WO2013038535A1 - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
WO2013038535A1
WO2013038535A1 PCT/JP2011/071049 JP2011071049W WO2013038535A1 WO 2013038535 A1 WO2013038535 A1 WO 2013038535A1 JP 2011071049 W JP2011071049 W JP 2011071049W WO 2013038535 A1 WO2013038535 A1 WO 2013038535A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
organic semiconductor
photoelectric conversion
conversion device
Prior art date
Application number
PCT/JP2011/071049
Other languages
French (fr)
Japanese (ja)
Inventor
善孝 長草
裕之 潮田
Original Assignee
トヨタ自動車東日本株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車東日本株式会社 filed Critical トヨタ自動車東日本株式会社
Priority to PCT/JP2011/071049 priority Critical patent/WO2013038535A1/en
Priority to PCT/JP2012/072998 priority patent/WO2013039019A1/en
Priority to JP2013533648A priority patent/JP5881050B2/en
Priority to PCT/JP2012/072999 priority patent/WO2013039020A1/en
Priority to JP2013533649A priority patent/JP5957787B2/en
Publication of WO2013038535A1 publication Critical patent/WO2013038535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion device.
  • a photoelectric conversion device is a device that converts light into electrical energy and a device that converts electrical energy into light.
  • Examples of the former include solar cells, and examples of the latter include light emitting diodes.
  • the Si solar cell will be described by taking a single crystal Si solar cell as an example.
  • a p-type single crystal wafer is converted into a pn junction by changing the surface layer of the wafer to an n-type semiconductor by vapor phase diffusion or implantation of n-type impurity ions.
  • a pin junction is created.
  • a solar cell having a sandwich structure is manufactured by forming the front electrode and the back electrode.
  • a chalcopyrite solar cell will be described as an example. This is a solar cell provided with a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing elements of Group I, Group III and Group VI as constituent components as a p-type light absorption layer (for example, Patent Documents). 1).
  • a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing elements of Group I, Group III and Group VI as constituent components as a p-type light absorption layer (for example, Patent Documents). 1).
  • This solar cell with a CIGS layer generally prevents a back electrode layer, which is a positive electrode made of a Mo metal layer, on a glass substrate such as a soda lime glass (SLG) substrate, and Na unevenness caused by the SLG substrate.
  • a back electrode layer which is a positive electrode made of a Mo metal layer
  • SLG soda lime glass
  • a back electrode layer which is a positive electrode made of a Mo metal layer
  • a glass substrate such as a soda lime glass (SLG) substrate
  • SLG soda lime glass
  • the CIGS light absorbing layer is obtained by the following process. That is, the substrate itself provided with the In layer and the Cu—Ga layer as a precursor is accommodated in the annealing chamber and preheated. Thereafter, the precursor is converted into a CIGS layer by raising the temperature of the chamber to a temperature range of 500 to 520 ° C. while introducing H 2 Se gas through a gas introducing tube inserted into the annealing chamber.
  • organic semiconductor thin film solar cells are attracting attention as solar cells suitable for mass production because they can be formed by a coating method.
  • the organic solar cell has a so-called bulk heterojunction structure in which an organic donor material and an organic acceptor material are mixed.
  • an organic thin-film solar cell capable of forming a cathode on a flexible substrate by coating and a low-temperature process has been developed (for example, Patent Document 2).
  • an organic semiconductor thin film solar cell has a structure in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate, and a silver oxide and a reducing agent
  • a laminated structure in which an electron transport layer doped with an organic metal is applied in the vicinity of the cathode not only the cathode is formed at a low temperature, but also the bonding between the organic metal doped layer and the cathode is improved. It is said.
  • the light irradiation side electrode is required to have good light transmittance and low electrical resistance.
  • the light irradiation side electrode needs to be formed by vapor deposition or plating of an expensive rare metal.
  • the process steps are complicated accordingly.
  • an object of the present invention is to provide a photoelectric conversion device that does not require optical transparency as an electrode material.
  • a photoelectric conversion device of the present invention is a photoelectric conversion device comprising a photoelectric conversion layer that converts light and electric energy, and a pair of electrodes provided on one side of the photoelectric conversion layer.
  • One electrode and the other electrode are provided side by side, a p-layer organic semiconductor made of a hole transport material is provided on the one electrode, and an electron transport is provided on the other electrode.
  • An n-layer organic semiconductor made of a material is provided, the one electrode functions as a p-type electrode, and the other electrode functions as an n-type electrode.
  • the p-layer organic semiconductor and the n-layer organic semiconductor are preferably covered with a transparent protective layer.
  • a p-layer organic semiconductor is laminated on one electrode and an n-layer organic semiconductor is laminated thereon to form a pn junction, and a transparent electrode is formed on the n-layer organic semiconductor as the other electrode.
  • the photoelectric conversion device is configured by sequentially stacking, according to the present invention, one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed on the same surface. Therefore, the transparent electrode material conventionally required as the electrode material becomes unnecessary.
  • the present invention can be manufactured on a flexible substrate such as a glass substrate.
  • an organic semiconductor can be provided over the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
  • the photoelectric conversion device will be described assuming that a solar cell converts light into electric energy.
  • the present invention can also be applied to a device that converts electric energy into light energy.
  • FIG. 1 is a cross-sectional view of a photoelectric conversion device 1 according to a first embodiment of the present invention.
  • the photoelectric conversion device 1 according to the embodiment of the present invention includes a pair of electrodes 110 and 120 arranged side by side, and a photoelectric conversion layer 130 that covers the electrodes 110 and 120. I have.
  • the photoelectric conversion layer 130 is provided on one electrode 110, the other electrode 120 disposed side by side on the same plane with a predetermined distance from the one electrode 110, and the positive electrode provided on the one electrode 110. It is composed of a p-layer organic semiconductor 15 made of a hole transport material and an n-layer organic semiconductor 16 made of an electron transport material provided on the other electrode 120. The p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 are arranged adjacent to each other in the lateral direction to form a pn junction. The p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 including the pn junction are formed. A protective layer 17 is provided so as to cover the entire surface.
  • the p-layer organic semiconductor 15 is formed of a hole transport material.
  • a hole transport material in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) ⁇ -NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7), TPTE1 represented by the chemical formula (8), TCTA represented by the chemical formula (9), NTPA represented by the chemical formula (10), spiro TAD represented by the chemical formula (11), TFREL represented by the chemical formula (12), and the like are used.
  • TAPC triphenylamine
  • the n-layer organic semiconductor 16 is formed of an electron transport material.
  • the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16).
  • the protective layer 17 is formed of, for example, resin or the like as long as it is a material that transmits irradiation light such as sunlight.
  • a pair of electrodes 110 and 120 are formed on the same surface.
  • the same surface may be either a virtual surface or a substrate surface, but when formed on the substrate surface, it may be a flat substrate or a flexible substrate that can be bent.
  • An appropriate method such as vapor deposition, sputtering, or plating is used to form the electrode. Photolithographic techniques may be used as necessary.
  • One electrode 1110 and the other electrode 120 are formed by the same process.
  • a hole transport material to be the p-layer organic semiconductor 15 is applied to a predetermined portion, for example, one electrode 110.
  • a printing method using an inkjet printer can be applied.
  • an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, the other electrode 120.
  • a printing technique using an inkjet printer can be used for coating.
  • a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
  • the n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
  • the photoelectric conversion device 1 is manufactured by forming the protective layer 17 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 1 is manufactured.
  • the electrodes for the photoelectric conversion device are alternately arranged planes in which one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed side by side. It has an electrode structure. Therefore, it is not necessary to provide a p-layer organic semiconductor on one electrode and an n-layer organic semiconductor on the other electrode to form a pn junction in layers and to provide a transparent electrode on the organic semiconductor. . Therefore, in the present invention, it is not necessary to use a transparent electrode material as the electrode material.
  • the photoelectric conversion device 1 can be manufactured on a flexible substrate such as a glass substrate or the like. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
  • FIG. 2 is a cross-sectional view of a photoelectric conversion device 1A according to a first modification of the embodiment of the present invention.
  • the photoelectric conversion device 1 ⁇ / b> A includes an insulating base material 11, one electrode 13 and the other electrode 14 as photoelectric conversion device electrodes 12 formed side by side on the base material 11, A p-layer organic semiconductor 15 made of a hole transport material provided on one electrode 13, an n-layer organic semiconductor 16 made of an electron transport material provided on the other electrode 14, and a p-layer organic semiconductor 15 And a protective layer 17 provided so as to cover the n-layer organic semiconductor 16.
  • the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 form a pn junction.
  • the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 are formed side by side on the photoelectric conversion device electrode 12.
  • one electrode 13 and the other electrode 14 constituting the photoelectric conversion device electrode 12 are formed side by side on the surface of the base material 11, similarly to the organic semiconductor 15 and the organic semiconductor 16. Therefore, it is not necessary to provide an electrode on the light incident surface as in Patent Document 2, and it is not necessary to use a rare metal for the transparent electrode provided on the light irradiation side of Patent Document 2 as a material. Therefore, as will be described later, the photoelectric conversion device electrode 12 may use Cu, Al, or the like.
  • the base material 11 may be various types such as a glass substrate, a resin substrate, and a printed circuit board.
  • the mounting surface of the photoelectric conversion device may not be a flat surface but may be a curved surface.
  • FIG. 3 is a plan view of the electrode for the photoelectric conversion device 1A shown in FIG. 2, and FIG. 4 is an enlarged view of a portion A in FIG.
  • one electrode 13 and the other electrode 14 are configured as comb electrodes.
  • the comb-tooth electrode has a structure in which a plurality of electrode fingers 13a and 14a arranged in a comb-like shape in parallel at an appropriate interval are electrically connected at one end by connection electrodes 13b and 14b.
  • connection electrode 13b and the other connection electrode 14b are arranged opposite to each other, and the electrode fingers 13a and 14a are arranged within the space between each other, whereby the electrode finger 13a of one electrode and the other electrode The electrode fingers 14a are alternately arranged.
  • an interdigital electrode is formed by one electrode 13 and the other electrode 14.
  • the interdigital electrode is composed of comb electrodes interleaved with each other, and the electrode fingers 13a and electrode fingers 14a of the comb electrodes are alternately arranged.
  • One electrode 13 and the other electrode 14 are respectively connected to electrode electrodes 13a, 14a and one end of the connection electrodes 13b, 14b, and one end of the connection electrodes 13b, 14b, and a connection terminal for external wiring And lead-out electrodes 13c and 14c extending to 13d and 14d.
  • the electrode fingers 13 a and 14 a are formed to extend left and right, and the electrode fingers 13 a and the electrode fingers 14 a are alternately spaced at predetermined intervals in a direction substantially perpendicular to the extending direction. The same number is lined up.
  • the left end of each electrode finger 13a is connected to the connection electrode 14b, and the lead-out electrode 13c extends from the lower end of the connection electrode 14b to the connection terminal 13d with the external wiring along the aforementioned extending direction.
  • the right end of each electrode finger 14a is connected to the connection electrode 14b, and a connection terminal 14d for external wiring is formed at the lower end of the connection electrode 14b. In other words, depending on the position of the connection terminal with the external wiring, the lead electrode may not be necessary.
  • Organic semiconductors 15 and 16 are provided on such an electrode structure.
  • a p-layer organic semiconductor 15 is formed on at least the electrode finger 13 a of one electrode 13, and an n-layer organic semiconductor 16 is formed on at least the electrode finger 14 a of the other electrode 14. Therefore, the electrode finger 13a of one electrode 13 functions as a p-type electrode, and the electrode finger 14a of the other electrode 14 functions as an n-type electrode.
  • a hole transport material to be the p-layer organic semiconductor 15 is applied to a predetermined portion, for example, one electrode 13.
  • a printing method using an inkjet printer can be applied.
  • an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, the other electrode 14.
  • a printing technique using an inkjet printer can be used for the application.
  • a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
  • the n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
  • the protective layer 17 is formed by painting or the like to produce the photoelectric conversion device 1A. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1A illustrated in FIG. 2 is manufactured.
  • this photoelectric conversion device 1A like the above-described photoelectric conversion device 1, an alternating array in which one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed side by side on a substrate. It has a planar electrode structure. Therefore, it is not necessary to provide a p-layer organic semiconductor on one electrode and an n-layer organic semiconductor on the other electrode to form a pn junction and provide an electrode on the organic semiconductor. Therefore, it is not necessary to use a transparent electrode material as the electrode material.
  • FIG. 5 is a cross-sectional view of a photoelectric conversion device 1B according to a second modification of the embodiment of the present invention
  • FIG. 6 is a perspective view of the photoelectric conversion device 1B.
  • the photoelectric conversion device 1B includes an insulating base material 11 ′, an electrode 12 ′ provided on the upper surface of the base material 11 ′, a photoelectric conversion layer 130 that covers the electrode 12 ′, and a protective layer that covers the upper surface of the photoelectric conversion layer 130. 17. In FIG. 6, the display of the photoelectric conversion layer 130 and the protective layer 17 is omitted.
  • the base material 11 ′ is formed in a sheet shape and has flexibility. For example, what was formed as a flexible substrate by PET etc. is used. In this embodiment, as shown in FIG. 6, the base material 11 ′ has a rectangular outline.
  • the short side is referred to as the first side 11A ′
  • the long side is referred to as the second side 11B ′.
  • the electrode 12 ′ will be described with reference to FIG.
  • a plurality of weft yarns 12B ′ disposed at a predetermined pitch in the extending direction of the first side 11A ′.
  • the warp yarns 12A 'and the weft yarns 12B' are woven so as to intersect each other. That is, the electrode 12 'is formed in a plain weave net shape.
  • the warp yarn 12A ′ As the warp yarn 12A ′ extending along the first side 11A ′, three kinds of wires are used. Specifically, the first metal wire 121 ′, the second metal wire 122 ′, and the first insulating wire 123 ′ are used. As shown in FIG. 6, the first metal wire 121 ′ and the second metal wire 122 ′ are alternately arranged, and the first metal wire 121 ′ and the second metal wire 122 ′ are arranged between the first metal wire 121 ′ and the second metal wire 122 ′. An insulating wire 123 'is provided.
  • first metal wire 121 ′ and the second metal wire 122 ′ for example, a copper wire, a stainless wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used.
  • One end 121E ′ of each first metal wire 121 ′ is connected to the first bus bar 121A ′ as shown in FIG.
  • Each second metal wire 122 ' has an end 122E' located on the other end 121F 'side of the first metal wire 121' connected to the second bus bar 122A '.
  • the first insulating wire 123 ′ is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, vinyl resin, or the like.
  • the second insulating wire is used as the weft 12B 'extending along the second side 11B'. Similar to the first insulating wire 123 ', the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the first metal wire 121 ′, the second metal wire 122 ′, the first insulating wire 123 ′, and the second insulating wire are set to a thickness of about 20 ⁇ m to 30 ⁇ m.
  • FIG. 7 is a schematic enlarged view of a circle B region in FIG.
  • the photoelectric conversion layer 130 is provided on one electrode, that is, the p-layer organic semiconductor 15 made of a hole transport material provided on the first metal wire 121 ′ and the second metal wire 122 ′ as the other electrode.
  • an n-layer organic semiconductor 16 made of an electron transport material. Therefore, one first metal wire 121 ′ functions as a p-type electrode, and the other second metal wire 122 ′ functions as an n-type electrode.
  • the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 form a pn junction.
  • the first metal wire 121 ′ and the second metal wire 122 ′ constituting the photoelectric conversion device electrode 12 ′ are formed on the base material 11 ′, and the first metal wire 121 ′ and the second metal wire 121 ′ are further formed.
  • a p-layer organic semiconductor 13A ′ and an n-layer organic semiconductor 13B ′ are formed on the same surface so as to cover the metal wire 122 ′. Therefore, the surface on which light is incident can be the protective layer 17 instead of the photoelectric conversion device electrode 12 side.
  • the protective layer 17 is provided so as to cover the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
  • the protective layer 17 is formed of, for example, a resin or the like as long as it is a material that transmits irradiation light such as sunlight.
  • a method for manufacturing the photoelectric conversion device 1B shown in FIG. First, the base material 11 ′ is prepared. Next, the first metal wire 121 ′, the second metal wire 122 ′, the first insulating wire 123 ′, and the second insulating wire are prepared and plain woven. An electrode 12 ′ formed by plain weaving is fixed on the substrate 11 with, for example, an adhesive. Thereafter, a hole transport material to be the p-layer organic semiconductor 15 is applied on a predetermined portion, for example, on the first metal wire 121 ′ as one electrode. For the application, for example, a printing method using an inkjet printer can be applied.
