JP3884503B2 - Hazardous substance removing agent and method of removing harmful substance using the same - Google Patents

Hazardous substance removing agent and method of removing harmful substance using the same Download PDF

Info

Publication number
JP3884503B2
JP3884503B2 JP14082296A JP14082296A JP3884503B2 JP 3884503 B2 JP3884503 B2 JP 3884503B2 JP 14082296 A JP14082296 A JP 14082296A JP 14082296 A JP14082296 A JP 14082296A JP 3884503 B2 JP3884503 B2 JP 3884503B2
Authority
JP
Japan
Prior art keywords
harmful substance
titanium oxide
removing agent
substance removing
agent according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14082296A
Other languages
Japanese (ja)
Other versions
JPH09299809A (en
Inventor
英司 野村
俊洋 小山
純子 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP14082296A priority Critical patent/JP3884503B2/en
Publication of JPH09299809A publication Critical patent/JPH09299809A/en
Application granted granted Critical
Publication of JP3884503B2 publication Critical patent/JP3884503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、有害物質を除去する有害物質除去剤およびその製造方法、それを用いた有害物質除去方法に関する。
【0002】
【従来の技術】
近年の地球環境、生活環境に対する問題意識の高まりとともに、各種工場、自動車等から排出される有機ハロゲン化物や炭化水素類や生活空間における悪臭成分などの有害物質を除去する技術に対する関心が高まってきている。また、青果物が発散するエチレンが、これら青果物の腐敗を早める作用があるなどの問題がクローズアップされて来つつある。このような有害物質の除去方法には活性炭、ゼオライト等の吸着剤を用いる方法が一般的に行われている。しかし、この方法は有害物質を単に吸着するだけであるため、有害物質が多量にある場合、吸着飽和に達しこれ以上有害物質を吸着しなくなる。また、吸着した有害物質が状態の変化に伴い脱離するという問題がある。このため、酸化チタンなどの光半導体が有する触媒作用により有害物質を酸化分解し、無害化する方法が提案されている。
【0003】
【発明が解決しようとする課題】
前記の酸化チタンなどの光半導体は、光触媒活性により有害物質を無害化できる。しかし、粉末であるということから、被処理流体からの分離回収が非常に困難になるという問題がある。この問題を解決するために、光触媒活性を維持しながら取り扱い性を向上させた、光半導体である酸化チタンと高純度ベントナイトからなる造粒体が提案されている(特願平7−129383号)。しかしながら、この造粒体はベントナイトを用いているため、水分によって形が崩れ、崩壊しやすい。このため水分が多量に存在する雰囲気では使用し難く、適用範囲が制約されるという問題がある。また、ガラスやセラミックスなどの基板上に光半導体を固定して得た固定化光半導体が検討されている。このものは、分離・回収が容易であるが、被処理流体との接触などにより固定した光半導体が担体から剥離してしまい、光触媒活性が長期間にわたって維持できないという問題がある。しかも、固定化処理のために高温度の焼成が必要であり、これにより光半導体の光触媒活性が低下するという問題もある。
【0004】
【課題を解決するための手段】
本発明者らは、取り扱い性が良く、高い光触媒活性を持ち、かつ、その光触媒活性を長期間にわたって維持でき、しかも、湿潤下でも使用できる有害物質除去剤を得るために、種々の探索を行った結果、チタン酸化物ゾルを構成していたチタン酸化物を結着剤として用いると所望の有害物質除去剤が得られること、しかも、このようにして得た有害物質除去剤が種々の有害物質除去処理に適用できるものであることを見出し本発明を完成した。すなわち、本発明は悪臭成分などの有害物質の除去能力に優れ、かつ、取り扱いの容易な有害物質除去剤を提供することにある。また、本発明は、前記有害物質除去剤を用いて有害物質を除去する方法を提供することにある。
【0005】
本発明は、チタン酸化物ゾルを構成していたチタン酸化物を結着剤として用いた、少なくとも光半導体と該チタン酸化物から成り、該チタン酸化物の粒子径が1〜50nmであり、しかも、該チタン酸化物を5〜30重量%含有した造粒体あるいは成形体であって、少なくとも光半導体と該チタン酸化物ゾルとの混合物を造粒あるいは成形し、次いで室温〜150℃の温度で乾燥し150℃よりも高い温度の焼成を行わずに形成したことを特徴とする有害物質除去剤である。本発明の有害物質除去剤の形態は使用場面に応じて適宜設計することができ、たとえば、球状、円柱状、リング状、板状、ハニカム状などの形状が挙げられる。また、造粒体あるいは成形体を粉砕した不定形状でも良い。本発明では、有害物質との接触面積を大きくでき、しかも、圧力損失を低くできることから、ハニカム形状を有する構造体とするのが好ましい。ハニカム形状を有する構造体とは、三角形、四角形、六角形、円、楕円などの形の断面を有する貫通孔を多数存在させた構造体のことである。造粒体あるいは成形体の大きさは、使用場面に応じて適宜設計することができる。
【0006】
光半導体はいわゆる光触媒作用を示し、光を照射すると発現する強い酸化力により有害物質を酸化分解し、無害化することができる。たとえば、酸化チタン、酸化亜鉛、酸化タングステン、酸化鉄、チタン酸ストロンチウム、硫化モリブデン、硫化カドミウムなどの公知の光半導体を、単一または2種以上組み合わせて用いることができる。特に、高い光触媒作用を有し、化学的に安定であり、かつ、無害である酸化チタンが好ましい。酸化チタンとは、いわゆる酸化チタンのほか、含水酸化チタン、水和酸化チタン、水酸化チタン、メタチタン酸、オルトチタン酸をも包含する。中でもアナタース型結晶形を有する酸化チタンが優れた光触媒活性を有し、さらに、その粒子径が1〜50nmの小さなものがより好ましい。さらに好ましい酸化チタンの粒子径は1〜30nmである。また、前記の光半導体に、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、パラジウム、銀、金、白金などの他金属あるいはそれらの他金属の化合物を含有させても良く、特に、酸化亜鉛および/または水酸化亜鉛を担持した酸化チタンは、有害物質の吸着能力と光触媒作用による分解能力を併せ持ったものであり、より好ましいものである。
【0007】
本発明に用いる光半導体は種々の方法で得ることができ、たとえば、酸化チタンは、(1)硫酸チタニル、硫酸チタン、塩化チタン、有機チタン化合物などのチタン化合物を熱加水分解する方法、(2)硫酸チタニル、硫酸チタン、塩化チタン、有機チタン化合物などのチタン化合物にアルカリを添加し中和する方法、(3)塩化チタン、有機チタン化合物などを気相酸化する方法、(4)前記(1)、(2)の方法で得られた酸化チタンを800℃程度以下の温度で焼成する方法などを用いて得ることができる。
