JP3886431B2 - Superlattice device and manufacturing method of upright superlattice used therein - Google Patents

Superlattice device and manufacturing method of upright superlattice used therein Download PDF

Info

Publication number
JP3886431B2
JP3886431B2 JP2002265713A JP2002265713A JP3886431B2 JP 3886431 B2 JP3886431 B2 JP 3886431B2 JP 2002265713 A JP2002265713 A JP 2002265713A JP 2002265713 A JP2002265713 A JP 2002265713A JP 3886431 B2 JP3886431 B2 JP 3886431B2
Authority
JP
Japan
Prior art keywords
superlattice
upright
section
manufacturing
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002265713A
Other languages
Japanese (ja)
Other versions
JP2004103939A (en
Inventor
昌宏 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002265713A priority Critical patent/JP3886431B2/en
Publication of JP2004103939A publication Critical patent/JP2004103939A/en
Application granted granted Critical
Publication of JP3886431B2 publication Critical patent/JP3886431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光電変換機能や発光機能等の光・電子機能を有する有機半導体超格子、及びその製造方法、並びに超格子を用いたデバイスに関する。
【0002】
【従来の技術】
従来、多層薄膜は図2に示されるように、何らかの基板2の上に材料4が積層されたものである。そのような多層薄膜として、例えば2種の材料を交互に積層した超格子構造を作製する場合、基板2上に各膜厚の層を順番に積層していくことになる。この場合、各層の膜厚は膜厚計によって正確に制御できるため、膜厚方向に対してはナノメータオーダーの制御ができる。
そして、そのように膜厚方向が基板に対して垂直方向にある超格子は既に作製され、光電変換機能や発光機能等を有するデバイスに利用されている。
【0003】
【非特許文献1】
M. Hiramoto, T. Imahigashi, M. Yokoyama, "Applied Physics Letters", 64, p.187 (1994)
【0004】
【発明が解決しようとする課題】
上述した従来の超格子においては、膜厚方向に対してのみナノメータオーダーの制御ができる。しかし、従来の積層方法だけでは、膜厚方向に対して垂直方向の配列をナノメータオーダーで制御することは原理的に不可能であり、そのような超格子は作製されていない。
本発明は、表面の面内方向に厚さが微細に制御された超格子及びその製造方法、並びにそのような超格子を用いたデバイスを提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上述した従来の表面方向の配列をナノメータオーダーで制御することは原理的に不可能な超格子に対して、本発明は、図1に示したように、超格子6を90度回転させて、基板5に対して直立させた状態としたものであり、超格子6の断面が表面となる構造をもったものである。
【0006】
すなわち、本発明の直立型超格子は、有機半導体の複数層薄膜からなる超格子構造をもち、その断面のうち互いに反対方向を向く一対の面が表面となっていることを特徴とするものである。
この直立型超格子を電気的な物理量を取り出すデバイスとして利用するためには、その一対の表面に電極が形成される。
表面の面内方向の配列は蒸着などの方法による成膜膜厚の制御を通じて制御する。そのため、表面方向の配列をナノメータオーダーで制御できる。
【0007】
この直立型超格子には、図3に示されるように、次のような利点がある。
1)第1の利点は、材料の組み合わせ、並べ方を、同図(A)のように、例えばA層6aとB層6bを繰り返して積層したABABAB…型や、A層6a、B層6b及びC層6cをこの順で繰り返して積層したABCABC…型というように自由に選択できることである。ここで、6a,6b,6cなどは各材料層を表わす。
【0008】
2)第2の利点は、膜厚とその組み合わせを、同図(B)のように、例えば500nm周期や、100nm/500nm周期というように、ナノメータオーダーから、究極的には単分子層レベルまで自由に設計できることである。
【0009】
このようなことは、表面に垂直方向に積層された従来の超格子においては、膜厚方向に対しては一般的に行われており、実用化されている無機半導体のデバイスもある。しかし、面内方向にこのような積層構造を自由自在に作製することは非常に困難を伴う。本発明の特徴は、このような積層構造を面内方向に対して行うところにある。
【0010】
図4に、有機エレクトロニクスデバイスの分野でこれまで作製されてきた、有機複数層薄膜デバイスの模式図を示す。これらのデバイスは、非常に薄い有機薄膜が電極でサンドイッチされた構造になっている。
【0011】
図4(A)は有機電界発光(EL)デバイスであり、基板2上に形成されたITO(酸化インジウム錫)透明電極の上に、有機半導体であるトリフェニル・ジアミン誘導体(TPD)が50nm程度の厚さに形成され、さらにその上に有機半導体であるアルミ・キノリノール錯体(Alq)が50nm程度の厚さに形成され、その上にMgAgの電極層が形成されたものである。
【0012】
図4(B)は有機太陽電池であり、基板2上に形成されたITO透明電極の上に、有機半導体であるフタロシアニン顔料(H2Pc)が50nm程度の厚さに形成され、さらにその上に有機半導体であるペリレン顔料(Me−PTC)が50nm程度の厚さに形成され、その上にAgの電極層が形成されたものである。
【0013】
図5に、本発明の直立型超格子デバイスの模式図を示す。直立型デバイスでは、横に並んだ非常に薄い薄膜の積層体からなる超格子10が、各層の側面から電極12,14でサンドイッチ状に挟まれた構造となる。16,18はそれぞれ電極12,14のリード線である。
【0014】
図4に示される積層構造をもつ従来のデバイスと、図5に示される本発明の直立型超格子デバイスとの構造の違いは、デバイスが示す機能に根本的な影響を与えるはずであり、この直立型超格子デバイスは、これまでにない新しい機能や特性を示すことが期待できる。
【0015】
これまで、このような直立型超格子デバイスを簡便に作製する方法は提案されていなかった。本発明は、上記のようなこれまでにない特徴を持つ直立型超格子、さらに、その超格子を2枚の金属電極でサンドイッチした、直立型超格子セルを簡単に作製できるという独創的内容を有する。
【0016】
本発明の直立型超格子の製法は、次の工程(A)から(C)を含んでいる。
(A)平坦な表面を持つ絶縁基板の表面上に表面に垂直な方向に有機半導体薄膜を積層して超格子を作製する工程、
(B)作製した超格子を絶縁材で包埋する工程、及び
(C)その後、前記超格子の表面に対して垂直方向に切断して断面が表面に露出した切片状にする切断工程。
【0017】
ここで、超格子を「包埋」するとは、基板とその上に形成した樹脂によって超格子を包み込むように埋め込むことである。超格子を強固に包埋する上で、基板の樹脂と超格子を包埋する樹脂が同一材料であることが好ましい。
この超格子をサンドイッチ型セルとするには、スライスした切片の一方の面又は両面に金属電極を蒸着などの成膜技術により形成する。
【0018】
【発明の実施の形態】
直立型超格子デバイスを作製するには、次の2点を解決しなければならない。
1)第1に、光・電気物性を評価するには、図5に示したように、2つの金属電極12,14で電気的コンタクトをとり、外部にリード線16,18で信号を取り出す必要がある。
【0019】
2)第2に、超格子の高さをできるだけ小さく、数ミクロン以下、できれば数百nm程度にして、これまでの薄膜デバイスと同レベルの電界強度を与えることができるようにする必要がある。
【0020】
この問題の解決に、TEM(透過型電子顕微鏡)観察における薄膜断面観察サンプル作製用の、ウルトラミクロトームを用いた。図6に直立型複数層薄膜を含む切片の作製方法を示す。
【0021】
まず、用いる薄膜材料には原則的に制限がない。無機半導体、有機半導体、絶縁体、金属など種々の材料が考えられ、何らかの方法で薄膜化できる材料であれば何でもよい。ここでは、一例として有機半導体の組合わせ、ペリレン顔料(Me−PTC)と無金属フタロシアニン顔料(H2Pc)を用いた。これらは真空蒸着によって堆積できる。
【0022】
作成手順は次の通りである。
▲1▼まず、絶縁材、例えばエポキシ樹脂により、平坦な表面を持つ絶縁基板20を作る(図6(A))。
【0023】

Figure 0003886431
次に、その絶縁基板20上に、例えば、合計膜厚が1・mになるように、例えば蒸着法によりMe−PTC層22と 2 Pc層24の積層体を堆積する(図6(B))。
【0024】
▲3▼積層体の堆積後、絶縁材26によりその積層体を包埋、すなわち積層体全体を絶縁材中に埋め込む。絶縁材26としては基板20と同じ材料を用いるのが好ましく、基板20をエポキシ樹脂とすれば、絶縁材26もエポキシ樹脂とする(図6(C))。
【0025】
▲4▼最後に、ナノメータの精度で位置制御が可能な、ウルトラミクロトームを使って、薄膜面に対して垂直に切断して、薄片の切片28を得る(図6(D))。図6(D)の上の図で、一点鎖線は切断位置を示している。
切片28の厚さは、例えば2μmであるが、ウルトラミクロトームによる切断技術の向上や材料選択によって、究極的には数十nm程度の薄さまで切断可能と考えられる。
【0026】
図7(A)に、作製した切片の写真を示す。この薄片の中央部(8mmと記載した幅の中央部)にH2Pc(500nm)/Me−PTC(500nm)、トータル膜厚1μmの2層膜が埋め込まれている。この例では、2層膜の幅は、0.5mmの長さのものが4つ、横方向に並んで、全幅が2mmとなっている。このように複数の部分に分けることで、間にエポキシ基板などの樹脂基板と後から包埋に使ったエポキシ樹脂などの樹脂が直接接着する部分ができ、切片28に切断する時に蒸着膜がエポキシ基板から剥離するのを効果的に抑制できる。
切片28の表面に露出しているのは、図7(B)に示した薄膜層22と24の積層体の断面となる。図7(B)は4つの超格子のうちの1つである。
【0027】
2Pc単独膜、Me−PTC単独膜についても上に説明した方法により薄片状の切片を作成した。それらの切片の断面と、上に示したH2Pc(500nm)/Me−PTC(500nm)積層膜切片の断面のSEM像を図8に示す。樹脂としてはエポキシ樹脂Epofix(商標)を使用した。
【0028】
2Pc単独膜(A)はフラットな構造の断面、Me−PTC単独膜(B)はカラム状の微結晶の集合体の構造の断面であることが分かる。(C)はH2PcとMe−PTCを水晶振動子膜厚計の値で500nmずつ積層した膜の断面で、確かに0.5μmのH2Pcと0.5μmのMe−PTCが重なっていることがSEM像からも確認できる。以上のように、2μmの高さの直立型複数層薄膜を作る方法を確立できた。
【0029】
次に、図9(A)により、光・電気物性測定が可能な直立型超格子セルを作製するための、電極の取り付け方法を説明する。
まず、穴のあいたステージ30上に樹脂で直立型超格子を包埋した切片28を導電性テープ32,34で固定する。31はステージ30の穴である。このとき、切片28は直立型超格子がその穴31に位置するように配置し、一方の導電性テープ32は切片28の上側で直立型超格子の片側(図9(A)では左側)、他方のテープ34は切片28の下側で直立型超格子の他方の片側(図9では右側)になるように切片28に張り付ける。
【0030】
次に、電極となる金属、例えば銀、を20nm程度の厚さに上と下から蒸着する。なお、電極は薄いエポキシ樹脂切片を壊さずに堆積できればどのような金属を用いてもよい。このとき、マスクを用いて、上から蒸着したAgは左側の導電性テープのみに、下から蒸着したAgは右側の導電性テープのみに電気的に接続されるようにする。
【0031】
このようにして作製したセルの概念図を図9(B)に示す。トータル厚さ1μm、高さ2μmの直立した2層膜22,24の直立型超格子が2枚の銀電極40,42でサンドイッチ状に挟まれた構造となる。なお、ここでは直立型超格子は2層の場合を示しているが、既に述べたように、層数、各層膜厚は任意にナノメーターオーダーで制御できる。また高さはこの実施例では2μmであるが、数十nm程度までは可能である。この図における電極面積は、2mm×1μmで2×10-5cm2となる。以上のような比較的簡単な方法で、電極をもつ直立した有機超格子セルを作製できた。
【0032】
なお、このセルは基板をもたず、直立型超格子は自立したエポキシ樹脂膜に包埋されているため、全く左右対称のセルを作製できるという特長がある。基板上に作製する場合は、同じAg電極を用いたとしても、基板上に堆積したAgと、基板の反対側の有機薄膜上に堆積したAgとは全く同じではないため、左右対称なセルを作製することは不可能である。
最後に、このような直立型セルにおいて実際の光・電気物性の測定が可能なことを示すために、初歩的な測定結果を2例述べる。
【0033】
図10には、膜厚2μmで平面の大きさが0.5mm×4mmのMe−PTC蒸着薄膜をITO電極とAg電極でサンドイッチした通常のセル(A)と、本発明の方法で作成した高さ2μmで平面の大きさが1μm×2mmのMe−PTC膜単独の直立型セル(B)について、暗電流の印加電圧依存性を測定した結果を(C)に示す。通常のセル(A)と直立型セル(B)では、セルの面積が大きく異なるため、電流密度に直してプロットしてある。その結果、直立型セル(B)は通常のセル(A)の30倍大きな電流が流れており、大電流注入に適していることを示唆している。直立型セルは小さい面積のセルがエポキシ樹脂などの樹脂に取り囲まれていることから、放熱性に優れており、特に冷却下で非常に大きな電流を注入できると期待できる。これは、電流注入型のデバイス、例えば有機電界発光(EL)デバイスなどにとって有利な特性である。
【0034】
なお、図10(C)における12Vでの電界強度は6×104V/cmで両者とも同じである。直立膜の高さを2μmの薄さまでスライスできたことが、通常のセルと同じ電界強度での測定を可能にしたと云える。もし、この直立膜の高さが非常に大きいと充分な電界強度を印加できず、直立型超格子構造の特性評価は不可能である。このような特性評価は、本発明の方法によって初めて可能になった。
【0035】
図11(A)にMe−PTCとH2Pcを500nmずつ交互に積層して4層構造とし、両側にそれぞれ20μmの厚さの銀電極を設けた直立型デバイスを示し、その直立型デバイスにおいて光電流増倍現象を観測した結果を図11(B)に示す。励起光(波長480nm)はマイナス電極側から入射させた。光電流増倍は、光生成したホールがマイナスにバイアスされた金属/有機界面に蓄積して、界面に高電界が集中し、電極からの電子注入が誘起されて起こることが知られている(例えば、非特許文献1参照)。増倍率(有機薄膜が吸収したフォトンの数に対するデバイス流れた電子の数の割合)は1000倍近くに達し、縦型超格子デバイスにおいても光電流増倍現象が起こることが分かる。
【0036】
直立型超格子構造はこれまでにない機能を多く持つが、その一例について触れる。図12(A)に示したように、Me−PTCとH2Pcを交互に積層した直立型超格子構造は、ヘテロ界面における高効率の電荷分離が起こること、及び、生成した電子とホールを空間的に分離して輸送できることから、光キャリア生成に適した構造といえる。このような性質は直立型超格子特有であり、他の方法では実現することができない。このような特長から、非常に高効率の光電変換効率を示すことが予想される。特に、(B)に示されるような、今回の500nmよりももっと薄い、例えば50nm厚さの薄膜を積層した超格子などになれば、さらに直立型超格子特有の現象が発現することが期待できる。
本発明は、光電流増倍デバイス、ELデバイス、太陽電池などへ応用することができる。
【0037】
【発明の効果】
本発明の直立型超格子は、複数層薄膜からなる超格子構造をもち、その断面のうち互いに反対方向を向く一対の面が表面となっているものであり、従来の表面に垂直方向に積層した超格子にはない特性が期待できる。
本発明の超格子デバイスは本発明の超格子の一対の表面に接触して形成された電極とを備えたものであり、従来の超格子デバイスにない応用が期待できる。
本発明の製造方法は、絶縁基板上に薄膜を積層して超格子を作製し、その作製した超格子を絶縁材で包埋した後、その超格子の表面に対して垂直方向に切断して断面が表面に露出した切片状にするので、堆積膜厚の膜厚制御を通じて表面方向の配列をナノメータオーダーで制御でき、本発明の直立型超格子を製造することができるようになる。
【図面の簡単な説明】
【図1】基板に対して直立させた本発明の直立型超格子の模式図である。
【図2】従来の多層蒸着薄膜(超格子)構造の模式図である。
【図3】直立型超格子の利点を模式的に表した図である。
【図4】従来の有機多層薄膜セル模式図であり、(A)は有機電界発光EL、(B)は有機太陽電池である。
【図5】本発明の直立型超格子セルの模式図である。
【図6】本発明の製造方法により直立型超格子構造を含む切片を作製する工程を示す図である。
【図7】(A)は作製した切片の画像を示す図、(B)は切片に埋め込まれた多層膜の構造を示す図である。
【図8】(A)〜(C)はそれぞれ薄膜断面のSEM像を示す図である。
【図9】(A)は直立型超格子への電極取り付け方法を示す斜視図であり、(B)はこのようにして作製したセルの概念を示す斜視図である。
【図10】(A)は通常のサンドイッチ型セルを示す斜視図、(B)は本発明による直立型セルを示す斜視図、(C)は両セルの暗電流の印加電圧依存性を示すグラフである。
【図11】(A)はMe−PTCとH2Pcを500nmずつ4層積層した直立型デバイスを示す概略斜視図、(B)は増倍率の印加電圧依存性を示すグラフである。
【図12】(A)はMe−PTC/H2Pc直立超格子構造における光キャリア生成の過程を表した模式図であり、(B)はそれより薄い薄膜を積層した超格子構造を示す模式図である。
【符号の説明】
10 薄膜
12,14,40,42 電極
16,18 リード線
20 絶縁基板
22 H2Pc層
24 Me−PTC層
26 絶縁材
28 切片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic semiconductor superlattice having optical / electronic functions such as a photoelectric conversion function and a light emitting function, a manufacturing method thereof, and a device using the superlattice.
[0002]
[Prior art]
Conventionally, a multilayer thin film is obtained by laminating a material 4 on a certain substrate 2 as shown in FIG. As such a multilayer thin film, for example, when a superlattice structure in which two kinds of materials are alternately laminated is manufactured, layers having respective film thicknesses are sequentially laminated on the substrate 2. In this case, since the film thickness of each layer can be accurately controlled by the film thickness meter, it can be controlled in the nanometer order in the film thickness direction.
A superlattice having such a film thickness direction perpendicular to the substrate has already been produced and used for a device having a photoelectric conversion function, a light emitting function, and the like.
[0003]
[Non-Patent Document 1]
M. Hiramoto, T. Imahigashi, M. Yokoyama, "Applied Physics Letters", 64, p.187 (1994)
[0004]
[Problems to be solved by the invention]
In the above-described conventional superlattice, nanometer order control can be performed only in the film thickness direction. However, it is impossible in principle to control the arrangement in the direction perpendicular to the film thickness direction on the nanometer order only by the conventional lamination method, and such a superlattice has not been produced.
An object of the present invention is to provide a superlattice whose thickness is finely controlled in the in-plane direction of the surface, a manufacturing method thereof, and a device using such a superlattice.
[0005]
[Means for Solving the Problems]
In contrast to the above-described superlattice in which it is impossible in principle to control the arrangement in the surface direction in the nanometer order, the present invention rotates the superlattice 6 by 90 degrees as shown in FIG. The substrate 5 is in an upright state and has a structure in which the cross section of the superlattice 6 is the surface.
[0006]
That is, the upright superlattice according to the present invention has a superlattice structure composed of a multi-layered thin film of an organic semiconductor, and is characterized in that a pair of faces facing each other in the cross section are surfaces. is there.
In order to use this upright superlattice as a device for extracting an electrical physical quantity, electrodes are formed on a pair of surfaces.
The arrangement in the in-plane direction of the surface is controlled through control of the film thickness by a method such as vapor deposition. Therefore, the arrangement in the surface direction can be controlled on the nanometer order.
[0007]
This upright superlattice has the following advantages as shown in FIG.
1) The first advantage is that the combination and arrangement of materials, for example, as shown in FIG. 6A, for example, the ABABAB... Type in which the A layer 6a and the B layer 6b are repeatedly laminated, the A layer 6a, the B layer 6b, and The ABCABC... Type in which the C layer 6c is repeatedly laminated in this order can be freely selected. Here, 6a, 6b, 6c, etc. represent each material layer.
[0008]
2) The second advantage is that the film thickness and its combination can be changed from the nanometer order to the ultimate monolayer level, for example, 500 nm period or 100 nm / 500 nm period as shown in FIG. It can be designed freely.
[0009]
This is generally done in the film thickness direction in the conventional superlattice layered in the direction perpendicular to the surface, and some inorganic semiconductor devices have been put into practical use. However, it is very difficult to freely produce such a laminated structure in the in-plane direction. The feature of the present invention resides in that such a laminated structure is performed in the in-plane direction.
[0010]
FIG. 4 shows a schematic diagram of an organic multi-layer thin film device that has been produced so far in the field of organic electronics devices. These devices have a structure in which a very thin organic thin film is sandwiched between electrodes.
[0011]
FIG. 4A shows an organic electroluminescence (EL) device. On the ITO (indium tin oxide) transparent electrode formed on the substrate 2, an organic semiconductor triphenyl diamine derivative (TPD) is about 50 nm. Further, an aluminum / quinolinol complex (Alq), which is an organic semiconductor, is formed to a thickness of about 50 nm, and an MgAg electrode layer is formed thereon.
[0012]
FIG. 4B shows an organic solar cell in which a phthalocyanine pigment (H 2 Pc), which is an organic semiconductor, is formed on an ITO transparent electrode formed on the substrate 2 to a thickness of about 50 nm. Further, a perylene pigment (Me-PTC) which is an organic semiconductor is formed to a thickness of about 50 nm, and an Ag electrode layer is formed thereon.
[0013]
FIG. 5 shows a schematic diagram of an upright superlattice device of the present invention. In an upright type device, a superlattice 10 made of a very thin thin film laminated side by side is sandwiched between electrodes 12 and 14 from the side surfaces of each layer. Reference numerals 16 and 18 denote lead wires for the electrodes 12 and 14, respectively.
[0014]
The difference in structure between the conventional device having the stacked structure shown in FIG. 4 and the upright superlattice device of the present invention shown in FIG. 5 should fundamentally affect the function exhibited by the device. Upright superlattice devices can be expected to show new functions and characteristics that have never been seen before.
[0015]
Until now, no method for easily producing such an upright superlattice device has been proposed. The present invention has an original content that an upright superlattice having unprecedented features as described above, and an upright superlattice cell in which the superlattice is sandwiched between two metal electrodes can be easily produced. Have.
[0016]
The manufacturing method of the upright superlattice of the present invention includes the following steps (A) to (C).
(A) a step of fabricating a superlattice by laminating an organic semiconductor thin film on a surface of an insulating substrate having a flat surface in a direction perpendicular to the surface;
(B) A step of embedding the produced superlattice with an insulating material, and (C) a cutting step in which the cross section is then cut in a direction perpendicular to the surface of the superlattice so that the cross section is exposed on the surface.
[0017]
Here, “embedding” the superlattice means embedding the superlattice with the substrate and the resin formed thereon. In embedding the superlattice firmly, it is preferable that the resin of the substrate and the resin embedding the superlattice are the same material.
In order to make this superlattice into a sandwich type cell, a metal electrode is formed on one side or both sides of a sliced piece by a deposition technique such as vapor deposition.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In order to fabricate an upright superlattice device, the following two points must be solved.
1) First, in order to evaluate optical / electrical properties, it is necessary to make electrical contact with the two metal electrodes 12 and 14 and to extract signals with the lead wires 16 and 18 as shown in FIG. There is.
[0019]
2) Secondly, it is necessary to make the superlattice height as small as possible, several microns or less, preferably about several hundreds of nanometers, so that the same electric field strength as that of conventional thin film devices can be provided.
[0020]
In order to solve this problem, an ultramicrotome for preparing a thin film cross-sectional observation sample in TEM (transmission electron microscope) observation was used. FIG. 6 shows a method for producing a slice including an upright multi-layer thin film.
[0021]
First, the thin film material to be used is not limited in principle. Various materials such as inorganic semiconductors, organic semiconductors, insulators, and metals are conceivable, and any material can be used as long as it can be thinned by any method. Here, as an example, a combination of organic semiconductors, a perylene pigment (Me-PTC) and a metal-free phthalocyanine pigment (H 2 Pc) were used. These can be deposited by vacuum evaporation.
[0022]
The creation procedure is as follows.
(1) First, an insulating substrate 20 having a flat surface is made of an insulating material such as an epoxy resin (FIG. 6A).
[0023]
Figure 0003886431
Next, a stacked body of the Me-PTC layer 22 and the H 2 Pc layer 24 is deposited on the insulating substrate 20 by, for example, an evaporation method so that the total film thickness becomes 1 · m, for example (FIG. 6B )).
[0024]
(3) After the stack is deposited, the stack is embedded by the insulating material 26, that is, the entire stack is embedded in the insulating material. It is preferable to use the same material as the substrate 20 as the insulating material 26. If the substrate 20 is an epoxy resin, the insulating material 26 is also an epoxy resin (FIG. 6C).
[0025]
{Circle around (4)} Finally, using an ultramicrotome capable of controlling the position with nanometer accuracy, it is cut perpendicular to the thin film surface to obtain a slice 28 (FIG. 6D). In the upper part of FIG. 6D, the alternate long and short dash line indicates the cutting position.
The thickness of the slice 28 is, for example, 2 μm, but it is considered that the slice 28 can be finally cut to a thickness of about several tens of nanometers by improving the cutting technique using an ultramicrotome and selecting a material.
[0026]
FIG. 7A shows a photograph of the prepared section. A two-layer film of H 2 Pc (500 nm) / Me-PTC (500 nm) and a total film thickness of 1 μm is embedded in the center part (the center part of the width described as 8 mm) of the thin piece. In this example, the width of the two-layer film is four with a length of 0.5 mm, arranged in the horizontal direction, and the total width is 2 mm. By dividing into a plurality of parts in this way, a portion where a resin substrate such as an epoxy substrate and a resin such as an epoxy resin used for embedding later are directly bonded is formed, and the vapor deposition film is epoxy when cut into pieces 28 Separation from the substrate can be effectively suppressed.
Exposed on the surface of the section 28 is the cross section of the laminate of the thin film layers 22 and 24 shown in FIG. FIG. 7B shows one of the four superlattices.
[0027]
For the H 2 Pc single membrane and the Me-PTC single membrane, flaky sections were prepared by the method described above. FIG. 8 shows an SEM image of a cross section of these sections and a cross section of the above-described H 2 Pc (500 nm) / Me-PTC (500 nm) laminated film section. Epoxy resin Epofix (trademark) was used as the resin.
[0028]
It can be seen that the H 2 Pc single film (A) has a flat cross section, and the Me-PTC single film (B) has a cross section of a columnar microcrystalline aggregate. (C) is a cross section of a film in which H 2 Pc and Me-PTC are laminated by a thickness of 500 nm in terms of the thickness of the quartz oscillator, and 0.5 μm H 2 Pc and 0.5 μm Me-PTC are certainly overlapped. It can be confirmed from the SEM image. As described above, a method for producing an upright multi-layer thin film having a height of 2 μm has been established.
[0029]
Next, with reference to FIG. 9A, an electrode attachment method for manufacturing an upright superlattice cell capable of measuring optical and electrical properties will be described.
First, a section 28 in which an upright superlattice is embedded with resin on a stage 30 with a hole is fixed with conductive tapes 32 and 34. Reference numeral 31 denotes a hole of the stage 30. At this time, the section 28 is arranged so that the upright superlattice is positioned in the hole 31, and one conductive tape 32 is located on the upper side of the section 28 on one side of the upright superlattice (left side in FIG. 9A), The other tape 34 is attached to the section 28 so as to be on the other side (right side in FIG. 9) of the upright superlattice below the section 28.
[0030]
Next, a metal to be an electrode, such as silver, is deposited from above and below to a thickness of about 20 nm. Any metal may be used for the electrode as long as it can be deposited without breaking the thin epoxy resin section. At this time, using a mask, Ag deposited from above is electrically connected only to the left conductive tape, and Ag deposited from below is electrically connected only to the right conductive tape.
[0031]
A conceptual diagram of the cell thus manufactured is shown in FIG. An upright superlattice of upright two-layer films 22 and 24 having a total thickness of 1 μm and a height of 2 μm is sandwiched between two silver electrodes 40 and 42. Here, the case where the upright superlattice has two layers is shown, but as described above, the number of layers and the thickness of each layer can be arbitrarily controlled on the nanometer order. The height is 2 μm in this embodiment, but can be up to several tens of nm. The electrode area in this figure is 2 × 10 −5 cm 2 at 2 mm × 1 μm. An upright organic superlattice cell with electrodes could be fabricated by a relatively simple method as described above.
[0032]
Since this cell does not have a substrate and the upright superlattice is embedded in a self-supporting epoxy resin film, it has a feature that a completely symmetrical cell can be produced. When manufacturing on a substrate, even if the same Ag electrode is used, Ag deposited on the substrate is not exactly the same as Ag deposited on the organic thin film on the opposite side of the substrate. It is impossible to make.
Finally, in order to show that actual optical and electrical properties can be measured in such an upright cell, two elementary measurement results are described.
[0033]
FIG. 10 shows a normal cell (A) in which a Me—PTC vapor-deposited thin film having a thickness of 2 μm and a plane size of 0.5 mm × 4 mm is sandwiched between an ITO electrode and an Ag electrode, and a high cell formed by the method of the present invention. (C) shows the result of measuring the applied voltage dependence of dark current for an upright cell (B) with a Me-PTC film alone having a thickness of 2 μm and a plane size of 1 μm × 2 mm. The normal cell (A) and the upright cell (B) are plotted in terms of current density because the cell areas differ greatly. As a result, the upright cell (B) has a current 30 times larger than that of the normal cell (A), suggesting that it is suitable for large current injection. An upright cell is excellent in heat dissipation because a small-area cell is surrounded by a resin such as an epoxy resin, and it can be expected that a very large current can be injected particularly under cooling. This is an advantageous characteristic for a current injection type device such as an organic electroluminescence (EL) device.
[0034]
Note that the electric field strength at 12 V in FIG. 10C is 6 × 10 4 V / cm, which is the same for both. The fact that the height of the upright film could be sliced to a thickness of 2 μm enabled measurement with the same electric field strength as that of a normal cell. If the height of the upright film is very large, a sufficient electric field strength cannot be applied, and the characteristics of the upright superlattice structure cannot be evaluated. Such characteristic evaluation is possible for the first time by the method of the present invention.
[0035]
FIG. 11 (A) shows an upright device in which Me-PTC and H 2 Pc are alternately stacked to form a 4-layer structure with a silver layer having a thickness of 20 μm on each side. The result of observing the photocurrent multiplication phenomenon is shown in FIG. Excitation light (wavelength 480 nm) was incident from the negative electrode side. Photocurrent multiplication is known to occur when photogenerated holes accumulate at the negatively biased metal / organic interface, a high electric field concentrates on the interface, and electron injection from the electrode is induced ( For example, refer nonpatent literature 1). The multiplication factor (ratio of the number of electrons flowing through the device to the number of photons absorbed by the organic thin film) reaches nearly 1000 times, and it can be seen that the photocurrent multiplication phenomenon also occurs in the vertical superlattice device.
[0036]
The upright superlattice structure has many unprecedented functions. As shown in FIG. 12 (A), the upright superlattice structure in which Me-PTC and H 2 Pc are alternately stacked has high efficiency charge separation at the heterointerface, and the generated electrons and holes are separated from each other. Since it can be transported separately in space, it can be said that the structure is suitable for generating optical carriers. Such a property is unique to an upright superlattice and cannot be realized by other methods. From such a feature, it is expected to show very high photoelectric conversion efficiency. In particular, as shown in (B), if the superlattice is thinner than the current 500 nm, for example, a thin film having a thickness of 50 nm, a phenomenon peculiar to an upright superlattice can be expected to appear. .
The present invention can be applied to photocurrent multiplication devices, EL devices, solar cells, and the like.
[0037]
【The invention's effect】
The upright superlattice of the present invention has a superlattice structure composed of a multi-layer thin film, and a pair of surfaces facing each other in the cross section is a surface, and is laminated in a direction perpendicular to a conventional surface. We can expect characteristics that are not found in the superlattices.
The superlattice device of the present invention is provided with electrodes formed in contact with a pair of surfaces of the superlattice of the present invention, and can be expected to be applied to a conventional superlattice device.
In the manufacturing method of the present invention, a superlattice is manufactured by laminating a thin film on an insulating substrate, the manufactured superlattice is embedded in an insulating material, and then cut in a direction perpendicular to the surface of the superlattice. Since the cross section is in the form of a section exposed on the surface, the arrangement in the surface direction can be controlled in nanometer order through the control of the deposited film thickness, and the upright superlattice of the present invention can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic view of an upright superlattice according to the present invention upright with respect to a substrate.
FIG. 2 is a schematic view of a conventional multilayer deposited thin film (superlattice) structure.
FIG. 3 is a diagram schematically showing advantages of an upright superlattice.
FIG. 4 is a schematic diagram of a conventional organic multilayer thin film cell, in which (A) is an organic electroluminescence EL, and (B) is an organic solar cell.
FIG. 5 is a schematic view of an upright superlattice cell of the present invention.
FIG. 6 is a diagram showing a process of producing a slice including an upright superlattice structure by the manufacturing method of the present invention.
7A is a diagram showing an image of a produced slice, and FIG. 7B is a diagram showing a structure of a multilayer film embedded in the slice.
8A to 8C are views showing SEM images of a thin film cross section, respectively.
9A is a perspective view showing a method of attaching an electrode to an upright superlattice, and FIG. 9B is a perspective view showing a concept of a cell manufactured in this way.
10A is a perspective view showing a normal sandwich type cell, FIG. 10B is a perspective view showing an upright cell according to the present invention, and FIG. 10C is a graph showing the applied voltage dependence of dark current of both cells. It is.
FIG. 11A is a schematic perspective view showing an upright device in which four layers of Me-PTC and H 2 Pc each having a thickness of 500 nm are stacked, and FIG. 11B is a graph showing the dependence of the multiplication factor on the applied voltage.
12A is a schematic diagram showing a process of generating photocarriers in a Me-PTC / H 2 Pc upright superlattice structure, and FIG. 12B is a schematic diagram showing a superlattice structure in which thinner thin films are stacked. FIG.
[Explanation of symbols]
10 Thin Film 12, 14, 40, 42 Electrode 16, 18 Lead Wire 20 Insulating Substrate 22 H 2 Pc Layer 24 Me-PTC Layer 26 Insulating Material 28 Section

Claims (7)

有機半導体の複数層薄膜からなる超格子構造をもち、その超格子の断面のうち互いに反対方向を向く一対の面が表面となり、前記一対の表面間の高さが2μm以下である直立型超格子と、
前記一対の表面に接触して形成され前記直立型超格子に電圧を印加するための電極と、を備え、
有機ELデバイス及び有機太陽電池のうちのいずれかである超格子デバイス
An upright super structure having a superlattice structure composed of a multi-layer thin film of an organic semiconductor, a pair of surfaces facing opposite directions in the cross section of the superlattice is a surface, and a height between the pair of surfaces is 2 μm or less Lattice,
An electrode for applying a voltage to the upright superlattice formed in contact with the pair of surfaces,
A superlattice device that is one of an organic EL device and an organic solar cell .
前記一対の表面を除いて側面が絶縁材により被われている請求項1に記載の超格子デバイスThe superlattice device according to claim 1, wherein side surfaces are covered with an insulating material except for the pair of surfaces. 前記絶縁材は樹脂である請求項2に記載の超格子デバイスThe superlattice device according to claim 2, wherein the insulating material is a resin. 以下の工程(A)から(C)を含み、請求項1に記載の超格子デバイスに使用される直立型超格子を製造する製造方法。
(A)平坦な表面を持つ絶縁基板の表面上に表面に垂直な方向に有機半導体薄膜を積層して超格子を作製する工程、
(B)作製した超格子を絶縁材で包埋する工程、及び
(C)その後、前記超格子の表面に対して垂直方向に切断して断面が表面に露出した切片状にする切断工程。
Following the step (A) viewed contains the (C), a method of manufacturing a vertical type superlattice used superlattice device of claim 1.
(A) a step of fabricating a superlattice by laminating an organic semiconductor thin film on a surface of an insulating substrate having a flat surface in a direction perpendicular to the surface;
(B) A step of embedding the produced superlattice with an insulating material, and (C) a cutting step in which the cross section is then cut in a direction perpendicular to the surface of the superlattice so that the cross section is exposed on the surface.
前記絶縁基板及び絶縁材はともに樹脂である請求項に記載の製造方法。The manufacturing method according to claim 4 , wherein both the insulating substrate and the insulating material are resin. 前記絶縁基板及び絶縁材は同一材料である請求項4又は5に記載の製造方法。The manufacturing method according to claim 4 , wherein the insulating substrate and the insulating material are the same material. 前記工程(C)の切断をミクロトームで行う請求項4から7のいずれかに記載の製造方法。The manufacturing method according to any one of claims 4 to 7 , wherein the cutting in the step (C) is performed by a microtome.
JP2002265713A 2002-09-11 2002-09-11 Superlattice device and manufacturing method of upright superlattice used therein Expired - Fee Related JP3886431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265713A JP3886431B2 (en) 2002-09-11 2002-09-11 Superlattice device and manufacturing method of upright superlattice used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265713A JP3886431B2 (en) 2002-09-11 2002-09-11 Superlattice device and manufacturing method of upright superlattice used therein

Publications (2)

Publication Number Publication Date
JP2004103939A JP2004103939A (en) 2004-04-02
JP3886431B2 true JP3886431B2 (en) 2007-02-28

Family

ID=32264773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265713A Expired - Fee Related JP3886431B2 (en) 2002-09-11 2002-09-11 Superlattice device and manufacturing method of upright superlattice used therein

Country Status (1)

Country Link
JP (1) JP3886431B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614470B1 (en) * 2010-07-30 2011-01-19 西川コミュニケーションズ株式会社 Label post-processing apparatus and label processing apparatus
WO2011018884A1 (en) 2009-08-12 2011-02-17 株式会社クラレ Photoelectric conversion element and manufacturing method therefor
CN106449995A (en) * 2016-12-19 2017-02-22 李瑞锋 Ternary plate-type light active layer organic thin-film solar cell and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976700B2 (en) * 2003-03-24 2007-09-19 独立行政法人科学技術振興機構 Avalanche amplification type photosensor using ultrathin molecular crystal and manufacturing method thereof
US7687870B2 (en) * 2006-12-29 2010-03-30 Panasonic Corporation Laterally configured electrooptical devices
JP5881050B2 (en) * 2011-09-14 2016-03-09 トヨタ自動車東日本株式会社 Photoelectric conversion device
WO2013038535A1 (en) * 2011-09-14 2013-03-21 トヨタ自動車東日本株式会社 Photoelectric conversion device
WO2013038540A1 (en) * 2011-09-14 2013-03-21 トヨタ自動車東日本株式会社 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
WO2013038537A1 (en) * 2011-09-14 2013-03-21 トヨタ自動車東日本株式会社 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
WO2013039020A1 (en) * 2011-09-14 2013-03-21 トヨタ自動車東日本株式会社 Method for manufacturing photoelectric conversion device, electrode for photoelectric conversion device, photoelectric conversion device, and light-emitting device
WO2013038536A1 (en) * 2011-09-14 2013-03-21 トヨタ自動車東日本株式会社 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
WO2013039019A1 (en) * 2011-09-14 2013-03-21 トヨタ自動車東日本株式会社 Electrode for photoelectric conversion device, and photoelectric conversion device
CN111162168B (en) * 2018-11-08 2021-07-20 中国科学院福建物质结构研究所 Inorganic-organic hybrid superlattice material with photochromic performance and preparation and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018884A1 (en) 2009-08-12 2011-02-17 株式会社クラレ Photoelectric conversion element and manufacturing method therefor
JP4614470B1 (en) * 2010-07-30 2011-01-19 西川コミュニケーションズ株式会社 Label post-processing apparatus and label processing apparatus
JP2013100142A (en) * 2010-07-30 2013-05-23 Nishikawa Communications Co Ltd Label post-processing apparatus and label processing apparatus
CN106449995A (en) * 2016-12-19 2017-02-22 李瑞锋 Ternary plate-type light active layer organic thin-film solar cell and preparation method thereof

Also Published As

Publication number Publication date
JP2004103939A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP3886431B2 (en) Superlattice device and manufacturing method of upright superlattice used therein
AU2004200843B2 (en) Organic photosensitive optoelectronic device
JP5307712B2 (en) New structures and standards for high efficiency organic photovoltaic cells
CN101351904B (en) Organic photovoltaic cells utilizing ultrathin sensitizing layer
KR101332490B1 (en) Low resistance thin film organic solar cell electrodes
KR101903242B1 (en) Perovskite module and fabrication method using laser damage barriers
JP5449772B2 (en) Organic photosensitive device with increased open circuit voltage
KR20120029396A (en) Hermetic electrical package
JP6730367B2 (en) Solar cell
TWI653749B (en) Photodetector
TW202017219A (en) Semiconductor structure, optoelectronic device, photodetector and spectrometer
Park et al. Efficient TADF-based blue OLEDs with 100% stretchability using titanium particle-embedded indium zinc oxide mesh electrodes
JP4581386B2 (en) Photoelectric conversion element manufacturing method, electronic device manufacturing method, and light emitting element manufacturing method
TWI578552B (en) Solar cell, solar battery and method for making the same
JP6505585B2 (en) Thermoelectric conversion element
WO2018234751A1 (en) Modules and elements for a thermoelectric generator
KR20180135555A (en) Thermoelectric module having 3-dimensional coupling structure with density gradient and method for manufacturing the same
JP2009260400A (en) Photoelectric conversion element, electronic device, and light emitting element
JP3837471B2 (en) Modified electrode and electrode modification method
Anderson et al. Tunneling diodes based on polymer infiltrated vertically aligned carbon nanotube forests
JP3740107B2 (en) Superconducting tunnel junction element
JP5967610B2 (en) Photon detector using superconducting tunnel junction.
JPH08236823A (en) Superconducting radiation detecting device and its manufacture
US10405465B2 (en) Topological insulator thermal management systems
Hiramoto Design of nanostructure for photoelectric conversion by vertical organic superlattice

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees