JP3878439B2 - 多孔質層及びデバイス、並びにその製造方法 - Google Patents

多孔質層及びデバイス、並びにその製造方法 Download PDF

Info

Publication number
JP3878439B2
JP3878439B2 JP2001194859A JP2001194859A JP3878439B2 JP 3878439 B2 JP3878439 B2 JP 3878439B2 JP 2001194859 A JP2001194859 A JP 2001194859A JP 2001194859 A JP2001194859 A JP 2001194859A JP 3878439 B2 JP3878439 B2 JP 3878439B2
Authority
JP
Japan
Prior art keywords
pore
pore group
pores
group
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001194859A
Other languages
English (en)
Other versions
JP2003011099A (ja
Inventor
博 大木
雅夫 浦山
秀樹 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001194859A priority Critical patent/JP3878439B2/ja
Publication of JP2003011099A publication Critical patent/JP2003011099A/ja
Application granted granted Critical
Publication of JP3878439B2 publication Critical patent/JP3878439B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密度制御された細孔を有する多孔質層と該多孔質層を備えたデバイス及びその製造方法に関する。
【0002】
【従来の技術】
微細構造を有するナノ構造体が、電気的、光学的に特異な物性を示すことから、大きく注目されるようになってきている。このような微細構造を有するナノ構造体は、真空マイクロデバイス、磁気デバイス、発光デバイス、フォトニックデバイス、量子効果デバイス、化学センサー、磁気メモリ等への種々の分野への応用が期待されている。
微細構造を有するナノ構造体として、アルミナ陽極酸化膜が古くから知られている。アルミナ陽極酸化膜は、ナノ構造体を自己組織的に形成することが可能であり、フォトリソグラフィー、電子線露光、X線露光等の微細加工技術が不要である点で、工業的に有利なナノ構造体と言える。
【0003】
従来から知られている陽極酸化技術によれば、アルミナ陽極酸化膜は、アルミニウム板を硫酸、シュウ酸等の酸性溶液中で陽極酸化することにより自己組織的に形成する。図12に示すように、アルミニウム基板1上に形成されたアルミナ陽極酸化膜2は、直径が5〜200nm程度の細孔3を多数有し、この細孔3が規則正しく配列した構造をもっている。このような規則性が優れる配列構造は、アルミナ陽極酸化膜2がセル構造25で形成されることに由来するものである。このようなセル構造25は、印加電圧等の陽極酸化条件で容易に制御される。
【0004】
近年、アルミナ陽極酸化膜の細孔を精密に制御する技術が特開平10−121292号公報に開示された。特開平10−121292号公報によれば、複数の突起を表面に備えた基板を陽極酸化するアルミニウム基板に圧着することにより、アルミニウム基板表面に窪みを形成し、この窪みを起点として陽極酸化する。このようにして形成された細孔は、圧着する基板の窪みの間隔、配列で精密に制御され、細孔の真円度、細孔径及び間隔の均一性が向上できる点で大きなメリットがある。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平10−121292号公報に開示される多孔質性陽極酸化アルミナ膜は、細孔の間隔、配列を大面積で制御することができないという課題があった。また、特開平10−121292号公報に開示される技術は、デバイス設計された細孔径、間隔を有する凸部を予め、母基板(モールド)に形成する必要があり、このモールド形成に微細加工技術を必要とするという課題があった。
本発明は、上記従来技術の課題を解決するためになされたものであり、ナノ構造からなる細孔を有し、細孔密度を簡便、且つ、低コストに制御し、細孔制御の大面積化を可能にした多孔質層と該多孔質層を備えたデバイス及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本願発明による多孔質層は、基本的に、好ましくはナノ構造を有する複数の細孔から構成される多孔質層であって、表面に開口を有し、ある深さで終端する第1の細孔群と、前記第1の細孔群の一部と深さ方向に連続し、少なくとも第1の細孔群とは孔径の異なる第2の細孔群とを備えたことを特徴とする。
【0007】
すなわち、本願発明による多孔質層では、ナノ構造を有する複数の細孔から構成される第1の細孔群を所望の間隔で間引きして、該間引きされた細孔に対して該細孔とは孔径の異なる第2の細孔群を連続させることにより、制御された有効細孔密度構造を持つ多孔質層を提供するようにしている。
好ましくは、本願発明の多孔質層において、第1の細孔群と第2の細孔群とは異なるセル構造を有しており、セル構造が異なることにより、細孔径、細孔密度(細孔ピッチ)、細孔長さ等の形状が異なる第1の細孔群と第2の細孔群が形成される。
【0008】
本願発明の多孔質層の一形態において、前記第2の細孔群の孔径が前記第1の細孔群の孔径よりも大きいものとされ、好ましくは、そこにおいて、前記第2の細孔群が前記第1の細孔群に連続する形態が、一つの第1の細孔群の細孔に対して、複数の第2の細孔群の細孔が連続する形態とされる。また、本願発明の多孔質層の一形態において、前記第2の細孔群が前記多孔質層の前記表面のもう一方の表面に開口を有するようにされる。
【0009】
上記の多孔質層を製造する本発明による製造方法は、基本的に、陽極酸化基体を陽極酸化して第1の細孔群を形成する第1の工程と、前記第1の工程とは異なる条件で陽極酸化して第1の細孔群の一部と連続する第2の細孔群を形成する工程とを含むことを特徴とする。そこにおいて、好ましくは、前記異なる条件が陽極酸化における化成電圧であり、前記第2の工程における化成電圧が前記第1の工程における化成電圧のほぼ整数倍とされる。
【0010】
より具体的に説明する。本願発明による多孔質層及びその製造方法は、2つに分類するとことができる。まず、第1の多孔質層及びその製造方法を説明する。ここで、第1の細孔群を基板外側(実質的には、空間的に露出する第1の表面)、第2の細孔群を基板内側(実質的には、基板と接触する第2の表面)とする。第1の細孔群は、好ましくはナノ構造体を形成する程度の微細セル構造を有する。第2の細孔群を形成するセル構造は、第1の細孔群を形成するセル構造よりも大きい。従って、第2の細孔群の細孔は、第1の細孔群の細孔の細孔径よりも大きく、細孔ピッチも大きい(細孔密度が小さい)。後に説明する図2に示すように、第1の具体的な構成として後に説明する多孔質層は、ナノ構造体を有する第1の細孔群の細孔3が間引きされ、間引きされた第1の細孔群の細孔3aに第2の細孔群の細孔4が連結する構成を有する。
【0011】
上記の多孔質層の製造方法は、多段階陽極酸化法(ここでは、2段階陽極酸化法のみを最も単純な方法として説明する)を用いることを特徴とする。そこにおいて、第2の細孔群を形成するための化成電圧を第1の細孔群を形成するための化成電圧よりも大きくする。第1の細孔群を形成する化成電圧をV1、第2の細孔群を形成する化成電圧をV2とすると、第1の細孔群のセルサイズと第2の細孔群のセルサイズの比はV1/V2となると共に、第1の細孔群の細孔のV2/V1毎に第2の細孔群の細孔が形成される。例えば、V1=30V、V2=150Vであるとすれば、第1の細孔群のセルサイズ:第2の細孔群のセルサイズ=1:5となり、第1の細孔群の細孔の5つ毎に第2の細孔群の細孔が形成される。この時、第2の細孔群の細孔密度と第1の細孔群の細孔密度との比は1:25となり、多孔質層の第1の表面から第2の表面まで貫通する細孔をデバイスに用いることにより、第1の表面側に形成した細孔の1/25を間引きでき、実質的な細孔密度の制御が可能となる。以上のことから、第1の細孔群を形成する化成電圧と第2の細孔群を形成する化成電圧とを制御することにより、デバイス設計に応じた細孔密度を有する多孔質層が提供可能となる。
【0012】
次に、第2の多孔質層及びその製造方法を説明する。この多孔質層は、上記した多孔質層の構成と全く逆であり、第1の細孔群を形成するセル構造は、第2の細孔群を形成するセル構造よりも大きい。第2の細孔群を形成するセル構造は微細であり、実質的には、第1の細孔群の一つ細孔から基板へ達する細孔集合体(第2の細孔群)で構成される。後に説明する図9に示すように、第2の多孔質層は、ナノ構造体を有する第1の細孔群の細孔3が間引きされ、間引きされた第1の細孔群の細孔3aには、細孔集合体から構成される第2の細孔群17が設けられ、第1の細孔群の細孔3aを基板へと導く構成を有する。
【0013】
上記の多孔質層の製造方法は、第1の多孔質層の製造方法と同様に、多段階陽極酸化法を用いることを特徴とする。そこにおいて、第2の細孔群を形成するための化成電圧は第1の細孔群を形成するための化成電圧よりも小さくされる。第1の細孔群を形成する化成電圧をV1、第2の細孔群を形成する化成電圧をV2とすると、V1/V2毎に間引きされた、下地膜(基板)まで貫通する細孔が形成される。例えば、V1=40V、V2=20Vであるとすれば、図9のように、第2の細孔群の細孔集合体17は、第1の細孔群の細孔3の2個に1個の割合で形成される。
【0014】
以上のように、本願発明の多孔質層は、第1の細孔群、第2の細孔群の2つの異なる細孔構造から構成され、第1の細孔群の一部と第2の細孔群とが連続性を有することにより、細孔密度が制御されたナノ構造を備えた多孔質層を提供することを可能にする。また、このような多孔質層は、化成電圧変化を利用した多段階陽極酸化法で容易、且つ、低コストに形成されると共に、大面積なデバイスに提供可能となる。
【0015】
従って、本発明は、また、電極上に上記したいずれかの多孔質層を備え、前記第2の細孔群と前記第2の細孔群と連続する前記第1の細孔群の細孔に設けられた電子放出部を更に備え、前記電子放出部が前記電極と実質的に電気的に接続されていることを特徴とする電子デバイスを開示し、また、電極上に上記したいずれか記載の多孔質層を備え、前記第2の細孔群と前記第2の細孔群と連続する前記第1の細孔群の細孔に設けられた化学センサー部を更に備え、前記化学センサー部が前記電極と実質的に電気的に接続されていることを特徴とする化学センサーデバイスをも開示する。本発明によれば、そのようなデバイスにおいて、低密度なナノ構造が提供可能となり、それらデバイスの特性向上が可能となる。
なお、本発明において「実質的に電気的に接続」とは、例えば、薄い絶縁物等を介した接続であっても、動作時に、トンネリング等により一方から他方への電荷の移動、供給が実質的に行われるような接続態様をも含むものとして用いている。
【0016】
【発明の実施の形態】
<第1の実施形態>
第1の実施形態に於いては、2段階陽極酸化法を用い、第1段階目の陽極酸化(第1の細孔群)の化成電圧に対して、第2段階目の陽極酸化(第2の細孔群)の化成電圧を増加することにより、選択(間引き)した細孔構造の細孔を有する多孔質層の製造方法を説明する。図1〜3は、本実施形態の多孔質層の製造方法を示す工程断面図である。
【0017】
図1は、第1段階目(第1の細孔群)の陽極酸化後の多孔質層の工程断面図を示す。図1のように、アルミニウム基板1(純度は99%以上が好ましい)を陽極酸化し、アルミナ陽極酸化膜2と細孔群3を形成した。アルミニウム基板1は、0.3Mシュウ酸中(温度:16℃)、40Vの電圧を印加し、陽極酸化した。
図2は、第2段階目(第2の細孔群)の陽極酸化後の多孔質層の工程断面図を示す。図2のように、第1の細孔群で形成された一部の細孔3aと接続する第2の細孔群の細孔4を形成した。陽極酸化条件は、0.3Mリン酸中(温度:0℃)、195Vであった。
【0018】
この時、選択率(間引きき率)K(第1の細孔群の細孔のピッチ5/第2の細孔群の細孔のピッチ6)は、第1段階目(第1の細孔群)の陽極酸化の印加電圧:V1、第2段階目(第2の細孔群)の陽極酸化の印加電圧:V2を用い、
K≒V1/V2
と表わすことができる。Kは整数に近似される。本実施形態に於いては、
K=40/195≒1/5
と計算できる。即ち、アルミニウム基板を貫通する細孔(第1の細孔群の細孔と第2の細孔群の細孔から形成される細孔)は、第1段階目の陽極酸化後に形成した細孔の5つの内、4つを選択(間引き)する構造が形成できた。この時、アルミニウム基板を貫通する細孔の細孔密度は、第1の細孔群の細孔の細孔密度の1/25((V1/V2)2)に減少した。また、細孔径及びセルサイズは、第1の細孔群の細孔のそれらの5倍(V2/V1)に増加した。
【0019】
以上のように、第1段階目(第1の細孔群)の陽極酸化の印加電圧、第2段階目(第2の細孔群)の陽極酸化の印加電圧を制御することにより、デバイス設計に応じて選択(間引き)された第1の細孔群の細孔に第2の細孔群の細孔が設けられ、陽極酸化膜2の一方の表面からもう一方の表面へ貫通する貫通細孔の密度が制御可能になった。
【0020】
図3は、第2の細孔群の細孔4とアルミニウム基板1をコンタクトさせるための電流回復処理後の多孔質層の工程断面図を示す。図3のように、第2の細孔群の細孔4の底部に樹状の微細孔7が形成した。このような微細孔7を形成することにより、選択された第1の細孔群の細孔3と第2の細孔群の細孔4から形成される貫通細孔は、アルミニウム基板1とコンタクト可能になる。このような電流回復処理は、第2の0.3Mリン酸中(温度:0℃)、195Vに対して、印加電圧を10Vずつ減少(195V→185V→175V→…→…→…)することにより、達成された。アルミニウム基板1とのコンタクトが不十分である場合、硫酸溶液中で数時間放置することにより、微細孔7近傍の陽極酸化膜2(アルミナ;Ar23)がエッチング除去され、アルミニウム基板1に対するコンタクトが十分となる。このようなコンタクトは、実質的にアルミニウム基板1と電気的に接続されている必要がある。実質的な電気的接続とは、細孔3底部のバリア層が完全に除去されていることが好ましいが、導電性が確保されればバリア層が完全に除去されていなくても構わないことを意味する。即ち、バリア層が十分に薄い場合、トンネリングによる導電性の確保が可能となるためである。
【0021】
図4(a)〜(c)は、図1〜図3で形成した貫通細孔を用い、貫通細孔に充填材料を充填した多孔質層の工程断面図を示す。このような製造方法は、真空マイクロデバイス、磁気デバイス、発光デバイス、フォトニックデバイス、量子効果デバイス、化学センサー、磁気メモリ等に応用可能である。本実施形態に於いては、化学センサーを代表例として説明する。
図4(a)は、図3のように形成したアルミニウム基板1上の第1の細孔群の細孔3、第2の細孔群の細孔4、樹状の微細孔7を設げた陽極酸化膜2を分離し、第1の細孔群のアルミニウム基板と反対側の表面に電極材料8を設けた多孔質層の工程断面図を示す。
【0022】
アルミニウム基板1からの陽極酸化膜2は、アルミニウム基板1をエッチング除去するか、または、陽極酸化時の電位を逆点するかのどちらかの方法により、分離する。電極材料8は、スパッタ法、または、蒸着法を用い、形成する。電極材料8の膜厚は、0.5〜1μm程度が好ましく、膜厚が薄いと陽極酸化膜2表面を十分に覆えず、一方、膜厚が厚いと薄膜を形成し難いという問題が生じる。
【0023】
図4(b)は、アルミニウム基板1側に形成した樹状の微細孔7のバリア層を除去し、第2の細孔群に接続した第1の細孔群の細孔に選択的にセンシング材料10を充填した多孔質層の工程断面図を示す。樹状の微細孔7のバリア層は、0.5〜1%程度の濃度の希フッ酸を用いて除去した。このように樹状の微細孔7のバリア層を除去することにより、開口部9が形成され、第2の細孔群の細孔4に接続した第1の細孔群の細孔3が選択的に空間的に露出することになる。引き続き、電気的な堆積法、例えば、電気メッキ法により、空間的に露出した第1の細孔群の細孔3に選択的に、センシング材料10が充填される。
【0024】
図4(c)は、間引き(選択)された第1の細孔群の細孔3に充填されたセンシング材料10の先端を空間に露出した多孔質層の工程断面図を示す。ここでは、第2の細孔群の陽極酸化膜部分を除去する。陽極酸化膜の除去は、エッチング除去法、または、化学的・機械的研磨(CMP;Chemical Mechanical Polishing)法を用いる。製造の容易さの点では、エッチング法、具体的にはウエットエッチング法が好ましく、フッ酸、リン酸/塩酸混酸、水酸化ナトリウム等を用いることができる。図4(c)のように、多孔質層は、第1段階目(第1の細孔群)の陽極酸化の印加電圧、第2段階目(第2の細孔群)の陽極酸化の印加電圧で決まる選択率(間引き率)でセンシング材料を貫通細孔に充填される。本実施形態に於いては、第1の細孔群の細孔の5個毎に充填された多孔質層が形成された。
このようにして製造されたナノ構造体を用いた化学センサーは、従来の化学センサーと異なり、ナノ構造体の密度が制御され、ナノ構造体に充填されたセンシング材料が適度に散在した構成を有するため、化学センサーのセンシング特性が大きく向上した。
【0025】
<第2の実施形態>
本実施形態では、第1の実施形態で説明した2段階陽極酸化法を用い、ガラス基板、シリコン基板等の支持基板を用いた場合の多孔質層の製造方法を、図5及び図6を用いて説明する。このような構成の多孔質層を用いたデバイスは、現在、広くデバイスに用いられる構造であり、種々の電子デバイス、光デバイス等に広く応用可能である。本実施形態に於いては、電子デバイスを代表例に挙げて説明する。
【0026】
図5(a)は、第1段階目(第1の細孔群)の陽極酸化後の多孔質層の工程断面図を示す。支持基板11としては、ガラス基板、シリコン基板等が好ましい。ガラス基板を用いる場合、支持基板11上に電極材料の形成が必要である。本実施形態に於いては、シリコン基板を用いた。シリコン基板11上に、スパッタ法、蒸着法等でアルミニウム堆積膜12を形成する。アルミニウム堆積膜12の膜厚は、2〜4μm程度が好ましく、膜厚が薄い場合は、細孔形成が阻害され、一方、膜厚が厚い場合は、製造工程が厳しくなる。また、アルミニウム堆積膜12の表面はフラットであることが不可欠であり、目視検査に於いては、鏡面であることが好ましい。
【0027】
このようにして形成されたアルミニウム堆積膜12に、図1と同様に、第1段階目(第1の細孔群)の陽極酸化を行った。陽極酸化条件は、0.3Mシュウ酸、温度:16℃、印加電圧:40Vであった。図5(a)のように、シリコン基板11上のアルミニウム堆積膜12の表面部分に陽極酸化膜2が形成すると共に、第1の細孔群の細孔3が形成した。
【0028】
図5(b)は、第2段階目(第2の細孔群)の陽極酸化後の多孔質層の工程断面図を示す。図2の場合と同様に、第1の細孔群で形成された一部の細孔3aと接続する第2の細孔群の細孔4を形成した。陽極酸化条件は、0.05Mシュウ酸、温度:16℃、印加電圧:80Vであった。図5(b)に示すように、第2の細孔群の細孔4の底部(シリコン基板11側の細孔底部)にはバリア層13が存在する。
【0029】
図6(a)は、第2の細孔群の細孔4の底部のバリア層13を除去した後の工程断面図を示す。シリコン基板上のバリア層13は、陽極酸化を図5(b)に引き続き行うことにより、容易に除去可能であった。このように、陽極酸化時間を制御することにより、第2の細孔群の細孔4の底部のバリア層13が除去され、シリコン基板の露出部分14が形成した。図6(a)に示すように、シリコン基板11の露出部分14を有する細孔は、選択(間引き)されたものであり、このように選択(間引き)された細孔を用いることにより、細孔密度を制御した多孔質層を提供できるようになる。
【0030】
図6(b)は、図6(a)で選択(間引き)された細孔に充填材料15を充填した後の工程断面図を示す。選択(間引き)された細孔に充填材料15を充填する方法は、電気化学的堆積、即ち、電気メッキが好ましい。図6(b)のように、充填材料15は、電気メッキにより、シリコン基板11が露出した細孔に選択的に充填され、結果的に第1の細孔群の細孔が間引きされた。
このように、本願発明の多孔質層は、アルミニウム基板だけではなく、シリコン基板、ガラス基板上にも形成可能であり、電子デバイス、光デバイス等の種々のデバイスに搭載可能であることが確認できた。
【0031】
<第3の実施形態>
本実施形態では、第2の実施形態と同様に、シリコン基板等の支持基板11を用いた場合の多孔質層の製造方法を図7を用いて説明する。本実施形態に於いては、真空マイクロデバイスを代表例に挙げて説明する。特に、低電圧駆動可能な電子源の製造方法の一例として、カーボンナノチューブ電子源の製造方法を説明する。但し、本願発明の電子源材料としては、このような炭素材料に限定され得るものではない。
【0032】
図7(a)は、図6(a)と同様にして2段階陽極酸化法で支持基板11上に細孔構造を形成し、その細孔構造を鋳型としてカーボンナノチューブ16を形成した後の工程断面図を示す。カーボンナノチューブ16は、CVD(ChemicaI Vapor Deposition)法で形成され得るものである。このようなカーボンナノチューブ16の形成方法としては、第2の細孔群の細孔4の底部の支持基板露出部14に金属触媒を配設し、この金属触媒を成長起点として、カーボンナノチューブを形成する方法(特許第3008852号のカーボンナノチューブ形成方法を参照)もある。図7(a)のように、カーボンナノチューブ16は、第1の細孔群の細孔3、及び第1の細孔群の細孔3と第2の細孔群の細孔4が接続して形成した貫通細孔のそれぞれに形成された。
【0033】
図7(b)は、選択(間引き)された細孔の先端を露出した後の工程断面図を示す。陽極酸化膜2からのカーボンナノチューブ16の先端露出は、ウエットエッチング法を用いた。陽極酸化膜2除去のためのエッチングとしては、フッ酸、リン酸、水酸化ナトリウム、リン酸/塩酸等が用いられる。このようなウエットエッチングを行うと、図7(b)のように、第1の細孔群の細孔3と第2の細孔群の細孔4が接続して形成した貫通細孔以外の細孔3に形成したカーボンナノチューブ16aは、陽極酸化膜2のエッチングと共に、リフトオフされ、貫通細孔に形成したカーボンナノチューブ16のみが残存する。結果的に、形成するカーボンナノチューブ16は間引きされ、カーボンナノチューブ16の密度は減少する。
【0034】
但し、図7(a)で説明した細孔構造を鋳型とするCVD法によるカーボンナノチューブの製造方法の場合、細孔3及び4の内壁だけではなく、陽極酸化膜2表面に対しても炭素膜が被覆されるため、陽極酸化膜2表面の炭素膜を除去する必要がある。陽極酸化膜2表面の炭素膜は、RIE(Reactive IonEtching)を用いた酸素プラズマエッチングで容易に除去可能である。以上のように、2段階陽極酸化法を用いることにより、カーボンナノチューブの密度が低減し、カーボンナノチューブの先端を露出することにより、電界集中を高め、低電圧エミッションを可能にすることができた。
【0035】
<第4の実施形態>
第4の実施形態に於いては、別の2段階陽極酸化法を用いた多孔質層の製造方法を説明する。第1の実施形態と異なる点は、第1段階目の陽極酸化(第1の細孔群)の化成電圧に対して、第2段階目の陽極酸化(第2の細孔群)の化成電圧を減少することにより、選択(間引き)した細孔構造の細孔を有する多孔質層を製造する。図8〜9は、本実施形態の多孔質層の製造方法を示す工程断面図である。
【0036】
図8は、図1と同様に、アルミニウム基板1に対して、第1段階目の陽極酸化を行った後の工程断面図を示す。陽極酸化条件は、0.3Mシュウ酸、温度:16℃、印加電圧:40Vであった。図8のように、アルミニウム基板1上に陽極酸化膜2が形成すると共に、第1の細孔群の細孔3が形成した。
図9は、第2段階目の陽極酸化を行った後の工程断面図を示す。陽極酸化条件は、0.3Mシュウ酸、温度:16℃、印加電圧:20Vであり、第1の細孔群の細孔3aを間引きした第2の細孔群の細孔(細孔集合体)17が形成した。
【0037】
この時、選択率(間引き率)K(第1の細孔群の細孔のピッチ18/第2の細孔群の細孔集合体が形成した細孔のピッチ19)は、第1段階目(第1の細孔群)の陽極酸化の印加電圧:V1、第2段階目(第2の細孔群)の陽極酸化の印加電圧:V2を用い、
K≒V2/V1
となり、本実施形態に於いては、1/2となる。即ち、第1の細孔群の細孔の2つに1つが第2の細孔群の細孔(細孔集合体)17が形成する。この時、陽極酸化膜2を貫通する細孔の細孔密度は、第1の細孔群の細孔の1/4に減少した。
【0038】
以上のように、第1の実施形態と同様に、第1段階目(第1の細孔群)の陽極酸化の印加電圧、第2段階目(第2の細孔群)の陽極酸化の印加電圧を制御することにより、デバイス設計に応じて選択(間引き)された第1の細孔群の細孔に第2の細孔群の細孔(細孔集合体)が設けられ、陽極酸化膜2の一方の表面からもう一方の表面へ貫通する貫通細孔の密度が制御可能になった。
【0039】
次に、このような構成の多孔質層をデバイスに応用するための代表例を図10、図11で説明する。図10(a)〜(c)は、アルミニウム基板を用いた場合の代表例(化学センサーに応用可能な構成)であり、図11(a)〜(c)は、ガラス基板、シリコン基板等の支持基板11を用いた場合の代表例(電子源に応用可能な構成)である。
【0040】
図10(a)は、図9で示した多孔質層に対して、アルミニウム基板1を除去し、電極20を設けた後の工程断面図を示す。アルミニウム基板1は、リン酸/硝酸/酢酸の混酸でエッチング除去した。電極20は、スパッタ法、蒸着法で堆積した。
図10(b)は、第2の細孔群の細孔集合体17のバリア層を除去後、間引きされた細孔にセンシング材料22を充填した後の工程断面図を示す。バリア層はフッ酸で除去し、細孔集合体17に開口部21を設けた。
図10(c)は、充填したセンシング材料22の先端を露出した後の工程断面図を示す。陽極酸化膜2は、ウエットエッチング法、または、化学的・機械的研磨法を用いて除去した。陽極酸化膜2を除去することにより、第2の細孔群の細孔集合体が形成した第1の細孔群の細孔にのみ充填されたセンシング材料22の先端が露出した。
【0041】
次に、もう一つのデバイスの応用例を説明する。図11(a)は、第2の実施形態で説明したように、シリコン基板11上にアルミニウム堆積膜2を形成し、図8及び図9のように第1及び第2段階目の陽極酸化を施し、CVD法で炭素膜16を細孔3、17の内壁に被着した後の工程断面図を示す。アルミニウム堆積膜2は、シリコン基板11上にスパッタ法で2μm形成した。また、第1段階目の陽極酸化は0.3Mシュウ酸中(温度:16℃)、40Vで行い、第2段階目の陽極酸化は0.3Mシュウ酸中(温度:16℃)、20Vで行った。炭素膜(カーボンナノチューブ)は、石英反応管中、800℃、プロピレン(窒素中2.5%)を3時間流通させることで形成した。
【0042】
図11(b)は、カーボンナノチューブ16を空間に露出した後の工程断面図である。陽極酸化膜2をフッ酸等でエッチング除去することにより、カーボンナノチューブの先端が露出する。この時、露出したカーボンナノチューブは、第1の細孔群の細孔3と第2の細孔群の細孔集合体17からなる貫通細孔に形成するカーボンナノチューブ23、及び第1の細孔群単独の細孔に形成されるカーボンナノチューブ24とからなるものの、カーボンナノチューブ24は電気的にフローティングしているため、実質的にカーボンナノチューブ23のみがデバイス的に活性である。従って、結果的に第1段階目の陽極酸化で形成した細孔は間引きされ、細孔密度(カーボンナノチューブ密度)は低減された。但し、カーボンナノチューブ24がデバイス構造的に問題がある場合、陽極酸化膜2のオーバーエッチングにより、リフトオフし、不要なカーボンナノチューブ24を除去することが必要である。
【0043】
以上のように、2段階陽極酸化法を用い、第2段階目の陽極酸化の化成電圧を第1段階目の陽極酸化の化成電圧よりも小さくすることにより、第1段階目の陽極酸化で形成した細孔が間引きされ、実質的に形成するカーボンナノチューブ電子源の密度が低減されることにより、電界集中が高められ、低電圧エミッションが可能な電子源が提供できた。
【0044】
【発明の効果】
以上のように、本願発明の多孔質層は、ナノ構造を有する第1の細孔群を所望の間隔で間引きすることによって得られるため、簡便な構造を有する多孔質層でありながら、所望の制御された細孔密度のものを容易に得ることができる。
また、本願発明による多孔質層の製造方法は、多段階陽極酸化に於ける化成電圧を変化させることに基づくため、大面積な多孔質層の形成を可能とし、同時に、微細加工可能な、高価な製造装置が一切不要となった。
更に、本願発明による多孔質層は、低密度のナノ構造体を有するデバイスに有利な構造を提供するものであり、特に、化学センサー、電子源のデバイス特性向上を可能にした。
【図面の簡単な説明】
【図1】第1の実施形態に於ける多孔質層の工程断面図を示す。
【図2】第1の実施形態に於ける多孔質層の工程断面図を示す。
【図3】第1の実施形態に於ける多孔質層の工程断面図を示す。
【図4】第1の実施形態に於ける多孔質層を用いた化学センサーの工程断面図を示す。
【図5】第2の実施形態に於ける多孔質層を用いた電子デバイスの工程断面図を示す。
【図6】第2の実施形態に於ける多孔質層を用いた電子デバイスの工程断面図を示す。
【図7】第3の実施形態に於ける多孔質層を用いたカーボンナノチューブ電子源の工程断面図を示す。
【図8】第4の実施形態に於ける多孔質層の工程断面図を示す。
【図9】第4の実施形態に於ける多孔質層の工程断面図を示す。
【図10】第4の実施形態に於ける多孔質層を用いた化学センサーの工程断面図を示す。
【図11】第4の実施形態に於ける多孔質層を用いたカーボンナノチューブ電子源の工程断面図を示す。
【図12】アルミナ陽極酸化膜の斜視図を示す。
【符号の説明】
1 アルミニウム基板
2 陽極酸化膜
3、3a 第1の細孔群の細孔
4 第2の細孔群の細孔
5 第1の細孔群の細孔のピッチ
6 第2の細孔群の細孔のピッチ
7 微細孔
8 電極
9 第2の細孔群の細孔底部の開口部
10 センシング材料
11 支持基板
12 アルミニウム堆積膜
13 第2の細孔群の細孔のバリア層
14 第2の細孔群の細孔底部のコンタクト部
15 充填材料
16 カーボンナノチューブ
17 細孔集合体
18 第1の細孔群の細孔のピッチ
19 第2の細孔群の細孔集合体が形成した第1の細孔群の細孔のピッチ
20 電極
21 細孔集合体底部の開口部
22 センシング材料
23 下地層とコンタクトしたカーボンナノチューブ
24 フローティングしたカーボンナノチューブ

Claims (7)

  1. 複数の細孔から構成され、第1の表面に開口を有し、ある深さで終端する第1の細孔群と、前記第1の細孔群の一部と深さ方向に連続し、少なくとも第1の細孔群とは孔径の異なる第2の細孔群とを備えた多孔質層において、
    前記細孔構造を鋳型としてカーボンナノチューブが形成されていることを特徴とするカーボンナノチューブ電子源。
  2. 前記第2の細孔群の孔径が前記第1の細孔群の孔径よりも大きいことを特徴とする請求項1記載のカーボンナノチューブ電子源。
  3. 前記カーボンナノチューブの先端が露出していることを特徴とする請求項1又は2に記載のカーボンナノチューブ電子源。
  4. 前記第2の細孔群が前記多孔質層の前記第1の表面のもう一方の表面である第2の表面に開口を有することを特徴とする請求項1又は2に記載のカーボンナノチューブ電子源。
  5. 支持基板上に、陽極酸化基体を陽極酸化して第1の細孔群を形成する第1の工程と、前記第1の工程とは異なる条件で陽極酸化して第1の細孔群の一部と連続する第2の細孔群を形成する工程と、
    前記第2の細孔群の細孔の底部の支持基盤露出部に金属触媒を配設し、該金属触媒を基点としてカーボンナノチューブを形成する工程と、
    を有することを特徴とするカーボンナノチューブ電子源の製造方法。
  6. ウェットエッチングにより、前記第1の細孔群の一部と連続して形成された第2の細孔群を有するカーボンナノチューブを残して、前記第1の細孔内の残りのカーボンナノチューブを選択的に除去し、カーボンナノチューブの先端を露出させる工程を含むことを特徴とする請求項に記載のカーボンナノチューブ電子源の製造方法。
  7. 前記異なる条件が陽極酸化における化成電圧であり、前記第2の工程における化成電圧が前記第1の工程における化成電圧のほぼ整数倍であることを特徴とする請求項5又は6に記載のカーボンナノチューブ電子源の製造方法。
JP2001194859A 2001-06-27 2001-06-27 多孔質層及びデバイス、並びにその製造方法 Expired - Fee Related JP3878439B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194859A JP3878439B2 (ja) 2001-06-27 2001-06-27 多孔質層及びデバイス、並びにその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194859A JP3878439B2 (ja) 2001-06-27 2001-06-27 多孔質層及びデバイス、並びにその製造方法

Publications (2)

Publication Number Publication Date
JP2003011099A JP2003011099A (ja) 2003-01-15
JP3878439B2 true JP3878439B2 (ja) 2007-02-07

Family

ID=19032920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194859A Expired - Fee Related JP3878439B2 (ja) 2001-06-27 2001-06-27 多孔質層及びデバイス、並びにその製造方法

Country Status (1)

Country Link
JP (1) JP3878439B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231105A (ja) * 2003-01-31 2004-08-19 Nissin Kogyo Co Ltd カップシールおよび液圧式マスタシリンダ
JP4603834B2 (ja) * 2003-08-11 2010-12-22 キヤノン株式会社 構造体、その製造方法及び多孔質体
JP4865240B2 (ja) * 2004-03-23 2012-02-01 キヤノン株式会社 構造体の製造方法、磁気記録媒体の製造方法、成型体の製造方法
JP4768478B2 (ja) * 2006-03-17 2011-09-07 富士フイルム株式会社 微細構造体の製造方法および微細構造体
US8027145B2 (en) 2007-07-30 2011-09-27 Taiyo Yuden Co., Ltd Capacitor element and method of manufacturing capacitor element
JP4956405B2 (ja) * 2007-07-30 2012-06-20 太陽誘電株式会社 コンデンサ素子及びコンデンサ素子の製造方法
JP4493686B2 (ja) 2007-09-27 2010-06-30 太陽誘電株式会社 コンデンサ及びその製造方法
JP5700235B2 (ja) * 2008-03-27 2015-04-15 アイシン精機株式会社 アルマイト膜の形成方法
WO2012029570A1 (ja) * 2010-08-30 2012-03-08 シャープ株式会社 陽極酸化層の形成方法および型の製造方法
CN103249873B (zh) 2010-10-21 2016-03-30 惠普发展公司,有限责任合伙企业 形成纳米结构的方法
US9751755B2 (en) 2010-10-21 2017-09-05 Hewlett-Packard Development Company, L.P. Method of forming a micro-structure
US9611559B2 (en) 2010-10-21 2017-04-04 Hewlett-Packard Development Company, L.P. Nano-structure and method of making the same
WO2012054045A1 (en) 2010-10-21 2012-04-26 Hewlett-Packard Development Company, L.P. Method of forming a nano-structure
US20170267520A1 (en) 2010-10-21 2017-09-21 Hewlett-Packard Development Company, L.P. Method of forming a micro-structure
JP2012162769A (ja) * 2011-02-07 2012-08-30 Kanagawa Acad Of Sci & Technol 陽極酸化ポーラスアルミナの製造方法並びにその方法により製造された陽極酸化ポーラスアルミナ
JP6043548B2 (ja) 2012-08-31 2016-12-14 太陽誘電株式会社 コンデンサ
WO2018033862A1 (en) * 2016-08-17 2018-02-22 Hou Fengyan Method to create thin functional coatings on light alloys
KR20220132281A (ko) * 2021-03-23 2022-09-30 삼성전자주식회사 금속 하우징을 포함하는 전자 장치
KR20230017537A (ko) * 2021-07-28 2023-02-06 삼성전자주식회사 아노다이징이 가능한 알루미늄 외장재 제조 방법 및 이를 포함하는 전자 장치
WO2023080746A1 (ko) * 2021-11-08 2023-05-11 삼성전자 주식회사 아노다이징이 가능한 알루미늄 합금 판재와 그 제조 방법

Also Published As

Publication number Publication date
JP2003011099A (ja) 2003-01-15

Similar Documents

Publication Publication Date Title
JP3878439B2 (ja) 多孔質層及びデバイス、並びにその製造方法
JP4221389B2 (ja) カーボンナノチューブのセルフアセンブリングを利用した電界放出エミッタ電極の製造方法及びこれにより製造された電界放出エミッタ電極
Shingubara et al. Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum
EP1378486B1 (en) Nanostructure and electron emitting device
US7267859B1 (en) Thick porous anodic alumina films and nanowire arrays grown on a solid substrate
US7319069B2 (en) Structure having pores, device using the same, and manufacturing methods therefor
JP3675326B2 (ja) マルチチャネルプレートの製造方法
JPH1012124A (ja) 電子放出素子およびその製造方法
KR20050086161A (ko) 카본나노튜브의 수평성장방법 및 소자
JP3729449B2 (ja) 細孔を有する構造体及びデバイス
EP0913850B1 (en) Narrow titanium-containing wire, process for producing narrow titanium-containing wire, structure, and electron-emitting device
JP2003016921A (ja) 構造体、電子放出素子、画像形成装置およびそれらの製造方法
JP4245438B2 (ja) 炭素薄膜ならびにそれを用いた電界放出電子源および作用電極
CN100541700C (zh) 使用阳极氧化工艺制造的具有三极管结构的电场发射器件及其制造方法
JP4641442B2 (ja) 多孔質体の製造方法
JP4136730B2 (ja) 細孔を有する構造体及びその製造方法
JP2005059135A (ja) カーボンナノチューブを用いたデバイス及びその製造方法
JP3581289B2 (ja) 電界放出電子源アレイ及びその製造方法
JP3805228B2 (ja) 電子放出素子の製造方法
JP2005324325A (ja) ナノ構造体、電子放出素子及びカーボンナノチューブデバイスの製造方法
US20070200478A1 (en) Field Emission Device
JP2015032500A (ja) 異方性導電体膜とその製造方法、デバイス、電子放出素子、フィールドエミッションランプ、及びフィールドエミッションディスプレイ
JP3970528B2 (ja) 多孔質層を用いたデバイス及びその製造方法
KR100492509B1 (ko) 양극 산화 공정을 이용한 일체형 3극 구조 전계방출 소자및 제조방법
KR100485128B1 (ko) 전계 방출 소자 및 전계 방출 소자의 제조 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees