JP3879976B2 - Planar type electromagnetic actuator - Google Patents

Planar type electromagnetic actuator Download PDF

Info

Publication number
JP3879976B2
JP3879976B2 JP2001345310A JP2001345310A JP3879976B2 JP 3879976 B2 JP3879976 B2 JP 3879976B2 JP 2001345310 A JP2001345310 A JP 2001345310A JP 2001345310 A JP2001345310 A JP 2001345310A JP 3879976 B2 JP3879976 B2 JP 3879976B2
Authority
JP
Japan
Prior art keywords
magnetic field
field generating
semiconductor substrate
generating means
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001345310A
Other languages
Japanese (ja)
Other versions
JP2003153519A (en
Inventor
譲 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2001345310A priority Critical patent/JP3879976B2/en
Publication of JP2003153519A publication Critical patent/JP2003153519A/en
Application granted granted Critical
Publication of JP3879976B2 publication Critical patent/JP3879976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気信号を用いることにより、磁界発生手段に挟まれた半導体基板の可動部を自在に揺動し得るプレーナ型電磁アクチュエータに関し、特に、上記半導体基板の可動部に設けられた駆動コイルに与える磁界を確保すると共に、装置全体の部品点数を減らして製造工程の効率化を図ることができるプレーナ型電磁アクチュエータに関する。
【0002】
【従来の技術】
近年、半導体製造技術を利用して形成可能な超小型のプレーナ型電磁アクチュエータに関する技術の開発が進められている。従来のこの種のプレーナ型電磁アクチュエータ1は、例えば図4に示すように、支持部材2上に、駆動コイル4を備えた可動部3が揺動可能に形成された半導体基板5と、この半導体基板5を挟んで対向配置され上記駆動コイル4に磁界H(図5参照)を与える磁界発生手段6a,6bと、この磁界発生手段6a,6bの周囲に配置された磁路形成手段7とを備えてなっていた。
【0003】
そして、このようなプレーナ型電磁アクチュエータ1は、上記半導体基板5の可動部3の周縁部に設けられた駆動コイル4に電気信号が流れると、図5に示す磁界発生手段6a,6bの間に発生する磁界Hによって上記駆動コイル4にローレンツ力が働くため、上記駆動コイル4に流れる電流を一定時間ごとに交互に逆向きに流すことにより、上記可動部3が矢印Cに示すように揺動するようになっていた。
【0004】
ここで、図5に示すように、左側の磁界発生手段6aのN極から出て右側の磁界発生手段6bのS極に入る磁力線は、該磁界発生手段6a,6bの中心面8の付近では該中心面8に沿って形成され、また上記中心面8から上下方向に離れるほど外側にふくらんで形成されている。そのため、上記磁界発生手段6a,6bの中心面8の付近が最も磁束密度が高く、磁界Hの強さが最大となっている。したがって、上記半導体基板5は、上記支持部材2の上方にて、半導体基板5の駆動コイル4を含む面と、上記磁界発生手段6a,6bの中心面8とが合致するように配置されていた。すなわち、上記支持部材2の表面には、例えば図5に示すような台座部9,9が設けられ、この台座部9,9上に半導体基板5が載置されていた。
【0005】
【発明が解決しようとする課題】
しかし、このような従来のプレーナ型電磁アクチュエータ1においては、上記支持部材2の表面に、上記半導体基板5の高さを調節するための台座部9を設けていたので、上記磁界発生手段6a,6bによって上記半導体基板5の駆動コイル4に対して効率的な磁界Hを与えるためには、上記台座部9,9の高さ精度を向上し、さらに該台座部9,9上に半導体基板5を載置するときの取り付け精度を高めなければならなかった。そのため、装置全体の製造工程に手間がかかるという問題点があった。また、上記台座部9自体は、上記半導体基板5の可動部3が揺動する動作に直接寄与するものでなかった。
【0006】
そこで、本発明は、このような問題点に対処し、上記半導体基板の可動部に設けられた駆動コイルに与える磁界を確保すると共に、装置全体の部品点数を減らして製造工程の効率化を図ることができるプレーナ型電磁アクチュエータを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明によるプレーナ型電磁アクチュエータは、支持部材上に、駆動コイルを備えた可動部が揺動可能に形成された半導体基板と、この半導体基板を挟んで対向配置され上記駆動コイルに磁界を与える磁界発生手段と、この磁界発生手段の周囲に配置された磁路形成手段とを備えてなるプレーナ型電磁アクチュエータにおいて、上記支持部材の表面に上記半導体基板を直接載置し、この半導体基板の可動部に備えられた駆動コイルを含む面に、上記磁界発生手段の上下方向の中心面を一致させるように、上記支持部材の磁界発生手段に対応する位置にあけられた貫通孔に上記磁界発生手段の一部を挿入して該磁界発生手段を配置し、上記磁路形成手段を、上記支持部材の表面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲んで該磁界発生手段を固定する部材と、上記支持部材の裏面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲んで該磁界発生手段を固定する部材とで構成したものである。
【0008】
このような構成により、支持部材の表面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲む磁路形成手段を構成する部材と、支持部材の裏面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲む磁路形成手段を構成する部材とによって、支持部材の磁界発生手段に対応する位置にあけられた貫通孔に磁界発生手段の一部を挿入し、支持部材の表面に直接載置された半導体基板の可動部に備えられた駆動コイルを含む面に上記磁界発生手段の上下方向の中心面を一致させるように配置した状態で磁界発生手段を固定する
【0011】
さらに、上記支持部材は、非磁性材料からなるものである。これにより、上記非磁性材料からなる支持部材が上記磁界発生手段と磁気結合せず、磁路を形成しないようにする。
【0012】
また、上記支持部材は、その表面に直接載置される半導体基板の可動部に相当する位置に、該可動部の大きさよりも広い面積の凹部を備えてもよい。これにより、上記可動部の大きさよりも広い面積の凹部によって、上記半導体基板の可動部が揺動する空間が確保される。
【0013】
さらにまた、上記支持部材は、その表面に直接載置される半導体基板の可動部に相当する位置に、該可動部の大きさよりも広い開口部を備えてもよい。これにより、上記可動部の大きさよりも広い開口部によって、上記半導体基板の可動部が揺動する空間が確保される。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。
図1は本発明によるプレーナ型電磁アクチュエータの実施形態を示す斜視図である。このプレーナ型電磁アクチュエータ10は、半導体製造技術を利用して形成された可動部3を電気信号を用いて自在に揺動制御する装置で、支持部材11上に、半導体基板5と、磁界発生手段6a,6bと、磁路形成手段7とを備えてなる。
【0016】
上記支持部材11は、上記プレーナ型電磁アクチュエータ10の基礎となる部材で、後述の磁路形成手段7の外形よりも大きく形成されている。上記支持部材11上には、半導体基板5が配置されている。この半導体基板5は、半導体製造技術を利用して可動部3を形成するもので、シリコン層を含んでなる。ここで、上記半導体基板5は、一軸回りに揺動可能な可動部3が形成されたものとして説明する。
【0017】
すなわち、上記半導体基板5には、平板状の可動部3と、該可動部3を揺動可能に軸支するトーションバー12,12とが、例えば異方エッチング法により一体的に形成されている。ここで、上記可動部3及びトーションバー12は、上記半導体基板5自体の厚さに比べて薄く形成されており、上記支持部材11上に設置される半導体基板5の可動部3が所定の角度だけ回動できるようになっている。そして、上記可動部3の周縁部には、図1に示すように、駆動コイル4が設けられている。なお、上記駆動コイル4は、例えば電鋳コイル法を施して形成することができる。
【0018】
また、図1に示すように、例えば、上記トーションバー12,12と直交する方向にて、上記半導体基板5の左右両端には、該半導体基板5を挟んで一対の磁界発生手段6a,6bが対向配置されている。この磁界発生手段6a,6bは、上記半導体基板5の可動部3に設けられた駆動コイル4に磁界Hを与えるもので、例えば永久磁石から成り、例えば左側の磁界発生手段6aのN極と右側の磁界発生手段6bのS極とを互いに対向させて配置されている。
【0019】
また、図1に示すように、上記磁界発生手段6a,6bの周囲には、磁路形成手段7が配置されている。この磁路形成手段7は、上記磁界発生手段6a,6b間に発生する磁界が周囲に漏れるのを低減するもので、枠状の形状を有し、例えば鉄などの磁性材料からなる。
【0020】
ここで、本発明においては、図2に示すように、上記支持部材11の表面の略中央部には、上記半導体基板5が直接載置されており、この半導体基板5の駆動コイル4を含む面に、上記磁界発生手段6a,6bの上下方向の中心面8を一致させるように該磁界発生手段6a,6bが配置されている。このとき、上記支持部材11には、上記磁界発生手段6a,6bに対応する位置に、図2に示すように、該磁界発生手段6a,6bが貫通する大きさの一対の貫通孔13,13があけられている。そして、上記磁界発生手段6a,6bは、その一部を上記貫通孔13,13に挿入して保持され、その中心面8に上記半導体基板5の駆動コイル4を含む面が一致するように配置されている。これにより、上述の支持部材11の表面に直接載置された半導体基板5の駆動コイル4に対して、上記磁界発生手段6a,6bによって最大又はそれに近似する強さの磁界Hを与えることができ、上記プレーナ型電磁アクチュエータ10を効率的に作動することができる。また、上記支持部材11の表面に半導体基板5が直接配置されているので、従来のように半導体基板5の高さを調節するための台座部9(図5参照)を設けなくてもよく、装置全体の部品点数を減らして製造工程の効率化を図ることができる。
【0021】
さらに、上記支持部材11上の磁路形成手段7に対応する位置には、図2に示すように、磁路形成手段7が貫通する大きさの貫通孔14があけられている。そして、上記磁路形成手段7は、その一部を上記貫通孔14に挿入して保持され、上記磁界発生手段6a,6bと同様に、その中心面8が上記支持部材11の表面付近に形成されるように配置されている。これにより、上記磁路形成手段7によって、上記左側の磁界発生手段6aのS極から出た磁力線(図示省略)が右側の磁界発生手段6bのN極に入る経路が形成され、上記磁界発生手段6a,6bの間に発生する磁界Hが周囲に漏れるのを低減することができ、該磁界Hの強さを向上することができる。したがって、上記磁界発生手段6a,6bが、上記半導体基板5の可動部3に設けられた駆動コイル4に与える磁界Hの強さをより向上することができる。
【0022】
そして、上記支持部材11は、非磁性材料からなる。これにより、上記非磁性材料からなる支持部材が上記磁界発生手段と磁気結合せず、磁路を形成しないようにすることができる。したがって、図2に示す半導体基板5の駆動コイル4に与える磁界Hの強さが影響を受けないようにできる。
【0023】
また、図示省略したが、上記支持部材11には、その表面に直接載置される半導体基板5の可動部3に相当する位置に、該可動部3の大きさよりも広い面積の凹部を備えてもよい。これにより、上記可動部3の大きさよりも広い面積の凹部によって、上記半導体基板5の可動部3が揺動する空間を確保することができる。したがって、例えば上記半導体基板5の可動部3が大きく揺動しても、その動作が上記支持部材11によって妨げられない。
【0024】
図3は本発明によるプレーナ型電磁アクチュエータの第2の実施形態を示す図1のA−A線断面図である。この実施形態によるプレーナ型電磁アクチュエータ10の支持部材15においては、該支持部材15に直接載置された半導体基板5の可動部3に相当する位置に、該可動部3の大きさよりも広い開口部16が設けられている。これにより、上記開口部16によって、上記半導体基板5の可動部3が揺動する空間を確保することができる。この場合は、例えば上記半導体基板5の可動部3が、図3に示す矢印Dのように大きく揺動しても、その動作が上記支持部材15によって妨げられない。また、例えば図3に示すように、上記可動部3の下面に全反射ミラー17を形成し、該全反射ミラー17にレーザー光18を照射することにより、上記プレーナ型電磁アクチュエータ10をガルバノミラーとして適用することができる。
【0025】
また、図3に示す支持部材15は、図2に示す支持部材11に設けられた貫通孔14を設けずに、磁路形成手段7として上記支持部材15の表面側及び裏面側にそれぞれ磁路形成手段7a,7bを備えるようにしてもよい。この場合、上記磁路形成手段7aは、上記支持部材15の表面にて上記磁界発生手段6a,6bの周りをその突出部分と略同じ高さで取り囲む枠状の磁性材料からなる部材であり上記磁路形成手段7bは、上記支持部材15の裏面にて上記磁界発生手段6a,6bの周りをその突出部分と略同じ高さで取り囲む枠状の磁性材料からなる部材である。これにより、上記上下2個の磁路形成手段7a,7bによって、上記磁界発生手段6a,6bが取り囲まれて固定され、磁界Hが周囲に漏れるのを低減することができる。この場合は、上記半導体基板5の駆動コイル4に与える磁界Hの強さを向上することができる。
【0026】
なお、上述の説明において、上記半導体基板5は、一軸回りに揺動可能な可動部3が形成されたものとして説明したが、これに限られず、例えば直交する二軸回りに揺動可能な可動部が形成されたもの(図示省略)でもよい。また、上記磁界発生手段6a,6bは、図1に示すように、トーションバー12,12と直交する方向に上記半導体基板5を挟んで対向配置されたものとして説明したが、上記半導体基板5の構成にあわせて配置すればよい。例えば、半導体基板に形成された直交する二軸回りに揺動可能な可動部の一の対角線方向に上記磁界発生手段6a,6bを対向配置してもよい。
【0027】
【発明の効果】
本発明は以上のように構成されたので、請求項1に係る発明によれば、支持部材の表面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲んだ部材と、支持部材の裏面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲んだ部材とで磁路形成手段を構成することができ、この二つの部材によって、支持部材の磁界発生手段に対応する位置にあけられた貫通孔に磁界発生手段の一部を挿入、支持部材の表面に直接載置された半導体基板の可動部に備えられた駆動コイルを含む面に、磁界発生手段の上下方向の中心面を一致させるように配置した状態で磁界発生手段を固定することができる。これにより、上記駆動コイルに与える磁界を確保することができ、プレーナ型電磁アクチュエータを効率的に作動することができる。また、駆動コイルを含む面と磁界発生手段の上下方向の中心面とを一致させるために上記半導体基板を載置するための台座部のような特別な部材を省略化することができ、装置全体の部品点数を減らして製造工程の効率化を図ることができる。さらに、上記磁路形成手段によって、磁界が周囲に漏れるのを低減することができ、上記磁界発生手段の間に発生する磁界の強さを向上することができる。
【0030】
また請求項2に係る発明によれば、支持部材は、非磁性材料からなるものであることにより、上記非磁性材料からなる支持部材が上記磁界発生手段と磁気結合せず、磁路を形成しないようにすることができる。したがって、半導体基板の駆動コイルに与える磁界の強さが影響を受けないようにできる。
【0031】
さらに請求項3に係る発明によれば、支持部材は、その表面に直接載置される半導体基板の可動部に相当する位置に、該可動部の大きさよりも広い面積の凹部を備えたことにより、上記可動部の大きさよりも広い面積の凹部によって、上記半導体基板の可動部が揺動する空間を確保することができる。したがって、上記半導体基板の可動部が大きく揺動しても、その動作が上記支持部材によって妨げられない。
【0032】
そして請求項4に係る発明によれば、支持部材は、その表面に直接載置される半導体基板の可動部に相当する位置に、該可動部の大きさよりも広い開口部を備えたことにより、上記可動部の大きさよりも広い開口部によって、上記半導体基板の可動部が揺動する空間を確保することができる。したがって、上記可動部が大きく揺動しても、その動作が上記支持部材によって妨げられない。
【図面の簡単な説明】
【図1】 本発明によるプレーナ型電磁アクチュエータの実施形態を示す斜視図である。
【図2】 上記プレーナ型電磁アクチュエータの動作を説明するA−A線断面図である。
【図3】 上記プレーナ型電磁アクチュエータの第2の実施形態を示すA−A線断面図である。
【図4】 従来のプレーナ型電磁アクチュエータを説明する斜視図である。
【図5】 上記プレーナ型電磁アクチュエータの動作を説明するB−B線断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a planar electromagnetic actuator capable of freely swinging a movable part of a semiconductor substrate sandwiched between magnetic field generating means by using an electric signal, and in particular, a drive coil provided in the movable part of the semiconductor substrate. The present invention relates to a planar type electromagnetic actuator that can secure a magnetic field applied to the device and reduce the number of parts of the entire apparatus to improve the efficiency of the manufacturing process.
[0002]
[Prior art]
In recent years, development of a technology related to an ultra-small planar electromagnetic actuator that can be formed using semiconductor manufacturing technology has been advanced. For example, as shown in FIG. 4, a conventional planar electromagnetic actuator 1 of this type includes a semiconductor substrate 5 on which a movable part 3 having a drive coil 4 is swingably formed on a support member 2, and this semiconductor. Magnetic field generating means 6a and 6b arranged opposite to each other with the substrate 5 applied thereto to apply a magnetic field H (see FIG. 5) to the drive coil 4, and magnetic path forming means 7 arranged around the magnetic field generating means 6a and 6b. I was prepared.
[0003]
Then, when such an electric signal flows through the drive coil 4 provided at the peripheral portion of the movable portion 3 of the semiconductor substrate 5, the planar electromagnetic actuator 1 is interposed between the magnetic field generating means 6a and 6b shown in FIG. Since the Lorentz force acts on the drive coil 4 by the generated magnetic field H, the movable part 3 swings as shown by an arrow C by causing the current flowing through the drive coil 4 to flow alternately in reverse directions at regular intervals. I was supposed to.
[0004]
Here, as shown in FIG. 5, the magnetic field lines coming out of the N pole of the left magnetic field generating means 6a and entering the S pole of the right magnetic field generating means 6b are near the center plane 8 of the magnetic field generating means 6a, 6b. It is formed along the central plane 8 and is formed so as to bulge outward as it is separated from the central plane 8 in the vertical direction. Therefore, the magnetic flux density is highest in the vicinity of the center plane 8 of the magnetic field generating means 6a, 6b, and the strength of the magnetic field H is maximum. Therefore, the semiconductor substrate 5 is arranged above the support member 2 so that the surface of the semiconductor substrate 5 including the drive coil 4 and the center surface 8 of the magnetic field generating means 6a and 6b are aligned. . That is, on the surface of the support member 2, pedestal portions 9 and 9 as shown in FIG. 5 are provided, for example, and the semiconductor substrate 5 is placed on the pedestal portions 9 and 9.
[0005]
[Problems to be solved by the invention]
However, in such a conventional planar electromagnetic actuator 1, since the pedestal portion 9 for adjusting the height of the semiconductor substrate 5 is provided on the surface of the support member 2, the magnetic field generating means 6a, In order to apply an efficient magnetic field H to the drive coil 4 of the semiconductor substrate 5 by 6b, the height accuracy of the pedestal portions 9, 9 is improved, and the semiconductor substrate 5 is placed on the pedestal portions 9, 9. It was necessary to improve the mounting accuracy when mounting. Therefore, there has been a problem that it takes time to manufacture the entire apparatus. Further, the pedestal portion 9 itself does not directly contribute to the movement of the movable portion 3 of the semiconductor substrate 5 swinging.
[0006]
Accordingly, the present invention addresses such problems and secures a magnetic field to be applied to the drive coil provided on the movable portion of the semiconductor substrate, while reducing the number of parts of the entire apparatus and increasing the efficiency of the manufacturing process. An object of the present invention is to provide a planar type electromagnetic actuator that can be used.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a planar electromagnetic actuator according to the present invention is disposed on a support member so as to face a semiconductor substrate on which a movable portion having a drive coil is swingably disposed with the semiconductor substrate interposed therebetween. In a planar type electromagnetic actuator comprising a magnetic field generating means for applying a magnetic field to the drive coil and a magnetic path forming means arranged around the magnetic field generating means, the semiconductor substrate is directly mounted on the surface of the support member The support member is opened at a position corresponding to the magnetic field generating means so that the vertical center surface of the magnetic field generating means coincides with the surface including the drive coil provided in the movable portion of the semiconductor substrate. by inserting a portion of said magnetic field generating means is disposed said magnetic field generating means in the through-hole, said magnetic path forming means, the projecting around the magnetic field generating means at the surface side of the supporting member A member that surrounds the magnetic field generating means by fixing it at substantially the same height as the minute, and surrounds the magnetic field generating means at the same height as the protruding portion on the back side of the support member to fix the magnetic field generating means. It is comprised with the member to do .
[0008]
With such a configuration, the member constituting the magnetic path forming means that surrounds the magnetic field generating means on the front surface side of the support member at substantially the same height as the protruding portion, and the magnetic field generating means on the back surface side of the support member. By inserting a part of the magnetic field generating means into a through hole opened at a position corresponding to the magnetic field generating means of the support member by a member constituting the magnetic path forming means surrounding the periphery at substantially the same height as the protruding portion, The magnetic field generating means is fixed in a state in which the central plane in the vertical direction of the magnetic field generating means is aligned with the surface including the drive coil provided in the movable part of the semiconductor substrate mounted directly on the surface of the support member. .
[0011]
Further, the support member is made of a nonmagnetic material. Thus, the support member made of the non-magnetic material is not magnetically coupled to the magnetic field generating means, and does not form a magnetic path.
[0012]
Further, the support member may include a recess having an area larger than the size of the movable portion at a position corresponding to the movable portion of the semiconductor substrate placed directly on the surface thereof. As a result, a space in which the movable portion of the semiconductor substrate swings is secured by the recess having an area larger than the size of the movable portion.
[0013]
Furthermore, the support member may include an opening wider than the movable portion at a position corresponding to the movable portion of the semiconductor substrate placed directly on the surface thereof. Thereby, a space in which the movable portion of the semiconductor substrate swings is secured by the opening that is wider than the size of the movable portion.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view showing an embodiment of a planar electromagnetic actuator according to the present invention. The planar electromagnetic actuator 10 is a device that freely controls swinging of a movable part 3 formed using semiconductor manufacturing technology using an electric signal. A semiconductor substrate 5 and a magnetic field generating means are provided on a support member 11. 6a, 6b and magnetic path forming means 7 are provided.
[0016]
The support member 11 is a member that is the basis of the planar electromagnetic actuator 10 and is formed larger than the outer shape of the magnetic path forming means 7 described later. A semiconductor substrate 5 is disposed on the support member 11. This semiconductor substrate 5 forms the movable part 3 using a semiconductor manufacturing technique, and includes a silicon layer. Here, the semiconductor substrate 5 will be described on the assumption that the movable portion 3 that can swing around one axis is formed.
[0017]
That is, the flat movable portion 3 and the torsion bars 12 and 12 that pivotally support the movable portion 3 are integrally formed on the semiconductor substrate 5 by, for example, an anisotropic etching method. . Here, the movable portion 3 and the torsion bar 12 are formed to be thinner than the thickness of the semiconductor substrate 5 itself, and the movable portion 3 of the semiconductor substrate 5 placed on the support member 11 has a predetermined angle. It can only be turned . As shown in FIG. 1, a drive coil 4 is provided on the peripheral portion of the movable portion 3. The drive coil 4 can be formed, for example, by applying an electroformed coil method.
[0018]
Further, as shown in FIG. 1, for example, the in torsion bars 12, 12 perpendicular to the direction, left or right ends of the semiconductor substrate 5, the semiconductor substrate 5 interposed therebetween a pair of magnetic field generating means 6a, 6b Are arranged opposite to each other. These magnetic field generating means 6a and 6b apply a magnetic field H to the drive coil 4 provided on the movable part 3 of the semiconductor substrate 5, and are composed of, for example, a permanent magnet. For example, the N pole and the right side of the left magnetic field generating means 6a. The S poles of the magnetic field generating means 6b are arranged to face each other.
[0019]
Further, as shown in FIG. 1, a magnetic path forming means 7 is arranged around the magnetic field generating means 6a and 6b. The magnetic path forming means 7 reduces the leakage of the magnetic field generated between the magnetic field generating means 6a and 6b to the surroundings, has a frame shape, and is made of a magnetic material such as iron.
[0020]
Here, in the present invention, as shown in FIG. 2, the semiconductor substrate 5 is placed directly on the substantially central portion of the surface of the support member 11, and includes the drive coil 4 of the semiconductor substrate 5. the surface, the magnetic field generating means 6a, the magnetic field generation means 6a so that the vertical center plane 8 of 6b one Itasa, 6b are arranged. At this time, as shown in FIG. 2, the support member 11 has a pair of through holes 13 and 13 having a size through which the magnetic field generating means 6a and 6b penetrate at positions corresponding to the magnetic field generating means 6a and 6b. Has been opened. Then, the magnetic field generating means 6a, 6b is a part is held inserted into the through hole 13, a so that the surface is one Itasu including the driving coil 4 of the semiconductor substrate 5 to the center plane 8 Has been placed. As a result, the magnetic field H having the maximum or approximate strength can be applied to the drive coil 4 of the semiconductor substrate 5 placed directly on the surface of the support member 11 by the magnetic field generating means 6a and 6b. The planar electromagnetic actuator 10 can be efficiently operated. Further, since the semiconductor substrate 5 is directly disposed on the surface of the support member 11, it is not necessary to provide the pedestal 9 (see FIG. 5) for adjusting the height of the semiconductor substrate 5 as in the prior art. It is possible to reduce the number of parts of the entire apparatus and increase the efficiency of the manufacturing process.
[0021]
Further, as shown in FIG. 2, a through hole 14 having a size through which the magnetic path forming means 7 penetrates is formed at a position corresponding to the magnetic path forming means 7 on the support member 11. A part of the magnetic path forming means 7 is inserted and held in the through hole 14, and the center surface 8 is formed near the surface of the support member 11, similarly to the magnetic field generating means 6 a and 6 b. Are arranged to be. As a result, a path is formed by the magnetic path forming means 7 so that the magnetic field lines (not shown) coming out from the S pole of the left magnetic field generating means 6a enter the N pole of the right magnetic field generating means 6b. Leakage of the magnetic field H generated between 6a and 6b to the surroundings can be reduced, and the strength of the magnetic field H can be improved. Therefore, the strength of the magnetic field H applied to the drive coil 4 provided on the movable portion 3 of the semiconductor substrate 5 by the magnetic field generating means 6a and 6b can be further improved.
[0022]
The support member 11 is made of a nonmagnetic material. Thereby, the support member made of the non-magnetic material is not magnetically coupled to the magnetic field generating means, and a magnetic path can be prevented from being formed. Therefore, the strength of the magnetic field H applied to the drive coil 4 of the semiconductor substrate 5 shown in FIG. 2 can be prevented from being affected.
[0023]
Although not shown, the support member 11 is provided with a recess having an area larger than the size of the movable portion 3 at a position corresponding to the movable portion 3 of the semiconductor substrate 5 placed directly on the surface thereof. Also good. As a result, a space in which the movable portion 3 of the semiconductor substrate 5 swings can be secured by the recess having an area larger than the size of the movable portion 3. Therefore, for example, even if the movable portion 3 of the semiconductor substrate 5 swings greatly, the operation is not hindered by the support member 11.
[0024]
FIG. 3 is a cross-sectional view taken along line AA of FIG. 1 showing a second embodiment of the planar electromagnetic actuator according to the present invention. In the support member 15 of the planar electromagnetic actuator 10 according to this embodiment, an opening wider than the size of the movable portion 3 is provided at a position corresponding to the movable portion 3 of the semiconductor substrate 5 placed directly on the support member 15. 16 is provided. Thus, a space in which the movable portion 3 of the semiconductor substrate 5 swings can be secured by the opening 16. In this case, for example, even if the movable portion 3 of the semiconductor substrate 5 swings greatly as indicated by an arrow D shown in FIG. 3, the operation is not hindered by the support member 15. Further, for example, as shown in FIG. 3, a total reflection mirror 17 is formed on the lower surface of the movable portion 3, and the total reflection mirror 17 is irradiated with a laser beam 18, thereby making the planar electromagnetic actuator 10 a galvano mirror. Can be applied.
[0025]
The support member 15 shown in FIG. 3, without providing the through-hole 14 provided on the support member 11, respectively as a magnetic path forming means 7 on the surface side and back side of the support member 15 magnetic path shown in FIG. 2 You may make it provide the formation means 7a and 7b. In this case, the magnetic path forming means 7 a is member having upper Symbol said magnetic field generating means 6a at the front side of the support member 15, a frame-shaped magnetic material surrounding substantially the same height as the protruding part around 6b , and the said magnetic path forming means 7b is a member made of a frame-shaped magnetic material surrounding substantially the same height as the magnetic field generating means 6a, around 6b and the protruding portion at the back side of the support member 15 . Accordingly, the magnetic field generating means 6a and 6b are surrounded and fixed by the upper and lower two magnetic path forming means 7a and 7b, and leakage of the magnetic field H to the surroundings can be reduced. In this case, the strength of the magnetic field H applied to the drive coil 4 of the semiconductor substrate 5 can be improved.
[0026]
In the above description, the semiconductor substrate 5 has been described as having the movable portion 3 that can swing around one axis. However, the present invention is not limited to this. For example, the semiconductor substrate 5 is movable that can swing around two orthogonal axes. It may be formed with a portion (not shown). Further, the magnetic field generating means 6a and 6b have been described as being opposed to each other with the semiconductor substrate 5 sandwiched in a direction orthogonal to the torsion bars 12 and 12 , as shown in FIG. What is necessary is just to arrange | position according to a structure. For example, one of the upper diagonally Symbol field generating means 6a of the swingable movable part in two axes orthogonal formed on a semiconductor substrate, 6b may be disposed opposite the.
[0027]
【The invention's effect】
Since the present invention is configured as described above, according to the first aspect of the present invention, the member surrounding the magnetic field generating means on the surface side of the support member at substantially the same height as the protruding portion, and the support The magnetic path forming means can be constituted by a member surrounding the magnetic field generating means on the back side of the member at the same height as the projecting portion, and these two members serve as the magnetic field generating means of the support member. insert the part of the corresponding magnetic field generating means in the through-hole drilled in a position, in a plane including a driving coil provided on the movable portion of the direct mounting semiconductor substrate to the surface of the support member, the magnetic field generating means The magnetic field generating means can be fixed in a state where the center planes in the vertical direction are aligned . Thereby, the magnetic field given to the drive coil can be secured, and the planar electromagnetic actuator can be operated efficiently. In addition, a special member such as a pedestal for mounting the semiconductor substrate can be omitted in order to make the surface including the drive coil coincide with the center surface in the vertical direction of the magnetic field generating means, and the entire apparatus can be omitted. The number of parts can be reduced and the manufacturing process can be made more efficient. Furthermore, the magnetic path forming means can reduce the leakage of the magnetic field to the surroundings, and the strength of the magnetic field generated between the magnetic field generating means can be improved.
[0030]
Further, according to the invention of claim 2, the support member, by those of a non-magnetic material, a support member made of the nonmagnetic material is not magnetically coupled to said magnetic field generating means, forming a magnetic path You can avoid it. Therefore, the strength of the magnetic field applied to the drive coil of the semiconductor substrate can be prevented from being affected.
[0031]
Further , according to the invention of claim 3 , the support member is provided with a recess having an area larger than the size of the movable part at a position corresponding to the movable part of the semiconductor substrate placed directly on the surface thereof. Thus, a space in which the movable portion of the semiconductor substrate swings can be secured by the recess having an area larger than the size of the movable portion. Therefore, even if the movable part of the semiconductor substrate swings greatly, the operation is not hindered by the support member.
[0032]
In the invention according to claim 4, the support member, the position corresponding to the movable portion of the semiconductor substrate to be placed directly on the surface, by having a wide opening than the size of the movable portion A space in which the movable portion of the semiconductor substrate swings can be secured by the opening that is wider than the size of the movable portion. Therefore, even if the movable part swings greatly, the operation is not hindered by the support member.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a planar electromagnetic actuator according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA for explaining the operation of the planar electromagnetic actuator.
FIG. 3 is a sectional view taken along line AA showing a second embodiment of the planar electromagnetic actuator.
FIG. 4 is a perspective view for explaining a conventional planar electromagnetic actuator.
FIG. 5 is a sectional view taken along line B-B for explaining the operation of the planar electromagnetic actuator.

Claims (4)

支持部材上に、駆動コイルを備えた可動部が揺動可能に形成された半導体基板と、この半導体基板を挟んで対向配置され上記駆動コイルに磁界を与える磁界発生手段と、この磁界発生手段の周囲に配置された磁路形成手段とを備えてなるプレーナ型電磁アクチュエータにおいて、
上記支持部材の表面に上記半導体基板を直接載置し、この半導体基板の可動部に備えられた駆動コイルを含む面に、上記磁界発生手段の上下方向の中心面を一致させるように、上記支持部材の磁界発生手段に対応する位置にあけられた貫通孔に上記磁界発生手段の一部を挿入して該磁界発生手段を配置し、上記磁路形成手段を、上記支持部材の表面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲んで該磁界発生手段を固定する部材と、上記支持部材の裏面側にて磁界発生手段の周りをその突出部分と略同じ高さで取り囲んで該磁界発生手段を固定する部材とで構成したことを特徴とするプレーナ型電磁アクチュエータ。
A semiconductor substrate on which a movable part having a drive coil is swingably formed on a support member, a magnetic field generating unit that is disposed opposite to the semiconductor substrate and applies a magnetic field to the drive coil, and the magnetic field generating unit In a planar electromagnetic actuator comprising a magnetic path forming means disposed around,
The semiconductor substrate is directly mounted on the surface of the support member, and the vertical support center plane is aligned with the surface including the drive coil provided in the movable portion of the semiconductor substrate. by inserting a portion of said magnetic field generating means in a through hole bored in a position corresponding to the magnetic field generating means of members arranged magnetic field generating means, said magnetic path forming means, at the surface side of the supporting member A member that surrounds the magnetic field generating means at substantially the same height as the protruding portion and fixes the magnetic field generating means, and the magnetic field generating means on the back side of the support member at the same height as the protruding portion. A planar electromagnetic actuator comprising a member surrounding and fixing the magnetic field generating means .
上記支持部材は、非磁性材料から成ることを特徴とした請求項1記載のプレーナ型電磁アクチュエータ。  2. The planar electromagnetic actuator according to claim 1, wherein the support member is made of a nonmagnetic material. 上記支持部材は、その表面に直接載置される半導体基板の可動部に相当する位置に、該可動部の大きさよりも広い面積の凹部を備えたことを特徴とする請求項1又は2記載のプレーナ型電磁アクチュエータ。3. The support member according to claim 1, further comprising a recess having an area larger than the size of the movable portion at a position corresponding to the movable portion of the semiconductor substrate placed directly on the surface thereof. Planar type electromagnetic actuator. 上記支持部材は、その表面に直接載置される半導体基板の可動部に相当する位置に、該可動部の大きさよりも広い開口部を備えたことを特徴とする請求項1又は2記載のプレーナ型電磁アクチュエータ。 3. The planar device according to claim 1 , wherein the support member includes an opening wider than the movable portion at a position corresponding to the movable portion of the semiconductor substrate placed directly on the surface thereof. Type electromagnetic actuator.
JP2001345310A 2001-11-09 2001-11-09 Planar type electromagnetic actuator Expired - Lifetime JP3879976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345310A JP3879976B2 (en) 2001-11-09 2001-11-09 Planar type electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345310A JP3879976B2 (en) 2001-11-09 2001-11-09 Planar type electromagnetic actuator

Publications (2)

Publication Number Publication Date
JP2003153519A JP2003153519A (en) 2003-05-23
JP3879976B2 true JP3879976B2 (en) 2007-02-14

Family

ID=19158668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345310A Expired - Lifetime JP3879976B2 (en) 2001-11-09 2001-11-09 Planar type electromagnetic actuator

Country Status (1)

Country Link
JP (1) JP3879976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065126A1 (en) * 2011-11-01 2013-05-10 パイオニア株式会社 Actuator

Also Published As

Publication number Publication date
JP2003153519A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
JP2987750B2 (en) Planar type electromagnetic actuator
US20080100898A1 (en) Electromagnetic micro-actuator
US20050122602A1 (en) Optical deflector
US9876418B2 (en) Actuator
JP2012125145A (en) Magnetic actuator, and micromirror and mirror system using the same
JP4376802B2 (en) Swing type electromagnetic actuator and exposure condition switching device for camera
JP2004297923A (en) Planar electromagnetic actuator
US20030002176A1 (en) Actuator for optical pickup
JPH08334723A (en) Optical deflection element
JP4111619B2 (en) Mounting structure of planar optical scanning device
EP3021155B1 (en) Actuator
JP4968760B1 (en) Actuator
JP5641176B2 (en) Electromagnetic actuator
JP4144840B2 (en) Oscillator device, optical deflector, and optical apparatus using optical deflector
JP3879976B2 (en) Planar type electromagnetic actuator
JP2014199326A (en) Driving device
Iseki et al. Two-dimensionally deflecting mirror using electromagnetic actuation
JP4376513B2 (en) Planar type electromagnetic actuator
JP2011128203A (en) Optical device
JP6633734B2 (en) Actuator
JP2015014753A (en) Actuator
JP2001118265A (en) Lens driving device
JP3808756B2 (en) Planar type electromagnetic actuator
JP3712563B2 (en) Objective lens drive device for optical disk drive
JPH01195417A (en) Optical beam deflector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Ref document number: 3879976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term