【0008】
本発明の有害物質除去剤において、結着剤として作用する金属酸化物は、水やアルコールなどの分散媒に分散した金属酸化物ゾルの状態のものを用いる。本発明において、金属酸化物ゾルとは、いわゆる金属酸化物を含有したゾルのほか、含水金属酸化物を含有したゾル、水和金属酸化物を含有したゾル、あるいは金属水酸化物を含有したゾルをも包含する。このような金属酸化物ゾルを構成していた金属酸化物としては、ケイ素、アルミニウム、チタン、鉄、亜鉛、コバルト、ニッケルなどの金属の酸化物(含水酸化物、水和酸化物あるいは水酸化物を包含する)を用いることができ、特に、ケイ素、アルミニウムおよびチタンから選ばれる元素の少なくとも1種の酸化物(含水酸化物、水和酸化物あるいは水酸化物を包含する)が好ましい。金属酸化物の含有量は、有害物質除去剤に対して、5〜30重量%が好ましく、さらに、10〜20重量%がより好ましい。金属酸化物の含有量が前記の範囲より少ない場合には、結着力が不足して有害物質除去剤の強度が弱くなるため好ましくなく、また、前記の範囲より多い場合には、光半導体の吸着能や光触媒活性が発揮されにくくなるため好ましくない。金属酸化物の粒子径は、結着性の観点から1〜100nmが好ましく、1〜50nmがより好ましい。
【0009】
本発明において、金属酸化物ゾルを構成していた金属酸化物のほかに、有機質バインダを結着剤として用いると、より一層強固な有害物質除去剤とすることができるため好ましい形態である。有機質バインダとしては、一般に有機質バインダと称される有機物を用いることができ、たとえば、かんしょ、ばれいしょ、タピオカ、小麦、コンスターチなどのでん粉質、ふのり、ガラクタン(寒天)、アルギン酸ナトリウムなどの海そう類、トロロアロイ、トラガントゴム、アラビアゴムなどの植物粘質物、デキストリン、レバンなどの微生物による粘質物、にかわ、ゼラチン、カゼイン、コラーゲンなどのたん白質、ビスコース、メチルセルローズ、エチルセルローズ、ヒドロキシエチルセルローズ、カルボキシセルローズなどのセルローズ、可溶性でん粉、カルボキシメチルでん粉、ジアルデヒドでん粉などのでん粉、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリエチレンオキシド、ユリア系ポリマー、フェノール系ポリマーなどの合成品などの水溶性有機質バインダ、ポリ酢酸ビニル、酢ビ・エチレン系共重合体、酢ビ・アクリル系共重合体、酢ビ・Veova共重合体、その他酢ビ・重合性ビニルモノマー、アクリル系エマルションポリアクリル酸エステル、アクリル・Veova共重合体、酢ビ・Veova・アクリル系、エチレン・酢ビ・アクリル系、アクリル・スチレン系、ポリ塩化ビニル、塩ビ・塩化ビニリデン共重合体、合成ゴムラテックスなどのエマルションポリマーなどが挙げられる。本発明においては、水分による崩壊性がより一層少ない有害物質除去剤とすることができることから、エマルションポリマーを配合するのがより好ましい。有機質バインダの含有量は、有害物質除去剤に対して、0.5〜20重量%が好ましく、さらに、1〜10重量%がより好ましい。有機質バインダの含有量が前記の範囲より少ない場合には、有機質バインダを添加した効果が認められにくいため好ましくなく、また、前記の範囲より多い場合には、光半導体の吸着能や光触媒活性が発揮されにくくなるため好ましくない。
【0010】
なお、本発明の有害物質除去剤には、光半導体と金属酸化物の他に、あるいはさらに添加する有機質バインダの他に、吸着剤を含有させても良い。吸着剤としては、有害物質を吸着できる通常のものが使用でき、たとえば、活性炭、活性アルミナ、シリカゲル、ゼオライトなどを用いることができる。
【0011】
また、本発明の有害物質除去剤には、必要に応じて、種々の補強材、フィラーを含有させても良い。補強材としては、酸化チタン繊維、チタン酸カリウム繊維、結晶セルロースなどを用いることができる。
【0012】
本発明の有害物質除去剤を製造するには、光半導体と金属酸化物ゾルとの混合物を造粒あるいは成形し、次いで、乾燥する方法が好ましい。この方法には、光半導体を造粒、成形する際に、金属酸化物ゾルを加えることを包含する。また、本発明の有害物質除去剤を製造するには、光半導体と金属酸化物ゾルと有機質バインダとの混合物を造粒あるいは成形し、次いで、乾燥する方法が好ましい。この方法には、光半導体を造粒、成形する際に、金属酸化物ゾルと有機質バインダとを加えることを包含する。金属酸化物ゾルには、必要に応じて、種々の分散安定化剤を含有させていても良い。前記の造粒、成形を行うには、たとえば、転動造粒機、押し出し造粒機、撹拌造粒機、解砕機、圧縮成形機、スプレー造粒機、金型成形機などの機械を用いて行うことができ、転動造粒機、押し出し造粒機あるいは圧縮成形機で得られた造粒体、成形体は、その強度が比較的強いため好ましい。得られた造粒体あるいは成形体を乾燥する。乾燥温度は、室温〜150℃の温度が好ましい。乾燥して得た造粒体、成形体を、必要に応じて、150〜300℃の温度で焼成しても良い。この焼成により、造粒体あるいは成形体の強度を高めることができる。しかしながら、焼成温度が300℃より高いと、光半導体の光触媒活性が低下するため好ましくない。乾燥前の造粒体あるいは成形体を、必要に応じて、ロッシュ型造粒機、マルメライザーなどの転動造粒機にかけて、球形の造粒体に整粒した後、乾燥させても良い。
【0013】
また、本発明の有害物質除去剤を製造するには、光半導体とチタン酸化物ゾルとの混合物を乾燥し、次いで粗粉砕する方法であっても良い。さらに、本発明の有害物質除去剤を製造するには、光半導体とチタン酸化物ゾルと有機質バインダとの混合物を乾燥し、次いで粗粉砕する方法であっても良い。前記の乾燥の温度は、室温〜150℃の温度が好ましい。また、前記の粗粉砕には、常用される粉砕機を用いて行うことができ、得られたものを必要に応じて篩分しても良い。このようにして得られた粉砕物を、必要に応じて150〜300℃の温度で焼成しても良い。
【0014】
次に、本発明の有害物質除去剤を用いて、流体中の有害物質を除去するには、有害物質除去剤に、有害物質を含む流体を接触させて、有害物質を吸着させて除去したり、あるいは、該有害物質除去剤に、光を照射しながら、有害物質を含む流体を接触させて、光触媒作用により有害物質を分解し、無害化して除去したりすることができる。このため、本発明の有害物質除去剤は、有害物質を含む流体の存在する場所に、たとえば、各種工場やそれらに隣接した場所、トイレ、居間、台所、冷蔵庫、自動車、靴箱などの居住空間に有害物質と接触するように置くだけでも良い。流体中の有害物質としては、アンモニア、アルデヒド類、メルカプタン類、アミン類、硫化水素、硫化メチルなどの悪臭成分、窒素酸化物、炭化水素類、有機ハロゲン化合物、細菌、菌などを対象とすることができる。特に、本発明の有害物質除去剤は悪臭成分を効率良く除去することができる。有害物質除去剤に照射する光は、その波長が400nm以下の紫外光が含まれていれば良く、光源としては、たとえば、水銀ランプ、キセノンランプ、水銀−キセノンランプ、殺菌灯、ブラックライト、白色蛍光灯などの人工光源、太陽光の自然光を用いることができる。また、前記の人工光源や自然光を併用したり、あるいは、それらから放射する光を集光して用いても良い。有害物質除去剤への光照射は、必ずしも連続して行う必要はなく、断続的に行っても良い。有害物質除去剤に有害物質を含む流体を接触させるには、送風機やポンプを用いて行うと強制的に接触させることができるため、より効率的に除去することができる。さらに、本発明の有害物質除去剤と光源と送風機とを組み込んで空気清浄装置とすることもできる。具体的には、本発明の有害物質除去剤を網状基材から成る任意の形状の箱の中に充填し、これを空気清浄装置内の気体の流通経路に設け、該有害物質除去剤に光があたるように光源を配置して、空気清浄装置とすることができる。
【0015】
【実施例】
以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。
【0016】
1.試料の作製
【0017】
参考例1
硫酸チタニルを熱加水分解し、生じた沈殿を濾過、洗浄した後、乾燥、粉砕することにより含水酸化チタン(試料A)を得た。X線回折の結果、試料Aはアナタース型の酸化チタンであり、X線粒径は7nmであった。この試料Aを80重量部と市販の酸化ケイ素ゾル(触媒化成工業製 Cataloid S−20L、粒子径:10〜20nm)を酸化ケイ素として20重量部と適当量の水を加え、混練後押し出し造粒し、5mmφのうどん状に造粒し、110℃の温度で乾燥することによって、有害物質除去剤(試料E)を得た。
【0018】
参考例2
参考例1に記載した試料Aを純水に分散させ、塩化亜鉛を溶解した後、水酸化ナトリウム水溶液にて中和し、引き続き濾過、洗浄、乾燥、粉砕することにより、水酸化亜鉛が担持された含水酸化チタン(試料B)を得た。水酸化亜鉛の担持量はモル比でZn:Ti=15:85とした。X線回折の結果、試料Bはアナタース型の酸化チタンを含有したものであり、そのX線粒径は7nmであった。次に、この試料Bを参考例1の試料Aに代えて用いること以外、参考例1と同様の方法で、有害物質除去剤(試料F)を得た。
【0019】
実施例
参考例1において、酸化ケイ素ゾルに代えて市販の酸化チタンゾル(石原産業製 CS−N、粒子径:5〜10nm)を酸化チタンとして20重量部用いること以外、参考例1と同様の方法で、本発明の有害物質除去剤(試料G)を得た。
【0020】
参考例3
参考例1において、酸化ケイ素ゾルに代えて市販の酸化アルミニウムゾル(日産化学製 ベーマイト系ゾルAS−520、粒子径:10〜20nm)を酸化アルミニウムとして20重量部用いること以外、参考例1と同様の方法で、有害物質除去剤(試料H)を得た。
【0021】
参考例4
参考例1で得られた含水酸化チタン(試料A)を80重量部、市販の酸化ケイ素ゾル(触媒化成工業製 Cataloid S−20L、粒子径:10〜20nm)を酸化ケイ素として15重量部、ポリ酢酸ビニルエマルションを樹脂分換算で5重量部と適当量の水を加え、混練後、押し出し造粒し、5mmφのうどん状に造粒し、110℃の温度で乾燥することによって、有害物質除去剤(試料I)を得た。
【0022】
参考例5
参考例4において、ポリ酢酸ビニルエマルションに代えてアクリル系エマルションポリアクリル酸エステルを用いること以外は参考例4と同様にして、有害物質除去剤(試料J)を得た。
【0023】
参考例6
参考例1に記載した試料Aを80重量部、市販の酸化ケイ素ゾル(触媒化成工業製 Cataloid S−20L、粒子径:10〜20nm)を酸化ケイ素として20重量部と適当量の水を加え、混合物を得た。得られた混合物を圧縮成形機にて成形し、110℃の温度で乾燥することによって、厚み15mm、孔径1mm、200メッシュのハニカム成形体である有害物質除去剤(試料K)を得た。
【0024】
比較例1
参考例1において、酸化ケイ素ゾルを加えないこと以外は参考例1と同様に試料Aを造粒して、比較試料Tを得た。
【0025】
比較例2
参考例1において、酸化ケイ素ゾルに代えて粘土鉱物(豊順洋行製ベントナイト SUPER CLAY)を用いること以外は参考例1と同様に試料Aを造粒して、比較試料Uを得た。
【0026】
2.試料の強度
実施例、参考例の試料E、F、G、H、I、Jと比較試料Uはいずれも粉落ちが少なく、また、1.5kg重程度の力を加えてもつぶれなかった。一方、比較試料Tの強度は弱く、指で軽くつまむ程度で粉化した。この結果から、本発明の有害物質除去剤は強度が大きく、粉化し難いものであり、長期間の使用に耐えられるものであることがわかった。
【0027】
3.試料の耐水性
実施例、参考例で得られた試料を純水中に浸すことにより、耐水性の評価を行った。実施例、参考例の試料E、F、G、H、I、J、Kはいずれも水に浸しても型くずれせず、その形状を維持していた。一方、比較試料T、Uは水に浸すことで崩壊し、粉状化した。この結果から、本発明の有害物質除去剤は耐水性に優れていることが明らかとなった。
【0028】
4.吸着作用による有害物質除去能力
参考例2の試料Fの有害物質除去能力を調べるために、試料Fを粉砕した後、0.5〜1mmの粒分を集めて試料Lを得た。試料L0.1gを容量2.8lのパイレックス(登録商標)ガラス製の容器に入れ、悪臭ガスの代表例であるアンモニアとメチルメルカプタンをそれぞれ500ppm相当分添加し、1時間後の除去能力を調べた。比較試料として、市販の無機系吸着剤ミズカナイト(MZ、水澤化学製)を用いた。得られた結果を表1に示す。試料Lは、比較試料に比べ、アンモニアおよびメチルメルカプタンの吸着力が大きことがわかった。
【0029】
【表1】

Figure 0003884503
【0030】
5.光触媒作用による有害物質除去能力
参考例2の試料F、参考例1の試料E、実施例の試料G、参考例3の試料H、参考例4の試料I、参考例5の試料Jの有害物質除去能力を調べるために、それぞれの試料を粉砕した後、0.5〜1mmの粒分を集めて、それぞれ試料M、N、O、P、Q、Rを得た。試料M、N、O、P、Q、Rのそれぞれ0.1gを容量0.8lのパイレックス(登録商標)ガラス製の容器に入れ、悪臭ガスの代表例であるアセトアルデヒドを150ppm相当分加えた。パイレックス(登録商標)ガラス製の容器の外側からブラックライトによる光照射を行い、アセトアルデヒド濃度の経時変化をガスクロマトグラフで追跡した。なお、試料面での光量は1.0mW/cmとした。比較として、ブラックライトによる光照射を行わない状態でアセトアルデヒドの濃度変化を調べた。表2にそれぞれの結果を合わせて記す。紫外線照射の有無でアセトアルデヒド濃度に大きな差が見られ、本発明の有害物質除去剤の光触媒作用による有害物質除去能力が確認できた。
【0031】
【表2】
Figure 0003884503
【0032】
参考例6および参考例1で得られた試料KおよびEをそれぞれパイレックス(登録商標)ガラス製の円筒容器中に置き、所定濃度のアセトアルデヒドを導入した。吸着が平衡に達した後、ブラックライトによる光照射を行ないながら容器中のアセトアルデヒドの分解によって生じた二酸化炭素濃度を測定することにより、試料の有害ガス除去能力を評価した。得られた結果を表3に示した。この結果より、有害物質除去剤は、光触媒作用による有害物質の除去能力に優れており、特にハニカム形状にすることにより、より一層性能が向上することがわかった。以上の結果より、本発明の有害物質除去剤は、優れた有害物質除去能力を有し、その有害物質除去能力を長期間にわたって持続できることがわかった。
【0033】
【表3】
Figure 0003884503
【0034】
【発明の効果】
本発明は、チタン酸化物ゾルを構成していたチタン酸化物を結着剤として用いた、少なくとも光半導体と該チタン酸化物から成る造粒体あるいはそれらの成形体であることを特徴とする有害物質除去剤であって、優れた有害物質除去能力を有し、その有害物質除去能力を長期間にわたって持続できる。しかも、分離・回収などの取り扱い性の良いものであるため、有害物質除去剤として幅広い用途に適用でき、工業用途ばかりでなく、一般家庭の用途としても適用可能である。
【0035】
さらに、本発明の製造方法は、前記の有害物質除去剤を簡便、かつ、廉価に製造できるなど、有用な方法である。
【0036】
さらに、本発明の有害物質除去方法は、前記の有害物質除去剤を用いた簡便な方法であるため、工業用途ばかりでなく、一般家庭の用途にも適用できる方法である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a harmful substance removing agent that removes a harmful substance, a method for producing the same, and a harmful substance removing method using the same.
[0002]
[Prior art]
Along with the recent increase in awareness of problems with the global environment and living environment, there is an increasing interest in technologies for removing harmful substances such as organic halides and hydrocarbons emitted from various factories and automobiles, and malodorous components in living spaces. Yes. In addition, problems such as ethylene that emits fruits and vegetables has the effect of accelerating the decay of these fruits and vegetables are becoming increasingly important. As a method for removing such harmful substances, a method using an adsorbent such as activated carbon or zeolite is generally performed. However, since this method merely adsorbs harmful substances, when there are a large amount of harmful substances, adsorption saturation is reached and no further harmful substances are adsorbed. In addition, there is a problem that the adsorbed harmful substances are desorbed as the state changes. For this reason, a method has been proposed in which harmful substances are oxidatively decomposed and rendered harmless by the catalytic action of an optical semiconductor such as titanium oxide.
[0003]
[Problems to be solved by the invention]
The optical semiconductor such as titanium oxide can detoxify harmful substances due to photocatalytic activity. However, since it is a powder, there is a problem that separation and recovery from the fluid to be processed becomes very difficult. In order to solve this problem, a granulated body composed of titanium oxide, which is a photo semiconductor, and high-purity bentonite, which has improved the handleability while maintaining the photocatalytic activity has been proposed (Japanese Patent Application No. 7-129383). . However, since this granulated body uses bentonite, its shape collapses due to moisture, and it tends to collapse. For this reason, it is difficult to use in an atmosphere where a large amount of moisture exists, and there is a problem that the application range is limited. Also, an immobilized optical semiconductor obtained by fixing an optical semiconductor on a substrate such as glass or ceramics has been studied. This is easy to separate and recover, but there is a problem that the photo-semiconductor activity cannot be maintained for a long time because the fixed optical semiconductor is peeled off from the carrier due to contact with the fluid to be treated. Moreover, high temperature firing is required for the immobilization treatment, which causes a problem that the photocatalytic activity of the photo semiconductor is lowered.
[0004]
[Means for Solving the Problems]
The present inventors have conducted various searches in order to obtain a harmful substance removing agent that is easy to handle, has a high photocatalytic activity, can maintain the photocatalytic activity over a long period of time, and can be used even under moisture. As a result, when the titanium oxide constituting the titanium oxide sol is used as a binder, a desired harmful substance removing agent can be obtained, and the harmful substance removing agent thus obtained can be used for various harmful substances. The present invention was completed by finding that it can be applied to the removal process. That is, the present invention is to provide a hazardous substance removing agent that is excellent in the ability to remove harmful substances such as malodorous components and is easy to handle. Another object of the present invention is to provide a method for removing harmful substances using the harmful substance removing agent.
[0005]
The present invention, titanium oxide constituted the titanium oxide sol used as the binder, Ri consists of at least the optical semiconductor and said titanium oxide, the particle size of the titanium oxide is 1 to 50 nm, Moreover, it is a granulated or molded body containing 5 to 30% by weight of the titanium oxide, granulated or molded at least a mixture of the optical semiconductor and the titanium oxide sol, and then at a temperature of room temperature to 150 ° C. The harmful substance removing agent is characterized by being formed without drying at a temperature higher than 150 ° C. The form of the harmful substance removing agent of the present invention can be appropriately designed according to the usage scene, and examples thereof include a spherical shape, a cylindrical shape, a ring shape, a plate shape, and a honeycomb shape. Moreover, the indefinite shape which grind | pulverized the granulated body or the molded object may be sufficient. In the present invention, since the contact area with the harmful substance can be increased and the pressure loss can be reduced, a structure having a honeycomb shape is preferable. The structure having a honeycomb shape is a structure in which a large number of through holes having a cross section such as a triangle, a quadrangle, a hexagon, a circle, and an ellipse are present. The size of the granulated body or molded body can be appropriately designed according to the usage scene.
[0006]
An optical semiconductor exhibits a so-called photocatalytic action, and can oxidize and decompose harmful substances by a strong oxidizing power that is expressed when irradiated with light, thereby rendering them harmless. For example, known optical semiconductors such as titanium oxide, zinc oxide, tungsten oxide, iron oxide, strontium titanate, molybdenum sulfide, and cadmium sulfide can be used singly or in combination of two or more. In particular, titanium oxide having a high photocatalytic action, chemically stable and harmless is preferable. In addition to so-called titanium oxide, titanium oxide includes hydrous titanium oxide, hydrated titanium oxide, titanium hydroxide, metatitanic acid, and orthotitanic acid. Among them, titanium oxide having an anatase type crystal form has an excellent photocatalytic activity, and a particle having a small particle diameter of 1 to 50 nm is more preferable. A more preferable particle diameter of titanium oxide is 1 to 30 nm. Further, the optical semiconductor may contain other metals such as iron, cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, silver, gold, platinum, or compounds of these other metals. Titanium oxide carrying zinc and / or zinc hydroxide has both the ability to adsorb harmful substances and the ability to decompose by photocatalysis, and is more preferable.
[0007]
The optical semiconductor used in the present invention can be obtained by various methods. For example, titanium oxide can be obtained by (1) thermal hydrolysis of titanium compounds such as titanyl sulfate, titanium sulfate, titanium chloride, and organic titanium compounds. ) A method for neutralizing titanium compounds such as titanyl sulfate, titanium sulfate, titanium chloride, and organic titanium compounds by adding alkali; (3) a method for vapor phase oxidation of titanium chloride, organic titanium compounds, and the like (4) ) And titanium oxide obtained by the method of (2) can be obtained by a method of firing at a temperature of about 800 ° C. or less.
[0008]
In the hazardous substance removing agent of the present invention, the metal oxide that acts as a binder is a metal oxide sol dispersed in a dispersion medium such as water or alcohol. In the present invention, the metal oxide sol is a sol containing a so-called metal oxide, a sol containing a hydrated metal oxide, a sol containing a hydrated metal oxide, or a sol containing a metal hydroxide. Is also included. Examples of the metal oxide constituting such a metal oxide sol include oxides of metals such as silicon, aluminum, titanium, iron, zinc, cobalt, nickel (hydrous oxide, hydrated oxide or hydroxide). In particular, an oxide of at least one element selected from silicon, aluminum, and titanium (including a hydrous oxide, a hydrated oxide, or a hydroxide) is preferable. The content of the metal oxide is preferably 5 to 30% by weight and more preferably 10 to 20% by weight with respect to the harmful substance removing agent. When the content of the metal oxide is less than the above range, it is not preferable because the binding force is insufficient and the strength of the harmful substance removing agent becomes weak. When the content is more than the above range, the adsorption of the optical semiconductor is not preferable. Performance and photocatalytic activity are not easily exhibited, which is not preferable. The particle diameter of the metal oxide is preferably 1 to 100 nm and more preferably 1 to 50 nm from the viewpoint of binding properties.
[0009]
In the present invention, in addition to the metal oxide constituting the metal oxide sol, the use of an organic binder as a binder is a preferable mode because it can be a stronger harmful substance removing agent. As the organic binder, organic substances generally referred to as organic binders can be used. For example, starch, potato, tapioca, wheat, corn starch, etc. Plant mucilage such as troroalloy, tragacanth gum, gum arabic, etc., mucous by microorganisms such as dextrin and levan, glue, gelatin, casein, collagen and other proteins, viscose, methylcellulose, ethylcellulose, hydroxyethylcellulose, carboxycellulose, etc. Cellulose, soluble starch, carboxymethyl starch, dialdehyde starch and other starches, polyvinyl alcohol, sodium polyacrylate, polyethylene oxide, urea polymers, phenolic polymers Water-soluble organic binders such as synthetic products such as mer, polyvinyl acetate, vinyl acetate / ethylene copolymer, vinyl acetate / acrylic copolymer, vinyl acetate / veova copolymer, other vinyl acetate / polymerizable vinyl monomers , Acrylic emulsion polyacrylic ester, acrylic / Veova copolymer, vinyl acetate / Veova / acrylic, ethylene / vinyl acetate / acrylic, acrylic / styrene, polyvinyl chloride, vinyl chloride / vinylidene chloride copolymer, synthesis Examples include emulsion polymers such as rubber latex. In the present invention, it is more preferable to blend an emulsion polymer because it can be a harmful substance removing agent that is much less disintegratable by moisture. The content of the organic binder is preferably 0.5 to 20% by weight, and more preferably 1 to 10% by weight with respect to the harmful substance removing agent. When the content of the organic binder is less than the above range, the effect of adding the organic binder is difficult to be recognized, and when it is more than the above range, the adsorption ability and photocatalytic activity of the photo semiconductor are exhibited. This is not preferable because it is difficult to be performed.
[0010]
The harmful substance removing agent of the present invention may contain an adsorbent in addition to the optical semiconductor and the metal oxide, or in addition to the organic binder to be added. As the adsorbent, ordinary materials capable of adsorbing harmful substances can be used. For example, activated carbon, activated alumina, silica gel, zeolite, and the like can be used.
[0011]
Further, the harmful substance removing agent of the present invention may contain various reinforcing materials and fillers as necessary. As the reinforcing material, titanium oxide fiber, potassium titanate fiber, crystalline cellulose and the like can be used.
[0012]
In order to produce the harmful substance removing agent of the present invention, a method of granulating or molding a mixture of an optical semiconductor and a metal oxide sol and then drying is preferable. This method includes adding a metal oxide sol when the optical semiconductor is granulated and formed. In order to produce the harmful substance removing agent of the present invention, a method of granulating or molding a mixture of an optical semiconductor, a metal oxide sol, and an organic binder, and then drying is preferable. This method includes adding a metal oxide sol and an organic binder when granulating and molding an optical semiconductor. The metal oxide sol may contain various dispersion stabilizers as necessary. In order to perform the granulation and molding, for example, a rolling granulator, an extrusion granulator, a stirring granulator, a pulverizer, a compression molding machine, a spray granulator, a mold molding machine, or the like is used. A granulated body and a molded body obtained by a rolling granulator, an extrusion granulator or a compression molding machine are preferable because of their relatively high strength. The obtained granulated body or molded body is dried. The drying temperature is preferably room temperature to 150 ° C. You may bake the granulated body and the molded object which were obtained by drying at the temperature of 150-300 degreeC as needed. By this firing, the strength of the granulated body or molded body can be increased. However, a firing temperature higher than 300 ° C. is not preferable because the photocatalytic activity of the optical semiconductor is lowered. If necessary, the granulated body or the molded body before drying may be passed through a rolling granulator such as a Roche granulator or a Malmerizer, so as to be granulated into a spherical granulated body, and then dried.
[0013]
Moreover, in order to manufacture the hazardous | toxic substance removal agent of this invention, the method of drying and then coarsely pulverizing the mixture of an optical semiconductor and a titanium oxide sol may be used. Furthermore, in order to produce the harmful substance removing agent of the present invention, a method of drying a mixture of an optical semiconductor, a titanium oxide sol, and an organic binder and then roughly pulverizing the mixture may be used. The drying temperature is preferably room temperature to 150 ° C. The coarse pulverization can be performed using a commonly used pulverizer, and the obtained product may be sieved as necessary. The pulverized product thus obtained may be fired at a temperature of 150 to 300 ° C. as necessary.
[0014]
Next, in order to remove the harmful substance in the fluid using the harmful substance removing agent of the present invention, the harmful substance removing agent is brought into contact with the fluid containing the harmful substance and adsorbed and removed. Alternatively, the hazardous substance removing agent can be contacted with a fluid containing a harmful substance while irradiating light, and the harmful substance can be decomposed and detoxified by photocatalysis. For this reason, the hazardous substance removing agent of the present invention is used in places where fluids containing harmful substances exist, for example, in various factories and places adjacent to them, toilets, living rooms, kitchens, refrigerators, automobiles, shoe boxes, and other living spaces. You can just place it in contact with harmful substances. Hazardous substances in fluids include ammonia, aldehydes, mercaptans, amines, malodorous components such as hydrogen sulfide and methyl sulfide, nitrogen oxides, hydrocarbons, organic halogen compounds, bacteria, fungi, etc. Can do. In particular, the harmful substance removing agent of the present invention can efficiently remove malodorous components. The light irradiating the harmful substance removing agent only needs to include ultraviolet light having a wavelength of 400 nm or less. Examples of the light source include a mercury lamp, a xenon lamp, a mercury-xenon lamp, a germicidal lamp, a black light, and a white light. An artificial light source such as a fluorescent lamp or natural light of sunlight can be used. Moreover, you may use together the said artificial light source and natural light, or condense the light radiated | emitted from them. Light irradiation to the harmful substance removing agent is not necessarily performed continuously, and may be performed intermittently. If the fluid containing the harmful substance is brought into contact with the harmful substance removing agent, it can be forcibly brought into contact with a fluid using a blower or a pump, so that it can be removed more efficiently. Furthermore, the harmful substance removing agent of the present invention, a light source, and a blower can be incorporated to form an air cleaning device. Specifically, the harmful substance removing agent of the present invention is filled in a box of an arbitrary shape made of a net-like base material, and this is provided in the gas flow path in the air cleaning device, and the harmful substance removing agent is irradiated with light. A light source can be arranged so as to hit, and it can be set as an air purifier.
[0015]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto.
[0016]
1. Sample preparation [0017]
Reference example 1
After titanyl sulfate was hydrolyzed and the resulting precipitate was filtered and washed, dried and pulverized to obtain hydrous titanium oxide (sample A). As a result of X-ray diffraction, Sample A was anatase-type titanium oxide, and the X-ray particle size was 7 nm. 80 parts by weight of this sample A and a commercially available silicon oxide sol (Cataloid S-20L manufactured by Catalytic Chemical Industry, particle size: 10 to 20 nm) as silicon oxide, 20 parts by weight and an appropriate amount of water were added, and the mixture was extruded and granulated. Then, it was granulated into 5 mmφ noodles and dried at a temperature of 110 ° C. to obtain a harmful substance removing agent (sample E).
[0018]
Reference example 2
Sample A described in Reference Example 1 was dispersed in pure water, dissolved in zinc chloride, neutralized with an aqueous sodium hydroxide solution, and subsequently filtered, washed, dried, and pulverized to support zinc hydroxide. A hydrous titanium oxide (sample B) was obtained. The supported amount of zinc hydroxide was Zn: Ti = 15: 85 in molar ratio. As a result of X-ray diffraction, Sample B contained anatase-type titanium oxide, and its X-ray particle size was 7 nm. Next, the sample B except using in place of the sample A of Example 1 were obtained in the same manner as in Reference Example 1, hazardous substance removing material (Sample F).
[0019]
Example 1
In Reference Example 1, in place of silicon oxide sol, a commercially available titanium oxide sol (CS-N manufactured by Ishihara Sangyo, particle size: 5 to 10 nm) was used in the same manner as Reference Example 1, except that 20 parts by weight was used as titanium oxide. The harmful substance removing agent (sample G) of the present invention was obtained.
[0020]
Reference example 3
In Reference Example 1, the same as Reference Example 1 except that 20 parts by weight of aluminum oxide sol (boehmite sol AS-520 manufactured by Nissan Chemical Co., Ltd., particle size: 10 to 20 nm) is used as aluminum oxide instead of silicon oxide sol. in the method, to obtain hazardous substance removing material (sample H).
[0021]
Reference example 4
80 parts by weight of hydrous titanium oxide (sample A) obtained in Reference Example 1, 15 parts by weight of commercially available silicon oxide sol (Cataloid S-20L manufactured by Catalytic Chemical Industry, particle size: 10 to 20 nm) as silicon oxide, vinyl acetate emulsion of water 5 parts by weight and an appropriate amount of resin content basis added, kneaded, and extrusion granulation and granulated to noodles like 5 mm.phi, by drying at a temperature of 110 ° C., removing harmful substances agent (Sample I) was obtained.
[0022]
Reference Example 5
Reference Example 4 was obtained except for using an acrylic emulsion polyacrylic acid ester instead of the polyvinyl acetate emulsion in the same manner as in Reference Example 4, hazardous substance removing material (Sample J).
[0023]
Reference Example 6
80 parts by weight of the sample A described in Reference Example 1, 20 parts by weight of a commercially available silicon oxide sol (Cataloid S-20L manufactured by Catalytic Chemical Industry, particle size: 10 to 20 nm) as silicon oxide and an appropriate amount of water were added. A mixture was obtained. The resulting mixture was molded by compression molding machine to obtain by drying at a temperature of 110 ° C., thickness 15 mm, hole diameter 1 mm, 200 mesh honeycomb molded body der Ru hazardous substance removing material (Sample K) .
[0024]
Comparative Example 1
In Reference Example 1, Sample A was granulated in the same manner as in Reference Example 1 except that no silicon oxide sol was added, and Comparative Sample T was obtained.
[0025]
Comparative Example 2
In Reference Example 1, Sample A was granulated in the same manner as in Reference Example 1 except that a clay mineral (Bontonite SUPER PLAY manufactured by Toyoshun Yoko Co., Ltd.) was used instead of the silicon oxide sol, and Comparative Sample U was obtained.
[0026]
2. Sample strength Samples E, F, G, H, I, and J of the examples and reference examples and the comparative sample U were less likely to fall off, and were not crushed even when a force of about 1.5 kg was applied. On the other hand, the strength of the comparative sample T was weak and pulverized to such an extent that it was lightly pinched with fingers. From these results, it was found that the harmful substance removing agent of the present invention has high strength, is difficult to powder, and can withstand long-term use.
[0027]
3. Water Resistance of Samples Water resistance was evaluated by immersing the samples obtained in Examples and Reference Examples in pure water. The samples E, F, G, H, I, J, and K of Examples and Reference Examples did not lose their shape even when immersed in water, and maintained their shapes. On the other hand, the comparative samples T and U were disintegrated and powdered by being immersed in water. From this result, it became clear that the hazardous substance removing agent of the present invention is excellent in water resistance.
[0028]
4). Hazardous substance removal capability by adsorption action
In order to examine the harmful substance removing ability of Sample F of Reference Example 2, Sample F was pulverized, and then a sample of 0.5 to 1 mm was collected to obtain Sample L. Sample L0.1g was put into a Pyrex (registered trademark) glass container having a capacity of 2.8 l, ammonia and methyl mercaptan, which are representative examples of malodorous gases, were added in an amount corresponding to 500 ppm, and the removal ability after 1 hour was examined. . As a comparative sample, a commercially available inorganic adsorbent Mizukanite (MZ, manufactured by Mizusawa Chemical) was used. The obtained results are shown in Table 1. Samples L, compared to the comparative sample, the adsorption force of the ammonia and methyl mercaptan was found to be not large.
[0029]
[Table 1]
Figure 0003884503
[0030]
5). Ability to remove harmful substances by photocatalysis
Sample F of Example 2, Sample E of Example 1, Sample G of Example 1, sample H of Example 3, Sample I of Example 4, in order to examine the hazardous substance removing ability of the sample J of Example 5 After each sample was pulverized, particles of 0.5 to 1 mm were collected to obtain samples M, N, O, P, Q, and R, respectively. 0.1 g of each of samples M, N, O, P, Q, and R was placed in a 0.8 L Pyrex (registered trademark) glass container, and acetaldehyde, which is a typical example of malodorous gas, was added in an amount corresponding to 150 ppm. Light irradiation with black light was performed from the outside of a Pyrex (registered trademark) glass container, and changes with time in the acetaldehyde concentration were followed by a gas chromatograph. The amount of light on the sample surface was 1.0 mW / cm 2 . As a comparison, the concentration change of acetaldehyde was examined in a state where no light irradiation with black light was performed. Table 2 shows the results together. A large difference was observed in the concentration of acetaldehyde with and without UV irradiation, confirming the ability to remove harmful substances by the photocatalytic action of the hazardous substance removing agent of the present invention.
[0031]
[Table 2]
Figure 0003884503
[0032]
Samples K and E obtained in Reference Example 6 and Reference Example 1 were placed in a Pyrex (registered trademark) glass cylindrical container, respectively, and a predetermined concentration of acetaldehyde was introduced. After the adsorption reached equilibrium, the sample was evaluated for its ability to remove harmful gases by measuring the concentration of carbon dioxide produced by the decomposition of acetaldehyde in the container while irradiating with black light. The obtained results are shown in Table 3. From this result, hazardous substance removing agent is highly capable of removing hazardous substances by the photocatalyst action, in particular by a honeycomb shape, was improved further performance. From the above results, it was found that the harmful substance removing agent of the present invention has an excellent ability to remove harmful substances, and the ability to remove harmful substances can be maintained over a long period of time.
[0033]
[Table 3]
Figure 0003884503
[0034]
【The invention's effect】
The present invention is a harmful substance characterized in that it is a granulated body composed of at least an optical semiconductor and the titanium oxide or a molded body thereof using the titanium oxide constituting the titanium oxide sol as a binder. It is a substance removing agent, has an excellent ability to remove harmful substances, and can maintain the ability to remove harmful substances over a long period of time. Moreover, since it is easy to handle such as separation and recovery, it can be applied to a wide range of uses as a hazardous substance removing agent, and can be applied not only to industrial use but also to general household use.
[0035]
Furthermore, the production method of the present invention is a useful method such that the harmful substance removing agent can be produced simply and inexpensively.
[0036]
Furthermore, since the harmful substance removal method of the present invention is a simple method using the above-mentioned harmful substance removing agent, it can be applied not only to industrial use but also to general household use.

Claims (10)

チタン酸化物ゾルを構成していたチタン酸化物を結着剤として用いた、少なくとも光半導体と該チタン酸化物から成り、該チタン酸化物の粒子径が1〜50nmであり、しかも、該チタン酸化物を5〜30重量%含有した造粒体あるいは成形体であって、少なくとも光半導体と該チタン酸化物ゾルとの混合物を造粒あるいは成形し、次いで室温〜150℃の温度で乾燥し150℃よりも高い温度の焼成を行わずに形成したことを特徴とする有害物質除去剤。 The titanium oxide constituted the titanium oxide sol used as the binder, comprises at least an optical semiconductor and said titanium oxide or al, particle diameter of the titanium oxide is 1 to 50 nm, Furthermore, the titanium the walk granule had an oxide 5-30 wt% including a formed feature, the mixture was granulated or molded with at least the optical semiconductor and said titanium oxide sol, and then at a temperature of room temperature to 150 DEG ° C. A harmful substance remover formed without drying and firing at a temperature higher than 150 ° C. チタン酸化物の含有量が10〜20重量%であることを特徴とする請求項1に記載の有害物質除去剤。The harmful substance removing agent according to claim 1, wherein the content of titanium oxide is 10 to 20% by weight. 光半導体がアナタース型結晶形を有する酸化チタンであり、その粒子径が1〜50nmであることを特徴とする請求項1に記載の有害物質除去剤。The harmful substance removing agent according to claim 1, wherein the optical semiconductor is titanium oxide having an anatase-type crystal form, and the particle diameter thereof is 1 to 50 nm. 光半導体が酸化亜鉛および/または水酸化亜鉛を担持した酸化チタンであることを特徴とする請求項1に記載の有害物質除去剤。The harmful substance removing agent according to claim 1, wherein the optical semiconductor is titanium oxide carrying zinc oxide and / or zinc hydroxide. チタン酸化物ゾルを構成していたチタン酸化物および有機質バインダを結着剤として用いて成ることを特徴とする請求項1に記載の有害物質除去剤。2. The harmful substance removing agent according to claim 1, wherein the titanium oxide sol and the organic binder constituting the titanium oxide sol are used as a binder. 有機質バインダの含有量が0.5〜20重量%であることを特徴とする請求項5に記載の有害物質除去剤。The harmful substance removing agent according to claim 5, wherein the content of the organic binder is 0.5 to 20% by weight. 有機質バインダがエマルションポリマーであることを特徴とする請求項に記載の有害物質除去剤。6. The harmful substance removing agent according to claim 5 , wherein the organic binder is an emulsion polymer. 形体がハニカム形状を有する構造体であることを特徴とする請求項1または5に記載の有害物質除去剤。The hazardous substance removing material according to claim 1 or 5, wherein the formed feature is a structure having a honeycomb shape. 請求項1に記載の有害物質除去剤に有害物質を含む流体を接触させて、該有害物質を除去することを特徴とする有害物質除去方法。A method for removing a harmful substance, comprising contacting the fluid containing the harmful substance with the harmful substance removing agent according to claim 1 to remove the harmful substance. 請求項1に記載の有害物質除去剤に光を照射しながら有害物質を含む流体を接触させて、該有害物質を除去することを特徴とする有害物質除去方法。A method for removing a harmful substance, comprising contacting the fluid containing the harmful substance while irradiating the harmful substance removing agent according to claim 1 with light to remove the harmful substance.
JP14082296A 1996-05-09 1996-05-09 Hazardous substance removing agent and method of removing harmful substance using the same Expired - Fee Related JP3884503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14082296A JP3884503B2 (en) 1996-05-09 1996-05-09 Hazardous substance removing agent and method of removing harmful substance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14082296A JP3884503B2 (en) 1996-05-09 1996-05-09 Hazardous substance removing agent and method of removing harmful substance using the same

Publications (2)

Publication Number Publication Date
JPH09299809A JPH09299809A (en) 1997-11-25
JP3884503B2 true JP3884503B2 (en) 2007-02-21

Family

ID=15277535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14082296A Expired - Fee Related JP3884503B2 (en) 1996-05-09 1996-05-09 Hazardous substance removing agent and method of removing harmful substance using the same

Country Status (1)

Country Link
JP (1) JP3884503B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179109A (en) 1999-12-27 2001-07-03 Yamaha Corp Photocatalytic granule and method of producing the same
JP2002166173A (en) * 2000-11-29 2002-06-11 Inr Kenkyusho:Kk Photocatalyst apparatus
JP2003093890A (en) * 2001-09-25 2003-04-02 Mitsubishi Heavy Ind Ltd Method for preparing photocatalyst
JP2005066433A (en) * 2003-08-22 2005-03-17 Kusatsu Electric Co Ltd Photocatalyst molding

Also Published As

Publication number Publication date
JPH09299809A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
Robert et al. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP2004250239A (en) Active tubular titanium oxide particle, and catalyst and deodorant containing the same
JP3217101B2 (en) Method for producing air purifier
JP2017035645A (en) Adsorbent, method for producing adsorbent, filter for air cleaning and air cleaning machine
JP3247611B2 (en) Hazardous substance remover and harmful substance removal method using the same
WO1991008049A1 (en) Adsorbent composition and method of producing same
JP3488496B2 (en) Poison-resistant deodorizing photocatalyst
JP2004074069A (en) Formaldehyde oxidation removal method
JP3884503B2 (en) Hazardous substance removing agent and method of removing harmful substance using the same
JP3484470B2 (en) Film material with photocatalytic function
JP4621859B2 (en) Method for producing porous photocatalyst
JPH0975434A (en) Deodorant using photocatalyst
JP5610329B2 (en) Titanium oxide volatile organic compound decomposition material coated with silicate
JP2000288405A (en) Photocatalyst body and removing method of harmful material using the same
JP3247610B2 (en) Hazardous substance remover and harmful substance removal method using the same
KR100333590B1 (en) Deodorizer and method for deodorizing in light-regeneration mode
JP3276297B2 (en) Photocatalyst
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
JPH08103487A (en) Deodorant
JP2585157B2 (en) Adsorbent composition and method for producing the same
JPH0549862A (en) Method for deodorization and treating agent therefor
JP3864223B2 (en) Manufacturing method of environmental materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees