JP3883253B2 - High temperature oxidation furnace and oxidation treatment method - Google Patents

High temperature oxidation furnace and oxidation treatment method Download PDF

Info

Publication number
JP3883253B2
JP3883253B2 JP12477397A JP12477397A JP3883253B2 JP 3883253 B2 JP3883253 B2 JP 3883253B2 JP 12477397 A JP12477397 A JP 12477397A JP 12477397 A JP12477397 A JP 12477397A JP 3883253 B2 JP3883253 B2 JP 3883253B2
Authority
JP
Japan
Prior art keywords
combustion chamber
gas
temperature
oxidation furnace
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12477397A
Other languages
Japanese (ja)
Other versions
JPH10300041A (en
Inventor
晶作 藤並
秀一 永東
孝裕 大下
信一郎 千葉
修 亀田
良夫 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ube Corp
Original Assignee
Ebara Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ube Industries Ltd filed Critical Ebara Corp
Priority to JP12477397A priority Critical patent/JP3883253B2/en
Publication of JPH10300041A publication Critical patent/JPH10300041A/en
Application granted granted Critical
Publication of JP3883253B2 publication Critical patent/JP3883253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E20/344

Description

【0001】
【発明の属する技術分野】
本発明は、ガス状物の高温酸化に係り、特に、各種の廃棄物を低温でガス化して得られるガス状物を、高温にてガス化或いは燃焼するための高温酸化炉及び酸化処理方法に関する。
【0002】
【従来の技術】
今日、都市ごみ、産業廃棄物、下水汚泥の多くが焼却設備へ、また、し尿や高濃度廃液が廃水処理設備へ送られ処理に付されている。しかしながら、未だ多くの廃棄物が未処理のまま投棄されているため、環境汚染や埋立地の逼迫を招くに至った。このため、灰のスラグ化とダイオキシン類を完全分解する機能が一体化されたガス化溶融システムの実用化が、強く望まれている。
一方、石炭をガス化し、H2 、COガスを主成分とする還元ガスを生産する技術が、既に実用化されている。ここで用いられているガス化炉は下降流型噴流床ガス化炉であり、水スラリー化した石炭を酸素と共にバーナより下方向に吹き出すことにより、高温下にて一段のガス化を行うものである。
図5に、下降流型噴流床ガス化炉の断面を示す。図5において、1はバーナ、2は燃焼室、3はスロート部、4はスラグ分離室、5は下降管、7は水槽、8はガス出口、9はスラグ出口、aは石炭・水スラリー、bは酸素ガス、cは生成ガス、dはスラグ粒、eは補給水、fは排水、gはスラグミスト、hはスラグ層、iはスラグ滴である。
【0003】
高濃度石炭・水スラリーaは、酸素(O2 )bとともに炉頂のバーナ1から燃焼室2の中へ吹き込まれる。燃焼室内では高温、高圧の条件でガス化が行われ、水素(H2 )、一酸化炭素(CO)、二酸化炭素(CO2 )、水蒸気(H2 O)を主成分とするガスが生成される。石炭中の灰分は、高温のため溶融してスラグミストgとなり、多くは壁面に付着してスラグ層hを形成する。スラグ層を流れ下ったスラグは、スラグ滴iとしてスラグ分離室へ落下する。ガス中に残留するスラグミストは、ガスと共にスロート部3を経てスラグ分離室4に入る。次いで、ガスとスラグは、下降管5内を下降して水槽7中の水に吹き込まれて急冷され、その時の飽和温度となったガスは、ガス出口8より排出される。一方、水砕されガラス状となったスラグdは、水槽底部に堆積した後に、スラグ出口9より排出される。水槽中の水は排水fとして別置きのセトラー(図示せず)に排出される。
【0004】
この下降流型噴流床ガス化炉を廃棄物のガス化或いは燃焼に適用しようとすると、次のような問題がある。
(a)廃棄物を、石炭のように高濃度で水スラリー化することは困難である。多くの原因は、廃棄物の粉砕性にある。
(b)廃棄物の多くは石炭に比べ発熱量が低い。スラリー化のために水を添加することは、石炭以上に不利となる。
(c)燃焼室内に旋回流が形成されないため、ガスの滞留時間に広い分布を生じ、用いる原料によってはカーボンが多く発生する場合もある。スラグ中に残存する未燃カーボンは再利用されるが、その量は少ない方が望ましい。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決した、高負荷処理が可能で未燃カーボンの少ない高温酸化炉、特に各種の廃棄物を水スラリー化せずに原料とすることができるガス化溶融システムに用いられる高温酸化炉と酸化処理方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明では、粉粒状固形物を含む可燃性のガス状物を高温にてガス化或いは燃焼する燃焼室と、生成したスラグを冷却して回収するスラグ分離室を有する高温酸化炉において、該燃焼室上部側面には、供給したガス状物が旋回流を形成するように、水平断面の接線方向に向けて前記ガス状物の供給口を配すると共に、前記燃焼室の頂部には、含酸素ガスを燃焼室内に向けて吹き込む吹込口を設け、前記燃焼室下部にはスロート部を形成し、前記スラグ分離室には、前記スロート部に接続した下降管と、底部に水槽と、側面にガス排出口が配され、前記スロート部と前記下降管との接続部にガスとスラグを冷却するために水を噴霧する補助スプレーを設けたことを特徴とする高温酸化炉としたものである。
また、本発明では、粉粒状固形物を含む可燃性のガス状物を高温にてガス化或いは燃焼する燃焼室と、生成したスラグを冷却して回収するスラグ分離室を有する高温酸化炉において、該高温酸化炉の手前に前記ガス状物からガス状物と粉粒状固形物を分別する分級装置を設け、前記燃焼室の上部側面には、該分級装置で分別されたガス状物が旋回流を形成するように、水平断面の接線方向に向けてガス状物の供給口を配し、前記分級装置で分別したガス状物は該供給口に接続すると共に、前記燃焼室の頂部には、含酸素ガスを燃焼室内に向けて吹き込む吹込口を設け、前記分級装置で分別された粉粒状固形物は該吹込口に接続することを特徴とする高温酸化炉としたものである。
【0007】
記高温酸化炉において、燃焼室は、内部温度が1200〜1600℃であり、内部圧力が常圧近傍或いは5〜90atgであるのが良く、燃焼室に吹き込む含酸素ガスは、空気、酸素富活空気、酸素のいずれかにスチーム又は炭酸ガスを添加したものが良いし、さらに前記燃焼室は、ボイラ構造とすることもできる。
また、前記高温酸化炉において、前記下降管は、端部を水槽の水面上又は水面下とすることができる。
前記において、粉粒状固形物を含む可燃性のガス状物は、前工程の低温ガス化炉で生成したチャーを含むガス化ガスであり、前記低温ガス化炉に供給するガス化原料は、廃棄物であるのが良い。
【0008】
また、本発明では、廃棄物を低温ガス化して得られた粉粒状固形物を含む可燃性のガス状物を、高温でガス化或いは燃焼する酸化処理方法において、前記ガス状物を、高温ガス化或は燃焼する燃焼室とスラグ分離室とを有する高温酸化炉を用い、該ガス状物を前記高温酸化炉の燃焼室の上部側面の水平断面の接線方向に供給して旋回流を形成させると共に、含酸素ガスを該燃焼室の頂部から燃焼室内に供給して高温ガス化し、該高温ガス化したガスを、前記燃焼室下部のスロート部から、該スロート部に接続した水が噴霧されている前記スラグ分離室の下降管を通り、底部の水槽を介して排出することを特徴とする酸化処理方法としたものである。
さらに、本発明では、廃棄物を低温ガス化して得られた粉粒状固形物を含む可燃性のガス状物を、高温でガス化或いは燃焼する酸化処理方法において、前記ガス状物をガス状物と粉粒状固形物に分別し、前記ガス状物を、高温ガス化或は燃焼する燃焼室とスラグ分離室とを有する高温酸化炉を用い、該分別したガス状物を前記高温酸化炉の燃焼室上部側面の水平断面の接線方向に供給して旋回流を形成させると共に、含酸素ガスを該燃焼室の頂部から燃焼室内に供給し、前記分別した粉粒状固形物を外部から導入した不活性ガスを主体としたキャリアガスを用いて該燃焼室の頂部から燃焼室に供給することを特徴とする酸化処理方法としたものである。
前記処理方法において、廃棄物は、水スラリー化することなく低温ガス化することができる。
【0009】
【発明の実施の形態】
本発明では、可燃性のガス状物を高温にてガス化或いは燃焼する燃焼室と、生成したスラグを分離回収するスラグ分離室を有する高温酸化炉において、ガス状物を燃焼室に水平断面の接線方向に供給して旋回流を生ぜしめ、同時に含酸素ガスを燃焼室の頂部から燃焼室内、好ましくは頂部中央から燃焼室の軸方向に吹き込むことにより、ガス化或いは燃焼の効率を高め、未燃カーボンの発生量を少なくしたものである。
本発明の高温酸化炉は、前段に低温ガス化炉を配し、低温ガス化炉で生成したチャーを含むガス化ガスを高温酸化炉に供給するガス化溶融システムとして使用する時にその威力が発揮される。
【0010】
本発明では、可燃性の固形物を含んだガスを、燃焼室に供給して旋回流を生ぜしめ、一方、含酸素ガスは燃焼室の頂部から燃焼室内、好ましくは、頂部中央から燃焼室の軸方向に吹き込む。このため、燃焼室の全域にわたり強力な酸化分解を起こさせることが出来、また、含酸素ガスの吹き込みが燃焼室の軸方向であるため、火炎が炉壁を直射することは無い。従って、未燃カーボンの発生が少なく、長期連続運転が可能なガス化或いは燃焼を実現することが出来る。
ガス中の固形物濃度が高い場合には、高温酸化炉の手前にサイクロン等を設けてガスと固形物を分別し、ガスは燃焼室に旋回流を形成するように供給し、固形物は燃焼室の頂部より含酸素ガスとともに、燃焼室頂部から燃焼室内、好ましくは、頂部中央より燃焼室の軸方向に供給するのがよい。こうすると、燃焼速度の遅い固形物が優先的に酸素と接触して酸化分解されるため、さらに未燃カーボンの発生の少ないガス化或いは燃焼が達成出来る。
【0011】
燃焼室の内部温度は、固形物中の灰分が溶流する温度より50〜100℃高い温度となるよう設定する。炉内温度の上昇は炉壁の損傷を促進するので、必要に応じ石灰石等を添加して灰の溶流温度を下げてやる。
燃焼室の内部圧力は、処理の目的に応じ、常圧或いは5〜90atgの加圧が選ばれる。完全燃焼や低圧の工業用燃料ガス回収が目的であれば常圧付近が、IGCC(ガスタービンを用いた複合サイクル発電)やSNG(合成天然ガス)や、アンモニア、メタノール等の化学工業原料の合成が目的ならば20〜90atg程度が選ばれる。
なお、燃焼室に供給する含酸素ガスには、空気、酸素富活空気、酸素のいずれかに、必要に応じスチーム又は炭酸ガスを添加したものが用いられる。利用目的が完全燃焼や低圧の工業用燃料ガスの回収やIGCCが目的であれば空気や酸素富活空気が、SNGや化学工業原料の合成が目的なら酸素が用いられる。
【0012】
燃焼室をボイラ構造として、高温高圧の水蒸気を回収すれば、発熱量を上げることが出来、まりスラグのセルフコーティングによる炉材保護も可能となる。
燃焼室で生成したガスとスラグをスラグ分離室に導き、下降管から水中に吹き込むことにより、ガスの急冷、スラグミストの除去、ガス中の塩化水素(HCl)等の吸収、スラグの水砕を行うことが出来る。スラグミストの除去により、ガスを後段の洗浄設備に導く際のダクトの閉塞も防止出来る。下降管自身を水管を配したボイラ構造とすれば、高温高圧の水蒸気の回収量をさらに増やせる。
低温ガス化炉と高温酸化炉を組み合わせたガス化溶融システムにて、本発明による高温酸化炉を使用すれば、廃棄物の高負荷で高収率なガス化或いは燃焼による処理が可能となる。
【0013】
本発明は、以下に述べる解決手段を見出すことにより成された。
(1)固形物を含んだ可燃性ガスを、燃焼室上部側面に供給して高速旋回させ、一方含酸素ガスは燃焼室の頂部中央より、燃焼室の軸方向に吹き込む。
(2)ガス中の固形物量が特に多い場合には、高温酸化炉の手前にサイクロン等の分級装置を置き、そこでガスと固形物を分離する。分離後のガスは燃焼室上部側面に供給して旋回流を形成させ、一方固形物は含酸素ガスと共に燃焼室の炉頂中央より燃焼室の軸方向に供給する。こうして固形物を優先的に高温で酸化分解する。
なお、本発明では、固形物を含酸素ガスと共に燃焼室の炉頂より燃焼室の軸方向に供給するようにした場合について述べたが、これに限定するものでなく固形物を含酸素ガスと共に燃焼室の軸方向と交差方向に供給してもよい。
(3)この時、燃焼室の内部温度は、1200〜1600℃とする。
(4)また、燃焼室の内部圧力は、処理の目的に応じ常圧或いは5〜90atgの加圧とする。
【0014】
(5)燃焼室に供給する含酸素ガスは、利用の目的に応じて空気、酸素富活空気、酸素のいずれかに必要に応じスチーム又は炭酸ガスを添加したものを用いる。
(6)燃焼室をボイラ構造とすれば、高温高圧の水蒸気を回収出来、また炉材もスラグのセルフコーティングにより保護出来る。
(7)燃焼室で生成したガスとスラグは、スラグ分離室にて水と直接接触させることにより急冷する。
(8)下降管をボイラ構造とすれば、高温高圧の水蒸気の回収量が増す。
(9)水面上に輻射ボイラを配すれば、後段の対流ボイラと併せてさらに大量の水蒸気が回収できる。
(10) 本発明による高温酸化炉を、低温ガス化炉と組み合わせたガス化溶融システムに採用すれば、廃棄物の高負荷で高効率な処理が可能となる。
【0015】
図1に、本発明による高温酸化炉の断面図を示す。
図1において、前記した図5と同じ符号は同じ言葉を表し、10はガス状物入口、11はボイラ水管、jはガス状物、kは固形物である。
前段の低温ガス化炉(図示せず)で生成したガス状物jすなわちガスと固形物kすなわちチャーは、高温酸化炉の燃焼室のガス状物入口10に供給され、強い旋回流を発生する。一方、燃焼室の頂部中央に設けたノズルから酸素が燃焼室の軸方向に吹き込まれ、1400℃前後で高温ガス化が行われ、水素ガス、一酸化炭素、二酸化炭素、水蒸気を主成分とするガスが生成される。チャーは高温で燃焼するため、チャー中の灰分はスラグミストgとなる。旋回流により大部分のスラグミストは壁面に付着して薄いスラグ層hとなる。
【0016】
ガスとガス中に残ったスラグミストは、スロート部3を通過してスラグ分離室4に入る。燃焼室壁面のスラグ層を流れ下ったスラグは、スラグ滴iとなってスラグ分離室へ落下する。こうして下降管5を下降したガスとスラグは、スロート部3下部の下降管5の接合角部の周方向に配設された補助スプレー15によって下降管の内壁面の冷却と同時にガスやスラグも噴霧冷却した後水槽7中に水に吹き込まれて急冷される。下降管の外側を上昇したガスは、スラグ分離室に設けたガス出口8より排出される。本実施例では、下降管は輻射ボイラ構造となっているため、下降管を冷却する必要はない。水槽底部に堆積したスラグdは、スラグ出口9より排出される。未燃カーボンは、結局ガス化原料としてリサイクルするが、その量は少ない方が望ましい。
【0017】
図2に、本発明による高温酸化炉の別の構成を示す。図2において、12はサイクロン、jはガス状物、kは固形物、tはキャリアガスである。前段の低温ガス化炉(図示せず)で生成したガス状物jすなわちガスと固形物kすなわちチャーは、サイクロン12にて分離され、ガスは高温酸化炉の燃焼室2のガス状物入口10に供給され、強い旋回流を発生する。一方、チャーは前記サイクロン12と燃焼室間をつなぐ配管ラインから吹き込まれたキャリアガスで搬送されて燃焼室2の頂部中央に設けたノズルから酸素とともに燃焼室の軸方向に吹き込まれ、例えば1400℃前後で高温ガス化が行われる。なお、サイクロン12にて分離されたチャーpを燃焼室2に供給する場合は、図2に示すようにキャリアガスtとして不活性ガスを用いて供給することが爆発燃焼を防止するうえで望ましい。
本例では、ノズルからチャーを含酸素ガスとともに燃焼室の頂部中央より燃焼室の軸方向に吹き込む例について述べたが、これに限定するものでなく、チャーと含酸素ガスの吹込口は燃焼室の頂部中央より少しズレてもよいし、また燃焼室の軸方向と交差方向に吹き込むようにしてもよい。
こうして、通常は燃焼速度が遅いために未燃カーボンとなりやすい固形物が、優先的に酸素と接触して酸化分解される。
【0018】
図3は、本発明による別の高温酸化炉で、スラグ分離室4内に輻射ボイラ13、底部に水槽7が配されている。燃焼室2にて生成したガスとスラグは、スロート部3を介して、スラグ分離室4に入る。スラグ分離室4内の輻射ボイラ13により、ガスとスラグの発する輻射熱は効率良く吸収される。輻射ボイラ13を通過したガスは水面の直上で反転し、慣性力でスラグを水中に落下させた後に、スラグ分離室4の側面に設けたガス排出口8から排出される。従って、ガスは水と直接接触することなく後段の対流ボイラに供給されるため、結果的に多量の高温高圧スチームを回収出来る。このタイプの高温酸化炉は、発電を目的とする場合に用いられる。
【0019】
図4は、廃棄物からの水素(H2 )、一酸化炭素(CO)の混合ガスを製造するためのガス化溶融システムの要部を示す。ここでは低温ガス化炉して用いる流動層炉からのガスの固形物濃度が高い場合を想定している。21は原料貯留槽、22は原料ロックホッパー、23は原料供給装置、24は流動層ガス化炉、12はサイクロン、25は高温酸化炉、26は空気圧縮機、27は酸素圧縮機、28は不燃物排出装置、29はBMロックホッパー、30は不燃物ロックホッパー、31は不燃物コンベア、32は磁選機、33はBM循環エレベータ、34は磁選機、35は振動篩、36は粉砕機、37はBMロックホッパー、38はBMホッパー、42はガススクラバー、lは廃棄物、mは空気、nは不燃物(添字:Lは28の篩上、Sは28の篩下、1は磁性、2は非磁性)、oは砂、pはチャー、qは水、rはスチームである。
【0020】
予め破砕・選別等の前処理を施した廃棄物lは、原料貯留槽21に貯留された後に原料ロックホッパー22を通過して20〜90atg程度に昇圧され、スクリュー式の原料供給装置23により流動層ガス化炉24に定量供給される。ガス化炉の下からは空気mと酸素(O2 )bの混合ガスがガス化剤兼流動化ガスとして送入される。廃棄物はガス化炉内の砂oの流動層に投入され、450〜950℃に保持された流動層内で酸素と接触することにより、速やかに熱分解ガス化される。ガス化炉の炉底からは砂が不燃物nやチャーpとともに間欠的に排出され、不燃物排出装置28により粗大不燃物nL が分離され、不燃物ロックホッパー30で減圧された後に、不燃物コンベア31により持ち上げられ、磁選機32により磁性物nL1すなわち鉄分と非磁性物nL2に分別される。一方、不燃物排出装置の篩下となった砂は、不燃物nS やチャーとともに、BM循環エレベータ33で上方へ搬送され、磁選機34で磁性物nS1を分離する。後は、振動篩35とボールミル型の粉砕機36により、流動媒体の砂は粉砕しないで、不燃物とチャーは微粉砕してガス化炉に戻す。不燃物に含まれる金属は、ガス化炉内が還元雰囲気であるため、酸化されないクリーンな状態で回収される。
【0021】
投入された廃棄物の熱分解ガス化によりガス、タール、炭化物が生成するが、炭化物は流動層の攪乱運動により微粉砕されてチャーとなる。固形物であるチャーは多孔質で軽いため、ガス状物であるガス、タールの流れに同伴されて運ばれる。ガス化炉を出たガス状物jと固形物kの混合物はサイクロン20に供給され、ここでガス状物と固形物が分別される。固形物をほとんど含まないガス状物は、高温酸化炉25の燃焼室に供給され強い旋回流を発生する。一方、分離された固形物kは酸素bとともに燃焼室2上部より吹き込まれ、固形物は酸素と反応して優先的に酸化分解される。燃焼室内の温度はおよそ1400℃である。そこで生成する水素、一酸化炭素、二酸化炭素、硫化水素、水蒸気主体のガスは、スラグと共に、スラグ分離室4にて水と直接接触して洗浄急冷される。スラグ分離室4を出たガスcは、ガススクラバー42にて残存するダストや塩化水素等を徹底的に除去する。スラグ分離室4の下部からは水槽7に堆積したスラグdが排出され、また、スラグ分離室4の側壁から排出された廃水fは次工程の図示を省略した廃水処理装置にて処理される。回収されたスラグはセメントや土木建築用の資材として有効利用される。
【0022】
【発明の効果】
本発明によれば、次のような効果を奏することができる。
▲1▼ 廃棄物を石炭スラリーのように微粉砕してスラリー化する必要がないため、廃棄物の前処理工程が簡単である。
▲2▼ 廃棄物の場合は、石炭スラリーを高温酸化炉に供給して処理する時のように水が存在しないため、酸素の原単位を小さくでき冷ガス効率が高い。
【図面の簡単な説明】
【図1】本発明の高温酸化炉の一例を示す概略構成図。
【図2】本発明の高温酸化炉の他の例を示す概略構成図。
【図3】本発明の高温酸化炉の他の例を示す概略構成図。
【図4】廃棄物から水素、一酸化炭素の混合ガスを製造する全体工程図。
【図5】噴流床下降流型高温ガス化炉の概略構成図。
【符号の説明】
1:バーナ、2:燃焼室、3:スロート部、4:スラグ分離室、5:下降管、7:水槽、8:ガス出口、9:スラグ出口、10:導入部、11:ボイラ水管、12:サイクロン、13:輻射ボイラ、15:補助スプレー、21:原料貯留槽、22:原料ロックホッパー、23:原料供給装置、24:流動層ガス化炉、25:高温酸化炉、26:空気圧縮機、27:酸素圧縮機、28:不燃物排出装置、29:BMロックホッパー、30:不燃物ロックホッパー、31:不燃物コンベア、32:磁選機、33:BM循環エレベータ、34:磁選機、35:振動篩、36:粉砕機、37:BMロックホッパー、38:BMホッパー、42:ガススクラバー、
a:石炭・水スラリー、b:酸素ガス、c:生成ガス、d:スラグ粒、e:補給水、f:排水、g:スラグミスト、h:スラグ層、i:スラグ滴、j:ガス状物、k:固形物、l:廃棄物、m:空気、n:不燃物(添字:L:28の篩上、S:28の篩下、1:磁性、2:非磁性)、o:砂、p:チャー、q:水、r:スチーム、t:キャリアガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-temperature oxidation of gaseous substances, and more particularly to a high-temperature oxidation furnace and an oxidation treatment method for gasifying or burning gaseous substances obtained by gasifying various wastes at low temperatures. .
[0002]
[Prior art]
Today, most municipal waste, industrial waste, and sewage sludge are sent to incineration facilities, and human waste and high-concentration waste liquid are sent to wastewater treatment facilities for processing. However, since a lot of waste is still dumped untreated, it has led to environmental pollution and tight landfill. For this reason, the practical application of a gasification melting system in which the functions of ash slag conversion and complete decomposition of dioxins are integrated is strongly desired.
On the other hand, a technique for gasifying coal and producing a reducing gas mainly composed of H 2 and CO gas has already been put into practical use. The gasification furnace used here is a downflow type entrained bed gasification furnace, which performs one-stage gasification at high temperature by blowing water slurried coal together with oxygen downward from the burner. is there.
FIG. 5 shows a cross section of the downflow type entrained bed gasifier. In FIG. 5, 1 is a burner, 2 is a combustion chamber, 3 is a throat part, 4 is a slag separation chamber, 5 is a downcomer, 7 is a water tank, 8 is a gas outlet, 9 is a slag outlet, a is a coal / water slurry, b is oxygen gas, c is product gas, d is slag granules, e is makeup water, f is drainage, g is slag mist, h is a slag layer, and i is slag droplets.
[0003]
The high-concentration coal / water slurry a is blown into the combustion chamber 2 from the burner 1 at the top of the furnace together with oxygen (O 2 ) b. Gasification is performed in the combustion chamber under conditions of high temperature and high pressure, and a gas mainly composed of hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ), and water vapor (H 2 O) is generated. The The ash in the coal melts to become slag mist g due to high temperature, and most of the ash adheres to the wall surface to form a slag layer h. The slag flowing down the slag layer falls into the slag separation chamber as a slag drop i. Slag mist remaining in the gas enters the slag separation chamber 4 through the throat portion 3 together with the gas. Next, the gas and slag descend in the downcomer 5 and are blown into the water in the water tank 7 to be rapidly cooled, and the gas having reached the saturation temperature at that time is discharged from the gas outlet 8. On the other hand, the slag d that has been crushed into a glass is accumulated at the bottom of the water tank and then discharged from the slag outlet 9. The water in the water tank is discharged as a drainage f to a separate settler (not shown).
[0004]
When this down flow type entrained bed gasification furnace is applied to waste gasification or combustion, there are the following problems.
(A) It is difficult to make a slurry of water with a high concentration like coal. Many causes are due to the grindability of the waste.
(B) Many wastes generate less heat than coal. Adding water for slurrying is more disadvantageous than coal.
(C) Since a swirl flow is not formed in the combustion chamber, a wide distribution is generated in the residence time of the gas, and a large amount of carbon may be generated depending on the raw material used. Unburned carbon remaining in the slag is reused, but it is desirable that the amount be small.
[0005]
[Problems to be solved by the invention]
The present invention is a high-temperature oxidation furnace that solves the above-mentioned problems and that can perform high-load treatment and has little unburned carbon, and in particular, a gasification and melting system that can use various wastes as raw materials without water slurrying. It is an object to provide a high-temperature oxidation furnace and an oxidation treatment method to be used.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a combustion chamber for gasifying or burning a combustible gaseous matter containing granular solids at a high temperature, and a slag separation chamber for cooling and recovering the generated slag. In the high-temperature oxidation furnace having the above, on the upper side surface of the combustion chamber, the supply port for the gaseous matter is arranged in the tangential direction of the horizontal section so that the supplied gaseous matter forms a swirling flow, The top of the combustion chamber is provided with an inlet for blowing oxygen-containing gas into the combustion chamber, a throat portion is formed in the lower portion of the combustion chamber, and a downcomer pipe connected to the throat portion is formed in the slag separation chamber. A water tank at the bottom, a gas discharge port at the side, and an auxiliary spray for spraying water to cool the gas and slag at the connection between the throat and the downcomer It is an oxidation furnace.
Further, in the present invention, in a high-temperature oxidation furnace having a combustion chamber for gasifying or burning a combustible gaseous matter containing granular solids at a high temperature and a slag separation chamber for cooling and recovering the generated slag, A classification device is provided in front of the high-temperature oxidation furnace to separate the gaseous material and the granular solid from the gaseous material, and the gaseous material classified by the classification device is swirled on the upper side surface of the combustion chamber. The gaseous matter supply port is arranged toward the tangential direction of the horizontal section so that the gaseous matter separated by the classifier is connected to the supply port, and at the top of the combustion chamber, the blowing port for blowing an oxygen-containing gas toward the combustion chamber is provided, particulate solids which are separated by the classifier is Ru der that the high temperature oxidation furnace, characterized in that connected to the blow port.
[0007]
Prior Symbol high temperature oxidation furnace, the combustion chamber is an internal temperature of 1200 to 1600 ° C., better the internal pressure is normal圧近near or 5~90Atg, oxygen-containing gas blown into the combustion chamber, air, oxygen enriched active air, to a good material obtained by adding steam or carbon dioxide to either oxygen, further the combustion chamber can also be a boiler structure.
Further, in the high temperature oxidation furnace, before Symbol downcomer, it is possible to the lower end portion and on the water surface or submerged tank.
In the above, the combustible gaseous matter containing the granular solid is a gasification gas containing char generated in the low-temperature gasification furnace in the previous step, and the gasification raw material supplied to the low-temperature gasification furnace is discarded. Monodea Ru's good.
[0008]
Further, according to the present invention, in the oxidation treatment method for gasifying or combusting combustible gaseous matter containing granular solids obtained by gasifying waste at a high temperature, the gaseous matter is treated with a high-temperature gas. A high-temperature oxidation furnace having a combustion chamber for slagging or burning and a slag separation chamber is used, and the gaseous matter is supplied in the tangential direction of the horizontal section of the upper side surface of the combustion chamber of the high-temperature oxidation furnace to form a swirling flow. At the same time, oxygen-containing gas is supplied into the combustion chamber from the top of the combustion chamber to be converted into high-temperature gas, and the high-temperature gasified gas is sprayed from the throat portion at the lower portion of the combustion chamber with water connected to the throat portion. It passes through the downcomer of the slag separation chamber, and is discharged through a bottom water tank .
Furthermore, in the present invention, in an oxidation treatment method for gasifying or burning a combustible gaseous matter containing a granular solid obtained by gasifying waste at a high temperature, the gaseous matter is converted into a gaseous matter. A high-temperature oxidation furnace having a combustion chamber and a slag separation chamber for high-temperature gasification or combustion of the gaseous substance, and the separated gaseous substance is combusted in the high-temperature oxidation furnace. In addition to forming a swirl flow by supplying in the tangential direction of the horizontal cross section of the upper side surface of the chamber , oxygen-containing gas is supplied from the top of the combustion chamber into the combustion chamber, and the separated granular solids are introduced from the outside. The oxidation treatment method is characterized in that a carrier gas mainly composed of an active gas is used to supply the combustion chamber from the top of the combustion chamber.
In the treatment method, the waste can be gasified at low temperature without forming a water slurry.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, in a high-temperature oxidation furnace having a combustion chamber that gasifies or burns combustible gaseous matter at a high temperature and a slag separation chamber that separates and recovers the generated slag, the gaseous matter is placed in the combustion chamber in a horizontal section. By supplying in a tangential direction, a swirling flow is generated, and at the same time, oxygen-containing gas is blown from the top of the combustion chamber into the combustion chamber, preferably from the center of the top in the axial direction of the combustion chamber, thereby increasing the efficiency of gasification or combustion. The amount of combustion carbon is reduced.
The high-temperature oxidation furnace of the present invention exhibits its power when used as a gasification melting system in which a low-temperature gasification furnace is arranged in the previous stage and gasification gas containing char generated in the low-temperature gasification furnace is supplied to the high-temperature oxidation furnace. Is done.
[0010]
In the present invention, a gas containing combustible solids is supplied to the combustion chamber to generate a swirling flow, while the oxygen-containing gas is supplied from the top of the combustion chamber to the combustion chamber, preferably from the center of the top to the combustion chamber. Blow in the axial direction. For this reason, strong oxidative decomposition can be caused over the entire combustion chamber, and since the blowing of the oxygen-containing gas is in the axial direction of the combustion chamber, the flame does not directly hit the furnace wall. Therefore, it is possible to realize gasification or combustion with little generation of unburned carbon and long-term continuous operation.
When the concentration of solids in the gas is high, a cyclone or the like is installed in front of the high-temperature oxidation furnace to separate the gas and solids, and the gas is supplied to form a swirling flow in the combustion chamber. The oxygen-containing gas is supplied from the top of the chamber together with the oxygen-containing gas from the top of the combustion chamber to the combustion chamber, preferably from the center of the top in the axial direction of the combustion chamber. In this case, since the solid matter having a low combustion rate comes into contact with oxygen preferentially and is oxidatively decomposed, gasification or combustion with less generation of unburned carbon can be achieved.
[0011]
The internal temperature of the combustion chamber is set to be 50 to 100 ° C. higher than the temperature at which the ash content in the solid material flows. Since the rise in the furnace temperature promotes damage to the furnace wall, limestone or the like is added as necessary to lower the ash melting temperature.
As the internal pressure of the combustion chamber, normal pressure or pressurization of 5 to 90 atg is selected according to the purpose of processing. For the purpose of complete combustion and low-pressure industrial fuel gas recovery, near normal pressure is the synthesis of chemical industrial raw materials such as IGCC (combined cycle power generation using gas turbine), SNG (synthetic natural gas), ammonia, methanol, etc. Is about 20 to 90 atg.
As the oxygen-containing gas supplied to the combustion chamber, one in which steam or carbon dioxide gas is added to air, oxygen-enriched air, or oxygen as necessary is used. If the purpose of use is complete combustion, recovery of low-pressure industrial fuel gas or IGCC, air or oxygen-enriched air is used. If the purpose is synthesis of SNG or chemical industrial raw materials, oxygen is used.
[0012]
If the combustion chamber is a boiler structure and high-temperature and high-pressure steam is recovered, the amount of heat generated can be increased, and the furnace material can be protected by self-coating of slag.
The gas and slag generated in the combustion chamber are guided to the slag separation chamber and blown into the water from the downcomer to quench the gas, remove slag mist, absorb hydrogen chloride (HCl), etc. in the gas, and slag slag Can be done. By removing the slag mist, it is possible to prevent the clogging of the duct when the gas is led to the subsequent cleaning equipment. If the downcomer itself has a boiler structure with water pipes, the amount of high-temperature and high-pressure steam recovered can be further increased.
If a high-temperature oxidation furnace according to the present invention is used in a gasification and melting system that combines a low-temperature gasification furnace and a high-temperature oxidation furnace, it is possible to process waste by high-load gasification or combustion at a high load.
[0013]
The present invention has been made by finding the solution described below.
(1) A combustible gas containing solids is supplied to the upper side surface of the combustion chamber and swirled at high speed, while oxygen-containing gas is blown from the center of the top of the combustion chamber in the axial direction of the combustion chamber.
(2) When the amount of solids in the gas is particularly large, a classifier such as a cyclone is placed in front of the high-temperature oxidation furnace to separate the gas and solids there. The separated gas is supplied to the upper side surface of the combustion chamber to form a swirling flow, while the solid is supplied together with the oxygen-containing gas from the center of the top of the combustion chamber in the axial direction of the combustion chamber. Thus, the solid is preferentially oxidatively decomposed at a high temperature.
In the present invention, the case where the solid matter is supplied together with the oxygen-containing gas from the top of the combustion chamber in the axial direction of the combustion chamber is described. However, the present invention is not limited to this. You may supply in the direction crossing with the axial direction of a combustion chamber.
(3) At this time, the internal temperature of the combustion chamber is set to 1200 to 1600 ° C.
(4) Moreover, the internal pressure of a combustion chamber shall be a normal pressure or a pressurization of 5-90 atg according to the objective of a process.
[0014]
(5) As the oxygen-containing gas supplied to the combustion chamber, a gas obtained by adding steam or carbon dioxide gas to air, oxygen-enriched air, or oxygen as necessary is used depending on the purpose of use.
(6) If the combustion chamber has a boiler structure, high-temperature and high-pressure steam can be recovered, and the furnace material can also be protected by self-coating of slag.
(7) The gas and slag generated in the combustion chamber are rapidly cooled by being brought into direct contact with water in the slag separation chamber.
(8) If the downcomer has a boiler structure, the amount of recovered high-temperature and high-pressure steam increases.
(9) If a radiation boiler is arranged on the surface of the water, a larger amount of water vapor can be recovered together with the subsequent convection boiler.
(10) If the high-temperature oxidation furnace according to the present invention is employed in a gasification and melting system combined with a low-temperature gasification furnace, waste can be processed with high load and high efficiency.
[0015]
FIG. 1 shows a cross-sectional view of a high-temperature oxidation furnace according to the present invention.
In FIG. 1, the same reference numerals as those in FIG. 5 represent the same words, 10 is a gaseous material inlet, 11 is a boiler water pipe, j is a gaseous material, and k is a solid material.
The gaseous matter j, that is, the gas and the solid matter k, that is, char generated in the preceding low-temperature gasification furnace (not shown) is supplied to the gaseous matter inlet 10 of the combustion chamber of the high-temperature oxidation furnace, and generates a strong swirling flow. . On the other hand, oxygen is blown in the axial direction of the combustion chamber from a nozzle provided at the center of the top of the combustion chamber, and high-temperature gasification is performed at around 1400 ° C., and hydrogen gas, carbon monoxide, carbon dioxide, and water vapor are the main components. Gas is generated. Since char burns at high temperature, the ash in the char becomes slag mist g. Due to the swirling flow, most of the slag mist adheres to the wall surface to form a thin slag layer h.
[0016]
The gas and the slag mist remaining in the gas pass through the throat portion 3 and enter the slag separation chamber 4. The slag that has flowed down the slag layer on the combustion chamber wall surface becomes a slag drop i and falls into the slag separation chamber. The gas and slag descending the downcomer 5 in this way are sprayed with gas and slag simultaneously with the cooling of the inner wall surface of the downcomer by the auxiliary spray 15 disposed in the circumferential direction of the joining corner of the downcomer 5 below the throat 3. After cooling, the water tank 7 is blown into water and rapidly cooled. The gas rising outside the downcomer is discharged from a gas outlet 8 provided in the slag separation chamber. In this embodiment, since the downcomer has a radiant boiler structure, it is not necessary to cool the downcomer. The slag d accumulated at the bottom of the water tank is discharged from the slag outlet 9. Unburnt carbon is eventually recycled as a gasification raw material, but a smaller amount is desirable.
[0017]
FIG. 2 shows another configuration of the high-temperature oxidation furnace according to the present invention. In FIG. 2, 12 is a cyclone, j is a gaseous substance, k is a solid substance, and t is a carrier gas. The gaseous matter j, that is, the gas and the solid matter k, that is, char generated in the preceding low-temperature gasification furnace (not shown) is separated by the cyclone 12, and the gas is introduced into the gaseous matter inlet 10 of the combustion chamber 2 of the high-temperature oxidation furnace. To generate a strong swirl flow. On the other hand, the char is transported by a carrier gas blown from a piping line connecting the cyclone 12 and the combustion chamber, and blown in the axial direction of the combustion chamber together with oxygen from a nozzle provided at the center of the top of the combustion chamber 2, for example, 1400 ° C. High-temperature gasification is performed before and after. In addition, when supplying the char p separated by the cyclone 12 to the combustion chamber 2, it is desirable to supply the carrier gas t using an inert gas as shown in FIG. 2 in order to prevent explosion combustion.
In this example, the char was introduced from the nozzle together with the oxygen-containing gas from the top center of the combustion chamber in the axial direction of the combustion chamber. However, the present invention is not limited to this, and the char and oxygen-containing gas inlets are provided in the combustion chamber. It may be slightly shifted from the center of the top of the cylinder, or it may be blown in the direction crossing the axial direction of the combustion chamber.
In this way, the solid matter that tends to become unburned carbon because the combustion rate is usually slow is preferentially contacted with oxygen and oxidatively decomposed.
[0018]
FIG. 3 shows another high-temperature oxidation furnace according to the present invention, in which a radiation boiler 13 is disposed in the slag separation chamber 4 and a water tank 7 is disposed at the bottom. The gas and slag generated in the combustion chamber 2 enter the slag separation chamber 4 via the throat portion 3. The radiation boiler 13 in the slag separation chamber 4 efficiently absorbs the radiation heat generated by the gas and slag. The gas that has passed through the radiant boiler 13 is reversed immediately above the water surface, and after the slag is dropped into the water by an inertial force, it is discharged from the gas discharge port 8 provided on the side surface of the slag separation chamber 4. Accordingly, the gas is supplied to the subsequent convection boiler without coming into direct contact with water, and as a result, a large amount of high temperature and high pressure steam can be recovered. This type of high-temperature oxidation furnace is used for power generation purposes.
[0019]
FIG. 4 shows a main part of a gasification melting system for producing a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) from waste. Here, the case where the solid substance concentration of the gas from the fluidized bed furnace used as a low temperature gasification furnace is high is assumed. 21 is a raw material storage tank, 22 is a raw material lock hopper, 23 is a raw material supply device, 24 is a fluidized bed gasification furnace, 12 is a cyclone, 25 is a high temperature oxidation furnace, 26 is an air compressor, 27 is an oxygen compressor, and 28 is Incombustible material discharge device, 29 is a BM lock hopper, 30 is an incombustible material lock hopper, 31 is an incombustible material conveyor, 32 is a magnetic separator, 33 is a BM circulation elevator, 34 is a magnetic separator, 35 is a vibration sieve, 36 is a pulverizer, 37 is a BM lock hopper, 38 is a BM hopper, 42 is a gas scrubber, l is waste, m is air, n is incombustible (subscript: L is on 28 sieve, S is under 28 sieve, 1 is magnetic, 2 is non-magnetic), o is sand, p is char, q is water, and r is steam.
[0020]
The waste l, which has been subjected to pretreatment such as crushing and sorting in advance, is stored in the raw material storage tank 21, passes through the raw material lock hopper 22, is pressurized to about 20 to 90 atg, and flows through the screw-type raw material supply device 23. A fixed amount is supplied to the bed gasifier 24. From the bottom of the gasification furnace, a mixed gas of air m and oxygen (O 2 ) b is fed as a gasifying agent / fluidizing gas. Waste is put into the fluidized bed of sand o in the gasification furnace, and is rapidly pyrolyzed and gasified by contacting oxygen in the fluidized bed maintained at 450 to 950 ° C. Sand is intermittently discharged from the bottom of the gasification furnace together with the incombustible material n and char p, and the coarse incombustible material n L is separated by the incombustible material discharging device 28 and decompressed by the incombustible material lock hopper 30 and then incombustible. The material is picked up by the material conveyor 31 and separated by the magnetic separator 32 into the magnetic material n L1, that is, iron and non-magnetic material n L2 . On the other hand, the sand under the sieve of the incombustible material discharge device is conveyed upward by the BM circulation elevator 33 together with the incombustible material n S and char, and the magnetic material n S1 is separated by the magnetic separator 34. Thereafter, the sand of the fluid medium is not pulverized by the vibrating sieve 35 and the ball mill type pulverizer 36, and the incombustible and char are finely pulverized and returned to the gasification furnace. Since the gasification furnace has a reducing atmosphere, the metal contained in the incombustible material is recovered in a clean state that is not oxidized.
[0021]
Gas, tar, and carbide are produced by pyrolysis gasification of the input waste, and the carbide is pulverized into char by the disturbing motion of the fluidized bed. Since char, which is a solid substance, is porous and light, it is carried along with a gas or gas stream that is a gaseous substance. The mixture of the gaseous substance j and the solid substance k which has left the gasification furnace is supplied to the cyclone 20, where the gaseous substance and the solid substance are separated. The gaseous substance containing almost no solid matter is supplied to the combustion chamber of the high-temperature oxidation furnace 25 and generates a strong swirling flow. On the other hand, the separated solid k is blown from the upper part of the combustion chamber 2 together with oxygen b, and the solid reacts with oxygen and is preferentially oxidized and decomposed. The temperature in the combustion chamber is approximately 1400 ° C. The hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, and water vapor-based gas produced there are washed and quenched immediately in contact with water in the slag separation chamber 4 together with the slag. The gas c exiting the slag separation chamber 4 thoroughly removes dust, hydrogen chloride and the like remaining in the gas scrubber 42. The slag d accumulated in the water tank 7 is discharged from the lower part of the slag separation chamber 4, and the waste water f discharged from the side wall of the slag separation chamber 4 is processed by a waste water treatment device (not shown in the next step). The collected slag is effectively used as a material for cement and civil engineering construction.
[0022]
【The invention's effect】
According to the present invention, the following effects can be achieved.
(1) Since it is not necessary to pulverize the waste like a coal slurry to make a slurry, the waste pretreatment process is simple.
(2) In the case of waste, since there is no water as in the case where the coal slurry is supplied to the high-temperature oxidation furnace for processing, the oxygen basic unit can be reduced and the cold gas efficiency is high.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a high-temperature oxidation furnace according to the present invention.
FIG. 2 is a schematic configuration diagram showing another example of the high-temperature oxidation furnace of the present invention.
FIG. 3 is a schematic configuration diagram showing another example of the high-temperature oxidation furnace of the present invention.
FIG. 4 is an overall process diagram for producing a mixed gas of hydrogen and carbon monoxide from waste.
FIG. 5 is a schematic configuration diagram of a spouted bed downflow type high-temperature gasifier.
[Explanation of symbols]
1: burner, 2: combustion chamber, 3: throat section, 4: slag separation chamber, 5: downcomer, 7: water tank, 8: gas outlet, 9: slag outlet, 10: introduction section, 11: boiler water pipe, 12 : Cyclone, 13: Radiation boiler, 15: Auxiliary spray, 21: Raw material storage tank, 22: Raw material lock hopper, 23: Raw material supply device, 24: Fluidized bed gasification furnace, 25: High temperature oxidation furnace, 26: Air compressor 27: oxygen compressor, 28: incombustible material discharge device, 29: BM lock hopper, 30: incombustible material lock hopper, 31: incombustible material conveyor, 32: magnetic separator, 33: BM circulation elevator, 34: magnetic separator, 35 : Vibrating sieve, 36: Crusher, 37: BM lock hopper, 38: BM hopper, 42: Gas scrubber,
a: Coal / water slurry, b: oxygen gas, c: generated gas, d: slag granules, e: makeup water, f: drainage, g: slag mist, h: slag layer, i: slag droplets, j: gaseous Material, k: solid material, l: waste, m: air, n: non-combustible material (subscript: L: 28 on sieve, S: 28 sieve, 1: magnetic, 2: non-magnetic), o: sand , P: char, q: water, r: steam, t: carrier gas

Claims (12)

粉粒状固形物を含む可燃性のガス状物を高温にてガス化或いは燃焼する燃焼室と、生成したスラグを冷却して回収するスラグ分離室を有する高温酸化炉において、該燃焼室上部側面には、供給したガス状物が旋回流を形成するように、水平断面の接線方向に向けて前記ガス状物の供給口を配すると共に、前記燃焼室の頂部には、含酸素ガスを燃焼室内に向けて吹き込む吹込口を設け、前記燃焼室下部にはスロート部を形成し、前記スラグ分離室には、前記スロート部に接続した下降管と、底部に水槽と、側面にガス排出口が配され、前記スロート部と前記下降管との接続部にガスとスラグを冷却するために水を噴霧する補助スプレーを設けたことを特徴とする高温酸化炉。In a high-temperature oxidation furnace having a combustion chamber that gasifies or burns combustible gaseous matters including granular solids at a high temperature and a slag separation chamber that cools and recovers the generated slag, Arranges the supply port of the gaseous matter in the tangential direction of the horizontal section so that the supplied gaseous matter forms a swirling flow, and oxygen-containing gas is introduced into the combustion chamber at the top of the combustion chamber. A throat portion is formed in the lower part of the combustion chamber, a slag separation chamber is provided with a downcomer connected to the throat portion, a water tank at the bottom, and a gas discharge port at the side. And an auxiliary spray for spraying water in order to cool the gas and slag at a connecting portion between the throat portion and the downcomer . 粉粒状固形物を含む可燃性のガス状物を高温にてガス化或いは燃焼する燃焼室と、生成したスラグを冷却して回収するスラグ分離室を有する高温酸化炉において、該高温酸化炉の手前に前記ガス状物からガス状物と粉粒状固形物を分別する分級装置を設け、前記燃焼室の上部側面には、該分級装置で分別されたガス状物が旋回流を形成するように、水平断面の接線方向に向けてガス状物の供給口を配し、前記分級装置で分別したガス状物は該供給口に接続すると共に、前記燃焼室の頂部には、含酸素ガスを燃焼室内に向けて吹き込む吹込口を設け、前記分級装置で分別された粉粒状固形物は該吹込口に接続することを特徴とする高温酸化炉。 In a high-temperature oxidation furnace having a combustion chamber for gasifying or burning combustible gaseous matters including granular solids at a high temperature and a slag separation chamber for cooling and recovering the generated slag , before the high-temperature oxidation furnace the classification device to separate the gaseous product and particulate solids from the gaseous products formed, the upper side surface of the combustion chamber, as gaseous product is fractionated該分classifying device forms a swirl flow in, arranging the supply port of the gas-like material toward the tangential direction of the horizontal section, gaseous product was fractionated on the classifier is thereby connected to the feed opening, the top of the combustion chamber, the combustion chamber an oxygen-containing gas high temperature oxidation furnace provided blow port, particulate solids are separated by the classifier is characterized in that connecting to the blow opening for blowing toward the. 前記燃焼室は、内部温度が1200〜1600℃であることを特徴とする請求項1又は2記載の高温酸化炉。  The high-temperature oxidation furnace according to claim 1 or 2, wherein the combustion chamber has an internal temperature of 1200 to 1600 ° C. 前記燃焼室は、内部圧力が常圧近傍或いは5〜90atgであることを特徴とする請求項1、2又は3記載の高温酸化炉。  The high-temperature oxidation furnace according to claim 1, 2, or 3, wherein the combustion chamber has an internal pressure in the vicinity of normal pressure or 5 to 90 atg. 前記含酸素ガスが、空気、酸素富活空気、酸素のいずれかにスチーム又は炭酸ガスを添加したものであることを特徴とする請求項1〜4のいずれか1項記載の高温酸化炉。  The high-temperature oxidation furnace according to any one of claims 1 to 4, wherein the oxygen-containing gas is obtained by adding steam or carbon dioxide gas to any one of air, oxygen-enriched air, and oxygen. 前記燃焼室が、ボイラ構造であることを特徴とする請求項1〜5のいずれか1項記載の高温酸化炉。  The high-temperature oxidation furnace according to claim 1, wherein the combustion chamber has a boiler structure. 前記下降管は、下端部が水槽の水面上又は水面下にあることを特徴とする請求項1〜6のいずれか1項記載の高温酸化炉。The high temperature oxidation furnace according to any one of claims 1 to 6, wherein the downcomer has a lower end portion on or below a water surface of a water tank. 前記粉粒状固形物を含む可燃性のガス状物が、前工程の低温ガス化炉で生成したチャーを含むガス化ガスであることを特徴とする請求項1〜のいずれか1項記載の高温酸化炉。The powder particulate solid combustible gaseous product containing the prior process of any one of claims 1-7, characterized in that the gasification gas containing the produced char at a low temperature gasifier High temperature oxidation furnace. 前記低温ガス化炉に供給するガス化原料が、廃棄物であることを特徴とする請求項記載の高温酸化炉。The high-temperature oxidation furnace according to claim 8, wherein the gasification raw material supplied to the low-temperature gasification furnace is waste . 廃棄物を低温ガス化して得られた粉粒状固形物を含む可燃性のガス状物を、高温でガス化或いは燃焼する酸化処理方法において、前記ガス状物を、高温ガス化或は燃焼する燃焼室とスラグ分離室とを有する高温酸化炉を用い、該ガス状物を前記高温酸化炉の燃焼室の上部側面の水平断面の接線方向に供給して旋回流を形成させると共に、含酸素ガスを該燃焼室の頂部から燃焼室内に供給して高温ガス化し、該高温ガス化したガスを、前記燃焼室下部のスロート部から、該スロート部に接続した水が噴霧されている前記スラグ分離室の下降管を通り、底部の水槽を介して排出することを特徴とする酸化処理方法。Waste flammable gaseous product comprising particulate solids obtained by low-temperature gasification, the oxidation treatment process for gasifying or burning at a high temperature, the gaseous material, a Atsushi Ko gasification or combustion using a high-temperature oxidation furnace having a combustion chamber and a slag separation chamber, together to form a swirl flow by supplying the gaseous material in the tangential direction of the horizontal section of the upper side surface of the combustion chamber of the high temperature oxidation furnace, oxygen-containing The slag separation in which gas is supplied into the combustion chamber from the top of the combustion chamber and converted into high-temperature gas, and the high-temperature gasified gas is sprayed from the throat portion at the lower portion of the combustion chamber with water connected to the throat portion. An oxidation method characterized by passing through a downcomer of the chamber and discharging through a bottom water tank . 廃棄物を低温ガス化して得られた粉粒状固形物を含む可燃性のガス状物を、高温でガス化或いは燃焼する酸化処理方法において、前記ガス状物をガス状物と粉粒状固形物に分別し、前記ガス状物を、高温ガス化或は燃焼する燃焼室とスラグ分離室とを有する高温酸化炉を用い、該分別したガス状物を前記高温酸化炉の燃焼室の上部側面の水平断面の接線方向に供給して旋回流を形成させると共に、含酸素ガスを該燃焼室の頂部から燃焼室内に供給し、前記分別した粉粒状固形物を外部から導入した不活性ガスを主体としたキャリアガスを用いて、該燃焼室の頂部から燃焼室に供給することを特徴とする酸化処理方法。 In an oxidation treatment method for gasifying or burning a combustible gaseous substance containing a granular solid obtained by gasifying waste at a high temperature, the gaseous substance is converted into a gaseous substance and a granular solid. fractionated, the gaseous material, using a high-temperature oxidation furnace having a combustion chamber and a slag separation chamber to a high temperature gasification or combustion,該分by gas-like material a horizontal upper side surface of the combustion chamber of the high temperature oxidation furnace Supplying in the tangential direction of the cross section to form a swirl flow, supplying oxygen-containing gas from the top of the combustion chamber into the combustion chamber, mainly composed of an inert gas introduced from the outside into the separated granular solids using a carrier gas, acid treatment how to and supplying to the combustion chamber from the top of the combustion chamber. 前記廃棄物は、水スラリー化することなく低温ガス化することを特The waste is characterized by being gasified at a low temperature without forming a water slurry. 徴とする請求項10又は11記載の酸化処理方法。The oxidation treatment method according to claim 10 or 11, wherein
JP12477397A 1997-04-30 1997-04-30 High temperature oxidation furnace and oxidation treatment method Expired - Lifetime JP3883253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12477397A JP3883253B2 (en) 1997-04-30 1997-04-30 High temperature oxidation furnace and oxidation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12477397A JP3883253B2 (en) 1997-04-30 1997-04-30 High temperature oxidation furnace and oxidation treatment method

Publications (2)

Publication Number Publication Date
JPH10300041A JPH10300041A (en) 1998-11-13
JP3883253B2 true JP3883253B2 (en) 2007-02-21

Family

ID=14893765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12477397A Expired - Lifetime JP3883253B2 (en) 1997-04-30 1997-04-30 High temperature oxidation furnace and oxidation treatment method

Country Status (1)

Country Link
JP (1) JP3883253B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405801B1 (en) * 2000-05-01 2003-11-15 한국에너지기술연구원 Pulsation control system in the quencher of the submerged-quench incinerator
JP3847055B2 (en) * 2000-05-15 2006-11-15 株式会社タクマ Secondary combustion equipment for dust-containing exhaust gas
JP4663264B2 (en) * 2004-07-12 2011-04-06 大陽日酸株式会社 Glass recovery method, glass recovery device, and glass manufacturing furnace
KR101426335B1 (en) * 2013-11-13 2014-08-07 지에스플라텍 주식회사 Apparatus for inserting material of gasification melting furnace and gasification melting furnace system with the same

Also Published As

Publication number Publication date
JPH10300041A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
KR100452099B1 (en) Waste treatment method and apparatus through vaporization
JP3415748B2 (en) Method and apparatus for two-stage gasification of organic waste
JPH10310783A (en) High-temperature gasification of waste and system therefor
JP4561779B2 (en) Swivel melting furnace and waste gasification method using swirl melting furnace
JP4222645B2 (en) Method and apparatus for recycling organic waste
JP3883253B2 (en) High temperature oxidation furnace and oxidation treatment method
JPH11294726A (en) Waste treatment method
JP3938981B2 (en) Gas recycling method for waste gasification
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
EP1379613B1 (en) Gasification and slagging combustion system
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JPH11173523A (en) Method and device for treating waste through combustion
JP3941196B2 (en) Waste gasification method and apparatus
EP1712839B1 (en) Method of heat recovery and heat recovery apparatus
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JPH1143680A (en) Method and equipment for gasifying waste material
JP3270456B2 (en) Waste treatment method and gasification and melting equipment
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP2003294205A (en) Coal burning boiler, organic waste gasification furnace, and coal ash treatment plant
JP3270453B1 (en) Waste treatment method and gasification and melting equipment
JPH10306907A (en) Fluidized bed pyrolysis method and pyrolysis fuenace as well as treating device for matter to be burnt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term