  • an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, on the second metal wire 122 ′ as the other electrode.
  • a printing technique using an inkjet printer can be used for coating.
  • a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16.
  • the n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
  • the protective layer 17 is formed by painting or the like to produce the photoelectric conversion device 1B. Note that the method is not limited to the above method as long as the photoelectric conversion device 1B illustrated in FIG. 5 is manufactured.
  • the first metal wire 121 ′ and the second metal wire 122 ′ constituting the photoelectric conversion device electrode 12 ′ are formed on the base material 11 ′, and the first metal wire 121 is further formed.
  • a p-layer organic semiconductor 15 and an n-layer organic semiconductor 16 are formed on the base material 11 'so as to cover' and the second metal wire 122 '. Therefore, the surface on which light is incident can be the protective layer 17 instead of the photoelectric conversion device electrode 12 ′ side. Therefore, it is not necessary to configure the electrode with a transparent electrode, and it is not necessary to use a rare metal for the transparent electrode as a material. Therefore, Cu, Al, etc. can be used for electrode 12 'for photoelectric conversion devices. Further, in the photoelectric conversion device 1B, since the electrode 12 'is formed of a flexible net, it can be attached to a curved surface after being formed in a flat shape.
  • the present invention can be implemented with appropriate modifications within the scope of the present invention.
  • the configuration in which one first insulating wire 123 ′ is provided between the first metal wire 121 ′ and the second metal wire 122 ′ is described, but a plurality of the first insulating wire 123 ′ may be provided.
  • the photoelectric conversion device 1B may be configured by omitting the base material 11 '.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photoelectric conversion device (1) which is provided with: a photoelectric conversion layer (130) that performs conversion between light and electrical energy; and a pair of electrodes (110, 120) that are provided on one surface of the photoelectric conversion layer. One electrode (110) and the other electrode (120) are arranged abreast of each other. An organic semiconductor (15) of a p-layer, which is composed of a hole transport material, is provided on the electrode (110), and an organic semiconductor (16) of an n-layer, which is composed of an electron transport material, is provided on the electrode (120). The electrode (110) functions as a p-type electrode, and the electrode (120) functions as an n-type electrode.

Description

光電変換デバイスPhotoelectric conversion device
 本発明は、光電変換デバイスに関する。 The present invention relates to a photoelectric conversion device.
 光電変換デバイスは、光を電気エネルギーに変換するデバイス及び電気エネルギーを光に変換するデバイスである。前者の例としては太陽電池などがあり、後者の例としては発光ダイオードなどがある。 A photoelectric conversion device is a device that converts light into electrical energy and a device that converts electrical energy into light. Examples of the former include solar cells, and examples of the latter include light emitting diodes.
 今日、クリーンエネルギーの一つとして太陽電池による電力供給の必要性が再認識されている。太陽電池にはSi太陽電池、化合物太陽電池のほか有機半導体薄膜太陽電池など各種のものがある。 Today, the need for solar power supply as a clean energy is recognized again. There are various types of solar cells such as Si solar cells, compound solar cells, and organic semiconductor thin film solar cells.
 Si太陽電池について単結晶Si太陽電池を例にとって説明すると、p型の単結晶ウエハに気相拡散やn型不純物イオンの打ち込み等によってウエハの表面層をn型半導体にするなどしてpn接合やpin接合が作られる。そして表面電極と裏面電極とを形成してサンドイッチ構造の太陽電池が作製される。 The Si solar cell will be described by taking a single crystal Si solar cell as an example. A p-type single crystal wafer is converted into a pn junction by changing the surface layer of the wafer to an n-type semiconductor by vapor phase diffusion or implantation of n-type impurity ions. A pin junction is created. Then, a solar cell having a sandwich structure is manufactured by forming the front electrode and the back electrode.
 化合物太陽電池の中には各種のものがあるが、エネルギー変換効率が高く、経年変化による光劣化が起こりにくく、耐放射性特性に優れ、光吸収波長領域が広く、光吸収係数が大きいといった利点を有するカルコパイライト型太陽電池を例にとって説明する。これはI族、III族及びVI族の元素を構成成分とするカルコパイライト化合物(Cu(In+Ga)Se2)から成るCIGS層をp型の光吸収層として備えた太陽電池である(例えば特許文献1)。 There are various types of compound solar cells, but they have the advantages of high energy conversion efficiency, low light degradation due to secular change, excellent radiation resistance, wide light absorption wavelength range, and large light absorption coefficient. A chalcopyrite solar cell will be described as an example. This is a solar cell provided with a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing elements of Group I, Group III and Group VI as constituent components as a p-type light absorption layer (for example, Patent Documents). 1).
 このCIGS層を備えた太陽電池は、一般的に、ソーダライムガラス(SLG)基板といったガラス基板上に、Mo金属層からなる正極たる裏面電極層と、SLG基板に由来して生じるNaムラを防止するためのNaディップ層と、CIGS光吸収層と、n型のバッファ層と、負極たる透明電極層による最外表面層と、を備えた多層積層構造で構成される。
 ここで、n型のバッファ層はCdS、ZnO、InSなどで形成され、透明電極層はZnOAlなどが用いられる。
This solar cell with a CIGS layer generally prevents a back electrode layer, which is a positive electrode made of a Mo metal layer, on a glass substrate such as a soda lime glass (SLG) substrate, and Na unevenness caused by the SLG substrate. For forming a multilayer structure including a Na dip layer, a CIGS light absorption layer, an n-type buffer layer, and an outermost surface layer formed of a transparent electrode layer as a negative electrode.
Here, the n-type buffer layer is made of CdS, ZnO, InS or the like, and the transparent electrode layer is made of ZnOAl or the like.
 この多層積層構造にあっては、表面の受光部から照射光が入射すると、多層積層構造のp-n接合付近では、バンドギャップ以上のエネルギーを有する照射光によって励起されて一対の電子及び正孔が生じる。励起された電子と正孔とは拡散によりp-n接合部に達し、接合の内部電界により、電子がn領域に、正孔がp領域に集合して分離される。この結果、n領域が負に帯電し、p領域が正に帯電し、各領域に設けた電極間で電位差が生じる。この電位差を起電力として、各電極間を導線で結線したときに光電流が得られる。 In this multilayer laminated structure, when irradiation light enters from the light receiving portion on the surface, a pair of electrons and holes are excited in the vicinity of the pn junction of the multilayer laminated structure by the irradiation light having energy greater than the band gap. Occurs. The excited electrons and holes reach the pn junction by diffusion, and the electrons are collected in the n region and the holes are separated in the p region due to the internal electric field of the junction. As a result, the n region is negatively charged, the p region is positively charged, and a potential difference is generated between the electrodes provided in each region. Using this potential difference as an electromotive force, a photocurrent is obtained when the electrodes are connected by a conductive wire.
 CIGS光吸収層は次のような工程によって得られる。即ち、In層とCu-Ga層とを積層状態にして前駆体として備える基板自体をアニール処理室内に収容してプレヒートを行う。その後、アニール処理室内に挿入したガス導入管によってH2Seガスを導入しつつ室内を500乃至520℃の温度範囲に昇温することによって、前駆体をCIGS層に変換する。 The CIGS light absorbing layer is obtained by the following process. That is, the substrate itself provided with the In layer and the Cu—Ga layer as a precursor is accommodated in the annealing chamber and preheated. Thereafter, the precursor is converted into a CIGS layer by raising the temperature of the chamber to a temperature range of 500 to 520 ° C. while introducing H 2 Se gas through a gas introducing tube inserted into the annealing chamber.
 これに対し、有機半導体薄膜太陽電池は塗布法によって形成することができるため、大量生産に適した太陽電池として注目されている。有機太陽電池は、有機ドナー材料と有機アクセプター材料を混合した、所謂バルクヘテロジャンクション構造を有している。その中でも、塗布及び低温プロセスでフレキシブル基板への陰極形成を可能とした有機薄膜太陽電池が開発されている(例えば、特許文献2)。 On the other hand, organic semiconductor thin film solar cells are attracting attention as solar cells suitable for mass production because they can be formed by a coating method. The organic solar cell has a so-called bulk heterojunction structure in which an organic donor material and an organic acceptor material are mixed. Among them, an organic thin-film solar cell capable of forming a cathode on a flexible substrate by coating and a low-temperature process has been developed (for example, Patent Document 2).
 特許文献2によれば、有機半導体薄膜太陽電池が、基板の一方面上に、陽極、バルクヘテロジャンクション構造を有する光電変換層及び陰極が順に積層された構造を有していて、酸化銀と還元剤からなる陰極と、陰極近傍に有機金属をドープした電子輸送層を塗布した積層構造とすることにより、低温で陰極が形成されるだけでなく、有機金属ドープ層と陰極との接合が改良されるとしている。 According to Patent Document 2, an organic semiconductor thin film solar cell has a structure in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate, and a silver oxide and a reducing agent By forming a laminated structure in which an electron transport layer doped with an organic metal is applied in the vicinity of the cathode, not only the cathode is formed at a low temperature, but also the bonding between the organic metal doped layer and the cathode is improved. It is said.
特開2006-196771号公報Japanese Patent Laid-Open No. 2006-196771 特開2011-124468号公報JP 2011-124468 A
 しかしながら、従来の構造においては、pn接合となる領域を挟んで一対の電極を設ける必要があった。そのため、光照射側の電極は、光透過性がよく、かつ電気抵抗が小さいものが要求されており、そのために、光照射側の電極は高価なレアメタルを蒸着やメッキにより形成する必要がある。またそれに伴いプロセス工程が複雑であった。 However, in the conventional structure, it is necessary to provide a pair of electrodes across a region that becomes a pn junction. For this reason, the light irradiation side electrode is required to have good light transmittance and low electrical resistance. For this reason, the light irradiation side electrode needs to be formed by vapor deposition or plating of an expensive rare metal. In addition, the process steps are complicated accordingly.
 そこで、本発明は、電極材料として光透過性を要求しない、光電変換デバイスを提供することを目的とする。 Therefore, an object of the present invention is to provide a photoelectric conversion device that does not require optical transparency as an electrode material.
 上記目的を達成するために、本発明の光電変換デバイスは、光と電気エネルギーとを変換する光電変換層と、上記光電変換層の片面に設けられる一対の電極と、を備えた光電変換デバイスであって、一方の電極と他方の電極とが横並びに設けられており、上記一方の電極上には正孔輸送材料でなるp層の有機半導体が設けられ、上記他方の電極上には電子輸送材料でなるn層の有機半導体が設けられ、上記一方の電極がp型電極として機能し、上記他方の電極がn型電極として機能することを特徴としている。
 本発明において、好ましくは前記p層の有機半導体及び前記n層の有機半導体は透明の保護層で覆われている。
In order to achieve the above object, a photoelectric conversion device of the present invention is a photoelectric conversion device comprising a photoelectric conversion layer that converts light and electric energy, and a pair of electrodes provided on one side of the photoelectric conversion layer. One electrode and the other electrode are provided side by side, a p-layer organic semiconductor made of a hole transport material is provided on the one electrode, and an electron transport is provided on the other electrode. An n-layer organic semiconductor made of a material is provided, the one electrode functions as a p-type electrode, and the other electrode functions as an n-type electrode.
In the present invention, the p-layer organic semiconductor and the n-layer organic semiconductor are preferably covered with a transparent protective layer.
 従来では、一方の電極上にp層の有機半導体を積層しその上にn層の有機半導体を積層してpn接合を形成すると共に、このn層の有機半導体上に他方の電極として透明電極を順次積層して光電変換デバイスを構成していたが、本発明によれば、電極が、p型電極として機能する一方の電極とn型電極として機能する他方の電極とが同一面上に形成されていることから、電極材料として従来必要としていた透明電極材料が不要となる。本発明は、ガラス基板などのフレキシブル性のない基板上でもフレキシブル性のある基板上にも作製することができる。また、電極上に塗布によって有機半導体を設けることができるため、作製工程が複雑とならず、また、安価に作製することができる。 Conventionally, a p-layer organic semiconductor is laminated on one electrode and an n-layer organic semiconductor is laminated thereon to form a pn junction, and a transparent electrode is formed on the n-layer organic semiconductor as the other electrode. Although the photoelectric conversion device is configured by sequentially stacking, according to the present invention, one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed on the same surface. Therefore, the transparent electrode material conventionally required as the electrode material becomes unnecessary. The present invention can be manufactured on a flexible substrate such as a glass substrate. In addition, since an organic semiconductor can be provided over the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
本発明の実施形態に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on embodiment of this invention. 本発明の実施形態の第1変形例に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on the 1st modification of embodiment of this invention. 図2に示す光電変換デバイスにおける電極構造を示す平面図である。It is a top view which shows the electrode structure in the photoelectric conversion device shown in FIG. 図3において符号Aの領域の拡大図である。FIG. 4 is an enlarged view of a region A in FIG. 3. 本発明の実施形態の第2変形例に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on the 2nd modification of embodiment of this invention. 図5に示す光電変換デバイスにおける電極構造を示す斜視図である。It is a perspective view which shows the electrode structure in the photoelectric conversion device shown in FIG. 図5に示す符号Aの領域の拡大図である。It is an enlarged view of the area | region of the code | symbol A shown in FIG.
 以下図面を参照しながら、本発明の実施形態を詳細に説明する。特に光電変換デバイスが、光を電気エネルギーに変換するものとして太陽電池を想定して説明するが、電気エネルギーを光エネルギーに変換するものであっても同様に適用することができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In particular, the photoelectric conversion device will be described assuming that a solar cell converts light into electric energy. However, the present invention can also be applied to a device that converts electric energy into light energy.
 図1は、本発明の第1実施形態に係る光電変換デバイス1の断面図である。図1に示すように、本発明の実施形態に係る光電変換デバイス1は、横並びに配置された一対の電極110,120と、これらの電極110,120の上を覆う光電変換層130と、を備えている。 FIG. 1 is a cross-sectional view of a photoelectric conversion device 1 according to a first embodiment of the present invention. As shown in FIG. 1, the photoelectric conversion device 1 according to the embodiment of the present invention includes a pair of electrodes 110 and 120 arranged side by side, and a photoelectric conversion layer 130 that covers the electrodes 110 and 120. I have.
 光電変換層130は、一方の電極110と、この一方の電極110と所定の距離をあけて同一面上に横並びに配置された他方の電極120と、上記一方の電極110上に設けられて正孔輸送材料でなるp層の有機半導体15と、上記他方の電極120上に設けられ電子輸送材料でなるn層の有機半導体16とから構成されている。p層の有機半導体15及びn層の有機半導体16は互いに横方向に隣接して配置されてpn接合を形成しており、このpn接合を含むp層の有機半導体15及びn層の有機半導体16の表面全体を被覆するように保護層17が設けられる。 The photoelectric conversion layer 130 is provided on one electrode 110, the other electrode 120 disposed side by side on the same plane with a predetermined distance from the one electrode 110, and the positive electrode provided on the one electrode 110. It is composed of a p-layer organic semiconductor 15 made of a hole transport material and an n-layer organic semiconductor 16 made of an electron transport material provided on the other electrode 120. The p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 are arranged adjacent to each other in the lateral direction to form a pn junction. The p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 including the pn junction are formed. A protective layer 17 is provided so as to cover the entire surface.
 p層の有機半導体15は、正孔輸送材料によって形成される。正孔輸送材料としては、化学式(1)で示されるトリフェニルアミン(TAPC)、化学式(2)で示されるトリフェニルアミンの二量体であるTPDその他の芳香族アミンのほか、化学式(3)で示されるα-NPD、化学式(4)で示される(DTP)DPPD、化学式(5)で示されるm-MTDATA、化学式(6)で示されるHTM1、化学式(7)で示される2-TNATA、化学式(8)で示されるTPTE1、化学式(9)で示されるTCTA、化学式(10)で示されるNTPA、化学式(11)で示されるスピローTAD、化学式(12)で示されるTFLELなどが用いられる。 The p-layer organic semiconductor 15 is formed of a hole transport material. As a hole transport material, in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) Α-NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7), TPTE1 represented by the chemical formula (8), TCTA represented by the chemical formula (9), NTPA represented by the chemical formula (10), spiro TAD represented by the chemical formula (11), TFREL represented by the chemical formula (12), and the like are used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 n層の有機半導体16は電子輸送材料によって形成される。電子輸送材料には、化学式(13)で示されるAlq3、化学式(14)で示されるBCP、化学式(15)で示されるオキサジアゾール誘導体、化学式(16)で示されるオキサジアゾール二量体、化学式(17)で示されるスターバストオキサジアゾール、化学式(18)で示されるトリアゾール誘導体、化学式(19)で示されるフェニルキシキサリン誘導体、化学式(20)で示されるシロール誘導体などが挙げられる。 The n-layer organic semiconductor 16 is formed of an electron transport material. Examples of the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16). And Starbust Oxadiazole represented by Chemical Formula (17), Triazole Derivative represented by Chemical Formula (18), Phenylxoxaline Derivative represented by Chemical Formula (19), Silole Derivative represented by Chemical Formula (20), and the like.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 保護層17については、太陽光などの照射光を透過する材料であればその種類は問わず、例えば樹脂等によって形成される。 The protective layer 17 is formed of, for example, resin or the like as long as it is a material that transmits irradiation light such as sunlight.
  図1に示す光電変換デバイス1の製造方法について概略説明する。まず、一対の電極110,120を同一面上に形成する。ここで同一面とは、仮想面又は基板面の何れであってもよいが、基板面に形成する場合は、それが平面基板であっても湾曲可能なフレキシブル基板であってもよい。電極の形成には蒸着、スパッタリング又はメッキなどの適宜の方法が用いられる。必要に応じてフォトリソグラフィー技術を用いてもよい。一方の電極1110、他方の電極120は同一の工程により形成される。 A method for manufacturing the photoelectric conversion device 1 shown in FIG. First, a pair of electrodes 110 and 120 are formed on the same surface. Here, the same surface may be either a virtual surface or a substrate surface, but when formed on the substrate surface, it may be a flat substrate or a flexible substrate that can be bent. An appropriate method such as vapor deposition, sputtering, or plating is used to form the electrode. Photolithographic techniques may be used as necessary. One electrode 1110 and the other electrode 120 are formed by the same process.
 その後、p層の有機半導体15となる正孔輸送材料を所定の箇所、例えば一方の電極110に塗布する。塗布には、例えばインクジェットプリンタによる印刷方法を適用可能である。 Thereafter, a hole transport material to be the p-layer organic semiconductor 15 is applied to a predetermined portion, for example, one electrode 110. For the application, for example, a printing method using an inkjet printer can be applied.
 次に、n層の有機半導体16となる電子輸送材料をp層とp層との間、例えば他方の電極120に塗布する。塗布にはp層の有機半導体15の場合と同様、インクジェットプリンタによる印刷技術を用いることができる。 Next, an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, the other electrode 120. As in the case of the p-layer organic semiconductor 15, a printing technique using an inkjet printer can be used for coating.
 これにより、p層の有機半導体15とn層の有機半導体16とによってpn接合が形成される。なお、n層の有機半導体16から塗布しその後p層の有機半導体15を塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16. The n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
 その後、保護層17を塗装などによって形成して光電変換デバイス1が作製される。なお、図1に示す光電変換デバイス1が作製される手法であれば上述の方法に限定されない。 Thereafter, the photoelectric conversion device 1 is manufactured by forming the protective layer 17 by painting or the like. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 1 is manufactured.
 本実施形態に係る光電変換デバイス1によれば、光電変換デバイス用電極が、p型電極として機能する一方の電極とn型電極として機能する他方の電極とが横並びに形成されている交互配列平面電極構造となっている。そのため、一方の電極上にp層の有機半導体を設けかつ他方の電極上にn層の有機半導体を設けてpn接合を層状に形成して、その有機半導体の上に透明電極を設ける必要がない。そのため、本発明では電極材料として透明電極材料を用いる必要がない。光電変換デバイス1は、ガラス基板などのフレキシブル性のない基板でもフレキシブル性のある基板上にも作製することができる。電極上に塗布によって有機半導体を設けることができるため、作製工程が複雑とならず、また、安価に作製することができる。 According to the photoelectric conversion device 1 according to the present embodiment, the electrodes for the photoelectric conversion device are alternately arranged planes in which one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed side by side. It has an electrode structure. Therefore, it is not necessary to provide a p-layer organic semiconductor on one electrode and an n-layer organic semiconductor on the other electrode to form a pn junction in layers and to provide a transparent electrode on the organic semiconductor. . Therefore, in the present invention, it is not necessary to use a transparent electrode material as the electrode material. The photoelectric conversion device 1 can be manufactured on a flexible substrate such as a glass substrate or the like. Since an organic semiconductor can be provided on the electrode by coating, the manufacturing process is not complicated, and the organic semiconductor can be manufactured at low cost.
[実施形態の第1変形例]
 図2は、本発明の実施形態の第1変形例に係る光電変換デバイス1Aの断面図である。図2に示すように、光電変換デバイス1Aは、絶縁性の基材11と、この基材11の上に並べて形成された光電変換デバイス用電極12として一方の電極13及び他方の電極14と、一方の電極13上に設けられて正孔輸送材料でなるp層の有機半導体15と、他方の電極14上に設けられ電子輸送材料でなるn層の有機半導体16と、p層の有機半導体15及びn層の有機半導体16を被覆するように設けられる保護層17とで構成される。p層の有機半導体15とn層の有機半導体16とはpn接合を形成している。
[First Modification of Embodiment]
FIG. 2 is a cross-sectional view of a photoelectric conversion device 1A according to a first modification of the embodiment of the present invention. As shown in FIG. 2, the photoelectric conversion device 1 </ b> A includes an insulating base material 11, one electrode 13 and the other electrode 14 as photoelectric conversion device electrodes 12 formed side by side on the base material 11, A p-layer organic semiconductor 15 made of a hole transport material provided on one electrode 13, an n-layer organic semiconductor 16 made of an electron transport material provided on the other electrode 14, and a p-layer organic semiconductor 15 And a protective layer 17 provided so as to cover the n-layer organic semiconductor 16. The p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 form a pn junction.
 このように、p層の有機半導体15とn層の有機半導体16とが光電変換デバイス用電極12の上に並べて形成されている。また、光電変換デバイス用電極12を構成する一方の電極13と他方の電極14とが、有機半導体15及び有機半導体16と同様に、基材11の面上に並んで形成されている。よって、光が入射する面に、特許文献2のように電極を設ける必要がなく、ひいては特許文献2の光照射側に設ける透明電極のためのレアメタルを材料として使用しなくて済む。そのため、後述するように、光電変換デバイス用電極12はCuやAlなどを使用することができる。 Thus, the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 are formed side by side on the photoelectric conversion device electrode 12. Also, one electrode 13 and the other electrode 14 constituting the photoelectric conversion device electrode 12 are formed side by side on the surface of the base material 11, similarly to the organic semiconductor 15 and the organic semiconductor 16. Therefore, it is not necessary to provide an electrode on the light incident surface as in Patent Document 2, and it is not necessary to use a rare metal for the transparent electrode provided on the light irradiation side of Patent Document 2 as a material. Therefore, as will be described later, the photoelectric conversion device electrode 12 may use Cu, Al, or the like.
 基材11は、ガラス基板、樹脂基板、プリント基板等各種のものが用いられ得る。基材11として樹脂基板等を用いた場合には、光電変換デバイスの取付面が平面でなくても湾曲した曲面であっても構わない。 The base material 11 may be various types such as a glass substrate, a resin substrate, and a printed circuit board. When a resin substrate or the like is used as the base material 11, the mounting surface of the photoelectric conversion device may not be a flat surface but may be a curved surface.
 一方の電極13及び他方の電極14について説明する。図3は図2に示す光電変換デバイス1A用電極の平面図であり、図4は図3においてAの部分の拡大図である。図3に示すように、一方の電極13及び他方の電極14は櫛歯電極として構成されている。櫛歯電極は、適宜の間隔で並行して櫛歯状に配置された複数本の電極指13a,14aが、一端で接続用電極13b,14bによって電気的に接続された構造を有する。一方の接続用電極13bと他方の接続用電極14bとは互いに対向配置され、それらの電極指13a,14aが互いの間隔内に配置されることで、一方の電極の電極指13aと他方の電極の電極指14aとが交互に並んでいる。 One electrode 13 and the other electrode 14 will be described. 3 is a plan view of the electrode for the photoelectric conversion device 1A shown in FIG. 2, and FIG. 4 is an enlarged view of a portion A in FIG. As shown in FIG. 3, one electrode 13 and the other electrode 14 are configured as comb electrodes. The comb-tooth electrode has a structure in which a plurality of electrode fingers 13a and 14a arranged in a comb-like shape in parallel at an appropriate interval are electrically connected at one end by connection electrodes 13b and 14b. One connection electrode 13b and the other connection electrode 14b are arranged opposite to each other, and the electrode fingers 13a and 14a are arranged within the space between each other, whereby the electrode finger 13a of one electrode and the other electrode The electrode fingers 14a are alternately arranged.
 つまり、一方の電極13及び他方の電極14によりインターデジタル電極が形成されている。インターデジタル電極は互いに間挿し合う櫛歯電極で構成されており、各櫛歯電極の電極指13aと電極指14aとが交互に並んでいる。 That is, an interdigital electrode is formed by one electrode 13 and the other electrode 14. The interdigital electrode is composed of comb electrodes interleaved with each other, and the electrode fingers 13a and electrode fingers 14a of the comb electrodes are alternately arranged.
 一方の電極13及び他方の電極14は、それぞれ、電極指13a,14aとその一端を接続する接続用電極13b,14bと、その接続用電極13b,14bの一端に接続され外部配線との接続端子13d,14dまで延びる引き回し電極13c,14cとを有する。 One electrode 13 and the other electrode 14 are respectively connected to electrode electrodes 13a, 14a and one end of the connection electrodes 13b, 14b, and one end of the connection electrodes 13b, 14b, and a connection terminal for external wiring And lead-out electrodes 13c and 14c extending to 13d and 14d.
 図3に示す場合にあっては、各電極指13a,14aが左右に延びて形成されており、その延設方向にほぼ直交する方向に電極指13aと電極指14aとが交互に所定の間隔をあけて同数本並んでいる。各電極指13aの左一端が接続用電極14bに接続され、引き回し電極13cがその接続用電極14bの下端から前述の延設方向に沿って外部配線との接続端子13dまで延びている。一方、各電極指14aの右一端が接続用電極14bに接続され、接続用電極14bの下端に外部配線との接続端子14dが形成されている。つまり、外部配線との接続端子の位置によっては引き回し電極が不要となる場合もある。 In the case shown in FIG. 3, the electrode fingers 13 a and 14 a are formed to extend left and right, and the electrode fingers 13 a and the electrode fingers 14 a are alternately spaced at predetermined intervals in a direction substantially perpendicular to the extending direction. The same number is lined up. The left end of each electrode finger 13a is connected to the connection electrode 14b, and the lead-out electrode 13c extends from the lower end of the connection electrode 14b to the connection terminal 13d with the external wiring along the aforementioned extending direction. On the other hand, the right end of each electrode finger 14a is connected to the connection electrode 14b, and a connection terminal 14d for external wiring is formed at the lower end of the connection electrode 14b. In other words, depending on the position of the connection terminal with the external wiring, the lead electrode may not be necessary.
 このような電極構造の上に、有機半導体15,16が設けられている。一方の電極13のうち少なくとも電極指13a上にはp層の有機半導体15が形成され、他方の電極14のうち少なくとも電極指14a上にはn層の有機半導体16が形成される。よって、一方の電極13のうち電極指13aはp型電極として機能し、他方の電極14のうち電極指14aはn型電極として機能する。 Organic semiconductors 15 and 16 are provided on such an electrode structure. A p-layer organic semiconductor 15 is formed on at least the electrode finger 13 a of one electrode 13, and an n-layer organic semiconductor 16 is formed on at least the electrode finger 14 a of the other electrode 14. Therefore, the electrode finger 13a of one electrode 13 functions as a p-type electrode, and the electrode finger 14a of the other electrode 14 functions as an n-type electrode.
  図2に示す光電変換デバイス1Aの製造方法について概略説明する。まず、基材11を用意し、この基材11上に所定間隔を置いて一方の電極13及び他方の電極14を形成する。電極形成には蒸着、スパッタリング又はメッキなどの適宜の方法が用いられる。必要に応じてフォトリソグラフィー技術を用いてもよい。一方の電極13、他方の電極14は同一の工程により形成される。 A method for manufacturing the photoelectric conversion device 1A shown in FIG. First, a base material 11 is prepared, and one electrode 13 and the other electrode 14 are formed on the base material 11 at a predetermined interval. An appropriate method such as vapor deposition, sputtering, or plating is used for electrode formation. Photolithographic techniques may be used as necessary. One electrode 13 and the other electrode 14 are formed by the same process.
 その後、p層の有機半導体15となる正孔輸送材料を所定の箇所、例えば一方の電極13に塗布する。塗布には、例えばインクジェットプリンタによる印刷方法を適用可能である。 Thereafter, a hole transport material to be the p-layer organic semiconductor 15 is applied to a predetermined portion, for example, one electrode 13. For the application, for example, a printing method using an inkjet printer can be applied.
 次に、n層の有機半導体16となる電子輸送材料をp層とp層との間、例えば他方の電極14に塗布する。塗布には、p層の有機半導体15の場合と同様、インクジェットプリンタによる印刷技術を用いることができる。 Next, an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, the other electrode 14. As in the case of the p-layer organic semiconductor 15, a printing technique using an inkjet printer can be used for the application.
 これにより、p層の有機半導体15とn層の有機半導体16とによってpn接合が形成される。なお、n層の有機半導体16から塗布しその後p層の有機半導体15を塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16. The n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
 その後、保護層17を塗装などによって形成して光電変換デバイス1Aが作製される。なお、図2に示す光電変換デバイス1Aが作製される手法であれば上述の方法に限定されない。 Thereafter, the protective layer 17 is formed by painting or the like to produce the photoelectric conversion device 1A. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1A illustrated in FIG. 2 is manufactured.
 この光電変換デバイス1Aにおいても、前述の光電変換デバイス1と同様に、p型電極として機能する一方の電極とn型電極として機能する他方の電極とが基材上に並べて形成されている交互配列平面電極構造となっている。そのため、一方の電極上にp層の有機半導体を設けかつ他方の電極上にn層の有機半導体を設けてpn接合を形成して、その有機半導体の上に電極を設ける必要がない。そのため、電極材料として透明電極材料を用いる必要がない。 Also in this photoelectric conversion device 1A, like the above-described photoelectric conversion device 1, an alternating array in which one electrode functioning as a p-type electrode and the other electrode functioning as an n-type electrode are formed side by side on a substrate. It has a planar electrode structure. Therefore, it is not necessary to provide a p-layer organic semiconductor on one electrode and an n-layer organic semiconductor on the other electrode to form a pn junction and provide an electrode on the organic semiconductor. Therefore, it is not necessary to use a transparent electrode material as the electrode material.
[実施形態の第2変形例]
 図5は本発明の実施形態の第2変形例に係る光電変換デバイス1Bの断面図であり、図6は光電変換デバイス1Bの斜視図である。
[Second Modification of Embodiment]
FIG. 5 is a cross-sectional view of a photoelectric conversion device 1B according to a second modification of the embodiment of the present invention, and FIG. 6 is a perspective view of the photoelectric conversion device 1B.
 光電変換デバイス1Bは、絶縁性の基材11′と、基材11′の上面に設けた電極12′と、電極12′を覆う光電変換層130と、光電変換層130の上面を覆う保護層17と、から構成されている。なお、図6では、光電変換層130と、保護層17との表示を省略している。 The photoelectric conversion device 1B includes an insulating base material 11 ′, an electrode 12 ′ provided on the upper surface of the base material 11 ′, a photoelectric conversion layer 130 that covers the electrode 12 ′, and a protective layer that covers the upper surface of the photoelectric conversion layer 130. 17. In FIG. 6, the display of the photoelectric conversion layer 130 and the protective layer 17 is omitted.
 基材11′はシート状に形成され、可撓性を有する。例えば、PETなどによってフレキシブル基板として形成されたものを用いる。本実施形態では、図6に示すように基材11′は輪郭が長方形に形成されている。以下、説明の便宜上、短い辺を第1辺11A′と呼び、長い辺を第2辺11B′とする。 The base material 11 ′ is formed in a sheet shape and has flexibility. For example, what was formed as a flexible substrate by PET etc. is used. In this embodiment, as shown in FIG. 6, the base material 11 ′ has a rectangular outline. Hereinafter, for convenience of explanation, the short side is referred to as the first side 11A ′, and the long side is referred to as the second side 11B ′.
 図6を用いて電極12′について説明する。電極12′は、基材11′の第1辺11A′に沿って延びていてさらに第2辺11B′の延出方向に所定のピッチで配置された複数の縦糸12A′と、基材11′の第2辺11B′に沿って延びていてさらに第1辺11A′の延出方向に所定のピッチで配置された複数の横糸12B′と、を備えている。縦糸12A′と横糸12B′とは1本ごとに交差するように織られている。つまり電極12′は平織りのネット状に形成されている。 The electrode 12 ′ will be described with reference to FIG. The electrode 12 'extends along the first side 11A' of the base material 11 'and further has a plurality of warps 12A' arranged at a predetermined pitch in the extending direction of the second side 11B ', and the base material 11'. And a plurality of weft yarns 12B ′ disposed at a predetermined pitch in the extending direction of the first side 11A ′. The warp yarns 12A 'and the weft yarns 12B' are woven so as to intersect each other. That is, the electrode 12 'is formed in a plain weave net shape.
 第1辺11A′に沿って延びる縦糸12A′として、3種の線材を利用する。具体的には、第1金属線材121′と第2金属線材122′と第1絶縁線材123′とを利用する。
 図6に示すように、第1金属線材121′と第2金属線材122′とは交互に並べられており、これらの第1金属線材121′と第2金属線材122′との間に第1絶縁線材123′が設けられている。なお、第1金属線材121′と第2金属線材122′との間隔は、それらの間に挟まれる第1絶縁線材123′の断面の直径と同等であるが、図面では、構成の理解を容易にするために各部材同士の間に空隙を設けて表している。
As the warp yarn 12A ′ extending along the first side 11A ′, three kinds of wires are used. Specifically, the first metal wire 121 ′, the second metal wire 122 ′, and the first insulating wire 123 ′ are used.
As shown in FIG. 6, the first metal wire 121 ′ and the second metal wire 122 ′ are alternately arranged, and the first metal wire 121 ′ and the second metal wire 122 ′ are arranged between the first metal wire 121 ′ and the second metal wire 122 ′. An insulating wire 123 'is provided. In addition, although the space | interval of 1st metal wire 121 'and 2nd metal wire 122' is equivalent to the diameter of the cross section of 1st insulated wire 123 'pinched | interposed between them, it is easy to understand a structure in drawing. Therefore, a gap is provided between the members.
 これらの第1金属線材121′と第2金属線材122′として、例えば銅線、ステンレス線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第1金属線材121′の一端部121E′は図6に示すように第1のバスバー121A′に接続されている。各第2金属線材122′は第1金属線材121′の他端部121F′側に位置する端部122E′を第2のバスバー122A′に接続されている。 As the first metal wire 121 ′ and the second metal wire 122 ′, for example, a copper wire, a stainless wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used. One end 121E ′ of each first metal wire 121 ′ is connected to the first bus bar 121A ′ as shown in FIG. Each second metal wire 122 'has an end 122E' located on the other end 121F 'side of the first metal wire 121' connected to the second bus bar 122A '.
 第1絶縁線材123′は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The first insulating wire 123 ′ is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, vinyl resin, or the like.
 第2辺11B′に沿って延びる横糸12B′として第2絶縁線材を用いる。第2絶縁線材は、第1絶縁線材123′と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The second insulating wire is used as the weft 12B 'extending along the second side 11B'. Similar to the first insulating wire 123 ', the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
 第1金属線材121′、第2金属線材122′、第1絶縁線材123′及び第2絶縁線材は、20μm~30μm程度の太さに設定されている。 The first metal wire 121 ′, the second metal wire 122 ′, the first insulating wire 123 ′, and the second insulating wire are set to a thickness of about 20 μm to 30 μm.
 次に、光電変換層130について説明する。
 図7は図5の円B領域の模式的拡大図である。光電変換層130は、一方の電極、つまり第1金属線材121′上に設けられて正孔輸送材料でなるp層の有機半導体15と、他方の電極としての第2金属線材122′上に設けられ電子輸送材料でなるn層の有機半導体16と、から構成されている。よって、一方の第1金属線材121′はp型電極として機能し、他方の第2金属線材122′はn型電極として機能する。p層の有機半導体15とn層の有機半導体16とはpn接合を形成している。
Next, the photoelectric conversion layer 130 will be described.
FIG. 7 is a schematic enlarged view of a circle B region in FIG. The photoelectric conversion layer 130 is provided on one electrode, that is, the p-layer organic semiconductor 15 made of a hole transport material provided on the first metal wire 121 ′ and the second metal wire 122 ′ as the other electrode. And an n-layer organic semiconductor 16 made of an electron transport material. Therefore, one first metal wire 121 ′ functions as a p-type electrode, and the other second metal wire 122 ′ functions as an n-type electrode. The p-layer organic semiconductor 15 and the n-layer organic semiconductor 16 form a pn junction.
 以上のように、基材11′上に、光電変換デバイス用電極12′を構成する第1金属線材121′と第2金属線材122′とが形成され、さらに第1金属線材121′と第2金属線材122′とを覆うように、p層の有機半導体13A′とn層の有機半導体13B′とが同一面上に形成されている。よって、光が入射する面を光電変換デバイス用電極12側ではなく、保護層17とすることが可能となる。 As described above, the first metal wire 121 ′ and the second metal wire 122 ′ constituting the photoelectric conversion device electrode 12 ′ are formed on the base material 11 ′, and the first metal wire 121 ′ and the second metal wire 121 ′ are further formed. A p-layer organic semiconductor 13A ′ and an n-layer organic semiconductor 13B ′ are formed on the same surface so as to cover the metal wire 122 ′. Therefore, the surface on which light is incident can be the protective layer 17 instead of the photoelectric conversion device electrode 12 side.
 保護層17は、p層の有機半導体15及びn層の有機半導体16を被覆するように設けられている。保護層17については、太陽光などの照射光を透過する材料であればその種類は問わず、例えば樹脂等によって形成される。 The protective layer 17 is provided so as to cover the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16. The protective layer 17 is formed of, for example, a resin or the like as long as it is a material that transmits irradiation light such as sunlight.
 図5に示す光電変換デバイス1Bの製造方法について概略説明する。まず、基材11′を用意する。次に、第1金属線材121′、第2金属線材122′、第1絶縁線材123′、第2絶縁線材を準備し、平織りする。平織りして形成した電極12′を基材11上に例えば接着剤などによって固定する。その後、p層の有機半導体15となる正孔輸送材料を所定の箇所、例えば一方の電極としての第1金属線材121′上に塗布する。塗布には、例えばインクジェットプリンタによる印刷方法を適用可能である。 A method for manufacturing the photoelectric conversion device 1B shown in FIG. First, the base material 11 ′ is prepared. Next, the first metal wire 121 ′, the second metal wire 122 ′, the first insulating wire 123 ′, and the second insulating wire are prepared and plain woven. An electrode 12 ′ formed by plain weaving is fixed on the substrate 11 with, for example, an adhesive. Thereafter, a hole transport material to be the p-layer organic semiconductor 15 is applied on a predetermined portion, for example, on the first metal wire 121 ′ as one electrode. For the application, for example, a printing method using an inkjet printer can be applied.
 次に、n層の有機半導体16となる電子輸送材料をp層とp層との間、例えば他方の電極としての第2金属線材122′上に塗布する。塗布にはp層の有機半導体15の場合と同様、インクジェットプリンタによる印刷技術を用いることができる。 Next, an electron transport material to be the n-layer organic semiconductor 16 is applied between the p layer and the p layer, for example, on the second metal wire 122 ′ as the other electrode. As in the case of the p-layer organic semiconductor 15, a printing technique using an inkjet printer can be used for coating.
 これにより、p層の有機半導体15とn層の有機半導体16とによってpn接合が形成される。なお、n層の有機半導体16から塗布しその後p層の有機半導体15を塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 15 and the n-layer organic semiconductor 16. The n-layer organic semiconductor 16 may be applied, and then the p-layer organic semiconductor 15 may be applied.
 その後、保護層17を塗装などによって形成して光電変換デバイス1Bが作製される。なお、図5に示す光電変換デバイス1Bが作製される手法であれば上述の方法に限定されない。 Thereafter, the protective layer 17 is formed by painting or the like to produce the photoelectric conversion device 1B. Note that the method is not limited to the above method as long as the photoelectric conversion device 1B illustrated in FIG. 5 is manufactured.
 このように本発明によれば、基材11′上に、光電変換デバイス用電極12′を構成する第1金属線材121′と第2金属線材122′とが形成され、さらに第1金属線材121′と第2金属線材122′とを覆うように、p層の有機半導体15とn層の有機半導体16とが基材11′上に形成されている。よって、光が入射する面を光電変換デバイス用電極12′側ではなく、保護層17とすることが可能となる。よって、電極を透明電極で構成することが不要であり、透明電極のためのレアメタルを材料として使用しなくて済む。そのため、光電変換デバイス用の電極12′はCuやAlなどを使用することができる。
 また、光電変換デバイス1Bは、電極12′が可撓性を有するネットで構成されているため、平面状に形成した後に、曲面状の表面に取り付けることができる。
As described above, according to the present invention, the first metal wire 121 ′ and the second metal wire 122 ′ constituting the photoelectric conversion device electrode 12 ′ are formed on the base material 11 ′, and the first metal wire 121 is further formed. A p-layer organic semiconductor 15 and an n-layer organic semiconductor 16 are formed on the base material 11 'so as to cover' and the second metal wire 122 '. Therefore, the surface on which light is incident can be the protective layer 17 instead of the photoelectric conversion device electrode 12 ′ side. Therefore, it is not necessary to configure the electrode with a transparent electrode, and it is not necessary to use a rare metal for the transparent electrode as a material. Therefore, Cu, Al, etc. can be used for electrode 12 'for photoelectric conversion devices.
Further, in the photoelectric conversion device 1B, since the electrode 12 'is formed of a flexible net, it can be attached to a curved surface after being formed in a flat shape.
 以上本発明の実施形態を説明したが、本発明の範囲において適宜変更して実施することができる。
 上記図5の構成では、第1絶縁線材123′が第1金属線材121′と第2金属線材122′との間に1本設けられる構成を説明したが、複数本設けられてもよい。
 また、光電変換デバイス1Bは基材11′を省略して構成されてもよい。
Although the embodiments of the present invention have been described above, the present invention can be implemented with appropriate modifications within the scope of the present invention.
In the configuration of FIG. 5 described above, the configuration in which one first insulating wire 123 ′ is provided between the first metal wire 121 ′ and the second metal wire 122 ′ is described, but a plurality of the first insulating wire 123 ′ may be provided.
Further, the photoelectric conversion device 1B may be configured by omitting the base material 11 '.
1,1A,1B :光電変換デバイス
110,120 :電極
11,11′  :基材
12,12′  :光電変換デバイス用電極
12A′    :縦糸
12B′    :横糸
121′    :第1金属線材
122′    :第2金属線材
123′    :第1絶縁線材
13      :一方の電極
14      :他方の電極
13a,14a :電極指
13b,14b :接続用電極
13c     :引き回し電極
13d,14d :外部配線との接続端子
15      :p層の有機半導体
16      :n層の有機半導体
17      :保護層
1, 1A, 1B: Photoelectric conversion devices 110, 120: Electrodes 11, 11 ': Base material 12, 12': Electrode conversion device electrodes 12A ': Warp yarn 12B': Weft yarn 121 ': First metal wire 122': First 2 metal wires 123 ′: first insulating wire 13: one electrode 14: other electrodes 13a, 14a: electrode fingers 13b, 14b: connection electrodes 13c: routing electrodes 13d, 14d: connection terminals 15 to the external wiring 15: p Layer organic semiconductor 16: n layer organic semiconductor 17: protective layer

Claims (2)

  1.  光と電気エネルギーとを変換する光電変換層と、上記光電変換層の片面に設けられる一対の電極と、を備えた光電変換デバイスであって、
     一方の電極と他方の電極とが横並びに設けられており、
     上記一方の電極上には正孔輸送材料でなるp層の有機半導体が設けられ、
     上記他方の電極上には電子輸送材料でなるn層の有機半導体が設けられ、
     上記一方の電極がp型電極として機能し、上記他方の電極がn型電極として機能することを特徴とする、光電変換デバイス。
    A photoelectric conversion device comprising a photoelectric conversion layer for converting light and electric energy, and a pair of electrodes provided on one side of the photoelectric conversion layer,
    One electrode and the other electrode are provided side by side,
    A p-layer organic semiconductor made of a hole transport material is provided on the one electrode,
    An n-layer organic semiconductor made of an electron transport material is provided on the other electrode,
    The photoelectric conversion device, wherein the one electrode functions as a p-type electrode and the other electrode functions as an n-type electrode.
  2.  前記p層の有機半導体及び前記n層の有機半導体は、透明の保護層で覆われている、請求項1に記載の光電変換デバイス。 The photoelectric conversion device according to claim 1, wherein the organic semiconductor of the p layer and the organic semiconductor of the n layer are covered with a transparent protective layer.
PCT/JP2011/071049 2011-09-14 2011-09-14 Photoelectric conversion device WO2013038535A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/071049 WO2013038535A1 (en) 2011-09-14 2011-09-14 Photoelectric conversion device
PCT/JP2012/072998 WO2013039019A1 (en) 2011-09-14 2012-09-09 Electrode for photoelectric conversion device, and photoelectric conversion device
JP2013533648A JP5881050B2 (en) 2011-09-14 2012-09-09 Photoelectric conversion device
PCT/JP2012/072999 WO2013039020A1 (en) 2011-09-14 2012-09-09 Method for manufacturing photoelectric conversion device, electrode for photoelectric conversion device, photoelectric conversion device, and light-emitting device
JP2013533649A JP5957787B2 (en) 2011-09-14 2012-09-09 Method for producing photoelectric conversion device and photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071049 WO2013038535A1 (en) 2011-09-14 2011-09-14 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
WO2013038535A1 true WO2013038535A1 (en) 2013-03-21

Family

ID=47882794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071049 WO2013038535A1 (en) 2011-09-14 2011-09-14 Photoelectric conversion device

Country Status (1)

Country Link
WO (1) WO2013038535A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172778A (en) * 1981-09-02 1982-10-23 Sharp Corp Solar battery
JPH04109681A (en) * 1990-08-29 1992-04-10 Oki Electric Ind Co Ltd Vertical pn junction solar battery
JP2004103939A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Upright type superlattice, manufacturing method thereof, and device
JP2005011841A (en) * 2003-06-16 2005-01-13 Japan Science & Technology Agency Vertical junction organic photovoltaic device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172778A (en) * 1981-09-02 1982-10-23 Sharp Corp Solar battery
JPH04109681A (en) * 1990-08-29 1992-04-10 Oki Electric Ind Co Ltd Vertical pn junction solar battery
JP2004103939A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Upright type superlattice, manufacturing method thereof, and device
JP2005011841A (en) * 2003-06-16 2005-01-13 Japan Science & Technology Agency Vertical junction organic photovoltaic device and its manufacturing method

Similar Documents

Publication Publication Date Title
WO2013039019A1 (en) Electrode for photoelectric conversion device, and photoelectric conversion device
US11538950B2 (en) Solar cell panel
EP2341548B1 (en) Solar cell module
KR20150086617A (en) Solar cell module
US10276737B2 (en) Solar cell and solar cell module
EP2869349A2 (en) Solar cell and solar cell module
KR101395792B1 (en) Integrated Photovoltaic Module
KR20140095658A (en) Solar cell
EP3447805B1 (en) Solar cell panel
US20240032314A1 (en) Solar cell and solar cell module including the same
KR101909142B1 (en) Solar cell and solar cell panel including the same
WO2013038539A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
US20110132425A1 (en) Solar cell module
WO2013038540A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
WO2013038537A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
US20220085226A1 (en) Four-terminal tandem solar cell
WO2013038535A1 (en) Photoelectric conversion device
KR20110138649A (en) Solar cell and method for manufacturing the same
WO2013038536A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
US20140352767A1 (en) Solar cell apparatus and method of fabricating the same
JP5881050B2 (en) Photoelectric conversion device
WO2013038538A1 (en) Electrode for photoelectric conversion devices, and photoelectric conversion device using same
KR101806972B1 (en) Solar cell module
JP6778069B2 (en) Manufacturing method of solar cell module and solar cell module
KR102233873B1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP