JP3874682B2 - Sliding member and manufacturing method thereof - Google Patents

Sliding member and manufacturing method thereof Download PDF

Info

Publication number
JP3874682B2
JP3874682B2 JP2002077629A JP2002077629A JP3874682B2 JP 3874682 B2 JP3874682 B2 JP 3874682B2 JP 2002077629 A JP2002077629 A JP 2002077629A JP 2002077629 A JP2002077629 A JP 2002077629A JP 3874682 B2 JP3874682 B2 JP 3874682B2
Authority
JP
Japan
Prior art keywords
particles
aluminum oxide
fine
fine particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002077629A
Other languages
Japanese (ja)
Other versions
JP2002348677A (en
Inventor
純 明渡
広典 鳩野
正勝 清原
達郎 横山
朋和 伊藤
勝彦 森
篤史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002077629A priority Critical patent/JP3874682B2/en
Publication of JP2002348677A publication Critical patent/JP2002348677A/en
Application granted granted Critical
Publication of JP3874682B2 publication Critical patent/JP3874682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガイドレール、ベアリングケース、ピストンリング、各種バルブなどの摺動部材の作製方法に関する。
【0002】
【従来の技術】
摺動部材を構成する材料としては、硬く耐磨耗性に優れたセラミックスが好ましい。しかしながら、セラミックスは加工性に劣り、焼結の際の縮小率が大きいため、セラミックス単独では摺動部材を製作せず、通常は金属部材の表面に溶射法などによってセラミックコートを施すようにしている。
【0003】
溶射法の他に、最近ではガスデポジション法(加集誠一郎:金属 1989年1月号)や静電微粒子コーティング法(井川 他:昭和52年度精密機械学会秋季大会学術講演会前刷)も被膜形成法として提案されている。
【0004】
前者は金属やセラミックス等の超微粒子をガス攪拌にてエアロゾル化し、微小なノズルを通して加速せしめ、基材表面に超微粒子の圧粉体層を形成させ、これを加熱して焼成させることにより被膜を形成する。後者は微粒子を帯電させ電場勾配を用いて加速せしめ、この後はガスデポジション法と同様の基本原理で被膜形成を行う。
【0005】
また、上記のガスデポジション法あるいは静電微粒子コーティング法を改良した先行技術として、特開平8−81774号公報、特開平10−202171号公報、特開平11−21677号公報或いは特開2000−212766号公報に開示されるものが知られている。
【0006】
特開平8−81774号公報に開示される技術は、融点の異なる2種類の金属または有機物を、抵抗線加熱、電子ビーム加熱、高周波誘導加熱、スパッタリング、アークプラズマ等で加熱蒸発させ、この加熱蒸発により粒子径が0.1μm以下の表面が非常に活性な超微粒子とし、この超微粒子を融点の異なる金属ごとにノズルを用い、3次元立体形状の断面CADデータに基づいて基板に吹き付け、これを繰り返すことで融点の異なる2種類の金属からなる3次元立体形状物を形成し、この後、2種類の金属の融点の中間温度で3次元立体形状物を加熱することで低融点金属部分を溶融除去し、高融点金属部分のみを残すようにしている。
【0007】
特開平10−202171号公報に開示される技術は、前記した抵抗線加熱、電子ビーム加熱、高周波誘導加熱、スパッタリング、アークプラズマ等で加熱蒸発することで得た超微粒子を基板に向けて噴射するにあたり、マスクの開口を通して行うことで、肩だれのない3次元立体形状物を得るようにしている。
【0008】
特開平11−21677号公報に開示される技術は、前記した超微粒子を含むエアロゾルを搬送する際あるいは金属やセラミックスを加熱蒸発させる際に、超微粒子同士が凝集して大きな粒子となるのを防止するために、中間の経路に分級装置を配置するようにしている。
【0009】
2000−212766号公報は、本発明者らが提案したものであり、この公報には加熱手段による加熱なくして超微粒子の膜を形成する方法が開示されている。具体的には、粒径が10nm〜5μmの超微粒子(前記先行技術と異なり加熱蒸発させて得たものではない)に、イオンビーム、原子ビーム、分子ビーム或いは低温プラズマなどを照射することにより、超微粒子を溶融せしめることなく活性化し、この状態のまま基板に3m/sec〜300m/secの速度で吹き付けることで、超微粒子相互の結合を促進して摺接層を形成するようにしたものである。
【0010】
【発明が解決しようとする課題】
一般的な焼結助剤を用いた液相焼結では、粒界付近に焼結助剤を含むガラス相が形成され、得られるセラミックスの純度が上がらず、緻密体を形成することも難しい。特に摺動部材の摺接層として液相焼結によるセラミックスを用いるのは硬度及び耐磨耗性の面で問題が残る。
【0011】
一方セラミック粒子の微粒化、焼結温度の高温化、ホットプレス法などのような加圧環境下での焼成、焼結助剤の排除などの工夫で高純度かつ緻密質のセラミックスの形成が可能となっている。そこで、この高純度かつ緻密質のセラミックスを摺動部材の摺接層として用いることが考えられる。
【0012】
しかしながら、焼成にてセラミックス摺動層を得ることはすなわち原子の拡散によって粒子同士の接合を行うということであり、原料粉が微粒であっても加熱中に粒成長を起こし、形成物を微細な結晶のまま止めておくことは不可能である。すなわち焼成では、ナノメートルレベルの結晶粒からなる多結晶体を形成させることは困難である。
また、焼結助剤を用いて焼成させる場合は、粒子同士の界面に特定の元素が偏析を起こし、所望の特性の達成を阻害する原因ともなっている。
【0013】
一方、PVD、CVD或いは溶射による場合は、いずれも数百から1万℃の高温環境を必要とし、エネルギー投入量が大きく、またゾルゲル法は比較的低温のプロセスであるが、一回の製膜工程で達成される膜厚は数nmから数百nmレベルであり、厚膜を形成するにはこの工程を繰り返す必要がある。この際実質的には下地膜を強固にする為に加熱処理を施す必要があり下地層の粒成長が起こる。粒成長を起こさない低温での製膜では緻密度が大きくならない問題がある。また多数回の製膜工程を経ると膜にクラックが発生するという問題が解決できていない。またこのゾルゲル法あるいは溶液中析出法などの微細組織のセラミック膜作製方法は湿式が多く、膜中に溶液中の他の溶質や溶媒が混入して膜特性の劣化や組成のずれなどが生じる場合がある。
【0014】
また、特開平8−81774号公報、特開平10−202171号公報および特開平11−21677号公報に開示される方法にあっては、超微粒子を得るための加熱手段(抵抗線加熱、電子ビーム加熱、高周波誘導加熱、スパッタリング、アークプラズマ等)が必要となり。また基本原理が衝突の際に運動エネルギーを熱エネルギーに変換して焼結させるというものであり、基板上に形成される摺接層の粒子径は粒成長により、原料の超微粒子よりも大きくなってしまう。
【0015】
一方、特開2000−212766号公報に開示される技術は、各種アシスト法を用いることにより、比較的低い微粒子速度で堆積物の形成を可能にさせる方法であるが、本発明者らが引き続き追試を行ってきた結果、十分な硬度(Hv=1000以上)が得られず、部分的に剥離しやすくたり、密度も不均一となり、特に硬度のコントロールが難しい。
【0016】
【課題を解決するための手段】
本発明は、延展性を持たない脆性材料(セラミックス)に機械的衝撃力を付加すると、結晶子同士の界面などの壁開面に沿って結晶格子のずれを生じたり、あるいは破砕される。そして、これらの現象が起こると、ずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒され、表面エネルギーが高い状態となる。この活性面が隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合して安定状態に移行する。外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料の摺接層(本件の場合は摺接層)が形成されるという知見に基づいてなされたものである。
【0017】
ここで、本発明を理解する上で重要となる語句の解釈を以下に行う。
(多結晶)
本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに摺接層中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(結晶配向性)
本件では多結晶である摺接層中での結晶軸の配向具合を指し、配向性があるかないかは、一般には実質的に配向性のないと考えられる粉末X線回折などによって標準データとされたJCPDS(ASTM)データを指標として判断する。
摺接層中の脆性材料結晶を構成する物質をあげたこの指標における主要な回折3ピークのピーク強度を100%として、摺接層の同物質測定データ中、最も主要なピークのピーク強度をこれに揃えた場合に、他の2ピークのピーク強度が指標の値と比較して30%以内にそのずれが収まっている状態を、本件では実質的に配向性がないと称する。
(界面)
本件では結晶子同士の境界を構成する領域を指す。
(粒界層)
界面あるいは焼結体でいう粒界に位置するある厚み(通常数nm〜数μm)を持つ層で、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
(アンカー部)
本件の場合には、基材と摺接層の界面に形成された凹凸を指し、特に、予め基材に凹凸を形成させるのではなく、摺接層形成時に、元の基材の表面精度を変化させて形成される凹凸のことを指す。
(平均結晶子径)
X線回折法におけるScherrerの方法によって算出される結晶子のサイズであり、マックサイエンス社製MXP-18を使用して測定・算出する。
(内部歪)
微粒子に含まれる格子歪のことで、X線回折測定におけるHall法を用いて算出される値であり、微粒子を十分にアニールした標準物質を基準として、そのずれを百分率表示する。
【0018】
本発明に係る摺動部材は、その一部に他の部材と接触する摺接層が形成され、この摺接層は酸化アルミニウム等の脆性材料からなるとともに多結晶であり、また実質的に結晶配向性がなく、且つ結晶同士の界面にはガラス層からなる粒界層が実質的に存在せず、さらに前記摺接層の一部は基材表面に食い込むアンカー部となっており、前記摺接層のビッカース硬度がHv=1000以上またはHv=1400以上である構成とした。
【0019】
本発明において適用可能な基材には、セラミック、金属、半金属、有機材料などが利用可能であるが、とりわけ、金属、有機材料の場合、焼成を必要とするプロセスは、1000℃以上の高温環境を必要とするため、各種金属部材の摺接部位のみ選択的にセラミックス摺動層を形成させることは、部材の変質、部材とセラミックス摺動層の熱膨張率の差による剥離や割れなどが起こり、適用は困難であるが、本発明の方法によれば、焼成の必要がないので上記問題を生じず、好ましい。
【0020】
ビッカース硬度がHv=1000以上の摺接層を適用できる用途としては、比較的硬度の低い相手材との摩擦に対する耐摩耗部材、具体的には、腐食性のスラリーや液に使うポンプのスリーブ,ハウジング,インペラー及びその他の部品、製鉄機械のハースロールや合成繊維用機械部品としては、ガゼットロール,ヒータープレート,テンションデスク,加熱フィードロール,糸道,ロール類など、自動車工業向けとしては、O2センサー等の機能部品,加工機においては、ナイフ・包丁やバイトに代表される刃先へのコート、電子・電機工業向けにおいては、ヒートシンク,磁気ヘッド,ヒーターロール,ガスタービン工業向けにおいては、タービンブレード,ノズル,チャンバー,ミッドスパン等が考えられる。
【0021】
また、同種材料同士との摺動についての耐摩耗部材では、摩耗による摩滅性粒子が極力発生しないほうが好ましいため、ビッカース硬度がHv=1400以上がよく、この摺接層を適用できる用途としては、同種材料同士との摺動についての耐摩耗部材、具体的には、プレス成形及び切断等に用いられる金型,自動車工業向けとしては、ピストンヘッド及ぶピストンリング、摺動性が必要とされるバルブ類への応用が考えられる。
【0022】
上記の特性を有する部材は従来の製法では得ることができず、以下の方法によって得ることができる。
即ち、酸化アルミニウム等の脆性材料微粒子をガス中に分散させたエアロゾルを搬送し、高速で基材に衝突させて、前記脆性材料微粒子の一次粒子が破砕した微細断片粒子を生成し、前記微細断片粒子の前記基材への接着あるいは前記微細断片粒子同士の接合により焼成することなく、ビッカース硬度がHv=1000以上またはHv=1400以上で緻密質の脆性材料からなる摺接層を前記基材表面に形成して摺動部材を得る。
【0023】
上記の製法においては、基材に衝突させる脆性材料微粒子の速度を変化させることによって摺接層の硬度をコントロールすることができる。例えば、酸化アルミニウム微粒子の速度を200〜400m/secとすることで、得られる摺接層のビッカース硬度をHv=1000以上とすることができ、400〜800m/secとすることで、得られる摺接層のビッカース硬度をHv=1400以上にコントロールすることができる。
【0024】
【発明の実施の態様】
以下に本発明の実施の形態を説明する。
原料粉体として酸化アルミニウム(平均粒径:0.5μm)の微粒子を用い、厚さ3mmのステンレス(SUS304)基材上に厚さ10μmの酸化アルミニウム膜を微粒子ビーム堆積法(Ultra−Fine particles beam deposition method)により形成した。
【0025】
ここで、微粒子ビーム堆積法とは本発明法を指し、金属や半金属、セラミックの微粒子を含むエアロゾルをノズルより噴出させて高速で基板に吹き付け、微粒子を基材上に堆積させることによって、微粒子の組成を持つ圧粉体などの堆積層を形成させる構造物形成法のうち、特に構造物を基板上にダイレクトで形成する方法である。エアロゾルデポジション法ともいう。
【0026】
図1は上記の本発明方法で形成した酸化アルミニウム膜の組織を平面的に拡大した顕微鏡写真、図2は同酸化アルミニウム膜の組織を断面的に拡大した顕微鏡写真であり、図3は従来の溶射法で形成した酸化アルミニウム膜の組織を平面的に拡大した顕微鏡写真、図2は同酸化アルミニウム膜の組織を断面的に拡大した顕微鏡写真である。
これらの図を比較すれば明らかなように、本発明方法によって形成した酸化アルミニウム膜は緻密である。また基材と膜との界面には、膜形成前の基材表面の精度に比較して、構造物形成時に非常に微細な凹凸が形成されたアンカー部が存在することが確認されている。一方、従来方法にて形成した酸化アルミニウム膜は多数の気孔が存在し、緻密性に劣ることが分る。またプラズマ溶射法では、吹き付ける微粒子をプラズマ中に晒して溶融させ、基材への付着と同時に急冷させるという工程であるため、微粒子同士の界面などはアモルファスライクな構造をとっている。
【0027】
図5はノズルから噴射された微粒子の流速と、形成した各酸化アルミニウム膜の硬度を示す。なお比較のために、プラズマ溶射法で作製し実用化されている酸化アルミニウム膜(厚さ約100μm)の硬度測定も記載する。
硬度測定は、島津製作所製ダイナミック超微小硬度計DUH−W201(ビッカース圧子)で、試験力は5gf、保持時間30secの条件にて行った。
図5から、流速の増加に伴い硬度が増加する傾向にあることが分る。これは酸化アルミニウム微粒子の流速が速いほど酸化アルミニウム膜が形成される際の反応エネルギー、反応速度が大きくなるためではないかと考えられる。
【0028】
なお、一般に耐摩耗コートとして用いられているプラズマ溶射法で作製される酸化アルミニウム膜のビッカース硬度はHv=800程度である。これに対し酸化アルミニウム微粒子の流速を200m/sec以上として作製する本発明法の酸化アルミニウム膜はこれより硬いため実用上有効である。
【0029】
また、耐摩耗性の実際の評価として、横擦り耐久試験における摺動回数に伴う酸化アルミニウム膜の重量の減少を測定した。実験装置を図6に示す。
実験は、まず評価したい酸化アルミニウム膜付き試験片の重量を測定し、横擦り試験機のテーブル1の固定ジグ2に固定して、#1500番の炭化ケイ素研磨紙をローラの円周上に10mm幅で貼り付けたローラ3を試験片の膜表面と線接触するように1000gfの一定荷重にて押しつけた。横擦り耐久試験装置の動作としては、固定治具が左右に1往復する毎に、ローラ3が約0.3°づつ回転するようになっている。なお、固定治具の左右に動くスピードは0.63m/sec固定で実験を行った。
【0030】
図7は、各酸化アルミニウム微粒子の速度において作製した試験片の摺動回数に伴う酸化アルミニウム膜の重量減少量を摺動回数でプロットしたものである。参考までにプラズマ溶射法で作製した酸化アルミニウム膜付きサンプルの結果もプロットした。
【0031】
図7から、酸化アルミニウム微粒子の速度が大きくなるほど、摺動回数に伴う酸化アルミニウム膜の重量減少量が小さくなることがわかった。この結果は、図5に示した微粒子の速度の増加に伴い膜の硬度が向上した結果を示唆するものであった。ガス流速が50m/sec以上で形成した試験片については、いずれもプラズマ溶射法で作製した試験片に比べて、摺動回数に伴う膜の重量減少量が少なく、耐摩耗性が優れていることが明らかになった。200m/sec以上のものは更に優れている。
【0032】
次に、酸化アルミニウム微粒子、PZT(チタン酸ジルコン酸鉛)微粒子及びBT(チタン酸バリウム)微粒子を材料として形成した摺接層の表面粗さ(Ra)を以下の表に示す。
【0033】
【表1】

Figure 0003874682
【0034】
上記の表から明らかなように、本発明に係る摺接層は研磨を行うことなく充分に耐磨耗コートとして使用することができる。ただし、更に表面を研磨して良好な表面粗さを得るようにしてもよい。
【0035】
なお、実施例では基材としてステンレスを示したが、ガラス、金属、セラミックス、半金属あるいは有機化合物などが挙げられ、また脆性材料として酸化アルミニウム、PZT、BTを示したが、これ以外に、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ジルコニウム、酸化イットリウム、酸化クロム、酸化ハフニウム、酸化ベリリウム、酸化マグネシウム、酸化珪素などの酸化物、ダイヤモンド、炭化硼素、炭化珪素、炭化チタン、炭化ジルコニウム、炭化バナジウム、炭化ニオブ、炭化クロム、炭化タングステン、炭化モリブデン、炭化タンタルなどの炭化物、窒化硼素、窒化チタン、窒化アルミニウム、窒化珪素、窒化ニオブ、窒化タンタルなどの窒化物、硼素、硼化アルミニウム、硼化珪素、硼化チタン、硼化ジルコニウム、硼化バナジウム、硼化ニオブ、硼化タンタル、硼化クロム、硼化モリブデン、硼化タングステンなどの硼化物、あるいはこれらの混合物や多元系の固溶体、チタン酸鉛、チタン酸リチウム、チタン酸ストロンチウム、チタン酸アルミニウム、PLZTなどの圧電性・焦電性セラミックス、サイアロン、サーメットなどの高靭性セラミックス、水酸アパタイト、燐酸カルシウムなどの生体適合性セラミックス、シリコン、ゲルマニウム、あるいはこれらに燐などの各種ドープ物質を添加した半金属物質、ガリウム砒素、インジウム砒素、硫化カドミウムなどの半導体化合物などが挙げられる。
【0036】
微粒子の速度の測定には次の方法を用いた。図8に粒子速度測定装置を示す。図示しないチャンバー内にエアロゾルを噴射するノズル21が開口を上に向けて設置され、その先にモーターによって回転運動する回転羽根22の先に設置された基板23およびその基板表面から19mm下に離れて固定された幅0.5mmの切りかきをもつスリット24を有する粒子速度測定装置2を配置する。ノズル21の開口から基板表面までの距離は24mmである。
【0037】
次に粒子速度測定方法を記す。エアロゾルの噴射は、実際の複合構造物作製方法に準じて行う。構造物形成装置内で構造物を形成する基板の代わりに、図の粒子速度測定装置2を設置して行うことが好適である。図示しないチャンバーを減圧下におき、数Torr以下の圧力としたのちにノズル21から粒子を含むエアロゾルが噴射させ、この状態で粒子速度測定装置2を一定回転速度で運転させる。ノズル21の開口から飛び出した粒子は、基板23がノズル21の上部に来た際にその一部がスリット24の切りかきの隙間を通過して基板表面に衝突し、基板23上に構造物(衝突痕)を形成する。粒子がスリットから19mm離れた基板表面に到達する間に基板23は回転羽根22の回転によって位置を変化させているため、基板23上におけるスリット24の切りかきからの垂線交差位置よりその変位量分ずれた位置に衝突する。この垂線交差位置から衝突して形成された構造物までの距離を表面凹凸測定により計測し、この距離およびスリット24と基板表面からの距離、回転羽根22の回転速度の値を用いて、ノズル21から噴射された粒子の速度としては、ノズル21の開口から5mm離れた場所から24mm離れた場所までの平均速度を算出し、これを本件における粒子の速度とした。
【0038】
次に構造物形成に伴って形成されたアンカー層について、その表面凹凸プロファイルを図9に示す。表面を鏡面に仕上げた真鍮基板に、微粒子ビーム堆積法を用いて酸化アルミニウム膜を膜厚10μm程度で形成させた後、膜に引張り応力を与えて膜を基板より引き剥がしてアンカー層を剥き出しにし、基板の表面粗さとアンカー層を日本真空技術株式会社製触針式表面形状測定器Dektak3030を用いて計測した。図9の上のプロファイルが真鍮基板の表面プロファイルであり、下がアンカー層のプロファイルである。図より微粒子の衝突によりアンカー層が形成されている様子がわかる。また同表面形状測定器によりこれらの表面粗さRaは、スイープ距離200μmにおいて、基板表面が7.7nm、アンカー層が73.8nmであった。
【0039】
【発明の効果】
以上に説明したように本発明に係る摺動部材は、従来と比較し極めて高硬度の摺接部を任意の個所、例えば複雑な曲面や、微細な個所に有するため、摺動部材としての適用範囲が大幅に拡大する。
【図面の簡単な説明】
【図1】本発明方法で作成した酸化アルミニウム膜の組織を平面的に拡大した顕微鏡写真
【図2】本発明方法で作成した酸化アルミニウム膜の組織を断面的に拡大した顕微鏡写真
【図3】従来法で作成した酸化アルミニウム膜の組織を平面的に拡大した顕微鏡写真
【図4】従来法で作成した酸化アルミニウム膜の組織を断面的に拡大した顕微鏡写真
【図5】ノズルから噴射された微粒子の流速と、形成した各酸化アルミニウム膜の硬度を示すグラフ
【図6】横擦り耐久試験の実験装置を示す図
【図7】各酸化アルミニウム微粒子の速度において作製した試験片の摺動回数に伴う酸化アルミニウム膜の重量減少量を摺動回数でプロットしたグラフ
【図8】微粒子速度測定装置を示す図
【図9】基板とアンカー層の表面凹凸プロファイルを示す図[0001]
BACKGROUND OF THE INVENTION
The present invention, guide rails, bearing case, piston rings, relates to a method for manufacturing a sliding member such as various valves.
[0002]
[Prior art]
The material constituting the sliding member is preferably a ceramic that is hard and has excellent wear resistance. However, ceramics are inferior in workability and have a large reduction rate during sintering, so ceramics alone do not produce sliding members, and usually a ceramic coating is applied to the surface of metal members by thermal spraying or the like. .
[0003]
In addition to the thermal spraying method, the gas deposition method (Keishu Seiichiro: Metals, January 1989 issue) and the electrostatic fine particle coating method (Igawa et al .: Preprint of the academic meeting of the Fall Meeting of the Japan Society for Precision Mechanics 1982) are also available. It has been proposed as a formation method.
[0004]
In the former, ultrafine particles such as metals and ceramics are aerosolized by gas stirring and accelerated through a minute nozzle to form a compact layer of ultrafine particles on the surface of the substrate, which is heated and fired to form a coating. Form. In the latter, fine particles are charged and accelerated using an electric field gradient, and thereafter, a film is formed on the same basic principle as in the gas deposition method.
[0005]
Further, as prior arts improved from the above-described gas deposition method or electrostatic fine particle coating method, JP-A-8-81774, JP-A-10-202171, JP-A-11-21676, or JP-A-2000-212766. What is disclosed in the Gazette is known.
[0006]
In the technique disclosed in Japanese Patent Laid-Open No. 8-81774, two types of metals or organic substances having different melting points are heated and evaporated by resistance wire heating, electron beam heating, high frequency induction heating, sputtering, arc plasma, etc. By using a nozzle for each metal having a different melting point, the ultrafine particles are sprayed onto the substrate based on the cross-sectional CAD data of a three-dimensional shape. By repeating, a three-dimensional solid object composed of two types of metals having different melting points is formed, and then the low-melting point metal part is melted by heating the three-dimensional solid object at an intermediate temperature between the melting points of the two types of metals. It is removed to leave only the refractory metal part.
[0007]
The technique disclosed in Japanese Patent Application Laid-Open No. 10-202171 is for spraying ultrafine particles obtained by heating and evaporation using the resistance wire heating, electron beam heating, high frequency induction heating, sputtering, arc plasma, or the like toward the substrate. In this case, a three-dimensional object having no shoulder is obtained by performing through the opening of the mask.
[0008]
The technique disclosed in Japanese Patent Application Laid-Open No. 11-21677 prevents the ultrafine particles from aggregating into large particles when transporting the aerosol containing the ultrafine particles or when the metal or ceramic is heated and evaporated. In order to do so, a classifier is arranged in an intermediate path.
[0009]
No. 2000-212766 has been proposed by the present inventors, and this publication discloses a method of forming a film of ultrafine particles without heating by a heating means. Specifically, by irradiating an ultrafine particle having a particle size of 10 nm to 5 μm (not obtained by heating and evaporation unlike the prior art) with an ion beam, an atomic beam, a molecular beam, or a low-temperature plasma, Activated without melting the ultrafine particles, and sprayed onto the substrate in this state at a speed of 3 m / sec to 300 m / sec to promote the bonding between the ultrafine particles to form a sliding contact layer. is there.
[0010]
[Problems to be solved by the invention]
In liquid phase sintering using a general sintering aid, a glass phase containing the sintering aid is formed in the vicinity of the grain boundary, the purity of the resulting ceramic does not increase, and it is difficult to form a dense body. In particular, the use of ceramics by liquid phase sintering as the sliding contact layer of the sliding member remains problematic in terms of hardness and wear resistance.
[0011]
On the other hand, high-purity and dense ceramics can be formed by means such as atomization of ceramic particles, higher sintering temperature, firing in a pressurized environment such as hot pressing, and elimination of sintering aids. It has become. Therefore, it is conceivable to use this high-purity and dense ceramic as the sliding contact layer of the sliding member.
[0012]
However, obtaining a ceramic sliding layer by firing means that the particles are joined together by diffusion of atoms, and even if the raw material powder is fine, grain growth occurs during heating, and the formed product becomes fine. It is impossible to keep it in crystal form. That is, it is difficult to form a polycrystalline body composed of nanometer-level crystal grains by firing.
Moreover, when baking using a sintering aid, a specific element raise | generates segregation in the interface of particle | grains, and has become the cause which obstructs achievement of a desired characteristic.
[0013]
On the other hand, in the case of PVD, CVD or thermal spraying, all require a high temperature environment of several hundred to 10,000 ° C., a large amount of energy is input, and the sol-gel method is a relatively low temperature process. The film thickness achieved in the process is on the order of several nm to several hundred nm, and this process needs to be repeated to form a thick film. At this time, in order to substantially strengthen the underlayer film, it is necessary to perform a heat treatment, and grain growth of the underlayer occurs. There is a problem that the density does not increase in the case of film formation at a low temperature that does not cause grain growth. Moreover, the problem that a crack occurs in the film after many film forming steps has not been solved. In addition, there are many wet methods for producing a fine-structure ceramic film such as the sol-gel method or the precipitation method in solution, and other solutes or solvents in the solution are mixed in the film, resulting in deterioration of film characteristics or compositional deviation. There is.
[0014]
Further, in the methods disclosed in JP-A-8-81774, JP-A-10-202171, and JP-A-11-21777, heating means for obtaining ultrafine particles (resistance wire heating, electron beam) Heating, high frequency induction heating, sputtering, arc plasma, etc.) are required. The basic principle is that kinetic energy is converted into thermal energy and sintered in the event of a collision. The particle size of the sliding contact layer formed on the substrate becomes larger than the ultrafine particles of the raw material due to grain growth. End up.
[0015]
On the other hand, the technique disclosed in Japanese Patent Application Laid-Open No. 2000-212766 is a method that enables the formation of deposits at a relatively low particle speed by using various assist methods. As a result, sufficient hardness (Hv = 1000 or more) cannot be obtained, partly peels easily, and the density becomes non-uniform, and it is particularly difficult to control the hardness.
[0016]
[Means for Solving the Problems]
In the present invention, when a mechanical impact force is applied to a brittle material (ceramics) that does not have spreadability, the crystal lattice shifts along the wall open surface such as an interface between crystallites or is crushed. When these phenomena occur, a new surface is formed on the slipping surface or fracture surface, in which atoms originally present inside and bonded to other atoms are exposed. The part of the atomic layer on the new surface is exposed to an unstable surface state by an external force from a stable atomic bond state, and the surface energy is high. The active surface joins the adjacent brittle material surface, the newly formed brittle material surface, or the substrate surface, and shifts to a stable state. The addition of continuous mechanical impact force from the outside causes this phenomenon to occur continuously, and the joining progress and densification are performed by repeated deformation, crushing, etc. of the fine particles. In some cases, the sliding contact layer) is formed.
[0017]
Here, the interpretation of the words that are important for understanding the present invention will be described below.
(Polycrystalline)
In this case, it refers to a structure in which crystallites are joined and integrated. The crystallite is essentially one crystal, and its diameter is usually 5 nm or more. However, although rare cases occur in which the fine particles are taken into the sliding contact layer without being crushed, they are substantially polycrystalline.
(Crystal orientation)
In this case, it refers to the degree of orientation of the crystal axis in the sliding contact layer, which is polycrystalline, and whether or not there is orientation is generally standard data by powder X-ray diffraction, which is considered to have substantially no orientation. JCPDS (ASTM) data is used as an index.
The peak intensity of the three major diffraction peaks in this index, which is the material constituting the brittle material crystal in the sliding layer, is defined as 100%. In the present case, the state in which the deviation of the peak intensity of the other two peaks is within 30% of the index value is referred to as having substantially no orientation.
(interface)
In this case, it refers to the region that forms the boundary between crystallites.
(Grain boundary layer)
It is a layer with a certain thickness (usually several nm to several μm) located at the grain boundary in the interface or sintered body. It usually has an amorphous structure different from the crystal structure in the crystal grain, and in some cases, segregates impurities. Accompany.
(Anchor part)
In this case, it refers to the unevenness formed at the interface between the base material and the sliding contact layer, and in particular, the surface accuracy of the original base material is improved when the sliding contact layer is formed, instead of forming the unevenness on the base material in advance. It refers to the unevenness formed by changing.
(Average crystallite diameter)
The crystallite size calculated by the Scherrer method in the X-ray diffraction method, which is measured and calculated using MXP-18 manufactured by Mac Science.
(Internal distortion)
The lattice strain contained in the fine particles is a value calculated by using the Hall method in the X-ray diffraction measurement, and the deviation is expressed as a percentage with reference to a standard material in which the fine particles are sufficiently annealed.
[0018]
The sliding member according to the present invention is formed with a sliding contact layer in contact with another member at a part thereof, and the sliding contact layer is made of a brittle material such as aluminum oxide and is polycrystalline, and substantially crystalline. There is no orientation, and there is substantially no grain boundary layer composed of a glass layer at the interface between the crystals, and a part of the sliding contact layer is an anchor portion that bites into the surface of the base material. The contact layer had a Vickers hardness of Hv = 1000 or higher or Hv = 1400 or higher.
[0019]
Ceramics, metals, metalloids, organic materials, and the like can be used as substrates applicable in the present invention. In particular, in the case of metals and organic materials, processes that require firing are performed at a high temperature of 1000 ° C. or higher. Since the environment is required, the selective formation of the ceramic sliding layer only on the sliding contact portions of various metal members may cause deterioration of the member, peeling or cracking due to the difference in thermal expansion coefficient between the member and the ceramic sliding layer. Although it occurs and is difficult to apply, the method of the present invention is preferable because it does not require firing and thus does not cause the above problem.
[0020]
The use of the sliding contact layer having a Vickers hardness of Hv = 1000 or more is a wear-resistant member against friction with a relatively low-strength material, specifically, a pump sleeve used for corrosive slurry or liquid, Housing, impeller and other parts, iron hearth rolls and synthetic fiber machine parts such as gusset rolls, heater plates, tension desks, heated feed rolls, yarn paths, rolls, etc. For the automotive industry, O 2 In functional parts such as sensors and processing machines, coating on cutting edges such as knives, knives and cutting tools, heat sinks, magnetic heads, heater rolls in the electronics and electrical industries, and turbine blades in the gas turbine industry , Nozzle, chamber, midspan, etc.
[0021]
In addition, in a wear resistant member for sliding with the same kind of material, it is preferable that abrasive particles due to wear should not be generated as much as possible. Therefore, the Vickers hardness is preferably Hv = 1400 or more. Wear-resistant members for sliding with similar materials, specifically, molds used for press molding and cutting, piston rings for the automobile industry, valves that require slidability Application to the kind is considered.
[0022]
A member having the above characteristics cannot be obtained by a conventional manufacturing method, but can be obtained by the following method.
That is, an aerosol in which brittle material fine particles such as aluminum oxide are dispersed in a gas is transported and collided with a base material at high speed to generate fine fragment particles in which primary particles of the brittle material fine particles are crushed, and the fine fragments The surface of the base material is formed of a dense brittle material having a Vickers hardness of Hv = 1000 or higher or Hv = 1400 or higher without firing by bonding the particles to the base material or joining the fine fragment particles. To obtain a sliding member.
[0023]
In the above production method, the hardness of the sliding contact layer can be controlled by changing the speed of the brittle material fine particles colliding with the substrate. For example, when the speed of the aluminum oxide fine particles is 200 to 400 m / sec, the Vickers hardness of the obtained sliding contact layer can be Hv = 1000 or more, and when the speed is 400 to 800 m / sec, the resulting sliding is obtained. The Vickers hardness of the contact layer can be controlled to Hv = 1400 or more.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below.
Using fine particles of aluminum oxide (average particle size: 0.5 μm) as a raw material powder, an aluminum oxide film having a thickness of 10 μm is formed on a stainless steel (SUS304) substrate having a thickness of 3 mm (Ultra-Fine particles beam). (deposition method).
[0025]
Here, the fine particle beam deposition method refers to the method of the present invention, in which an aerosol containing fine particles of metal, semimetal, or ceramic is ejected from a nozzle and sprayed onto a substrate at a high speed to deposit the fine particles on a substrate. Among the structure forming methods for forming a deposited layer such as a green compact having the following composition, in particular, a structure is directly formed on a substrate. Also called aerosol deposition method.
[0026]
FIG. 1 is a micrograph in which the structure of the aluminum oxide film formed by the above-described method of the present invention is enlarged in a plane, FIG. 2 is a micrograph in which the structure of the aluminum oxide film is enlarged in cross section, and FIG. FIG. 2 is a micrograph in which the structure of the aluminum oxide film formed by thermal spraying is enlarged in a plane, and FIG.
As is clear from comparison of these figures, the aluminum oxide film formed by the method of the present invention is dense. Further, it has been confirmed that an anchor portion in which very fine irregularities are formed at the time of structure formation is present at the interface between the base material and the film as compared with the accuracy of the surface of the base material before film formation. On the other hand, it can be seen that the aluminum oxide film formed by the conventional method has many pores and is inferior in denseness. In the plasma spraying method, the fine particles to be sprayed are exposed to the plasma and melted, and are rapidly cooled simultaneously with the adhesion to the base material. Therefore, the interface between the fine particles has an amorphous-like structure.
[0027]
FIG. 5 shows the flow rate of the fine particles ejected from the nozzle and the hardness of each formed aluminum oxide film. For comparison, the hardness measurement of an aluminum oxide film (thickness: about 100 μm) produced by plasma spraying and put into practical use is also described.
The hardness was measured with a dynamic ultra-micro hardness meter DUH-W201 (Vickers indenter) manufactured by Shimadzu Corporation under the conditions of a test force of 5 gf and a holding time of 30 sec.
FIG. 5 shows that the hardness tends to increase as the flow rate increases. This is thought to be because the reaction energy and reaction rate when the aluminum oxide film is formed increase as the flow rate of the aluminum oxide fine particles increases.
[0028]
In addition, the Vickers hardness of an aluminum oxide film produced by a plasma spraying method generally used as an abrasion resistant coat is about Hv = 800. On the other hand, the aluminum oxide film of the method of the present invention produced at a flow rate of aluminum oxide fine particles of 200 m / sec or more is practically effective because it is harder than this.
[0029]
Further, as an actual evaluation of the wear resistance, a decrease in the weight of the aluminum oxide film with the number of sliding in the side-rub durability test was measured. The experimental apparatus is shown in FIG.
In the experiment, first, the weight of a test piece with an aluminum oxide film to be evaluated is measured, and fixed to a fixing jig 2 of a table 1 of a side rubbing tester, and # 1500 silicon carbide abrasive paper is 10 mm on the circumference of the roller. The roller 3 affixed in width was pressed with a constant load of 1000 gf so as to be in line contact with the film surface of the test piece. As an operation of the side rubbing durability test apparatus, each time the fixing jig reciprocates left and right, the roller 3 rotates about 0.3 °. Note that the experiment was performed at a fixed speed of 0.63 m / sec.
[0030]
FIG. 7 is a plot of the weight reduction amount of the aluminum oxide film with the number of sliding times of the test piece prepared at the speed of each aluminum oxide fine particle, by the number of sliding times. For reference, the results of a sample with an aluminum oxide film produced by plasma spraying are also plotted.
[0031]
From FIG. 7, it was found that the weight reduction amount of the aluminum oxide film with the number of sliding times decreases as the speed of the aluminum oxide fine particles increases. This result suggested that the hardness of the film was improved as the speed of the fine particles shown in FIG. 5 increased. The test pieces formed at a gas flow rate of 50 m / sec or more have less wear loss due to the number of sliding and less wear than the test pieces prepared by plasma spraying. Became clear. A thing of 200 m / sec or more is further excellent.
[0032]
Next, the surface roughness (Ra) of the sliding contact layer formed using aluminum oxide fine particles, PZT (lead zirconate titanate) fine particles, and BT (barium titanate) fine particles as materials is shown in the following table.
[0033]
[Table 1]
Figure 0003874682
[0034]
As is apparent from the above table, the sliding contact layer according to the present invention can be used as a wear-resistant coat sufficiently without polishing. However, the surface may be further polished to obtain a good surface roughness.
[0035]
In addition, although stainless steel was shown as a base material in the examples, glass, metal, ceramics, semimetals, organic compounds, and the like can be mentioned, and aluminum oxide, PZT, and BT were shown as brittle materials. Titanium, zinc oxide, tin oxide, iron oxide, zirconium oxide, yttrium oxide, chromium oxide, hafnium oxide, beryllium oxide, magnesium oxide, silicon oxide, diamond oxide, boron carbide, silicon carbide, titanium carbide, zirconium carbide, Carbides such as vanadium carbide, niobium carbide, chromium carbide, tungsten carbide, molybdenum carbide, tantalum carbide, nitrides such as boron nitride, titanium nitride, aluminum nitride, silicon nitride, niobium nitride, tantalum nitride, boron, aluminum boride, boron Silicon boride, titanium boride, zirconium boride, boride Borides such as nadium, niobium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, or a mixture or multi-component solid solution thereof, lead titanate, lithium titanate, strontium titanate, titanate Addition of piezoelectric and pyroelectric ceramics such as aluminum and PLZT, high toughness ceramics such as sialon and cermet, biocompatible ceramics such as hydroxyapatite and calcium phosphate, silicon, germanium, and various doped materials such as phosphorus And semiconducting compounds such as gallium arsenide, indium arsenide, and cadmium sulfide.
[0036]
The following method was used to measure the velocity of the fine particles. FIG. 8 shows a particle velocity measuring apparatus. A nozzle 21 for injecting aerosol into a chamber (not shown) is placed with the opening facing upward, and a substrate 23 placed at the tip of a rotary blade 22 that is rotated by a motor and a substrate surface that is 19 mm below the substrate surface. A particle velocity measuring device 2 having a slit 24 having a fixed notch with a width of 0.5 mm is arranged. The distance from the opening of the nozzle 21 to the substrate surface is 24 mm.
[0037]
Next, a particle velocity measuring method will be described. The aerosol is sprayed according to the actual composite structure manufacturing method. It is preferable to install the particle velocity measuring device 2 shown in the drawing instead of the substrate on which the structure is formed in the structure forming device. A chamber (not shown) is placed under reduced pressure, and after a pressure of several Torr or less, aerosol containing particles is ejected from the nozzle 21. In this state, the particle velocity measuring device 2 is operated at a constant rotational speed. Part of the particles that have jumped out from the opening of the nozzle 21 collide with the substrate surface through the clearance gaps of the slit 24 when the substrate 23 comes to the upper part of the nozzle 21, and the structure ( Collision marks) are formed. Since the position of the substrate 23 is changed by the rotation of the rotary blade 22 while the particles reach the substrate surface 19 mm away from the slit, the amount of displacement is larger than the perpendicular crossing position from the notch of the slit 24 on the substrate 23. Collide with the displaced position. The distance from the perpendicular crossing position to the structure formed by collision is measured by surface unevenness measurement, and using this distance, the distance from the slit 24 and the substrate surface, and the value of the rotational speed of the rotary blade 22, the nozzle 21 is measured. As the velocity of the particles ejected from the nozzle, the average velocity from a location 5 mm away from the opening of the nozzle 21 to a location 24 mm away was calculated, and this was used as the velocity of the particles in this case.
[0038]
Next, the surface unevenness profile of the anchor layer formed with the structure formation is shown in FIG. After forming an aluminum oxide film with a film thickness of about 10 μm on a brass substrate with a mirror-finished surface using a fine particle beam deposition method, a tensile stress is applied to the film to peel the film from the substrate to expose the anchor layer. The surface roughness of the substrate and the anchor layer were measured using a stylus type surface shape measuring device Dektak 3030 manufactured by Nippon Vacuum Technology Co., Ltd. The upper profile in FIG. 9 is the surface profile of the brass substrate, and the lower profile is the profile of the anchor layer. From the figure, it can be seen that the anchor layer is formed by the collision of the fine particles. The surface roughness Ra of the surface profile measuring device was 7.7 nm for the substrate surface and 73.8 nm for the anchor layer at a sweep distance of 200 μm.
[0039]
【The invention's effect】
As described above, the sliding member according to the present invention has a sliding contact portion with extremely high hardness compared to the conventional one at any location, for example, a complicated curved surface or a fine location, so that it can be applied as a sliding member. The range is greatly expanded.
[Brief description of the drawings]
FIG. 1 is a photomicrograph in which the structure of an aluminum oxide film prepared by the method of the present invention is enlarged in a plan view. FIG. 2 is a photomicrograph in which the structure of an aluminum oxide film prepared by the method of the present invention is enlarged in cross section. Fig. 4 is a micrograph in which the structure of an aluminum oxide film prepared by a conventional method is enlarged in a plan view. Fig. 4 is a micrograph in which the structure of an aluminum oxide film prepared by a conventional method is enlarged in a cross-section. 6 is a graph showing the hardness of each aluminum oxide film formed. FIG. 6 is a diagram showing an experimental apparatus for a side-rub durability test. FIG. 7 is associated with the number of sliding of test pieces prepared at the speed of each aluminum oxide fine particle. FIG. 8 is a graph showing a fine particle velocity measuring device. FIG. 9 is a diagram showing a surface unevenness profile of a substrate and an anchor layer.

Claims (3)

脆性材料微粒子をガス中に分散させたエアロゾルを搬送し、前記脆性材料微粒子の速度を400〜800m/secとして基材に衝突させて、前記脆性材料微粒子の一次粒子が破砕した微細断片粒子を生成し、前記微細断片粒子の前記基材への接着あるいは前記微細断片粒子同士の接合により、焼成することなく、ビッカース硬度がHv=1400以上で緻密質の脆性材料からなる摺接層を前記基材表面に形成させて得られることを特徴とする摺動部材の作製方法。An aerosol in which brittle material fine particles are dispersed in a gas is transported and collided with a base material at a speed of the brittle material fine particles of 400 to 800 m / sec to generate fine fragment particles in which primary particles of the brittle material fine particles are crushed. Then, the base material is made of a slidable contact layer made of a dense brittle material having a Vickers hardness of Hv = 1400 or more without firing by bonding the fine piece particles to the base material or joining the fine piece particles. A method for producing a sliding member, which is obtained by forming on a surface. 請求項1に記載の摺動部材の作製方法において、前記脆性材料微粒子が酸化アルミニウムであることを特徴とする摺動部材の作製方法。 The method for manufacturing a sliding member according to claim 1, wherein the brittle material fine particles are aluminum oxide . 請求項1または請求項2に記載の摺動部材の作製方法において、前記基材は、金属材料又は有機材料であることを特徴とする摺動部材の作製方法。 3. The method for manufacturing a sliding member according to claim 1 , wherein the base material is a metal material or an organic material.
JP2002077629A 2001-03-22 2002-03-20 Sliding member and manufacturing method thereof Expired - Lifetime JP3874682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077629A JP3874682B2 (en) 2001-03-22 2002-03-20 Sliding member and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-81810 2001-03-22
JP2001081810 2001-03-22
JP2002077629A JP3874682B2 (en) 2001-03-22 2002-03-20 Sliding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002348677A JP2002348677A (en) 2002-12-04
JP3874682B2 true JP3874682B2 (en) 2007-01-31

Family

ID=26611749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077629A Expired - Lifetime JP3874682B2 (en) 2001-03-22 2002-03-20 Sliding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3874682B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951997B2 (en) 2003-09-25 2007-08-01 ブラザー工業株式会社 Liquid transfer device
JP4122305B2 (en) * 2004-02-18 2008-07-23 大同メタル工業株式会社 Slide bearing for internal combustion engine
JP2005317952A (en) * 2004-03-30 2005-11-10 Brother Ind Ltd Piezoelectric actuator, ink-jet head and manufacturing method of them
WO2006090571A1 (en) * 2005-02-22 2006-08-31 Konica Minolta Opto, Inc. Light emitting diode and method for manufacturing same
JP2007127136A (en) * 2007-02-23 2007-05-24 Brother Ind Ltd Liquid transfer device
MX2017000407A (en) * 2014-10-02 2017-05-01 Nippon Steel & Sumitomo Metal Corp Hearth roll and manufacturing method therefor.
JP7057830B2 (en) * 2018-08-02 2022-04-20 日産自動車株式会社 Sliding members and internal combustion engine members

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753908B2 (en) * 1986-03-20 1995-06-07 株式会社東芝 High-speed sliding member manufacturing method
JP3172488B2 (en) * 1998-03-10 2001-06-04 トーカロ株式会社 Soft non-ferrous metal member excellent in wear resistance and method for surface modification of soft non-ferrous metal member
JP3620337B2 (en) * 1999-04-16 2005-02-16 トヨタ自動車株式会社 Metal matrix composite material and method for producing the same
JP3265481B2 (en) * 1999-04-23 2002-03-11 独立行政法人産業技術総合研究所 Low temperature molding of brittle material ultrafine particles

Also Published As

Publication number Publication date
JP2002348677A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP3500393B2 (en) Composite structure and manufacturing method thereof
JP5450872B2 (en) Method for regenerating a sputtering target
US7318967B2 (en) Composite structure body and method and apparatus for manufacturing thereof
JP5021863B2 (en) Coating production method and article
WO2013042635A1 (en) Laminate and laminate manufacturing method
JP4330859B2 (en) Coated cemented carbide and method for producing the same
Pogrebnjak Hard and superhard nanostructured and nanocomposite coatings
JP3874682B2 (en) Sliding member and manufacturing method thereof
JP2009062607A (en) Coated body
CN106906442A (en) A kind of coating with high rigidity and self lubricity and preparation method thereof
CN102245801B (en) Method of making cutting tool inserts with high demands on dimensional accuracy
JP2006131992A (en) Ceramic film and its manufacturing method, ceramic compound film and its manufacturing method, and cutting tool
JP6569376B2 (en) Carbide tool and manufacturing method thereof
JP2003183848A (en) Composite structure and manufacturing process therefor
KR20130135743A (en) Nano structured composite thin film, methods for forming the same, members with low friction and method for forming the same
KR101573010B1 (en) MANUFACTURING METHOD AND APPARATUS OF SiC COATING LAYERS
JP3850257B2 (en) Low temperature forming method for brittle material structures
JP5471842B2 (en) Surface coated cutting tool
JPH0797603A (en) Ceramic matrix base material for diamond coating and production of base material for coating
JP2011131348A (en) Surface coating cutting tool
Miao et al. Nanometer grain titanium carbonitride coatings with continuously graded interface onto silicon nitride cutting tools by pulsed high energy density plasma
JP2008019464A (en) Diamond coating film and production method therefor
JP5459498B2 (en) Surface coated cutting tool
JP2002309383A (en) Brittle material composite structure and production method therefor
JP5392033B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Ref document number: 3874682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term