC-3 interface
US6642770B2 (en) Multi-layer control interface for clock switching in a communications element
US6763038B1 (en) Light transmission equipment
JP2005244806A (ja) 通信方法及び装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees