JP3883235B2 - CVD materials made of metal complex compounds - Google Patents

CVD materials made of metal complex compounds Download PDF

Info

Publication number
JP3883235B2
JP3883235B2 JP26738796A JP26738796A JP3883235B2 JP 3883235 B2 JP3883235 B2 JP 3883235B2 JP 26738796 A JP26738796 A JP 26738796A JP 26738796 A JP26738796 A JP 26738796A JP 3883235 B2 JP3883235 B2 JP 3883235B2
Authority
JP
Japan
Prior art keywords
compound
complex
propanediol
cvd
synthesis example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26738796A
Other languages
Japanese (ja)
Other versions
JPH10114781A (en
Inventor
光男 阿久津
直宏 久保田
哲史 増子
直樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP26738796A priority Critical patent/JP3883235B2/en
Priority to TW87105105A priority patent/TW462970B/en
Publication of JPH10114781A publication Critical patent/JPH10114781A/en
Application granted granted Critical
Publication of JP3883235B2 publication Critical patent/JP3883235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、金属錯体化合物からなるCVD材料、詳しくは、β−ジケトン化合物2モルとチタン、ジルコニウム、鉛または錫(以下、「 IV 族金属」という)のグリコラート1モルとの錯体からなるCVD材料に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
チタン、鉛、ジルコニウムなどのIV族金属の錯体は、CVD法による金属酸化薄膜を形成する原料(CVD材料)として重要である。特に、β−ジケトン化合物との錯体は蒸気圧が高く、酸化反応性に富むので有用性が高いことが知られている。
【0003】
しかし、CVD材料として代表的なβージケトン化合物であるジピバロイルメタンなどの金属錯体は、単独では不安定な化合物で、空気中の水分や炭酸ガスと反応して分解したり、オリゴマー化して揮発特性が変化する欠点を有している。そのため、特開平5−132776号公報には、テトラヒドロフランやグライム類などの求核性有機物質を付加させることが提案されている。また、特開平5−98444号公報には、より安定性に優れた錯体を与えるものとして、オルトフェナントロリン誘導体やクラウンエーテル類を金属錯体に付加させることが提案されている。しかし、これらの錯体付加物では、高温に曝されると錯体から付加物が解離してしまうため、揮発特性が不安定となり実用上は未だ満足のいく性能は得られていなかった。
【0004】
このため、上記の求核性有機物質などの錯体安定化剤を必要としない錯形成化合物が望まれていた。
【0005】
また、特開平5−271253号公報には、ジピバロイルメタン2モルと1価のアルコール2モルが付加したチタンアルコラート錯体が提案されている。蒸発温度が低く、揮発性が良好であり、酸化反応性が良好で、しかも高純度での合成が可能なものである。
【0006】
CVD法において複合金属酸化膜を形成する際に、バリウム、ストロンチウムおよびジルコニウム等の他の金属錯体と混合物として用いられることから他のCVD材料と揮発特性、酸化分解性が類似していること、また、他のCVD材料との反応性が低く、混合物としても揮発特性が変化しない金属錯体化合物が望ましい。
【0007】
しかし、上記チタンアルコラート錯体は反応活性である1価のアルコキシド基が存在し、CVD製膜時に他の金属錯体との反応性が高く、反応物の揮発特性や酸化分解性が反応前の各金属錯体と相違するなど複合金属酸化膜の組成の制御が困難であった。
【0008】
また、揮発特性の制御において有効成分である金属の含有量が減少する分子量の増加による揮発温度の制御は好ましくなかった。
【0009】
従って、本発明の目的は、他のCVD材料との反応性が低く、混合物としても揮発特性が変化しない、金属錯体化合物からなるCVD材料を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、上記目的を達成すべく鋭意検討を重ねた結果、特定の、β−ジケトン化合物とIV族金属のグリコラートとの錯体が、グリコラートの金属元素への遮蔽効果によりβ−ジケトン化合物とIV族金属のアルコラートとの錯体より他のCVD材料との反応性が低いこと、また同一分子量においてもグリコールの構造を選択することで揮発温度を制御できることを知見した。
【0011】
本発明は、上記知見に基づきなされたもので、下記〔化2〕(前記〔化1〕と同じ)の一般式(I)で表される、β−ジケトン化合物とチタン、ジルコニウム、鉛または錫のグリコラートとの錯体からなるCVD材料を提供するものである。
【0012】
【化2】

Figure 0003883235
(式中、Mはチタン、ジルコニウム、鉛または錫を表し、R1およびR2は炭素原子数4〜8の分岐のアルキル基またはシクロアルキル基を表し、R3は炭素原子数2〜18の直鎖または分岐のアルキレン基を表す。)
【0013】
【発明の実施の形態】
以下、本発明のβ−ジケトン化合物とIV族金属のグリコラートとの錯体からなるCVD材料について詳述する。
【0014】
本発明のβ−ジケトン化合物とIV族金属のグリコラートとの錯体(以下、「錯体化合物」という)において、上記一般式(I)中、R1およびR2で表される炭素原子数4〜8の分岐のアルキル基としては、例えば、イソブチル、第二ブチル、第三ブチル、イソペンチル、第二ペンチル、第三ペンチル、イソヘキシル、第二ヘキシル、第三ヘキシル、イソヘプチル、イソオクチル、第二オクチル、第三オクチル、2−エチルヘキシルなどが挙げられ、またシクロアルキル基としては、シクロヘキシル基などが挙げられる。
【0015】
また、R3で表される炭素原子数2〜18の直鎖または分岐のアルキレン基は、グリコール(ジオール)により与えられる基であり、該グリコールとしては、エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ジメチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、2−メチル−2−エチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、1−メチル−1,3−プロパンジオール、2−メチル−1,3−プロパンジオールなどが挙げられ、中でも1,3−プロパンジオールおよびそのアルキル基置換体が本発明の効果を一層向上させるため好ましい。
【0016】
また、Mで表される金属原子は、チタン、ジルコニウム、鉛、錫である
【0017】
本発明の錯体化合物としては、より具体的には、下記〔化3〕〜〔化10〕に示す化合物No.1〜8などがあげられる。ただし、本発明はこれらの化合物によりなんら限定されるものではない。
【0018】
【化3】
Figure 0003883235
【0019】
【化4】
Figure 0003883235
【0020】
【化5】
Figure 0003883235
【0021】
【化6】
Figure 0003883235
【0022】
【化7】
Figure 0003883235
【0023】
【化8】
Figure 0003883235
【0024】
【化9】
Figure 0003883235
【0025】
【化10】
Figure 0003883235
【0026】
本発明の錯体化合物の合成方法は特に限定されるものではないが、本発明の錯体化合物は、例えば、テトライソプロポキシチタン(以下、「TIPT」ということもある)1モルと、ジピバロイルメタン(以下、「DPM」ということもある)2モルとを脂肪族炭化水素溶媒中で還流脱イソプロパノール反応させ、その後更に1,3−プロパンジオール1モルを加えて反応させることにより、得ることができる。
【0027】
本発明の錯体化合物は、CVD材料として熱安定性を満足する化合物としての用途に用いられる。
【0028】
【実施例】
以下に本発明の錯体化合物の合成例(実施例)を具体的に示す。ただし、本発明は以下の合成例により何ら制限されるものではない。
【0029】
合成例1(化合物No.1の合成)
TIPT71g(0.25モル)とDPM92g(0.5モル)とをキシレン1000ml中で60℃で2時間還流脱イソプロパノール後、1,3−プロパンジオール19g(0.25モル)を加えて更に140℃で3時間還流脱イソプロパノールした。その後、減圧脱溶媒して液体クロマトグラフィー(以下、「LC」ということもある)による純度92%の褐色のガラス状固体120g(収率98%)を得た。得られたガラス状固体の窒素気流下での示差熱重量分析における昇温速度10℃/分、1気圧での重量減少開始温度は224℃であった。更に、ガラス状固体を加熱溶融して157〜163℃/1.5mmHgで蒸留精製してLC純度100%の褐色ガラス状固体105g(収率86%)を得た。
【0030】
得られた化合物のチタン含有率は、9.80%であった。また、以下の赤外吸収スペクトル(IR)分析結果から目的物であるとして同定した。
【0031】
IR分析結果は
3448cm-1,3415 cm-1,3382 cm-1,2960 cm-1,2867 cm-1,2362 cm-1,2329 cm-1,
1575cm-1,1533 cm-1,1502 cm-1,1457 cm-1,1382 cm-1,1355 cm-1,1292 cm-1,
1224cm-1,1174 cm-1,1145 cm-1,1087 cm-1, 962 cm-1, 873 cm-1, 767 cm-1,
621cm-1, 507 cm-1, 476 cm-1, 437 cm-1, 432 cm-1, 408 cm-1
に吸収ピークを示した。
【0032】
合成例2 (化合物No.2の合成)
合成例1で用いた1,3−プロパンジオールを2,2−ジメチル−1,3−プロパンジオール26g(0.25モル)に置き換えた以外は合成例1と同様にしてLC純度93%の褐色のガラス状固体126g(収率98%)を得た。得られたガラス状固体の窒素気流下での示差熱重量分析における1気圧での重量減少開始温度は247℃であった。更に、ガラス状固体を加熱溶融して170〜175℃/1.6mmHgで蒸留精製してLC純度100%の褐色ガラス状固体114g(収率88%)を得た。
【0033】
得られた化合物のチタン含有率は、9.27%であった。また、以下のIR分析結果から目的物であるとして同定した。
【0034】
IR分析結果は
3434cm-1,2960 cm-1,2871 cm-1,2833 cm-1,1645 cm-1,1577 cm-1,1562 cm-1,
1537cm-1,1504 cm-1,1461 cm-1,1380 cm-1,1357 cm-1,1294 cm-1,1226 cm-1,
1174cm-1,1145 cm-1,1089 cm-1,1016 cm-1, 968 cm-1, 873 cm-1, 796 cm-1,
690cm-1, 649 cm-1, 626 cm-1, 578 cm-1, 511 cm-1, 441 cm-1, 403 cm-1
に吸収ピークを示した。
【0035】
合成例3 (化合物No.3の合成)
合成例1で用いた1,3−プロパンジオールを2−エチル−2−メチル−1,3−プロパンジオール29.5g(0.25モル)に置き換えた以外は合成例1と同様にしてLC純度94%褐色のガラス状固体131g(収率99%)を得た。得られたガラス状固体の窒素気流下での示差熱重量分析における1気圧での重量減少開始温度は244℃であった。更に、ガラス状固体を加熱溶融して162〜168℃/1.2mmHgで蒸留精製してLC純度100%の褐色ガラス状固体123g(収率93%)を得た。
【0036】
得られた化合物のチタン含有率は、9.02%であった。また、以下のIR分析結果から目的物であるとして同定した。
【0037】
IR分析結果は
3482cm-1,3452 cm-1,2962 cm-1,2873 cm-1,2364 cm-1,2333 cm-1,1575 cm-1,
1535cm-1,1502 cm-1,1457 cm-1,1382 cm-1,1355 cm-1,1294 cm-1,1224 cm-1,
1176cm-1,1145 cm-1,1089 cm-1,1031 cm-1, 966 cm-1, 873 cm-1, 792 cm-1,
651cm-1, 624 cm-1, 584 cm-1, 507 cm-1, 476 cm-1, 439 cm-1, 406 cm-1
に吸収ピークを示した。
【0038】
合成例4 (化合物No.4の合成)
合成例1で用いた1,3−プロパンジオールを2,2−ジエチル−1,3−プロパンジオール33g(0.25モル)に置き換えた以外は合成例1と同様にしてLC純度92%の褐色のガラス状固体133g(収率98%)を得た。得られたガラス状固体の窒素気流下での示差熱重量分析における1気圧での重量開始温度は250℃であった。更に、ガラス状固体を加熱溶融して172〜180℃/1.5mmHgで蒸留精製してLC純度100%の褐色ガラス状固体125g(収率92%)を得た。
【0039】
得られた化合物のチタン含有率は、8.79%であった。また、以下のIR分析結果から目的物であるとして同定した。
【0040】
IR分析結果は
3444cm-1,2962 cm-1,2929 cm-1,2875 cm-1,2362 cm-1,2333 cm-1,1575 cm-1,
1535cm-1,1502 cm-1,1459 cm-1,1382 cm-1,1355 cm-1,1292 cm-1,1224 cm-1,
1174cm-1,1145 cm-1,1091 cm-1, 968 cm-1, 933 cm-1, 871 cm-1, 790 cm-1,
738cm-1, 659 cm-1, 622 cm-1, 584 cm-1, 549 cm-1, 505 cm-1, 472 cm-1
に吸収ピークを示した。
【0041】
合成例5 (化合物No.7の合成)
合成例1で用いた1,3−プロパンジオールを2,4−ペンタンジオール26g(0.25モル)に置き換えた以外は合成例1と同様にしてLC純度96%の淡黄色透明液体126g(収率98%)を得た。得られたガラス状固体の窒素気流下での示差熱重量分析における1気圧での重量減少開始温度は217℃であった。更に、この液体を130〜132℃/0.2mmHgで蒸留精製してLC純度100%の淡黄色透明液体120g(収率93%)を得た。
【0042】
合成例6 (化合物No.8の合成)
合成例1で用いた1,3−プロパンジオールを2−メチル−2,4−ペンタンジオール29.5g(0.25モル)に置き換えた以外は合成例1と同様にしてLC純度96%の無色透明液体130g(収率98%)を得た。得られた化合物の窒素気流下での示差熱重量分析における1気圧での重量減少開始温度は220℃であった。更に、この液体を加熱溶融して134〜135℃/0.2mmHgで蒸留精製してLC純度100%の無色透明液体121g(収率91%)を得た。
【0043】
得られた化合物のチタン含有率は、8.79%であった。また、以下のIR分析結果から目的物であるとして同定した。
【0044】
IR分析結果は
2964cm-1,2927 cm-1,2865 cm-1,1560 cm-1,1537 cm-1,1502 cm-1,1457 cm-1,
1382cm-1,1357 cm-1,1294 cm-1,1222 cm-1,1147 cm-1,1078 cm-1,1045 cm-1,
972cm-1, 945 cm-1, 871 cm-1, 796 cm-1, 761 cm-1, 626 cm-1, 597 cm-1,
549cm-1, 505 cm-1, 480 cm-1, 432 cm-1, 410 cm-1
に吸収ピークを示した。
【0045】
比較合成例
TIPT71g(0.25モル)とDPM92g(0.5モル)とをヘキサン1000ml中で60℃、2時間還流脱イソプロパノールした後、ヘキサンで再結晶してLC純度100%の白色結晶109g(収率82%)を得た。得られた結晶の窒素気流下での示差熱重量分析における1気圧での重量減少開始温度は202℃であった。
【0046】
得られた化合物のチタン含有率は、8.99%であった。また、この化合物のIR分析結果は以下の通りであり、この化合物を比較化合物1とした。
【0047】
IR分析結果は
3741cm-1,3407 cm-1,2996 cm-1,2925 cm-1,2863 cm-1,1645 cm-1,1592 cm-1,
1562cm-1,1533 cm-1,1500 cm-1,1456 cm-1,1384 cm-1,1357 cm-1,1326 cm-1,
1294cm-1,1226 cm-1,1135 cm-1, 997 cm-1, 873 cm-1, 850 cm-1, 792 cm-1,
761cm -1, 626 cm -1, 584 cm -1, 501 cm -1, 453 cm-1,426cm-1
に吸収ピークを示した。
【0048】
以下に本発明の錯体化合物(前記化合物No.1〜4、7及び8)並びに比較化合物1の分子量、示差熱分析による常圧での重量減少開始温度、精留条件(精製時の蒸留温度と圧力)、外観を下記〔表1〕に示す。
【0049】
【表1】
Figure 0003883235
【0050】
また、CVD材料としての安定性を、本発明の錯体化合物(化合物No.2及び8)または比較化合物1のトルエン溶液に、ストロンチウムのジピバロイルメタン錯体のトルエン溶液を加えて1/1モル混合物を調製して脱溶媒し、示差熱分析により評価した。評価方法は、窒素気流下30℃から600℃まで10℃/分で昇温して、重量減少を示す温度範囲と500℃での揮発残量とで評価した。
重量減少は、2種類の金属錯体が各々の揮発特性に従って2段階で重量減少を示す場合は○として、錯体が反応して第三成分を生成して3段階で重量減少を示す場合は×として各段の重量減少を示した温度範囲とともに下記〔表2〕に示す。
また、500℃での揮発残量が多いとCVD膜の組成の制御が困難であり、好ましくないことを示す。それらの結果を下記〔表2〕に示す。
【0051】
【表2】
Figure 0003883235
【0052】
上記〔表1〕において、実施例1−2と1−5、実施例1−3と1−6から明らかなように、本発明の錯体化合物(グリコラートのβ−ジケトン化合物錯体)は、同一分子量であっても揮発特性の異なる化合物をグリコラートの構造により選択可能である。
【0053】
また、上記〔表2〕の結果から明らかなように、本発明の錯体化合物は、他の金属錯体からなるCVD材料と混合物とした際の熱安定性が高く、蒸留精製により純度100%の金属錯体が容易に得られることからCVDなどの材料としての熱安定性を満足する化合物である。
【0054】
【発明の効果】
本発明のβ−ジケトン化合物とIV族金属のグリコラートとの錯体からなるCVD材料は、多成分系の製膜に適したCVD材料として有用なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a CVD material comprising a metal complex compound, more specifically, a CVD material comprising a complex of 2 mol of a β-diketone compound and 1 mol of glycolate of titanium, zirconium, lead or tin (hereinafter referred to as “ Group IV metal”). About.
[0002]
[Prior art and problems to be solved by the invention]
Group IV metal complexes such as titanium, lead, and zirconium are important as raw materials (CVD materials) for forming metal oxide thin films by CVD. In particular, it is known that a complex with a β-diketone compound has high vapor pressure and high oxidation reactivity, and thus is highly useful.
[0003]
However, a metal complex such as dipivaloylmethane, which is a typical β-diketone compound as a CVD material, is an unstable compound by itself and decomposes or oligomerizes by reacting with moisture or carbon dioxide in the air. It has the disadvantage of changing volatile properties. For this reason, JP-A-5-13276 proposes to add a nucleophilic organic substance such as tetrahydrofuran or glymes. Japanese Patent Application Laid-Open No. 5-98444 proposes that an orthophenanthroline derivative or a crown ether is added to a metal complex to give a complex having more stability. However, in these complex adducts, the adducts dissociate from the complex when exposed to high temperatures, so that the volatilization characteristics become unstable, and satisfactory performance has not yet been obtained in practical use.
[0004]
For this reason, a complex-forming compound that does not require a complex stabilizer such as the above-mentioned nucleophilic organic substance has been desired.
[0005]
JP-A-5-271253 proposes a titanium alcoholate complex in which 2 moles of dipivaloylmethane and 2 moles of monohydric alcohol are added. The evaporation temperature is low, the volatility is good, the oxidation reactivity is good, and the synthesis with high purity is possible.
[0006]
When a composite metal oxide film is formed in the CVD method, it is used as a mixture with other metal complexes such as barium, strontium and zirconium, so that the volatile characteristics and oxidative decomposability are similar to other CVD materials. A metal complex compound that has low reactivity with other CVD materials and does not change volatilization characteristics even as a mixture is desirable.
[0007]
However, the above-described titanium alcoholate complex has a monovalent alkoxide group that is reactive and has high reactivity with other metal complexes during CVD film formation. It was difficult to control the composition of the composite metal oxide film because it was different from the complex.
[0008]
In addition, in controlling the volatilization characteristics, it is not preferable to control the volatilization temperature by increasing the molecular weight so that the content of the metal as the active ingredient is decreased.
[0009]
Accordingly, an object of the present invention has a low reactivity with other CVD materials, volatility characteristics do not change even as a mixture, it is to provide a CVD material consisting of metallic complex compound.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a specific complex of a β-diketone compound and a glycolate of a group IV metal has a β-diketone compound due to the shielding effect of glycolate on a metal element. It has been found that the reactivity with other CVD materials is lower than the complex of alkoxide with a group IV metal alcoholate, and that the volatilization temperature can be controlled by selecting the glycol structure even at the same molecular weight.
[0011]
The present invention has been made on the basis of the above knowledge, and is represented by the following general formula (I) represented by the following [Chemical Formula 2] (same as the above [Chemical Formula 1]) and titanium, zirconium, lead or tin. The present invention provides a CVD material comprising a complex with a glycolate.
[0012]
[Chemical 2]
Figure 0003883235
(In the formula, M represents titanium, zirconium, lead or tin , R 1 and R 2 represent a branched alkyl group or cycloalkyl group having 4 to 8 carbon atoms, and R 3 has 2 to 18 carbon atoms. Represents a linear or branched alkylene group.)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a CVD material comprising a complex of the β-diketone compound of the present invention and a glycolate of a group IV metal will be described in detail.
[0014]
In the complex of the β-diketone compound of the present invention and a glycolate of a group IV metal (hereinafter referred to as “complex compound”), 4 to 8 carbon atoms represented by R 1 and R 2 in the general formula (I). As the branched alkyl group, for example, isobutyl, sec-butyl, sec-butyl, isopentyl, sec-pentyl, sec-pentyl, isohexyl, sec-hexyl, tertiary hexyl, isoheptyl, isooctyl, sec-octyl, tertiary Octyl, 2-ethylhexyl and the like can be mentioned, and examples of the cycloalkyl group include a cyclohexyl group.
[0015]
In addition, the linear or branched alkylene group having 2 to 18 carbon atoms represented by R 3 is a group provided by glycol (diol), and examples of the glycol include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,3-dimethyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, 2, Examples include 2-diethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 1-methyl-1,3-propanediol, and 2-methyl-1,3-propanediol. Among them, 1,3-propanediol and its alkyl group-substituted product are preferable because the effects of the present invention are further improved.
[0016]
The metal atom represented by M is titanium, zirconium, lead, tin.
[0017]
More specific examples of the complex compound of the present invention include the compound Nos. Shown in the following [Chemical Formula 3] to [Chemical Formula 10]. 1-8 etc. are mention | raise | lifted. However, the present invention is not limited to these compounds.
[0018]
[Chemical 3]
Figure 0003883235
[0019]
[Formula 4]
Figure 0003883235
[0020]
[Chemical formula 5]
Figure 0003883235
[0021]
[Chemical 6]
Figure 0003883235
[0022]
[Chemical 7]
Figure 0003883235
[0023]
[Chemical 8]
Figure 0003883235
[0024]
[Chemical 9]
Figure 0003883235
[0025]
[Chemical Formula 10]
Figure 0003883235
[0026]
The method for synthesizing the complex compound of the present invention is not particularly limited, but the complex compound of the present invention includes, for example, 1 mol of tetraisopropoxytitanium (hereinafter sometimes referred to as “TIPT”) and dipivaloyl. It can be obtained by reacting 2 moles of methane (hereinafter sometimes referred to as “DPM”) with refluxing deisopropanol in an aliphatic hydrocarbon solvent, and then adding 1 mole of 1,3-propanediol to react. it can.
[0027]
Complex compound of the present invention is used for application as a compound which satisfies the thermal stability as C VD material.
[0028]
【Example】
The synthesis example (Example) of the complex compound of this invention is shown concretely below. However, the present invention is not limited by the following synthesis examples.
[0029]
Synthesis Example 1 (Synthesis of Compound No. 1)
71 g (0.25 mol) of TIPT and 92 g (0.5 mol) of DPM were refluxed and depropanoled in 1000 ml of xylene at 60 ° C. for 2 hours, and then 19 g of 1,3-propanediol (0.25 mol) was added to further 140 ° C. At reflux for 3 hours. Thereafter, the solvent was removed under reduced pressure to obtain 120 g (yield 98%) of a brown glassy solid having a purity of 92% by liquid chromatography (hereinafter sometimes referred to as “LC”). In the differential thermogravimetric analysis of the obtained glassy solid under a nitrogen stream, the temperature decrease rate at 10 ° C./min and 1 atm was 224 ° C. Further, the glassy solid was heated and melted and purified by distillation at 157 to 163 ° C./1.5 mmHg to obtain 105 g (yield 86%) of a brown glassy solid having an LC purity of 100%.
[0030]
The resulting compound had a titanium content of 9.80%. Moreover, it identified as a target object from the following infrared absorption spectrum (IR) analysis results.
[0031]
IR analysis results
3448cm -1 , 3415 cm -1 , 3382 cm -1 , 2960 cm -1 , 2867 cm -1 , 2362 cm -1 , 2329 cm -1 ,
1575cm -1 , 1533 cm -1 , 1502 cm -1 , 1457 cm -1 , 1382 cm -1 , 1355 cm -1 , 1292 cm -1 ,
1224cm -1 , 1174 cm -1 , 1145 cm -1 , 1087 cm -1 , 962 cm -1 , 873 cm -1 , 767 cm -1 ,
621cm -1 , 507 cm -1 , 476 cm -1 , 437 cm -1 , 432 cm -1 , 408 cm -1
Shows an absorption peak.
[0032]
Synthesis Example 2 (Synthesis of Compound No. 2)
Brown of 93% LC purity in the same manner as in Synthesis Example 1 except that 1,3-propanediol used in Synthesis Example 1 was replaced with 26 g (0.25 mol) of 2,2-dimethyl-1,3-propanediol. 126 g (yield 98%) of a glassy solid was obtained. In the differential thermogravimetric analysis of the obtained glassy solid under a nitrogen stream, the weight decrease starting temperature at 1 atm was 247 ° C. Further, the glassy solid was heated and melted and purified by distillation at 170 to 175 ° C./1.6 mmHg to obtain 114 g (yield 88%) of a brown glassy solid having an LC purity of 100%.
[0033]
The obtained compound had a titanium content of 9.27%. Moreover, it identified as a target object from the following IR analysis results.
[0034]
IR analysis results
3434cm -1 , 2960 cm -1 , 2871 cm -1 , 2833 cm -1 , 1645 cm -1 , 1577 cm -1 , 1562 cm -1 ,
1537 cm -1 , 1504 cm -1 , 1461 cm -1 , 1380 cm -1 , 1357 cm -1 , 1294 cm -1 , 1226 cm -1 ,
1174cm -1 , 1145 cm -1 , 1089 cm -1 , 1016 cm -1 , 968 cm -1 , 873 cm -1 , 796 cm -1 ,
690cm -1 , 649 cm -1 , 626 cm -1 , 578 cm -1 , 511 cm -1 , 441 cm -1 , 403 cm -1
Shows an absorption peak.
[0035]
Synthesis Example 3 (Synthesis of Compound No. 3)
LC purity as in Synthesis Example 1 except that 1,3-propanediol used in Synthesis Example 1 was replaced with 29.5 g (0.25 mol) of 2-ethyl-2-methyl-1,3-propanediol. A 94% brown glassy solid 131 g (99% yield) was obtained. In the differential thermogravimetric analysis of the obtained glassy solid under a nitrogen stream, the weight decrease starting temperature at 1 atm was 244 ° C. Further, the glassy solid was heated and melted and purified by distillation at 162 to 168 ° C./1.2 mmHg to obtain 123 g (yield 93%) of a brown glassy solid having an LC purity of 100%.
[0036]
The obtained compound had a titanium content of 9.02%. Moreover, it identified as a target object from the following IR analysis results.
[0037]
IR analysis results
3482cm -1 , 3452 cm -1 , 2962 cm -1 , 2873 cm -1 , 2364 cm -1 , 2333 cm -1 , 1575 cm -1 ,
1535cm -1 , 1502 cm -1 , 1457 cm -1 , 1382 cm -1 , 1355 cm -1 , 1294 cm -1 , 1224 cm -1 ,
1176cm -1 , 1145 cm -1 , 1089 cm -1 , 1031 cm -1 , 966 cm -1 , 873 cm -1 , 792 cm -1 ,
651cm -1 , 624 cm -1 , 584 cm -1 , 507 cm -1 , 476 cm -1 , 439 cm -1 , 406 cm -1
Shows an absorption peak.
[0038]
Synthesis Example 4 (Synthesis of Compound No. 4)
Brown having an LC purity of 92% in the same manner as in Synthesis Example 1 except that 1,3-propanediol used in Synthesis Example 1 was replaced with 33 g (0.25 mol) of 2,2-diethyl-1,3-propanediol. 133 g (98% yield) of a glassy solid was obtained. The weight onset temperature at 1 atm in differential thermogravimetric analysis of the obtained glassy solid under a nitrogen stream was 250 ° C. Further, the glassy solid was heated and melted and purified by distillation at 172 to 180 ° C./1.5 mmHg to obtain 125 g of a brown glassy solid having a LC purity of 100% (yield 92%).
[0039]
The obtained compound had a titanium content of 8.79%. Moreover, it identified as a target object from the following IR analysis results.
[0040]
IR analysis results
3444cm -1 , 2962 cm -1 , 2929 cm -1 , 2875 cm -1 , 2362 cm -1 , 2333 cm -1 , 1575 cm -1 ,
1535cm -1 , 1502 cm -1 , 1459 cm -1 , 1382 cm -1 , 1355 cm -1 , 1292 cm -1 , 1224 cm -1 ,
1174cm -1, 1145 cm -1, 1091 cm -1, 968 cm -1, 933 cm -1, 871 cm -1, 790 cm -1,
738cm -1 , 659 cm -1 , 622 cm -1 , 584 cm -1 , 549 cm -1 , 505 cm -1 , 472 cm -1
Shows an absorption peak.
[0041]
Synthesis Example 5 (Synthesis of Compound No. 7)
The same procedure as in Synthesis Example 1 except that 1,3-propanediol used in Synthesis Example 1 was replaced with 26 g (0.25 mol) of 2,4-pentanediol. 98%) was obtained. In the differential thermogravimetric analysis of the obtained glassy solid under a nitrogen stream, the weight decrease starting temperature at 1 atm was 217 ° C. Further, this liquid was purified by distillation at 130 to 132 ° C./0.2 mmHg to obtain 120 g of a pale yellow transparent liquid having a LC purity of 100% (yield 93%).
[0042]
Synthesis Example 6 (Synthesis of Compound No. 8)
A colorless colorless liquid with a purity of 96% was prepared in the same manner as in Synthesis Example 1 except that 1,3-propanediol used in Synthesis Example 1 was replaced with 29.5 g (0.25 mol) of 2-methyl-2,4-pentanediol. 130 g (yield 98%) of a transparent liquid was obtained. The weight reduction starting temperature at 1 atm in differential thermogravimetric analysis of the obtained compound under a nitrogen stream was 220 ° C. Further, this liquid was heated and melted and purified by distillation at 134 to 135 ° C./0.2 mmHg to obtain 121 g (yield 91%) of a colorless transparent liquid having an LC purity of 100%.
[0043]
The obtained compound had a titanium content of 8.79%. Moreover, it identified as a target object from the following IR analysis results.
[0044]
IR analysis results
2964cm -1 , 2927 cm -1 , 2865 cm -1 , 1560 cm -1 , 1537 cm -1 , 1502 cm -1 , 1457 cm -1 ,
1382cm -1 , 1357 cm -1 , 1294 cm -1 , 1222 cm -1 , 1147 cm -1 , 1078 cm -1 , 1045 cm -1 ,
972cm -1 , 945 cm -1 , 871 cm -1 , 796 cm -1 , 761 cm -1 , 626 cm -1 , 597 cm -1 ,
549cm -1 , 505 cm -1 , 480 cm -1 , 432 cm -1 , 410 cm -1
Shows an absorption peak.
[0045]
Comparative Synthesis Example TIPT 71 g (0.25 mol) and DPM 92 g (0.5 mol) were subjected to reflux deisopropanol at 1000 ° C. for 2 hours in 1000 ml of hexane, and then recrystallized with hexane to give 109 g of white crystals having an LC purity of 100% ( Yield 82%). In the differential thermogravimetric analysis of the obtained crystals under a nitrogen stream, the weight decrease starting temperature at 1 atm was 202 ° C.
[0046]
The obtained compound had a titanium content of 8.9%. Moreover, the IR analysis result of this compound is as follows, and this compound was designated as Comparative Compound 1.
[0047]
IR analysis results
3741cm -1 , 3407 cm -1 , 2996 cm -1 , 2925 cm -1 , 2863 cm -1 , 1645 cm -1 , 1592 cm -1 ,
1562cm -1 , 1533 cm -1 , 1500 cm -1 , 1456 cm -1 , 1384 cm -1 , 1357 cm -1 , 1326 cm -1 ,
1294cm -1 , 1226 cm -1 , 1135 cm -1 , 997 cm -1 , 873 cm -1 , 850 cm -1 , 792 cm -1 ,
761cm -1 , 626 cm -1 , 584 cm -1 , 501 cm -1 , 453 cm -1 , 426cm -1
Shows an absorption peak.
[0048]
Hereinafter, the molecular weight of the complex compound of the present invention (compounds Nos. 1 to 4, 7 and 8) and comparative compound 1, the weight reduction starting temperature at normal pressure by differential thermal analysis, rectification conditions (distillation temperature and Pressure) and appearance are shown in the following [Table 1].
[0049]
[Table 1]
Figure 0003883235
[0050]
In addition, the stability as a CVD material is improved by adding 1/1 mol of a strontium dipivaloylmethane complex to a toluene solution of the complex compounds of the present invention (compounds No. 2 and 8) or comparative compound 1 Mixtures were prepared, desolvated and evaluated by differential thermal analysis. In the evaluation method, the temperature was increased from 30 ° C. to 600 ° C. at a rate of 10 ° C./min in a nitrogen stream, and the temperature range showing weight reduction and the volatile remaining amount at 500 ° C. were evaluated.
The weight reduction is indicated as ◯ when two kinds of metal complexes show weight reduction in two stages according to their volatilization characteristics, and × when the complex reacts to generate a third component and shows weight reduction in three stages. It is shown in the following [Table 2] together with the temperature range showing the weight reduction of each stage.
Also, if the remaining amount of volatile at 500 ° C. is large, it is difficult to control the composition of the CVD film, which is not preferable. The results are shown in [Table 2] below.
[0051]
[Table 2]
Figure 0003883235
[0052]
In the above [Table 1], as is clear from Examples 1-2 and 1-5 and Examples 1-3 and 1-6, the complex compound of the present invention (glycolate β-diketone compound complex) has the same molecular weight. Even so, compounds having different volatilization characteristics can be selected depending on the structure of glycolate.
[0053]
Further, as is apparent from the results of [Table 2] above, the complex compound of the present invention has high thermal stability when mixed with a CVD material comprising another metal complex, and is 100% pure by distillation purification. Since the complex can be easily obtained, the compound satisfies the thermal stability as a material such as CVD.
[0054]
【The invention's effect】
The CVD material comprising the complex of the β-diketone compound of the present invention and a glycolate of a group IV metal is useful as a CVD material suitable for multi-component film formation.

Claims (2)

下記〔化1〕の一般式(I)で表される、β−ジケトン化合物とチタン、ジルコニウム、鉛または錫のグリコラートとの錯体からなるCVD材料。
Figure 0003883235
(式中、Mはチタン、ジルコニウム、鉛または錫を表し、R1およびR2は炭素原子数4〜8の分岐のアルキル基またはシクロアルキル基を表し、R3は炭素原子数2〜18の直鎖または分岐のアルキレン基を表す。)
A CVD material comprising a complex of a β-diketone compound and a glycolate of titanium, zirconium, lead or tin represented by the following general formula (I):
Figure 0003883235
(In the formula, M represents titanium, zirconium, lead or tin , R 1 and R 2 represent a branched alkyl group or cycloalkyl group having 4 to 8 carbon atoms, and R 3 has 2 to 18 carbon atoms. Represents a linear or branched alkylene group.)
上記グリコラートを構成するグリコールが、1,3−プロパンジオール又はそのアルキル基置換体である請求項1記載のCVD材料。  2. The CVD material according to claim 1, wherein the glycol constituting the glycolate is 1,3-propanediol or an alkyl group-substituted product thereof.
JP26738796A 1996-10-08 1996-10-08 CVD materials made of metal complex compounds Expired - Lifetime JP3883235B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26738796A JP3883235B2 (en) 1996-10-08 1996-10-08 CVD materials made of metal complex compounds
TW87105105A TW462970B (en) 1996-10-08 1998-04-03 Complex of β-diketone compound and group IV metal glycolate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26738796A JP3883235B2 (en) 1996-10-08 1996-10-08 CVD materials made of metal complex compounds

Publications (2)

Publication Number Publication Date
JPH10114781A JPH10114781A (en) 1998-05-06
JP3883235B2 true JP3883235B2 (en) 2007-02-21

Family

ID=17444149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26738796A Expired - Lifetime JP3883235B2 (en) 1996-10-08 1996-10-08 CVD materials made of metal complex compounds

Country Status (2)

Country Link
JP (1) JP3883235B2 (en)
TW (1) TW462970B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548979B1 (en) * 1997-05-14 2006-02-03 키네티큐 리미티드 Chemical vapour deposition precursors
US6603033B2 (en) 2001-01-19 2003-08-05 Korea Institute Of Science And Technology Organotitanium precursors for chemical vapor deposition and manufacturing method thereof
JP2003155566A (en) 2001-11-15 2003-05-30 Asahi Denka Kogyo Kk Method of producing thin film, and raw material for chemical vapor deposition
US8471049B2 (en) 2008-12-10 2013-06-25 Air Product And Chemicals, Inc. Precursors for depositing group 4 metal-containing films
US8952188B2 (en) 2009-10-23 2015-02-10 Air Products And Chemicals, Inc. Group 4 metal precursors for metal-containing films
US20110256314A1 (en) 2009-10-23 2011-10-20 Air Products And Chemicals, Inc. Methods for deposition of group 4 metal containing films

Also Published As

Publication number Publication date
TW462970B (en) 2001-11-11
JPH10114781A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
CN101238095B (en) Metal-containing compound, method for producing the compound, metal-containing thin film and method for forming the thin film
CA2223677A1 (en) Metal complex source reagents for chemical vapor deposition
JP3883235B2 (en) CVD materials made of metal complex compounds
US20030012876A1 (en) Atomic layer deposition method using a novel group IV metal precursor
Kessler et al. Single-source Precursors for BaTiO3: Synthesis and Characterization of. beta.-Diketonato Alkoxides and Molecular Structure of Ba2Ti2 (thd) 4 (. mu. 3-OEt) 2 (. mu.-OEt) 4 (OEt) 2 (EtOH) 2
JP3227891B2 (en) Novel organometallic complexes and their ligands
US6376692B1 (en) Zirconium alkoxytris (β-Diketonate), process for manufacturing the same, and liquid composition for formation of PZT film
US6117487A (en) Process for forming metal oxide film by means of CVD system
US20020058843A1 (en) Novel group IV metal precursors and a method of chemical vapor deposition using the same
KR100435816B1 (en) Organotitanium Precursors for Chemical Vapor Deposition and Manufacturing Method Thereof
KR100530023B1 (en) A complex of β-diketone compound and glycolate of Ⅳ-group metal
Chen et al. Synthesis and characterization of 1-ferrocenecarboxysilatranes and crystal structures of FcC (CH3) CHCOOSi (OCH2CH2) 3N and p-FcC6H4COOSi (OCH2CH2) 3N
CA1195336A (en) Volatile metal complexes
Ranaivonjatovo et al. Unsaturated germanium and phosphorus compounds: reactions of germaphosphenes with. alpha.-ethylene aldehydes and ketones
US5110966A (en) New organoboron reagents for the preparation unsubstituted propargylic alcohols
Govil et al. Double alkoxides of zirconium with alkaline earth metals
JP2925445B2 (en) Polyfunctional tertiary alcohols, their preparation and use as precursors for coating alkaline earth metal oxides by chemical vapor deposition
US5157167A (en) Organoboron reagents for the preparation of unsubstituted propargylic alcohols
JP3858138B2 (en) Niobium, liquid double alkoxides of tantalum and lithium, a method for producing the same, and a method for producing a complex oxide dielectric thin film using the same
Horley et al. Antimony β-diketonates and alkoxide/β-diketonates: remarkable formation of a 3, 4-dihydro-2 H-pyran ring by coupling of 1, 1, 1, 5, 5, 5-hexafluoro-2, 4-pentanedione ligands
KR100609992B1 (en) Electron donor-functionalized aminodiols and method for preparing them
Egorova et al. Thionylation of 5-alkyl-3H-furan-2-ones and their non-cyclic 4-oxoalkanoate ester analogs
JP2001200367A (en) Metallic complex composition
Gewald et al. Synthesis of siloxanes: XXII. Synthesis and crystal structure of 2-t-butoxy-2, 4, 6-trimethyl-4, 6-diphenyl-(2α, 4α 6α)-cyclotrisiloxane
Harris Synthesis and characterization of (β-diketonate) zirconium alkoxides for low temperature chemical vapor deposition of lead zirconium titanium thin films

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

EXPY Cancellation because of completion of term