JP3879732B2 - 物体検出装置、物体検知方法、およびコンピュータプログラム - Google Patents

物体検出装置、物体検知方法、およびコンピュータプログラム Download PDF

Info

Publication number
JP3879732B2
JP3879732B2 JP2003397999A JP2003397999A JP3879732B2 JP 3879732 B2 JP3879732 B2 JP 3879732B2 JP 2003397999 A JP2003397999 A JP 2003397999A JP 2003397999 A JP2003397999 A JP 2003397999A JP 3879732 B2 JP3879732 B2 JP 3879732B2
Authority
JP
Japan
Prior art keywords
feature
image
head
reliability
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003397999A
Other languages
English (en)
Other versions
JP2005157906A (ja
Inventor
大作 保理江
雄介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003397999A priority Critical patent/JP3879732B2/ja
Priority to US10/786,775 priority patent/US7321668B2/en
Publication of JP2005157906A publication Critical patent/JP2005157906A/ja
Application granted granted Critical
Publication of JP3879732B2 publication Critical patent/JP3879732B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/162Detection; Localisation; Normalisation using pixel segmentation or colour matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Image Input (AREA)

Description

本発明は、画像の中から目標の物体を検出する物体検出装置または物体検知方法に関する。
従来より、歩行者や侵入者の検知、個人認証、またはフレーミングなどを目的とした人体検知方法が提案されている。
人体検知方法として、歩行者が通る場所にカメラを設置しておき、そのカメラで撮影して得た画像を解析して歩行者の画像領域を検出することによって、歩行者を検知する方法が知られている。歩行者の画像領域を検出する方法として、例えば、背景差分を用いる方法、動き差分(時間差分)を用いる方法、オプティカルフローを求める方法、肌色領域を検出する方法、頭部の楕円形状を検出する方法、または眼や鼻などの身体の部位を検出する方法などが提案されている。
上記の検出方法では、次のような不都合がある場合に歩行者を上手く検出できないことがある。
例えば、背景画像が肌などの色と近い場合または照明条件の変化によって背景基準画像に誤差が生じた場合は、背景差分が上手く求められないので、背景差分を用いる方法では歩行者を上手く検出ができないことがある。歩行者の移動速度が遅い場合または歩行者が静止している場合は、2枚の画像の差が現れにくいので、動き差分(時間差分)を用いる方法およびオプティカルフローを求める方法では歩行者を上手く検出ができないことがある。
背景領域に肌色が多く含まれている場合は背景領域を人体の領域と誤認識しやすく、歩行者が後ろを振り返っている場合は肌色領域が小さくなるので、肌色領域を検出する方法では、歩行者を上手く検出ができないことがある。歩行者が帽子、眼鏡、サングラス、またはマスクなどを身に付けている場合は、これらの部位が隠れてしまうので、頭部の楕円形状を検出する方法および眼や鼻などの身体の部位を検出する方法では歩行者を上手く検出ができないことがある。
これらの問題点を解決する方法として、特許文献1に記載されるような方法が提案されている。係る方法によると、特性の異なる複数の被写体抽出を行い、各被写体抽出で抽出された被写体を合成する。そして、もしも合成結果が所定の判定基準を満たしていなければ、さらに特性の異なる補助被写体抽出を行い、合成結果と補助被写体抽出による抽出結果とを用いて主要被写体を抽出する。
しかし、係る方法では、合成結果と補助被写体抽出による抽出結果とを用いて主要被写体を抽出してもなお、所定の判定基準を満たしていなければ、さらに特性の異なる補助被写体抽出を行わなければならない。したがって、元の被写体抽出の結果の信頼性によっては、補助被写体抽出をたくさん追加して行わなければならない。また、合成結果が所定の判定基準を満たしているか否かを常に判別しなければならない。よって、同時に(つまり1つのフレームに対して)実行する処理数が多くなり、処理速度が非常に遅くなってしまう。
特開平11−316845号公報
本発明は、上記のような問題点に鑑み、目標物の検出を行う際に撮影環境などに変化が生じても、処理速度をあまり低下させることなく当該検出を正確に行うことができるようにすることを目的とする。
本発明に係る物体検出装置は、画像の中から目標の物体を検出する物体検出装置であって、カメラで撮影されて得られた撮影画像を入力する画像入力手段と、互いに異なる方法を用いて、前記撮影画像の特徴を検出する複数の特徴検出手段と、前記カメラの撮影に関する事項の条件を示す情報を取得する撮影条件取得手段と、取得された前記条件の場合の、前記各特徴検出手段によって検出される前記特徴の信頼性を求める、信頼性算出手段と、1つまたは複数の前記特徴検出手段によって前記撮影画像からそれぞれ検出された前記特徴および前記信頼性算出手段によって求められた当該特徴の信頼性に基づいて前記撮影画像に写っている前記物体を検出する物体検出手段と、を有することを特徴とする。
好ましくは、前記特徴検出手段は、前記特徴を特徴量として検出し、前記物体検出手段は、それぞれの信頼性の高さに応じて重み付けをした、前記各特徴の特徴量に基づいて、前記物体を検出する。前記信頼性算出手段によって求められた前記特徴の信頼性を記憶する信頼性記憶手段を有し、前記信頼性算出手段は、所定のタイミングで前記特徴の信頼性を算出し、前記物体検出手段は、前記信頼性記憶手段に記憶されている最新の前記特徴に基づいて前記撮影画像に写っている前記物体を検出するようにしてもよい。
前記物体は人である場合には、前記特徴検出手段として、例えば、前記撮影画像と半楕円形状のテンプレートとのマッチングの度合いを算出することによって前記特徴を求める手段、前記撮影画像の画素面を区画した領域ごとの肌の色らしさを検出することによって前記特徴を求める手段、前記撮影画像の前記領域の髪の色らしさを検出することによって前記特徴を求める手段、または前記撮影画像と肩形状のテンプレートとのマッチングの度合いを算出することよって前記特徴を求める手段、を設ける。
または、前記条件の場合の、前記各特徴検出手段によって検出される前記特徴の信頼性を求める、信頼性算出手段と、前記信頼性算出手段によって求められた、前記各特徴検出手段によって検出された前記各特徴の信頼性に応じて、前記物体を検出するための演算方法を決定する、演算方法決定手段と、1つまたは複数の前記特徴検出手段によってそれぞれ検出された前記特徴および前記演算方法決定手段によって決定された前記演算方法に基づいて前記撮影画像に写っている前記物体を検出する物体検出手段と、を有してなる。
本発明において、「カメラの撮影に関する事項の条件」とは、カメラの周囲の環境または設定の状況など、撮影に関する様々な条件を意味する。例えば、監視を行っている通路の照明の明るさ、影、または通行量など周囲の環境や、カメラの撮影速度(フレームレート)、ズーム、パン、またはチルトの設定などが挙げられる。前のフレームに係る頭部検出結果やオペレータによる頭部検出に関する評価(オペレータが画像を見て頭部を指示した結果および装置による判定結果が正しいか否かの評価など)も、カメラの撮影に関する事項の条件に含まれる。
請求項の演算方法として、例えば、相加平均法を用いた演算方法、相乗平均法を用いた演算方法、最大値または最小値を選択する関数を用いた演算方法、四則演算または論理演算を用いた演算方法、平方根を用いた演算方法などが挙げられる。
本発明によると、目標物の検出を行う際に撮影環境などに変化が生じても、処理速度をあまり低下させることなく当該検出を正確に行うことができる。
図1は監視システム100の全体的な構成の例を示す図、図2はビデオカメラ2の位置姿勢および撮影状況の例を示す図、図3は人体検出装置1のハードウェア構成の例を示す図、図4は人体検出装置1の機能的構成の例を示す図である。
図1に示すように、監視システム100は、本発明に係る人体検出装置1、ビデオカメラ2、センサ3、および通信回線4などによって構成される。人体検出装置1とビデオカメラ2およびセンサ3とは、通信回線4を介して互いに接続されている。通信回線4として、LAN、公衆回線、専用線、またはインターネットなどが用いられる。
ビデオカメラ2は、CCDなどのイメージセンサ、光学系、外部の装置とデータの送受信を行うためのインタフェース、および制御用回路などを備えており、撮影によって得られた画像を画像データ70として人体検出装置1に送信する。
このビデオカメラ2は、図2に示すように、スーパーマーケットまたはデパートなどの商業施設、店舗、地下街、ビル、またはイベント会場などの施設の通路または出入口などのように、人が通行する場所の天井などに設置される。以下、ビデオカメラ2が施設の通路に設置され、その通路の様子を監視するために使用される場合を例に説明する。また、ビデオカメラ2は、水平画角が60度くらい、検知対象(被写体)との距離すなわち撮影距離が3〜5mくらい、出力する画像の解像度が640×480画素(いわゆるVGA)に設定されているものとする。通路の幅は、1〜1.5mくらいであるものとする。
センサ3は、監視を行っている通路の状況、例えば、明るさ、歩行者の速度、または歩行者の数などを検知するために用いられる。センサ3は、定期的に(例えばオペレータが設定した所定の間隔で)または何かを検知したタイミングで、検知結果情報80を人体検出装置1に送信される。センサ3として具体的にどのようなものが用いられるのかは、後に説明する。
人体検出装置1は、図3に示すように、CPU1a、RAM1b、ROM1c、磁気記憶装置(ハードディスク)1d、通信インタフェース1e、表示装置1f、およびマウスまたはキーボードなどの入力装置1gなどによって構成される。
磁気記憶装置1dには、図4に示すような画像入力部101、前処理部102、特徴量演算部103、頭部中心度プレーン生成部104、検出処理部105、頭部画像表示部171、頭部画像保存部172、学習部108、特徴度プレーン記憶部1M1、前フレーム記憶部1M2、およびテンプレート記憶部1M3などの機能を実現するためのプログラムおよびデータがインストールされている。これらのプログラムおよびデータは必要に応じてRAM1bにロードされ、CPU1aによってプログラムが実行される。
この人体検出装置1は、施設の管理室などに設置されており、警備員が管理室に居ながら通路の様子を監視するために使用される。また、ビデオカメラ2によって撮影された画像に写っている通行人の頭部を検出し、頭部を拡大表示しまたは頭部の画像(映像)を保存しておくことができる。人体検出装置1として、ワークステーションまたはパーソナルコンピュータなどが用いられる。
以下、ビデオカメラ2で撮影された画像から歩行者の頭部の中心の位置(例えば、鼻の先端)を検出する際の、図4に示す人体検出装置1の各部の処理内容などについて説明する。
〔検出対象の画像の入力および前処理〕
図5はビデオカメラ2で撮影された画像FGの例を示す図、図6は色空間変換処理の流れの例を説明するフローチャート、図7は切出画像GCの生成方法の例を説明する図、図8は切出縮小画像GSの生成方法の例を説明する図、図9は画像縮小処理の流れの例を説明するフローチャート、図10は時間差分プレーンSTの生成方法の例を示す図、図11は時間差分検出処理の流れの例を説明するフローチャート、図12は空間差分プレーンSSの生成方法の例を示す図、図13は空間差分検出処理の流れの例を説明するフローチャート、図14は論理積プレーンANの生成方法の例を示す図、図15は論理積画像生成処理の流れの例を説明するフローチャート、図16は論理積プレーンANの例を示す図である。
図4の画像入力部101は、ビデオカメラ2から送信されてきた画像データ70の受信処理を行う。これにより、ビデオカメラ2の撮影速度に応じたフレーム数(例えば、毎秒30フレーム)の、図5に示すような画像FG(映像)が得られる。
前処理部102は、色空間変換部201、画像縮小処理部202、時間差分算出部203、空間差分算出部204、および論理積画像生成部205などによって構成され、画像FGに写っている歩行者HMNの頭部の中心位置を求める処理に必要な画像を準備する処理を行う。
色空間変換部201は、画像入力部101によって入力された画像FGがRGB色空間の画像である場合に、この画像のデータをYUV色空間のデータに変換する処理を行う。係る処理は、図6および図7に示す手順で行われる。
画像FGの中から歩行者HMNの頭部が写っていそうな画像領域を図7のように設定する(図6の#101)。以下、係る画像領域を「注目画像領域RC」と記載する。注目画像領域RCは、ビデオカメラ2の位置姿勢および人の頭部のサイズなどに基づいて設定される。または、予めビデオカメラ2で撮影しておいた画像を参照して設定してもよい。本実施形態の人体検出装置1では、注目画像領域RCのサイズおよび形状は、640×100画素の長方形であると定められている。したがって、注目画像領域RCの開始アドレス(左上隅の画素の座標)だけを設定すればよい。例えば、図7に示すように、開始アドレスの座標(Xs,Ys)として(0,20)を与えるだけで、終了アドレスすなわち右下隅の画素の座標(Xe,Ye)が自ずと決まり、注目画像領域RCが設定される。
画像FGについて、座標(Xs,Ys)の画素からX軸方向(画像の水平方向)に向かって1画素ずつ順番に走査するようにその画素のRGB値をYUV値に変換する(#102でNo、#103、#104)。係る変換は、例えば、その画素のRGB値を次の(1)式に代入することによって行うことができる。
Figure 0003879732
Y座標がYsであるライン上にある画素について変換が終わったら(#102でYes)、そのすぐ下のラインつまり「Ys+1」のラインに注目し(#105)、そのライン上にある画素について、同様に、1画素ずつ順番にその画素のRGB値をYUV値に変換する(#102でNo、#103、#104)。以下、座標(Xe,Ye)についての変換が終了するまで、上の処理を繰り返す。
そして、すべての画素についての変換の終了後(#106でYes)、YUV値に変換された注目画像領域RCの画像を切り出すことによって、切出画像GCを生成する(#107)。なお、先に画像FGから注目画像領域RCを切り出しておいて、その注目画像領域RCの全画素に対して変換処理(#103)を施すようにしてもよい。
ビデオカメラ2から入力された画像FGが最初からYUV色空間の画像であった場合は、ステップ#102〜#106の変換処理は実行せず、ステップ#101の注目画像領域RCの設定および#107の切出し処理だけを行って切出画像GCを取得する。
図4に戻って、画像縮小処理部202は、図8に示すように、切出画像GCを所定の倍率(本実施形態では1/4倍)に縮小し、切出縮小画像GSを生成する処理を行う。係る処理は、図9に示すような手順で行われる。
切出画像GCを、4×4画素の大きさからなるブロックBKに区切っておくとともに、開始アドレスの座標(X,Y)を(0,0)に設定しておく(図9の#111)。切出画像GCの画素のうち、対角線の両端の座標が(4X,4Y)および(4X+3,4Y+3)となるブロックBKに属する画素の画素値(YUV値)を次の(2)式に代入する。
Figure 0003879732
ただし、m=4X、n=4Y、である。Q(X,Y)は切出縮小画像GSの座標(X,Y)の画素のYUV値であり、P(m,n)は、切出画像GCの座標(m,n)の画素のYUV値である。
これにより、切出画像GCの左上隅のブロックBKのYUV値の平均(単純平均)が算出される(#113)。算出された値が、切出縮小画像GSの左上隅の画素のYUV値となる。
そのブロックBKの右隣に並ぶ159個のブロックBKについても同様にYUV値の平均を算出し(#113、#114)、切出縮小画像GSの水平方向の1ライン目の残りの159個の画素のYUV値を得る。
切出縮小画像GSの2〜100ライン目のYUV値も同様に、切出画像GCの2〜25段目のブロックBKの画素のYUV値の平均を算出することによって取得する(#112〜#116)。そして、切出縮小画像GSの右下隅の画素のYUV値が求められたら(#116でYes)、処理を終了する。
このようにして、切出画像GCを縮小し、切出縮小画像GSを生成する。生成された切出縮小画像GSは、後に説明する肌色度プレーンの生成処理、髪色度プレーンの生成処理、時間差分の算出処理、および空間差分の算出処理のために用いられる。また、生成された切出縮小画像GSは、後に説明するように、必要に応じて前フレーム記憶部1M2に記憶しておく。
図4に戻って、時間差分算出部203は、図10に示すように、画像縮小処理部202によって生成された切出縮小画像GS(図10の説明において、「現切出縮小画像GSc」と記載する。)の明度とそれより前の時刻(例えば、2フレーム前)の切出縮小画像GS(図10の説明において、「前切出縮小画像GSp」と記載する。)の明度との時間差分(フレーム差分)を算出し、時間差分プレーンSTを生成する。生成された時間差分プレーンSTは、現切出縮小画像GScと前切出縮小画像GSpの明度の時間差分画像であると言える。本実施形態では、時間差分プレーンSTの各画素の値を二進数の値(二値)で表している。したがって、時間差分プレーンSTは、白黒画像として表すことができる。時間差分プレーンSTの生成は、図11に示す手順で行われる。
まず、開始アドレスの座標(X,Y)を(0,0)に設定しておく(#121)。次の(3)式に基づいて、現切出縮小画像GScおよび前切出縮小画像GSpのそれぞれの(0,0)の画素の明度すなわちYUV値のY成分同士の差(明度差分)を求める。
Buffer=abs|Yc(i,j)−Yp(i,j)| … (3)

ただし、Yc(i、j)、Yp(i、j)はそれぞれ現切出縮小画像GSc、前切出縮小画像GSpの座標(i、j)の画素のYUV値のY成分である。abs|A|は、Aの絶対値である。
得られたBufferを二値化する。例えば、Bufferが閾値THstを超えた場合は両画像の明度差分を「1」とし、閾値THst以下であった場合は明度差分を「0」とする(#123)。YUV値が256階調である場合は、閾値THstとして、例えば「10」を設定しておく。
以下、同様に、X軸方向(画像の水平方向)に向かって1画素ずつシフトしながら、互いに対応する画素の明度差分を求める(#123、#124)。右端の画素の明度差分が求められたら(#122でYes)、Y軸方向(画像の垂直方向)に1画素シフトし(#125)、同様に、左端から右端に向かって明度差分を求める(#123、#124)。そして、右下隅の画素の明度差分が求められたら(#126でYes)、処理を終了する。このようにして、時間差分プレーンSTが生成される。
図4に戻って、空間差分算出部204は、図12および図13に示す手順で、画像縮小処理部202によって生成された切出縮小画像GSの空間差分を算出し、空間差分プレーンSS(空間差分画像)を生成する。
切出縮小画像GSの各画素に対して空間差分処理を施す(図13の#133)。例えば、図11で説明した時間差分検出処理の場合と同様に、左上隅の画素から順に右下隅の画素まで空間差分処理を施す。
空間差分処理は、図12に示すように、まず、処理対象の画素およびその周囲にある8つの画素の画素値を次の(4)式および(5)式に代入する。つまり、SOBELフィルタを掛ける。
Figure 0003879732
ただし、P(i,j)は切出縮小画像GSの(i,j)の画素の明度(Y成分)の値であり、Q1(i,j)およびQ2(i,j)はそれぞれ切出縮小画像GSの(i,j)の画素についての水平エッジ検出用垂直SOBELフィルタおよび垂直エッジ検出用水平SOBELフィルタによる出力結果である。また、K1(m,n)およびK2(m,n)は下記に示すような値を持つ水平エッジ検出用垂直SOBELフィルタおよび垂直エッジ検出用水平SOBELフィルタである。
Figure 0003879732
算出されたQ1(i,j)およびQ2(i,j)の値を次の(6)式に代入することによって、SobelプレーンSBを求める(図12の#141)。
Figure 0003879732
このSobelプレーンSBを、次の(7)式に示す平滑化フィルタを掛けることによって平滑化する(#142)。
Figure 0003879732
ただし、QS(i,j)は平滑化されたSobelプレーンSBの座標(i,j)の画素の明度(Y成分)の値であり、KS(m,n)は下記に示すような値を持つ平滑化フィルタである。
Figure 0003879732
そして、次の(8)式に基づいて二値化の処理を行う(#143)。
Figure 0003879732
ただし、Buffer=QS(i,j)−Sbl(i,j)、である。Thssは閾値である。THssとして、例えば「6」が設定される。
このような演算を行うことによって、空間差分プレーンSSが生成される。なお、空間差分プレーンSSは、白黒画像として表される。
図4に戻って、論理積画像生成部205は、図14および図15に示すように、時間差分算出部203によって算出(生成)された時間差分プレーンSTおよび空間差分算出部204によって算出された空間差分プレーンSSの互いに対応する画素の画素値(二値)の論理積を算出することによって、論理積プレーンANを生成する。
この論理積プレーンANには、図16に示すように、動いている物体のエッジ(輪郭)だけが表れる。つまり、論理積プレーンANは、動体のエッジ画像(輪郭画像)であると言える。論理積プレーンANを生成する手順は、図15のフローチャートに示す通りである。なお、図15のフローチャートでは、左上隅の画素から右下隅の画素まで順に走査するように論理積演算処理(#153)を行うことを説明している。このような順で処理を行う点は、図11および図13の場合と同じであるので、詳しい説明は省略する。以下、図19、図20、図25、図26などについても同様である。
〔特徴度プレーンの生成〕
図17は4種類の特徴度プレーン8の例を示す図、図18は肌色度とYUV空間の画素値のU成分の値およびV成分の値との関係を示す図、図19は肌色度プレーン生成処理の流れの例を説明するフローチャート、図20は髪色度プレーン生成処理の流れの例を説明するフローチャート、図21はオフセット補正について説明する図、図22は髪色度とYUV空間の画素値のU成分の値およびV成分の値との関係を示す図、図23はテンプレートTP1、TP2の例を示す図、図24はテンプレートTP1、TP2の作成方法の例を示す図、図25は中心度プレーン算出処理の流れの例を説明するフローチャート、図26は投票処理の流れの例を説明するフローチャート、図27はテンプレートTP1によるテンプレートマッチングの方法の例を説明する図である。
図4に戻って、特徴量演算部103は、肌色度プレーン生成部301、半楕円中心度プレーン生成部302、髪色度プレーン生成部303、および肩中心度プレーン生成部304などによって構成され、4種類の特徴度プレーン8(肌色度プレーン8FC、半楕円中心度プレーン8SE、髪色度プレーン8HC、肩中心度プレーン8SH)を生成するための演算処理を行う。これらの特徴度プレーン8は、図17に示すように、各画素の値の大きさを濃さで表現した濃淡画像(明度画像)として表される。後に説明する頭部中心度プレーン84(図32参照)も同様である。
肌色度プレーン生成部301は、画像縮小処理部202によって生成された切出縮小画像GSの各画素の肌色度を検出することによって、肌色度プレーン8FCを生成する。「肌色度」とは、肌の色らしさ、を意味する。つまり、肌色に近いまたは類似しているほど肌色度は大きくなる。本実施形態では、画素値(ここでは、YUV値)のU成分およびV成分の値がそれぞれFCu、FCvの場合に、肌色度が最大となるように設定している。例えば、ベージュ色を肌の色とする場合は、FCuおよびFCvとしてそれぞれ「107」および「157」を設定しておく。肌色度は、次の(9)式に画素値を代入することによって算出される。
Figure 0003879732
ただし、abs|A|は、Aの絶対値である。
なお、(9)式に示す、画素のU成分の値およびV成分の値と肌色度の大きさとの関係を濃淡で表すと、およそ図18のように表される。
切出縮小画像GSの各画素の肌色度の検出処理の手順は、図19のステップ#161〜#166に示す通りである。つまり、切出縮小画像GSの各画素の肌色度を順に求めることによって(#163)、肌色度検出プレーンを生成する。
ところで、ビデオカメラ2で撮影された画像FG(図5参照)に歩行者HMNの顔(頭部)が写っていれば、ステップ#161〜#166の処理によって得られる肌色度検出プレーンの中の肌色度の高い画像領域とその歩行者HMNの頭部の領域とは、ほぼ一致するはずである。したがって、肌色度検出プレーンの中の肌色度のピークがある画素または画像領域に、検索の目標である歩行者HMNの頭部の中心があると考えられる。
しかし、顔の中はすべてが肌色というわけではなく、眉毛、目、鼻の穴、および唇といった肌色以外の色をした部位が含まれている。また、歩行者HMNが眼鏡を掛けている場合もあり得るし、元の画像FGそのものにノイズが含まれている場合もあり得る。そこで、本実施形態では、頭部の中心の検出精度を高めるために例えば次のような補正処理を行う。
すなわち、まず、肌色以外の部分およびノイズなどを除去するために、ステップ#161〜#166によって得られた肌色度検出プレーンに対して3×3の輝度(明度)の最大値フィルタを掛けることによってDilation処理を行う(#167)。そして、先鋭度を高めるために、Dilation処理がなされた肌色度検出プレーンに対して3×3の輝度(明度)の最小値フィルタを掛けることによってErosion処理を行い、さらにErosion処理の処理前の肌色度検出プレーンと処理後の肌色度検出プレーンとの平均処理を行う(#168)。ステップ#168の処理は、「(HW/2)+1」回繰り返す。「HW」は、切出縮小画像GSに写っていると想定される検出目標である頭部の幅を示す画素数である。例えば、頭部の幅を示す画素数が「7」であると想定されている場合は、4回または5回繰り返すことになる。
以上のように、切出縮小画像GSの肌色度を検出し(#161〜#166)、検出精度を高めるための補正処理(#167、#168)を実行することによって、図17(a)に示すような肌色度プレーン8FCが生成される。
図4に戻って、髪色度プレーン生成部303は、画像縮小処理部202によって生成された切出縮小画像GSの各画素の髪色度を検出することによって、図17(c)に示すような髪色度プレーン8HCを生成する。「髪色度」とは、髪の色らしさ、を意味する。つまり、髪の色に近いまたは類似しているほど髪色度は大きくなる。本実施形態では、画素値のU成分およびV成分の値がそれぞれHCu、HCvの場合に、髪色度が最大であると設定している。例えば、黒色を髪の色とする場合は、FCuおよびFCvとしてそれぞれ「112」および「142」を設定しておく。
髪色度プレーン8HCの生成する手順は、肌色度プレーン8FCを生成する手順と基本的に同様である。すなわち、図20に示すように、切出縮小画像GSの各画素について髪色度を算出し(#171〜#176)、頭部の中心の検出精度を高めるための処理を行う(#177、#178)。ただし、髪色度の検出関数として、(9)式の関数の代わりに、次の(10)式の関数を用いる。
Figure 0003879732
図21に示すように、高い髪色度が検出される領域は、髪の毛の生えている頭の上部の領域RYkである。しかし、前に述べたように、本実施形態では、頭部の中心(点Ptc)を検出することが目的である。そこで、高い髪色度が検出されると予測される領域の中心(点Ptk)と頭部の中心(点Ptc)とができるだけ一致するように、(10)式では、Y軸方向(垂直方向)にずれの調整(オフセット補正)を行っている。(10)式中の「offset」はオフセット値であり、例えば、offset=HS/2、と設定される。「HS」は、切出縮小画像GSに写っていると想定される検出目標である頭部の頂から顎までの長さを示す画素数である。例えば、長さを示す画素数が「9」であると想定されている場合は、offset=4.5、となる。
なお、(10)式に示す画素のU成分の値およびV成分の値と髪色度の大きさとの関係を濃淡で表すと、図22のように表される。
図4に戻って、半楕円中心度プレーン生成部302は、論理積画像生成部205によって生成された論理積プレーンAN(エッジ画像)の各画素の半楕円中心度を検出することによって、図17(b)に示すような半楕円中心度プレーン8SEを生成する。「半楕円中心度」とは、論理積プレーンANに対して図23(a)の半楕円形のテンプレートTP1を用いたテンプレートマッチングを行った際に、論理積プレーンANの画素がそのテンプレートの中心位置(基準点CT1)にどれだけ近いか、つまり、中心らしさ、を意味する。テンプレートマッチングの方法として、例えば、後述するHough変換法に基づく方法が用いられる。
テンプレートTP1および後に説明する肩中心度プレーン生成部304で使用されるテンプレートTP2は、例えば、次のようにして作成される。
まず、通路の基準位置L1(図2参照)にモデルとなる人を立たせ、ビデオカメラ2によって撮影を行う。モデルとなる人は、標準的な体型であることが望ましい。図24(a)に示すように、撮影によって得られた画像の中のモデルの輪郭部分に注目する。
図24(b)に示すように、モデルの輪郭から頭部の上半分を示す1本の開曲線および両肩を示す2本の開曲線をそれぞれエッジEG1、EG2として抽出する。この際に、エッジEG1、EG2から離れた所定の位置をそれぞれ基準点CT1、CT2として定める。基準点CT1、CT2は、それぞれ、テンプレートTP1、TP2の基準位置(中心位置)を示すものである。なお、基準点CT1、CT2をそれぞれエッジEG1、EG2上の所定の位置に定めてもよい。この基準点CT1、CT2もエッジEG1、EG2とともに抽出する。
すると、図24(b)(c)に示すようなテンプレート画像が得られる。そして、エッジEG1、EG2をそれぞれ基準点CT1、CT2を中心に半回転(180度回転)させる。このようにして、テンプレートTP1、TP2が作成される。テンプレートTP1、TP2は、図4のテンプレート記憶部1M3に記憶(格納)しておく。
または、論理積プレーンANに写る頭部の大きさがそれほど大きくないと想定される(例えば、縦横10画素前後くらいと想定される場合)は、その想定される大きさの半楕円をCGソフトなどで作成し、これをテンプレートTP1として用いてもよい。テンプレートTP2についても同様である。
図24(a)のα1、α2は、テンプレートマッチングの際に位置のずれの調整(オフセット補正)のために用いられるオフセット値である。前に述べたように、本実施形態では頭部の中心を検出することが目的である。したがって、半楕円中心度のピークの位置と頭部の中心位置とができるだけ一致することが望まれるからである。
半楕円中心度プレーン8SEを生成する手順は、図25に示す通りである。すなわち、まず、論理積プレーンANの画素ごとに1つずつカウンタを用意し、これらのカウンタを「0」にリセットし(#180)、開始アドレスの座標を(0,0)に設定しておく(#181)。論理積プレーンANにおける(0,0)の画素を注目画素として、投票処理を行う(#183)。投票処理は、図26に示すような手順で行われる。
まず、論理積プレーンANに写っているエッジ(輪郭線)の上にその注目画素があるか否かを判別する(#191)。エッジ上になければ(#191でNo)、その注目画素についての投票処理は終了し、図25のステップ#184に進む。
図27(b)に示すように、注目画素が論理積プレーンANのエッジRN上にある場合は(#191でYes)、その注目画素とテンプレートTP1の基準点CT1とが一致するように、論理積プレーンANの上にテンプレートTP1を重ねる(#192)。
テンプレートTP1と重なった論理積プレーンANのtxsize×tysizeの領域(図27(b)の点線領域)に注目し、ステップ#193〜#198の処理を行う。すなわち、その点線領域の中の、エッジEG1と重なった画素を見つける。そして、図27(d)に示すように、見つかった画素からオフセット値α1(図24(a)参照)だけ下にシフト(オフセット補正)した画素のカウンタに「1」を加算して1票を投じる。
なお、図27(c)において、太枠の正方形は論理積プレーンANのエッジRN上の画素を示し、黒く塗りつぶした正方形は注目画素を示し、斜線で塗りつぶした正方形はテンプレートTP1のエッジEG1が重なった画素を示している。
図25に戻って、論理積プレーンANの他の画素についても同様に、これを注目画素として投票処理を行う(#182〜#186)。以上のように投票を行った結果、各画素のカウンタにカウントされた得票数の分布が、図17(b)に示す半楕円中心度プレーン8SEとなる。
図4に戻って、肩中心度プレーン生成部304は、論理積画像生成部205によって生成された論理積プレーンAN(エッジ画像)の各画素の肩中心度を検出することによって、図17(d)に示すような肩中心度プレーン8SHを生成する。「肩中心度」とは、論理積プレーンANに対して図23(b)の肩の形状をしたテンプレートTP2によるテンプレートマッチングを行った際に、論理積プレーンANの画素がそのテンプレートの中心位置(基準点CT2)にどれだけ近いか、つまり、中心らしさ、を意味する。
肩中心度プレーン8SHを生成する手順は、図25および図26に示す半楕円中心度プレーン8SEを生成する手順と同様である。ただし、テンプレートマッチングのためのテンプレートTP2(図23(b)参照)を使用し、オフセット補正のためのオフセット値としてα2(図24(a)参照)を使用する。
特徴度プレーン記憶部1M1は、特徴量演算部103の各プレーン生成部301〜304で生成された特徴度プレーン8(肌色度プレーン8FC、半楕円中心度プレーン8SE、髪色度プレーン8HC、肩中心度プレーン8SH)を、その基になる画像FGの撮影時刻と対応付けて記憶する。
〔頭部中心度の算出および頭部の中心の検出〕
図28は学習部108の構成の例を示す図、図29は種々の撮影条件の変化とそれに伴う現象および影響との関係の例を説明する図、図30は演算方法決定処理の流れの例を説明するフローチャート、図31は信頼度変換テーブルTL0の例を示す図、図32は頭部中心度プレーン84の例を示す図、図33は頭部中心検出処理の処理の流れの例を説明するフローチャート、図34は矩形領域KRの抽出の例を示す図、図35は頭部抽出処理の流れの例を説明するフローチャート、図36は頭部検出結果プレーンTKの生成方法の例を説明する図、図37は探索領域RTおよび二乗和算出範囲NRの例を示す図、図38は矩形領域KR1から抜き出されまたはクリアされる対象となる領域TR1、TR2の形状およびサイズの例を説明する図である。
頭部中心度プレーン生成部104は、頭部中心度プレーン84(図32参照)を生成するための処理を行う。「頭部中心度」とは、頭部の中心らしさ、すなわち、頭部の中心までの近さを示す度合いを意味する。頭部中心度プレーン84は、学習部108による演算結果および図17に示す4種類の特徴度プレーン8すなわち肌色度プレーン8FC、半楕円中心度プレーン8SE、髪色度プレーン8HC、および肩中心度プレーン8SHに基づいて生成する。生成方法については、後に説明する。
学習部108は、図28に示すように、コンディション情報取得部801、信頼度算出部802、演算方法決定部803、データベース804、および信頼度記憶部805などによって構成され、頭部の中心を検出するための最適な演算方法を求め学習する処理を行う。
コンディション情報取得部801は、監視を行っている通路の環境または状態、ビデオカメラ2の設定または状態など、撮影に関する種々の事項の条件(コンディション)を示す情報を取得する。以下、係る情報を「コンディション情報72」と記載する。コンディション情報72は、例えば、次のようにして取得される。
通路の照度に関する状態を示すコンディション情報72は、ビデオカメラ2から送信されてきた画像FGのYUV空間値の平均値(平均画素値)のうちのY成分の値を抽出することによって得られる。または、センサ3(図1参照)として照度センサを用い、そのセンサ3から送信されてくる検知結果情報80をコンディション情報72として取得してもよい。
歩行者の影またはホワイトバランスは、朝、昼、夕方、または夜など一日の中の時間帯によって変化する。そこで、時間帯ごとの歩行者の影またはホワイトバランスの発生具合の情報を予めデータベース804に登録しておき、人体検出装置1または外部装置に内蔵されているタイマから現在の時刻を示す時間情報を取得し、その時間情報に対応する発生具合の情報を、歩行者の影またはホワイトバランスに関するコンディション情報72として取得してもよい。または、センサ3としてホワイトバランスセンサを用い、そのセンサ3から送信されてくる検知結果情報80を、ホワイトバランスに関するコンディション情報72として取得してもよい。
通路を通行する歩行者の特徴の傾向(客層)も、朝、昼、夕方、または夜など一日の中の時間帯によって変化する。そこで、時間帯ごとの平均的な、歩行者の人数、年齢層、身長、通過速度、またはカップルまたは親子連れなどの組数などを示す客層情報を予めデータベース804に登録しておき、タイマから取得した時間情報に対応する客層情報を、これらの歩行者の特徴の傾向に関するコンディション情報72として取得してもよい。または、センサ3として、重量センサを床に設置しておき、そのセンサ3から送信されてくる検知結果情報80に基づいてコンディション情報72を取得するようにしてもよい。例えば、歩行者の人数は、単位時間当たりに送信されてくる検知結果情報80の個数より知ることができる。歩行者の年齢層および身長は、センサ3が検知した重量(つまり歩行者の体重)より推測することができる。または、歩行者の人数に関するコンディション情報72は、後に説明する計数処理部503の処理結果をフィードバックし、その処理結果に基づいて取得してもよい。通過速度に関するコンディション情報72は、ビデオカメラ2から送信されてきた時系列上に並ぶ複数の画像FGのオプティカルフローを求めることによって取得してもよい。
ビデオカメラ2の撮影速度(フレームレート)、ズーム、パン、またはチルトなどの設定に関するコンディション情報72は、ビデオカメラ2より取得する。ビデオカメラ2の設置場所に関するコンディション情報72は、オペレータが入力装置1g(図3参照)を操作して入力することによって取得される。なお、上記の照明、歩行者、ビデオカメラ2の設定などに関するコンディション情報72についても、オペレータが入力するようにしてもよい。
なお、コンディション情報72の取得は、1枚の画像FGが撮影されるごとに(つまり、1フレームごとに)行う必要はなく、所定の時間ごと(フレームごと)に行えばよい。
ところで、このようにして取得された様々な種類の撮影条件(環境、状態、または設定など)に関するコンディション情報72に示される内容が撮影に最適とされる基準条件と一致しない(ずれている、変化している)場合は、図29に示すような現象が生じ、画像FGにおける特徴度(肌色度、髪色度、頭部中心度、または肩中心度など)の表れ方に影響を及ぼす。つまり、図17の特徴度プレーン8の正確性に影響を及ぼす。
例えば、取得されたコンディション情報72が、通路の照度が基準の照度に対して変化している旨を示している場合は、その変化の割合が大きいほど、画像FGに写っている歩行者の肌、髪、その他の部位、および背景の色が正確に表れなくなる。したがって、肌色度プレーン8FCおよび髪色度プレーン8HCに表れる肌色度および髪色度の妥当性(正確性)が低くなる。
また、取得されたコンディション情報72が、歩行者数が通常(基準)の歩行者数よりも多い旨を示している場合は、その数が多いほど、歩行者同士が重なりやすくなり、画像FGの中に肩の写っていない歩行者が多く見られるようになる。したがって、肩中心度プレーン8SHに表れる肩中心度の妥当性が低くなる。
そこで、信頼度算出部802は、ビデオカメラ2の現在の撮影条件(コンディション)における肌色度、髪色度、頭部中心度、および肩中心度(以下、「特徴度」と総称することがある。)の信頼性を示す信頼度Rを算出する処理を、図30に示すような手順で行う。なお、本実施形態では、N種類の撮影条件に関するコンディション情報72(721、722、…、72N)が取得されるものとする。また、コンディション情報721、722、…、72Nの内容を示す値を格納するパラメータをそれぞれ環境パラメータθ1、θ2、…、θNと記載する。
コンディション情報取得部801によって新しいコンディション情報72が取得されたとする。すると、信頼度算出部802は、それと同じ種類であってかつ過去に(例えば直前に)取得されたコンディション情報72をデータベース804から呼び出し(#231)、両者の内容を比較する(#232)。
比較した結果、両者の内容に所定の量または所定の割合以上の違いがあった場合はビデオカメラ2の撮影条件に変化があったものと判断し(#233でYes)、次の(11)式に示す変換関数Ψなどを用いて各特徴度の信頼度Rを算出する(#234)。
Figure 0003879732
ただし、変換関数Ψは、各環境パラメータθ(コンディション情報72)が各特徴度に及ぼす影響を表した関数であり、環境パラメータθごとに用意されている。
r1(θk)、r2(θk)、r3(θk)、およびr4(θk)は、それぞれ、環境パラメータθk(ただし、1≦k≦N)に対する肌色度、髪色度、半楕円中心度、および肩中心度を求めるための個別信頼度関数である。
r(θ)∈[0,1]、である。
具体的には、まず、新たに取得されたコンディション情報72kの値を、(11)式の右辺の各個別信頼度関数r1(θk)〜r4(θk)に代入する。なお、N種類のコンディション情報72のうち、コンディション情報72kと同じタイミングで取得されなかったコンディション情報72がある場合は、取得されなかったコンディション情報72と同じ種類の、最近に取得されたコンディション情報72の値を代入する。
算出された特徴度ごとのr(θ)の乗積を、次の(12)式に基づいて算出する。
Figure 0003879732
ただし、信頼度R1、R2、R3、R4は、それぞれ、肌色度、髪色度、半楕円中心度、および肩中心度の信頼度である。以下、それぞれを、「肌色信頼度R1」、「髪色信頼度R2」、「半楕円中心信頼度R3」、および「肩中心信頼度R4」と記載することがある。
このようにして、各特徴度の信頼度R1〜R4が算出される。(12)式に示されるように、信頼度R1〜R4は、N種類の撮影条件ごとの信頼度(個別信頼度)を乗積して統合したものである。よって、信頼度Rを「統合信頼度」と呼ぶことができる。また、(11)式および(12)式をまとめた統合変換関数を、次の(13)式のように表すことができる。
Figure 0003879732
なお、(12)式の各個別信頼度関数r(θ)は、過去の経験則や実験結果などを解析し定量化することによって、予めオフラインで用意しておく。例えば、照明の度合い(照度)に関する環境パラメータθ(例えばθ1)の値が小さいときは、ビデオカメラ2は色を上手く検出できなくなるので、肌色度および髪色度の個別信頼度が小さくなるように個別信頼度関数r1(θ1)およびr2(θ1)を設定しておく。また、歩行者の人数に関する環境パラメータθ(例えばθ2)の値が小さいときは、歩行者の画像領域同士が重なることが少なくなるので、肩中心度の個別信頼度が大きくなるように、逆に大きいときは、個別信頼度が小さくなるように、個別信頼度関数r4(θ2)を設定しておく。ある撮影条件に関する環境パラメータθ(例えばθ3)の値に関わらず半楕円中心度の信頼性が一定であれば、個別信頼度関数r3(θ3)=β(βは定数)、と設定しておく。
フローチャートに戻って、後に行う頭部検出の演算のために、肌色信頼度R1、髪色信頼度R2、半楕円中心信頼度R3、および肩中心信頼度R4に対して重み付けを行い、重みw1〜w4を求めておく(図30の#235)。重みw1〜w4は、例えば、上の(12)式で算出された信頼度R1〜R4の値を次の(14)式に代入し正規化することによって求められる。
Figure 0003879732
ステップ#234、#235で算出された信頼度R1〜R4および重みw1〜w4を信頼度記憶部805に記憶させておく。これにより、人体検出装置1は、ビデオカメラ2の現在の撮影条件に応じた各特徴度の信頼性を学習する(#236)。
一方、コンディション情報取得部801によって得られた新しいコンディション情報72と過去に取得されたコンディション情報72とを比較した結果(#232)、両者の内容に所定以上の違いがない場合は、ビデオカメラ2の撮影条件に変化がないものと判断し(#233でNo)、信頼度の算出などは行わない。したがって、後に行う頭部の検出処理には、前に学習した信頼度が用いられることになる。
なお、ステップ#234において信頼度R1〜R4を求めるために、変換関数Ψを用いる代わりに、図31に示すような信頼度変換テーブルTL0を用いてもよい。信頼度変換テーブルTL0は、実験の結果または経験則に基づいて作成する。例えば、撮影条件(環境パラメータθ1〜θNの各値)を少しずつ変えながら各特徴度プレーン8(図17参照)を生成し、実験者がその出来具合を評価することによってその環境パラメータθ1〜θNの各値の組合せに対応する信頼度R1〜R4を決め、信頼度変換テーブルTL0を完成させる。信頼度変換テーブルTL0は、データベース804に登録しておく。
図28に戻って、演算方法決定部803は、頭部中心度プレーン84を生成する際の演算方法を決定する処理を行う。具体的には、信頼度算出部802の処理によって学習した、ビデオカメラ2の現在の撮影条件(撮影環境およびビデオカメラ2の設定など)に応じた信頼度R1〜R4の重みw1〜w4に基づいて、後に説明する所定の関数を用いて演算を行う、と決定する。決定された内容は、頭部中心度プレーン生成部104に伝えられる。
図4に戻って、頭部中心度プレーン生成部104は、学習部108の演算方法決定部803が決定した演算方法を用いて、図32に示すような頭部中心度プレーン84を生成するため演算を行う。つまり、頭部中心度プレーン生成部104は、学習部108によって制御されている。
例えば、下記の(15)式に示す関数と重みw1〜w4とを用いて演算するように演算方法決定部803から指示されたとする。すると、頭部中心度プレーン生成部104は、その重みw1〜w4および特徴量演算部103によって生成された各特徴度プレーン8の特徴度を(15)式に代入し、各画素の頭部中心度TC(i,j)を算出する。これにより、頭部中心度プレーン84が生成される。
Figure 0003879732
ただし、I1(i,j)=FC(i,j)、I2(i,j)=HC(i,j)、I3(i,j)=SE(i,j)、I4(i,j)=SH(i,j)、である。
FC(i,j)、HC(i,j)、SE(i,j)、およびSH(i,j)はそれぞれ肌色度プレーン8FC、髪色度プレーン8HC、半楕円中心度プレーン8SE、および肩中心度プレーン8SHにおける座標(i,j)の画素の画素値(特徴度)である。
検出処理部105は、頭部中心度ピーク検出部501、検出結果プレーン生成部502、および計数処理部503などによって構成され、頭部中心度プレーン生成部104で生成された頭部中心度プレーン84に基づいて、画像FG(図5参照)に写っている歩行者HMNの頭部の中心を検出する処理を行う。
頭部中心度ピーク検出部501は、検出対象の画像FGに係る頭部中心度プレーン84の中の、歩行者HMNの頭部の中心があると予測される位置を1つまたは複数検出する。検出結果プレーン生成部502は、頭部中心度ピーク検出部501によって検出された位置に基づいて、歩行者HMNの頭部の中心の位置を最終的に決定し、その結果を示す頭部検出結果プレーンTKを生成する。これらの処理は、図33に示すような手順で行われる。
まず、頭部中心度プレーン84の各画素の濃度(頭部中心度)の値に応じて図34に示すような斜影ヒストグラムを求める(図33の#201)。水平方向の斜影ヒストグラムに注目し、座標(0,0)から水平方向に向かって順に各画素の値を調べ、閾値HIST_MIN(例えば、「10」)以上の度数が連続している範囲を検出する(#202、#203)。何も検出されなかった場合は(#204でNo)、検出対象の画像FGには歩行者が写っていないものとして、この検出処理を終了する。
検出された場合は(#204でYes)、検出されたその水平方向の範囲に属する領域の垂直方向の斜影ヒストグラムに注目し、閾値HIST_MIN以上の度数が連続している範囲を検出する(#206)。
連続している範囲が見つからなかった場合は(#207でNo)、ステップ#203に戻って、閾値HIST_MIN以上の度数が連続している水平方向の範囲がほかにないかどうか調べる。
見つかった場合は(#207でYes)、ステップ#203、#206で見つかった範囲の矩形領域KR(例えば、図34のxa≦x≦xb,ya≦y≦ybにある矩形領域KR1)に対して、次に説明する頭部抽出処理を行う(#208)。
図35に示すように、矩形領域KR(例えば、矩形領域KR1)の中から画素値(頭部中心度)のピークを検出する(#221)。すると、図36(a)に示すように、ピークの画素(以下、「ピーク画素Pk」と記載する。)が3つ検出される。
検出されたピーク画素Pkについて、次に挙げる2つの要件を満たしているか否かを判別することによって、頭部の中心を検出する。
(A) ピーク画素Pkの画素値(頭部中心度)が閾値TH_MAXを超えていること。
(B) 微調整後のピーク画素Pkを中心とした二乗和算出範囲の二乗和(最大二乗和)が閾値TH_SUM2以上になること。
上記(A)の要件を満たすピーク画素Pkまたはその周辺には頭部の中心が存在する可能性があり、満たさないピーク画素Pkおよびその周辺には頭部の中心が存在する可能性はないものと判別する(#222)。係る判別の結果、ピーク画素Pk1は上記(A)の要件を満たさず(#222でNo)、ピーク画素Pk2、Pk3は上記(A)の要件を満たしたとする(#222でYes)。この場合は、以下、ピーク画素Pk2、Pk3にのみ注目する。
ピーク画素Pk2、Pk3と検出目標の頭部の中心とがより正確に一致するように、現在のピーク画素Pk2、Pk3の位置の微調整(微修正)を次のようにして行う(#223)。
まず、図37(a)に示すように、現在のピーク画素Pk2の位置を中心とする横「(w/2)+1」個の画素、縦「(h/2)+1」個の画素の領域(以下、「探索領域RT」と記載する。)に注目する。探索領域RTの中の各画素について、その画素が図37(b)に示す二乗和算出範囲NRの中心になるようにし、その二乗和算出範囲NRの中の画素値の二乗和を算出する。そして、算出した二乗和が最大となったときの二乗和算出範囲NRの中心の画素を、新たなピーク画素Pk2とする。これにより、ピーク画素Pkの微調整が完了する。ピーク画素Pk3についても同様に微調整を行う。
図35および図36に戻って、微調整後のピーク画素Pk2、Pk3についてのそれぞれの二乗和が閾値TH_SUM2以上になるか否かを判別する(図35の#224)。つまり、上記(B)の要件を満たすか否かを判別する。係る判別の結果、ピーク画素Pk2は上記(B)の要件を満たすが(#224でYes)、ピーク画素Pk3は上記(B)の要件を満たさなかったとする(#224でNo)。
この場合は、ピーク画素Pk2を頭部の中心とみなし、ピーク画素Pk2およびその周囲の画素を含む領域TR1を図36(b)に示すように矩形領域KR1から抜き出す(#225)。そして、その抜き出した矩形領域KR1を、頭部検出結果プレーンTKとして結果プレーン記憶部1M4に記憶させておきまたは表示装置1f(図3参照)などに出力する。この頭部検出結果プレーンTKが、頭部の中心の位置の最終的な検出結果である。矩形領域KR1において、領域TR1が抜き出された部分の画素値は、他の検出に影響を与えないようにするために、すべて消去(クリア)しておく(#226)。
一方、ピーク画素Pk3およびその周辺の画素は頭部ではないものとみなし、他の検出に影響を与えないようにするために、ピーク画素Pk2およびその周囲の画素を含む領域TR2を図36(d)に示すように消去(クリア)する(#227)。
なお、図36の領域TR1、TR2のサイズおよび検出目標の頭部のサイズは、図38に示すようなテンプレートによって定められている。
そして、図33に戻って、ステップ#203、#206の検出処理を繰り返し、ほかにも図34に示すような矩形領域KRがないかどうか調べる。ある場合は、その矩形領域KRに対して、上に説明した図35および図36の処理を行う(#208)。
図4に戻って、計数処理部503は、検出結果プレーン生成部502によって生成された頭部検出結果プレーンTKの個数つまり画像FGから検出された歩行者HMNの人数を計数する。
頭部画像表示部171は、頭部検出結果プレーンTKに示される頭部の中心位置に基づいて、画像FGより歩行者HMNの頭部の領域を抽出して拡大し、これを拡大画像として表示装置1f(図3参照)に表示する。これにより、監視員は、歩行者HMNを容易に特定することができる。また、頭部画像保存部172は、歩行者HMNの頭部の拡大画像を磁気記憶装置1dまたは外部の記録媒体(DVD−ROM、MO、CD−Rなど)に保存(録画)する。その他、頭部の拡大画像を用紙に印刷しまたは他のコンピュータなどにデータ転送することによって出力することができる。
〔頭部中心度の算出の変形例〕
図39は演算方法決定処理の流れの変形例を説明するフローチャート、図40は演算方法選択用テーブルTL1の例を示す図である。
上に述べた実施形態では、頭部中心度プレーン84の各画素の頭部中心度を、各特徴度プレーン8の信頼度にそれぞれの重みwを掛け、それを加算することによって算出したが((15)式参照)、例えば、複数の演算方法を用意しておき、図39に示すような手順でいずれかの演算方法を選択するようにしてもよい。
まず、次の(16)式のように定義される関数を図28のデータベース804に予め複数用意しておく(#240)。
TC(i,j)
=χm(I1,I2,I3,I4,w1,w2,w3,w4) … (16)

ただし、0≦m≦用意した関数の個数、である。
前に図30で説明した手順と同じように、撮影環境の変化が検出された場合に、各特徴度プレーン8の新たな信頼度R1〜R4を算出する(#241〜#244)。
最新の信頼度R1〜R4に基づいて、いずれか1つの演算方法を選択する(#245)。例えば、演算方法を選択するための関数、m=f(R1,R2,R3,R4)、を用意しておき、これに基づいて選択してもよい。または、図40に示すように、演算方法選択用テーブルTL1をデータベース804に予め用意しておき、これに基づいて選択してもよい。
例えば、選択した演算が相乗平均の場合は、(14)式に基づいて重みw1〜w4を算出する(#246)。ついで、(17)式に基づいて、各画素の頭部中心度TC(i,j)を算出する。つまり、重みw1〜w4を信頼度R1〜R4の相加平均とする。
Figure 0003879732
演算方法によっては、重みwの算出方法を複数用意しておき、信頼度R1〜R4に基づいていずれかを選択して重みwを算出するようにしてもよい。
選択または算出された関数、信頼度R1〜R4、および重みw1〜w4を信頼度記憶部805に記憶させておく。これにより、人体検出装置1は、ビデオカメラ2の現在の撮影条件に応じた各特徴度プレーン8の演算方法を学習する(#247)。
そして、図4の検出処理部105は、以上のようにして選択(決定)された演算方法を用いて頭部中心度プレーン84(図32参照)を生成する。
図41は人体検出装置1の全体の処理の流れの例を説明するフローチャートである。次に、ビデオカメラ2で撮影される画像から歩行者を検出する際の人体検出装置1の処理の流れを、フローチャートを参照して説明する。
人体検出装置1は、ビデオカメラ2によって撮影された、ある時刻における画像FG(フレーム画像)を入力すると(図41の#1)、色空間の変換処理(図6参照)、切出縮小画像GSの生成処理(図9参照)、および論理積プレーンANの生成処理(図15参照)などの前処理を行う(#2)。
図17に示すような肌色度プレーン8FC、髪色度プレーン8HC、半楕円中心度プレーン8SE、および肩中心度プレーン8SHを生成する(#3〜#6)。これらの特徴度プレーン8の生成方法は、前に図19、図20、および図21などで説明した通りである。生成されたこれらの特徴度プレーン8は、特徴度プレーン記憶部1M1に記憶させておく(#7)。
頭部中心度を算出するための演算方法を決定するための処理を行い(#8)、決定した演算方法で頭部中心度プレーン84(図32参照)を生成する(#9)。決定するための処理は、前に説明した図30または図39に示すいずれかの手順により行われる。
生成された頭部中心度プレーン84に基づいて、検出目標である歩行者の頭部の位置および中心を検出し(#10)、図36(b)のような最終的な検出結果を示す頭部検出結果プレーンTKを生成する。そして、これに基づいて、ステップ#1で入力された画像FGより歩行者HMNの頭部の領域を抽出して拡大し、これを拡大画像として表示装置1f(図3参照)または外部装置などに出力する(#11)。
ステップ#1〜#11の処理は、ビデオカメラ2で撮影が行われている間、繰り返し行う(#12でNo)。なお、ステップ#8の演算方法決定処理は、毎回行う必要はなく、所定のタイミングで行えばよい。例えば、オペレータが設定した時間ごとに1回行うようにする。または、特定の種類のコンディション情報72が得られた入力されたときに行うようにする。演算方法決定処理を行わなかった場合は、前に学習した演算方法を用いて頭部中心度プレーン84の生成を行う。
本実施形態によると、ビデオカメラ2によって撮影された現在または過去の画像(フレーム)より検知される撮影条件またはセンサ3によって検知される撮影条件に基づいて複数の特徴度を算出し、これらの特徴度の用い方を撮影条件に合うように調整する演算方法を学習する。そして、学習した演算方法によって歩行者の頭部の中心の検出を行う。したがって、目標物の検出を行う際に撮影環境などに変化が生じても、処理速度の低下を抑えつつその目標物の検出を正確に行うことができる。
例えば、歩行者の人数が通常よりも多くなった場合には、オクルージョンが発生し歩行者の肩の輪郭が撮影画像(フレーム)に表れにくくなるので肩中心度(図17参照)の信頼性が落ちるが、他の3つの特徴度に大きな重みを持たせてこれを補うことによって歩行者を上手く検出することができる。この際に、これらの4種類の特徴度以外の特徴度の追加検出は行わないので、処理速度を低下させることなく歩行者を検出することができる。同様に、照明や背景(床や壁)の状況によって肌色または髪色が上手く検出できない場合には、肌色度または髪色度の信頼性が落ちるが、他の特徴度に大きな重みを持たせることによって、処理速度の低下を抑えつつ歩行者の検出を正確に行うことができる。
図42は前のフレームの頭部検出結果プレーンTKを使用して頭部中心の検出を行う方法の例を示す図である。
本実施形態では、各画像または各プレーンを構成する各画素に対する処理を、水平方向を主走査方向とするような順番で行ったが、垂直方向を主走査方向とするような順番で行ってもよい。または、右下隅の画素から順に処理を行うなど、処理の順序は適宜変更可能である。
(1)〜(17)式において使用した係数、定数、閾値、または関数などは、監視システム100を使用する目的、ビデオカメラ2の設置場所の環境またはスペック、または他の様々な条件に応じて適宜変更可能である。また、特徴度プレーン8の組合せまたは生成の順序もこれらの条件に応じて適宜変更可能である。
本実施形態では、図5の画像FGから歩行者HMNの頭部の中心を検出する際に、この画像FGを縮小し、その縮小画像(図8の切出縮小画像GS)を用いたが、この画像FGを縮小せずにそのまま用いてもよい。肌色度および髪色度を、YUV空間値に基づいて求めたが、RGB空間など他の色空間の値に基づいて求めてもよい。
本実施形態では、(12)式に示すように、撮影条件(環境パラメータθ)ごとに個別信頼度を算出し、これらの個別信頼度を合計することによって、信頼度R1〜R4を求めた。しかし、複数の撮影条件が関連し合って信頼度に影響を及ぼす場合がある。そこで、次の(18)式のような関数を定義し、これに基づいて信頼度R1〜R4を求めるようにしてもよい。
Ri=fi(θ1,θ2、…、θN) … (18)

ただし、i=1,2,3,4
頭部検出結果プレーンTKを生成する際に、直前のフレームにおける検出結果である頭部検出結果プレーンTKpを使用し、検出精度を高めるようにしてもよい。なぜなら、直前のフレームの頭部検出結果プレーンTKpを示される頭部の中心の位置と今回検出すべき頭部の中心の位置とは、歩行者の動きによって多少のずれはあるものの、ほぼ一致するはずだからである。例えば、図42に示すような手順で頭部検出結果プレーンTKpを使用する。
今回のフレームに係る頭部中心度プレーン84と前のフレームに係る頭部検出結果プレーンTKpとの互いに対応する画素の画素値を平均を求めることによって、頭部中心度プレーン84’を生成する。そして、検出処理部105は、その頭部中心度プレーン84’に基づいて、前に説明した図33および図35などの処理を行い、頭部検出結果プレーンTKを生成する。なお、生成された頭部検出結果プレーンTKは、次のフレームの頭部検出結果プレーンTKを生成するために、結果プレーン記憶部1M4に保存しておく。
コンディション情報72として、前のフレームに係る頭部検出結果やオペレータによる頭部検出に関する評価(オペレータが画像を見て頭部を指示した結果および装置による判定結果が正しいか否かの評価など)などを用いてもよい。
本発明に係る人体検出装置1を使用して、人以外の物体の検出を行うことも可能である。例えば、動物の身体の検出、直方体の検出、または自動車やオートバイなどのナンバープレートの検出に応用することも可能である。
その他、監視システム100、人体検出装置1、ビデオカメラ2の全体または各部の構成、特徴度プレーン8の生成方法、中心度の算出方法、処理内容、処理順序などは、本発明の趣旨に沿って適宜変更することができる。
本発明によると、撮影条件に変化や不具合が生じても、処理速度を落とすことなく目標物を検出することができる。よって、本発明は、特に、撮影条件が変化しやすい施設における歩行者または侵入者の検出のために好適に用いられる。
監視システムの全体的な構成の例を示す図である。 ビデオカメラの位置姿勢および撮影状況の例を示す図である。 人体検出装置のハードウェア構成の例を示す図である。 人体検出装置の機能的構成の例を示す図である。 ビデオカメラで撮影された画像の例を示す図である。 色空間変換処理の流れの例を説明するフローチャートである。 切出画像の生成方法の例を説明する図である。 切出縮小画像の生成方法の例を説明する図である。 画像縮小処理の流れの例を説明するフローチャートである。 時間差分プレーンの生成方法の例を示す図である。 時間差分検出処理の流れの例を説明するフローチャートである。 空間差分プレーンの生成方法の例を示す図である。 空間差分検出処理の流れの例を説明するフローチャートである。 論理積プレーンの生成方法の例を示す図である。 論理積画像生成処理の流れの例を説明するフローチャートである。 論理積プレーンの例を示す図である。 4種類の特徴度プレーンの例を示す図である。 肌色度とYUV空間の画素値のU成分の値およびV成分の値との関係を示す図である。 肌色度プレーン生成処理の流れの例を説明するフローチャートである。 髪色度プレーン生成処理の流れの例を説明するフローチャートである。 オフセット補正について説明する図である。 髪色度とYUV空間の画素値のU成分の値およびV成分の値との関係を示す図である。 テンプレートの例を示す図である。 テンプレートの作成方法の例を示す図である。 中心度プレーン算出処理の流れの例を説明するフローチャートである。 投票処理の流れの例を説明するフローチャートである。 テンプレートによるテンプレートマッチングの方法の例を説明する図である。 学習部の構成の例を示す図である。 種々の撮影条件の変化とそれに伴う現象および影響との関係の例を説明する図である。 演算方法決定処理の流れの例を説明するフローチャートである。 信頼度変換テーブルの例を示す図である。 頭部中心度プレーンの例を示す図である。 頭部中心検出処理の処理の流れの例を説明するフローチャートである。 矩形領域の抽出の例を示す図である。 頭部抽出処理の流れの例を説明するフローチャートである。 頭部検出結果プレーンの生成方法の例を説明する図である。 探索領域および二乗和算出範囲の例を示す図である。 矩形領域から抜き出されまたはクリアされる対象となる領域の形状およびサイズの例を説明する図である。 演算方法決定処理の流れの変形例を説明するフローチャートである。 演算方法選択用テーブルの例を示す図である。 人体検出装置の全体の処理の流れの例を説明するフローチャートである。 前のフレームの頭部検出結果プレーンを使用して頭部中心の検出を行う方法の例を示す図である。
符号の説明
1 人体検出装置(物体検出装置)
2 ビデオカメラ(カメラ)
101 画像入力部(画像入力手段)
105 検出処理部(物体検出手段)
301 肌色度プレーン生成部(特徴検出手段)
302 半楕円中心度プレーン生成部(特徴検出手段)
303 髪色度プレーン生成部(特徴検出手段)
304 肩中心度プレーン生成部(特徴検出手段)
801 コンディション情報取得部(撮影条件取得手段)
802 信頼度算出部(信頼性算出手段)
803 演算方法決定部(演算方法決定手段)
805 信頼度記憶部(信頼性記憶手段)
FG 画像(撮影画像)
HMN 歩行者(物体)

Claims (6)

  1. 画像の中から目標の人物を検出する人物検出装置であって、
    カメラで撮影されて得られた撮影画像を入力する画像入力手段と、
    互いに異なる方法を用いて、前記撮影画像の人物の特徴の特徴量を検出する複数の特徴検出手段と、
    前記カメラの周囲の環境または設定の状況を示す情報を取得する撮影環境設定状況取得 手段と、
    前記撮影環境設定状況取得手段によって取得された情報に示される周囲の環境または設 定の状況である場合前記各特徴検出手段によって検出される前記特徴の特徴量それぞれの信頼性を求める、信頼性算出手段と、
    前記各特徴検出手段によって前記撮影画像から検出された前記特徴の特徴量それぞれに 対して前記信頼性算出手段によって求められた当該特徴量それぞれの信頼性の高さに応じ て重み付けを行うことによって得られる値に基づいて、当該撮影画像の画素面を複数に区 画した領域ごとの、当該領域が当該撮影画像に写っている人物の頭部の中心である可能性 の高さを示す頭部中心度を求める、頭部中心度算出手段と、
    前記頭部中心度算出手段によって求められた前記頭部中心度に基づいて、前記撮影画像 に写っている人物を検出する人物検出手段と、
    を有することを特徴とする人物検出装置。
  2. 前記信頼性算出手段によって求められた前記特徴の特徴量の信頼性を記憶する信頼性記憶手段を有し、
    前記信頼性算出手段は、所定のタイミングで前記特徴の特徴量の信頼性を求め
    前記頭部中心度算出手段は、前記特徴に係る前記頭部中心度を、前記信頼性記憶手段に 記憶されている当該特徴の最新の特徴量の信頼性に基づいて求める、
    請求項1記載の人物検出装置。
  3. 前記特徴検出手段として、前記撮影画像と半楕円形状のテンプレートとのマッチングの度合いを算出することよって前記特徴の特徴量を求める手段、前記撮影画像の前記領域ごとの肌色度を検出することによって前記特徴の特徴量を求める手段、前記撮影画像の前記領域ごとの髪色度を検出することによって前記特徴の特徴量を求める手段、または前記撮影画像と肩形状のテンプレートとのマッチングの度合いを算出することよって前記特徴 特徴量を求める手段、を有する、
    請求項1または請求項2記載の人物検出装置。
  4. 前記信頼性算出手段によって求められた、前記各特徴検出手段によって検出された前記 各特徴の特徴量の信頼性に応じて、人物を検出するための演算方法を決定する、演算方法 決定手段、を有し、
    前記頭部中心度算出手段は、前記演算方法決定手段によって決定された前記演算方法に 基づいて前記頭部中心度を求める、
    請求項1ないし請求項3のいずれかに記載の人物検出装置。
  5. 画像の中から目標の人物を検出する人物検出方法であって、
    カメラで撮影されて得られた撮影画像を入力するステップと、
    互いに異なる特徴検出方法を用いて、前記撮影画像の人物の特徴の特徴量を検出するステップと、
    前記カメラの周囲の環境または設定の状況を示す情報を取得するステップと、
    取得された情報に示される周囲の環境または設定の状況である場合に前記各特徴検出方 法によって検出される前記特徴の特徴量それぞれの信頼性を求めるステップと、
    特徴検出方法によって前記撮影画像から検出された前記特徴の特徴量それぞれに 対して当該特徴量それぞれの信頼性の高さに応じて重み付けを行うことによって得られる 値に基づいて、当該撮影画像の画素面を複数に区画した領域ごとの、当該領域が当該撮影 画像に写っている人物の頭部の中心である可能性の高さを示す頭部中心度を求めるステッ プと、
    求めた前記頭部中心度に基づいて、前記撮影画像に写っている人物を検出するステップと、
    を有することを特徴とする人物検出方法。
  6. 画像の中から目標の人物を検出するコンピュータに用いられるコンピュータプログラムであって、
    カメラで撮影されて得られた撮影画像を入力する処理と、
    互いに異なる特徴検出方法を用いて、前記撮影画像の人物の特徴の特徴量を検出する処理と、
    前記カメラの周囲の環境または設定の状況を示す情報を取得する処理と、
    取得された情報に示される周囲の環境または設定の状況である場合に前記各特徴検出方 法によって検出される前記特徴の特徴量それぞれの信頼性を求める処理と、
    特徴検出方法によって前記撮影画像から検出された前記特徴の特徴量それぞれに 対して当該特徴量それぞれの信頼性の高さに応じて重み付けを行うことによって得られる 値に基づいて、当該撮影画像の画素面を複数に区画した領域ごとの、当該領域が当該撮影 画像に写っている人物の頭部の中心である可能性の高さを示す頭部中心度を求める処理と
    求めた前記頭部中心度に基づいて、前記撮影画像に写っている人物を検出する処理と、
    をコンピュータに実行させるためのコンピュータプログラム。
JP2003397999A 2003-11-27 2003-11-27 物体検出装置、物体検知方法、およびコンピュータプログラム Expired - Fee Related JP3879732B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003397999A JP3879732B2 (ja) 2003-11-27 2003-11-27 物体検出装置、物体検知方法、およびコンピュータプログラム
US10/786,775 US7321668B2 (en) 2003-11-27 2004-02-25 Object detection apparatus, object detection method and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397999A JP3879732B2 (ja) 2003-11-27 2003-11-27 物体検出装置、物体検知方法、およびコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2005157906A JP2005157906A (ja) 2005-06-16
JP3879732B2 true JP3879732B2 (ja) 2007-02-14

Family

ID=34616557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397999A Expired - Fee Related JP3879732B2 (ja) 2003-11-27 2003-11-27 物体検出装置、物体検知方法、およびコンピュータプログラム

Country Status (2)

Country Link
US (1) US7321668B2 (ja)
JP (1) JP3879732B2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516516B2 (ja) * 2005-12-07 2010-08-04 本田技研工業株式会社 人物検出装置、人物検出方法及び人物検出プログラム
JP4785628B2 (ja) * 2006-06-08 2011-10-05 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
KR100847136B1 (ko) * 2006-08-14 2008-07-18 한국전자통신연구원 어깨 윤곽선 추출 방법, 이를 이용한 로봇 깨움 방법 및이를 위한 장치
JP4845755B2 (ja) 2007-01-30 2011-12-28 キヤノン株式会社 画像処理装置、画像処理方法、プログラム及び記憶媒体
JP5159390B2 (ja) * 2008-03-28 2013-03-06 キヤノン株式会社 物体検知方法及びその装置
US8270682B2 (en) * 2008-11-25 2012-09-18 Eastman Kodak Company Hair segmentation
US8218877B2 (en) * 2008-12-23 2012-07-10 National Chiao Tung University Tracking vehicle method by using image processing
JP5227888B2 (ja) * 2009-05-21 2013-07-03 富士フイルム株式会社 人物追跡方法、人物追跡装置および人物追跡プログラム
JP5214533B2 (ja) * 2009-05-21 2013-06-19 富士フイルム株式会社 人物追跡方法、人物追跡装置および人物追跡プログラム
JP5085621B2 (ja) * 2009-09-10 2012-11-28 株式会社東芝 画像認識処理に適用する特徴情報選択装置、画像認識処理装置、監視システム、方法、及びプログラム
JP5537121B2 (ja) * 2009-10-30 2014-07-02 キヤノン株式会社 画像処理装置およびその制御方法
US8799013B2 (en) * 2009-11-24 2014-08-05 Penrad Technologies, Inc. Mammography information system
US9183355B2 (en) * 2009-11-24 2015-11-10 Penrad Technologies, Inc. Mammography information system
JP5538909B2 (ja) * 2010-01-05 2014-07-02 キヤノン株式会社 検出装置およびその方法
US8824791B2 (en) * 2011-04-29 2014-09-02 International Business Machine Corporation Color correction for static cameras
US8620088B2 (en) 2011-08-31 2013-12-31 The Nielsen Company (Us), Llc Methods and apparatus to count people in images
JP5792091B2 (ja) * 2012-02-16 2015-10-07 富士通テン株式会社 物体検出装置及び物体検出方法
JP5652886B2 (ja) 2012-11-28 2015-01-14 Necカシオモバイルコミュニケーションズ株式会社 顔認証装置、認証方法とそのプログラム、情報機器
US9336436B1 (en) 2013-09-30 2016-05-10 Google Inc. Methods and systems for pedestrian avoidance
US9349076B1 (en) * 2013-12-20 2016-05-24 Amazon Technologies, Inc. Template-based target object detection in an image
CN103914708B (zh) * 2014-01-26 2016-10-19 冯平 基于机器视觉的食品品种检测方法及***
CN104036231B (zh) * 2014-05-13 2017-11-17 深圳市菲普莱体育发展有限公司 人体躯干识别装置及方法、终点影像检测方法、装置
JP6471934B2 (ja) * 2014-06-12 2019-02-20 パナソニックIpマネジメント株式会社 画像認識方法、カメラシステム
US20170270378A1 (en) * 2016-03-16 2017-09-21 Haike Guan Recognition device, recognition method of object, and computer-readable recording medium
KR20180068578A (ko) * 2016-12-14 2018-06-22 삼성전자주식회사 복수의 센서를 이용하여 객체를 인식하는 전자 기기 및 방법
CN107316031B (zh) * 2017-07-04 2020-07-10 北京大学深圳研究生院 用于行人重识别的图像特征提取方法
CN108256481A (zh) * 2018-01-18 2018-07-06 中科视拓(北京)科技有限公司 一种利用身体上下文的行人头部检测方法
CN110770739A (zh) * 2018-10-31 2020-02-07 深圳市大疆创新科技有限公司 一种基于图像识别的控制方法、装置及控制设备
EP3910928B1 (de) * 2020-05-15 2024-03-13 Parkling GmbH Verfahren zum erstellen eines räumlich hochgenauen, verorteten strassenzugpanoramabildes und system hierfür
CN114693691B (zh) * 2022-03-23 2023-05-02 成都智元汇信息技术股份有限公司 一种双源双视角基于坐标映射的切图方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203256A (ja) * 1993-12-28 1995-08-04 Canon Inc カメラのファインダー装置
US6445807B1 (en) * 1996-03-22 2002-09-03 Canon Kabushiki Kaisha Image processing method and apparatus
US6163337A (en) * 1996-04-05 2000-12-19 Matsushita Electric Industrial Co., Ltd. Multi-view point image transmission method and multi-view point image display method
JP3576025B2 (ja) 1998-03-02 2004-10-13 富士写真フイルム株式会社 主要被写体抽出方法および装置
US6529630B1 (en) 1998-03-02 2003-03-04 Fuji Photo Film Co., Ltd. Method and device for extracting principal image subjects
JP2000099722A (ja) 1998-09-22 2000-04-07 Toshiba Corp 人物顔認識装置及び人物顔認識方法
US6639998B1 (en) * 1999-01-11 2003-10-28 Lg Electronics Inc. Method of detecting a specific object in an image signal
US7092569B1 (en) * 1999-07-29 2006-08-15 Fuji Photo Film Co., Ltd. Method and device for extracting specified image subjects
US6940545B1 (en) * 2000-02-28 2005-09-06 Eastman Kodak Company Face detecting camera and method
JP4729798B2 (ja) 2001-03-02 2011-07-20 富士電機リテイルシステムズ株式会社 ユーザ認証システム及びユーザ認証装置
JP3432816B2 (ja) 2001-09-28 2003-08-04 三菱電機株式会社 頭部領域抽出装置およびリアルタイム表情追跡装置

Also Published As

Publication number Publication date
US20050117779A1 (en) 2005-06-02
JP2005157906A (ja) 2005-06-16
US7321668B2 (en) 2008-01-22

Similar Documents

Publication Publication Date Title
JP3879732B2 (ja) 物体検出装置、物体検知方法、およびコンピュータプログラム
JP4085959B2 (ja) 物体検出装置、物体検出方法、および記録媒体
JP5569990B2 (ja) 属性判定方法、属性判定装置、プログラム、記録媒体および属性判定システム
US9111132B2 (en) Image processing device, image processing method, and control program
KR101490016B1 (ko) 인물 화상 처리 장치 및 인물 화상 처리 방법
WO2016199244A1 (ja) 物体認識装置及び物体認識システム
JP2012530994A (ja) 半顔面検出のための方法および装置
WO2012169250A1 (ja) 画像処理装置、画像処理方法、および制御プログラム
KR20110034545A (ko) 화상 처리 장치 및 화상 처리 방법
JP2009245338A (ja) 顔画像照合装置
JP2009237993A (ja) 画像監視装置
JP5271227B2 (ja) 群衆監視装置および方法ならびにプログラム
US10872268B2 (en) Information processing device, information processing program, and information processing method
CN101390128A (zh) 脸部器官的位置的检测方法及检测***
CN107862713A (zh) 针对轮询会场的摄像机偏转实时检测预警方法及模块
CN115039150A (zh) 判断方法、判断装置以及判断程序
CN114894337B (zh) 一种用于室外人脸识别测温方法及装置
JP5419757B2 (ja) 顔画像合成装置
CN108460319B (zh) 异常人脸检测方法及装置
JP4412929B2 (ja) 顔検知装置
JP2005149145A (ja) 物体検出装置、物体検出方法、およびコンピュータプログラム
JP5419773B2 (ja) 顔画像合成装置
JP5419777B2 (ja) 顔画像合成装置
JPH0981732A (ja) 領域抽出装置及びそれを用いた方向検出装置
JP2005316743A (ja) 画像処理方法および画像処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Ref document number: 3879732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees