JP3868692B2 - Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus - Google Patents

Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus Download PDF

Info

Publication number
JP3868692B2
JP3868692B2 JP2000042807A JP2000042807A JP3868692B2 JP 3868692 B2 JP3868692 B2 JP 3868692B2 JP 2000042807 A JP2000042807 A JP 2000042807A JP 2000042807 A JP2000042807 A JP 2000042807A JP 3868692 B2 JP3868692 B2 JP 3868692B2
Authority
JP
Japan
Prior art keywords
battery
internal resistance
temperature
deterioration degree
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000042807A
Other languages
Japanese (ja)
Other versions
JP2001228226A (en
Inventor
英明 蒲原
倫人 榎本
正志 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000042807A priority Critical patent/JP3868692B2/en
Publication of JP2001228226A publication Critical patent/JP2001228226A/en
Application granted granted Critical
Publication of JP3868692B2 publication Critical patent/JP3868692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリーの劣化度を判定する劣化度判定装置であって、特にバッテリーの温度と充電状態とを考慮に入れて劣化度を判定することのできるバッテリーの劣化度判定装置及びバッテリーの劣化度判定装置における劣化度算出プログラムを記録した記録媒体に関する。
【0002】
【従来の技術】
従来、バッテリーの劣化度を判定するには、自動車用鉛バッテリーの場合には始動性が悪くなった、また電動車両駆動用バッテリーの場合には走行距離が短くなったなどの人の感覚に頼って判定していた。
【0003】
そこで、バッテリーの劣化度、すなわち寿命を客観的に判定するために、バッテリーの寿命がバッテリーの内部抵抗と関係することから、バッテリーの内部抵抗を測定することによって、バッテリーの寿命を判断することが行われていた。
【0004】
さらに、その内部抵抗は温度によって変化することから、内部抵抗を温度補正することによって、より正確に鉛蓄電池の寿命を判定するようにしていた。
【0005】
このような従来の鉛蓄電池の寿命判定装置について、図9に基づいて説明する。
【0006】
図9に示すように、従来の鉛蓄電池の寿命判定装置101は、鉛蓄電池102の内部抵抗を測定する内部抵抗測定手段103と、鉛蓄電池102の温度を測定する温度測定手段104と、温度測定手段104で測定された温度に基づいて、内部抵抗測定手段103で測定された内部抵抗の温度補正を行う温度補正手段105と、温度補正された内部抵抗に基づいて鉛蓄電池102の寿命を判定する寿命判定手段106とから構成されている。
【0007】
この寿命判定装置101において、まず内部抵抗測定手段103によって鉛蓄電池102の内部抵抗が測定され、そのときの温度が温度測定手段104で測定されて温度補正手段105へ送信される。そして、温度補正手段105では温度測定手段104で測定された温度に基づいて内部抵抗測定手段103で測定された内部抵抗を補正する。このとき、温度補正手段105は予め実測した温度−内部抵抗特性を記憶しており、この記憶した特性に基づいて内部抵抗の温度補正を行う。
【0008】
この温度補正された内部抵抗の値は寿命判定手段106に送られ、この寿命判定手段106では予め記憶されたバッテリーの寿命時の内部抵抗のデータと温度補正された内部抵抗とを比較して寿命の判定を行う。
【0009】
【発明が解決しようとする課題】
しかしながら、蓄電池の内部抵抗は温度だけではなく、蓄電池の充電状態によっても変化する。
【0010】
従って、上述したような従来の寿命判定装置のように、内部抵抗を温度によって補正しただけでは蓄電池の寿命を誤って判定してしまうという問題点があった。
【0011】
さらに、バッテリーの内部抵抗が生じる原因には、端子−電極間や電解液の電気抵抗、化学反応に因るもの等、いくつかの原因に分けられる。したがって、新品と劣化品との間の比較を行う場合には、ある特定の抵抗成分に分けて比較すると正確に寿命を判定することができるが、この場合には装置が煩雑になるという問題点があった。
【0012】
例えば、内部抵抗の抵抗成分は、オーミック抵抗成分、活性化分極成分、及び濃度分極成分に分けることができるが、これらを分けて測定するためには、一般的に交流成分を印加し、この交流成分の周波数を変えることによって測定することができる。しかし、このように一定周波数の交流を印可するためには非常に煩雑な装置を必要としていた。
【0013】
本発明は上記事情に鑑みてなされたものであり、その目的は、温度だけではなく、蓄電池の充電状態も考慮に入れて、バッテリーの寿命を判定することのできるバッテリーの劣化度判定装置及びバッテリーの劣化度判定装置における劣化度算出プログラムを記録した記録媒体を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明であるバッテリーの劣化度判定装置は、バッテリーの劣化度を算出する劣化度判定装置であって、劣化度の判定対象であるバッテリーの開回路電圧と前記劣化度の判定対象であるバッテリーの充電状態との関係を表す電圧−充電状態特性データと、未使用時のバッテリーの充電状態と内部抵抗との関係を表す第1の充電状態−抵抗特性データと、寿命時のバッテリーの充電状態と内部抵抗との関係を表す第2の充電状態−抵抗特性データと、前記未使用時のバッテリーの内部抵抗と温度との関係を表す第1の抵抗−温度特性データと、前記寿命時のバッテリーの内部抵抗と温度との関係を表す第2の抵抗−温度特性データとを格納する記憶装置と、前記劣化度の判定対象であるバッテリーの温度を測定する温度センサと、前記劣化度の判定対象であるバッテリーの電圧を測定する電圧センサと、前記劣化度の判定対象であるバッテリーに流れる電流を測定する電流センサと、前記電圧センサで測定された前記開回路電圧から、前記電圧−充電状態特性データに基づいて前記劣化度の判定対象であるバッテリーの充電状態を算出する充電状態算出手段と、この充電状態算出手段で算出された前記充電状態から前記第1の充電状態−抵抗特性データに基づいて、前記未使用時のバッテリーの内部抵抗を算出するとともに、前記充電状態から前記第2の充電状態−抵抗特性データに基づいて、前記寿命時のバッテリーの内部抵抗を算出する内部抵抗データ算出手段と、この内部抵抗データ算出手段で算出された前記未使用時のバッテリーの内部抵抗を前記第1の抵抗−温度特性データと前記温度センサで測定された温度とに基づいて温度補正するとともに、前記寿命時のバッテリーの内部抵抗を前記第2の抵抗−温度特性データと前記温度センサで測定された温度とに基づいて温度補正する温度補正手段と、前記電圧センサで測定された前記開回路電圧と、前記劣化度の判定対象であるバッテリーの放電時における電流と電圧との相関関係とに基づいて、前記劣化度の判定対象であるバッテリーの内部抵抗を算出する内部抵抗算出手段と、この内部抵抗算出手段で算出された前記劣化度の判定対象であるバッテリーの内部抵抗と、温度補正された前記未使用時のバッテリーの内部抵抗と、温度補正された前記寿命時のバッテリーの内部抵抗とに基づいて、前記劣化度の判定対象であるバッテリーの劣化度を算出する劣化度算出手段とを含むことを特徴とする。
【0015】
この請求項1の発明によれば、内部抵抗を温度補正するだけではなく、充電状態をも考慮にいれて劣化度を算出するので、より正確な劣化度の判定が可能となる。
【0016】
さらに、劣化度A(%)を具体的な数値として算出することによって、劣化の進行具合を客観的に把握することができる。
【0017】
請求項2に記載の発明であるバッテリーの劣化度判定装置における劣化度算出プログラムを記録した記録媒体は、劣化度の判定対象であるバッテリーの開回路電圧と前記劣化度の判定対象であるバッテリーの充電状態との関係を表す電圧−充電状態特性データと、未使用時のバッテリーの充電状態と内部抵抗との関係を表す第1の充電状態−抵抗特性データと、寿命時のバッテリーの充電状態と内部抵抗との関係を表す第2の充電状態−抵抗特性データと、前記未使用時のバッテリーの内部抵抗と温度との関係を表す第1の抵抗−温度特性データと、前記寿命時のバッテリーの内部抵抗と温度との関係を表す第2の抵抗−温度特性データとを記憶装置に格納し、これらのデータに基づいて前記劣化度の判定対象であるバッテリーの劣化度を算出する劣化度判定装置における劣化度算出プログラムを記録した記録媒体であって、電圧センサで測定された前記開回路電圧から、前記電圧−充電状態特性データに基づいて前記劣化度の判定対象であるバッテリーの充電状態を算出する充電状態算出処理と、この充電状態算出処理で算出された前記充電状態から前記第1の充電状態−抵抗特性データに基づいて、前記未使用時のバッテリーの内部抵抗を算出するとともに、前記充電状態から前記第2の充電状態−抵抗特性データに基づいて、前記寿命時のバッテリーの内部抵抗を算出する内部抵抗データ算出処理と、この内部抵抗データ算出処理で算出された前記未使用時のバッテリーの内部抵抗を前記第1の抵抗−温度特性データと温度センサで測定された温度とに基づいて温度補正するとともに、前記寿命時のバッテリーの内部抵抗を前記第2の抵抗−温度特性データと前記温度センサで測定された温度とに基づいて温度補正する温度補正処理と、前記電圧センサで測定された前記開回路電圧と、前記劣化度の判定対象であるバッテリーの放電時における電流と電圧との相関関係とに基づいて、前記劣化度の判定対象であるバッテリーの内部抵抗を算出する内部抵抗算出処理と、この内部抵抗算出処理で算出された前記劣化度の判定対象であるバッテリーの内部抵抗と、温度補正された前記未使用時のバッテリーの内部抵抗と、温度補正された前記寿命時のバッテリーの内部抵抗とに基づいて、前記劣化度の判定対象であるバッテリーの劣化度を算出する劣化度算出処理とを含むことを特徴とする。
【0018】
この請求項2の発明によれば、内部抵抗を温度補正するだけではなく、充電状態をも考慮にいれて劣化度を算出するので、より正確な劣化度の判定が可能となる。
【0019】
さらに、劣化度A(%)を具体的な数値として算出することによって、劣化の進行具合を客観的に把握することができる。
【0020】
【発明の実施の形態】
まず、本実施形態のバッテリーの劣化度判定装置の構成を図1に基づいて説明する。
【0021】
図1に示すように、本実施形態の劣化度判定装置1は、判定対象であるバッテリー2の開回路電圧(OCV)を測定する電圧センサ3と、バッテリー2の温度を測定する温度センサ4と、バッテリー2の電流を測定する電流センサ5と、バッテリー2に接続された負荷6と、各センサからのアナログ信号をデジタル信号に変換するA/D変換器7と、バッテリーの劣化度を算出する劣化度算出装置8と、劣化度を算出するためのデータを格納した記憶装置9とから構成されている。
【0022】
さらに、劣化度算出装置8は、電圧センサ4で測定された開回路電圧から、電圧−充電状態特性データに基づいて判定対象のバッテリー2の充電状態を算出する充電状態算出手段10と、この充電状態算出手段10で算出された充電状態から第1の充電状態−抵抗特性データに基づいて、未使用時のバッテリーの内部抵抗を算出し、同様に充電状態から第2の充電状態−抵抗特性データに基づいて、寿命時のバッテリーの内部抵抗を算出する内部抵抗データ算出手段11と、この内部抵抗データ算出手段11で算出された未使用時のバッテリーの内部抵抗を第1の抵抗−温度特性データと温度センサ4で測定された温度とに基づいて温度補正するとともに、寿命時のバッテリーの内部抵抗を第2の抵抗−温度特性データと温度センサ4で測定された温度とに基づいて温度補正する温度補正手段12と、電圧センサ3で測定された開回路電圧と、判定対象のバッテリー2の放電時における電流と電圧との相関関係とに基づいて、バッテリー2の内部抵抗を算出する内部抵抗算出手段13と、この内部抵抗算出手段13で算出されたバッテリー2の内部抵抗と、温度補正された未使用時のバッテリーの内部抵抗と、温度補正された寿命時のバッテリーの内部抵抗とに基づいて、判定対象のバッテリー2の劣化度を算出する劣化度算出手段14とを含んでいる。
【0023】
なお、劣化度算出装置8は、各種の処理を行うためのCPUと、この処理の命令を記憶する記憶手段とを含むマイクロコンピュータなどの通常のコンピュータシステムが含まれる。上記劣化度算出装置8に含まれる充電状態算出手段10、内部抵抗データ算出手段11、温度補正手段12、内部抵抗算出手段13、劣化度算出手段14の各処理の命令やタイミング制約は記憶手段に保持されており、必要に応じてCPUにロードされ、実行がなされる。
【0024】
また、記憶装置9は、劣化度の判定対象であるバッテリー2の開回路電圧とバッテリー2の充電状態との関係を表す電圧−充電状態特性データと、未使用時のバッテリーの充電状態と内部抵抗との関係を表す第1の充電状態−抵抗特性データと、寿命時のバッテリーの充電状態と内部抵抗との関係を表す第2の充電状態−抵抗特性データと、未使用時のバッテリーの内部抵抗と温度との関係を表す第1の抵抗−温度特性データと、寿命時のバッテリーの内部抵抗と温度との関係を表す第2の抵抗−温度特性データとを格納している。
【0025】
次に、図2のフローチャートに基づいて本実施形態のバッテリーの劣化度判定装置における劣化度判定処理について説明する。
【0026】
まず、劣化度の判定対象となっているバッテリー2の無負荷で平衡状態にあるときの開回路電圧(OCV)を電圧センサ3によって測定するとともに、電流センサ5でバッテリー2に流れる電流を測定する(S201)。さらに温度センサ4で、このときのバッテリー2の温度を測定する(S202)。この測定された温度、OCV及び電流のアナログ信号はA/D変換器7でデジタル信号に変換されて劣化度算出装置8に送られる。
【0027】
この劣化度算出装置8では、まず充電状態算出手段10において、OCVから記憶装置9に格納されている電圧−充電状態特性データに基づいて充電状態(X)を算出する(S203)。この電圧−充電状態特性データは、開回路電圧(OCV)と充電状態との関係を記録したもので、図3に示すようにOCVと充電状態とは直線的な関係を持っていることが記録されている。
【0028】
ここで、測定されたOCVをVn、満充電時のOCVをVs、放電終止時のOCVをVeとすると、充電状態X(%)は式(1)によって計算することができる。
【0029】
充電状態X(%)=(Vn−Ve)/(Vs−Ve)×100 (1)
例えば、バッテリーの初期特性からVs=12.863(V)、Ve=11.743(V)とし、測定されたOCVがOCV=Vn=12.639(V)だったとすると、充電状態X(%)は式(1)により

Figure 0003868692
と計算することができる。
【0030】
次に、このようにして充電状態X(%)が算出されると、内部抵抗データ算出手段11は記憶装置9に格納されている第1の充電状態−抵抗特性データと第2の充電状態−抵抗特性データとを読み出して、充電状態X(%)から第1の充電状態−抵抗特性データに基づいてバッテリーの未使用時の内部抵抗Rnew(X)を算出するとともに、充電状態X(%)から第2の充電状態−抵抗特性データに基づいてバッテリーの寿命時の内部抵抗Raged(X)を算出する(S204)。
【0031】
ここで、第1の充電状態−抵抗特性データは、新品のバッテリーにおける充電状態と内部抵抗との関係を測定して記録したもので、図4のRnewに示すような相関関係が得られた。
【0032】
同様に、第2の充電状態−抵抗特性データは、寿命が来たときのバッテリーにおける充電状態と内部抵抗との関係を測定して記録したもので、図4のRagedに示すような相関関係が得られた。
【0033】
この図4に示す相関関係に基づいて、充電状態から新品時及び寿命時の内部抵抗を算出する。例えば、充電状態が80%のときには、Raged(80%)=0.0128(Ω)、Rnew(80%)=0.0076(Ω)と求めることができる。
【0034】
ただし、図4に示すように、バッテリーの内部抵抗はバッテリーの充電状態によって変化する。とくに、充電状態が高いところでは、内部抵抗は充電状態に対して直線的な変化を示すが、充電状態が低いところでは急激な増加を示す。
【0035】
ここで、後で述べる劣化度A(%)の算出では、内部抵抗と充電状態とが直線的な関係をもつ領域でのみ意味のある劣化度を算出できるので、この直線関係が成り立つ充電状態領域における充電状態と内部抵抗との相関関係を第1の充電状態−抵抗特性データ及び第2の充電状態−抵抗特性データとして記憶装置9に格納しておく。
【0036】
次に、新品時の内部抵抗Rnew(X)と寿命時の内部抵抗Raged(X)が算出されると、温度補正手段12はこれらの内部抵抗Rnew(X)、Raged(X)を図5に示す第1の抵抗−温度特性データ及び図6に示す第2の抵抗−温度特性データに基づいて温度補正を行う(S205)。
【0037】
温度補正手段12は、温度センサ4で測定された温度と記憶装置9に格納されている第1の抵抗−温度特性データに基づいて未使用時の内部抵抗Rnew(X)の温度補正を行い、温度補正された未使用時の内部抵抗Rnew(X、t)を算出する。
【0038】
同様に、温度補正手段12は、温度センサ4で測定された温度と記憶装置9に格納されている第2の抵抗−温度特性データに基づいて寿命時の内部抵抗Raged(X)の温度補正を行い、温度補正された寿命時の内部抵抗Raged(X、t)を算出する。
【0039】
ここで、第1及び第2の抵抗−温度特性データは、バッテリーの内部抵抗の温度特性を記録したもので、25℃のときの内部抵抗を1とした場合の比抵抗を示している。例えば、未使用時の25℃のときの比抵抗は1.00、30℃のときの比抵抗は0.95となるので、温度補正された未使用時の内部抵抗は、それぞれ
Rnew(80%、25℃)= 0.0076×1.00=0.0076(Ω)、
Rnew(80%、30℃)= 0.0076×0.95=0.00722(Ω)
と算出することができる。
【0040】
このように、充電状態X(%)における内部抵抗Rnew(X)を求め、このRnew(X)を温度補正してRnew(X、t)を算出するので、充電状態と温度補正の両方を考慮に入れた劣化度の算出が可能となる。
【0041】
次に、内部抵抗算出手段13は、開回路電圧(OCV)から劣化度判定時のバッテリー2の内部抵抗を算出する(S206)。
【0042】
まず、バッテリーを放電させると、図7に示すように時間の経過に伴って放電電流が増加していき、一定の電流値に達したところで放電電流は減少し始め、その後、電流値は0になる。
【0043】
このときの電流−電圧特性を図8に示す。この図8において、放電前にはバッテリーの電圧はOCVを示しており、放電が開始されると電圧は放電電流増加時にはVaの直線にしたがって変化し、その後放電電流減少時にはVbの直線にしたがって変化して電流値は0になる。このとき、放電電流値が0(A)になったところでもバッテリーの電圧がOCVまで復帰しないのはバッテリー中で濃度分極等の原因により電圧降下を示すためである。
【0044】
内部抵抗算出手段13は、バッテリー2を放電させて電流と電圧との関係をサンプリングし、図8に示すような電流−電圧特性データを得る。
【0045】
ここで、バッテリーの放電電流増加時の電流と電圧との間には、バッテリーの電圧値をV、放電電流値をI、バッテリーの内部抵抗をRとすると
V=R×I+OCV (2)
の関係が成り立つことから、図8に示す電流−電圧特性データの放電電流増加時の関係に基づいてバッテリーの内部抵抗Rを算出することができる。例えば、図8ではR=−0.0080と計算することができる。
【0046】
このようにして、劣化度判定時の内部抵抗Rと温度補正された未使用時の内部抵抗Rnew(X、t)と温度補正された寿命時の内部抵抗Raged(X、t)とが求められたら、劣化度算出手段14は次式によって劣化度A(%)を算出する(S207)。
【0047】
A(%)={(R−Rnew(X、t))/(Raged(X、t)−Rnew(X、t))}×100 (3)例えば、上述した数値、R=0.0080(Ω)、Rnew(80%、25℃)=0.0076(Ω)、Raged(80%、25℃)=0.0128(Ω)を用いて、計算すると
Figure 0003868692
と計算することができる。
【0048】
このように、劣化度A(%)を具体的な数値として算出することによって、劣化の進行具合を客観的に把握することができる。
【0049】
なお、上述した劣化度判定装置の各処理を実現するためのプログラムは記録媒体に保存することができ、この記録媒体をコンピュータシステムによって読み込ませることにより、前記プログラムを実行してコンピュータを制御しながら上述した劣化度判定装置の各処理を実現することができる。ここで、前記記録媒体とは、メモリ装置、磁気ディスク装置、光ディスク装置等、プログラムを記録することができるような装置が含まれる。
【0050】
【発明の効果】
以上説明したように、本発明のバッテリーの劣化度判定装置及びバッテリーの劣化度判定装置における劣化度算出プログラムを記録した記録媒体によれば、内部抵抗を温度補正するだけではなく、充電状態をも考慮にいれて劣化度を算出するので、より正確な劣化度の判定が可能となる。
【0051】
さらに、劣化度A(%)を具体的な数値として算出することによって、劣化の進行具合を客観的に把握することができる。
【図面の簡単な説明】
【図1】本発明によるバッテリーの劣化度判定装置の一実施形態の構成を示すブロック図である。
【図2】図1に示す劣化度判定装置における劣化度算出処理を説明するためのフローチャートである。
【図3】図1に示す記憶装置9に格納された電圧−充電状態特性データの一例を示す図である。
【図4】図1に示す記憶装置9に格納された第1及び第2の充電状態−抵抗特性データの一例を示す図である。
【図5】図1に示す記憶装置9に格納された第1の抵抗−温度特性データの一例を示す図である。
【図6】図1に示す記憶装置9に格納された第2の抵抗−温度特性データの一例を示す図である。
【図7】図1に示すバッテリー2の放電時の電流と時間の関係を示す図である。
【図8】図1に示すバッテリー2の放電時の電流−電圧特性の一例を示す図である。
【図9】従来の鉛蓄電池の寿命判定装置の構成を示すブロック図である。
【符号の説明】
1 劣化度判定装置
2 バッテリー
3 電圧センサ
4 温度センサ
5 電流センサ
6 負荷
7 A/D変換器
8 劣化度算出装置
9 記憶装置
10 充電状態算出手段
11 内部抵抗データ算出手段
12 温度補正手段
13 内部抵抗算出手段
14 劣化度算出手段
101 寿命判定装置
102 鉛蓄電池
103 内部抵抗測定手段
104 温度測定手段
105 温度補正手段
106 寿命判定手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deterioration degree determination apparatus for determining a deterioration degree of a battery, and in particular, a deterioration degree determination apparatus for a battery capable of determining a deterioration degree in consideration of a battery temperature and a charged state, and deterioration of the battery. The present invention relates to a recording medium on which a deterioration degree calculation program in a degree determination device is recorded.
[0002]
[Prior art]
Conventionally, the degree of deterioration of a battery is determined by the human sense that startability has deteriorated in the case of lead batteries for automobiles, and that the mileage has decreased in the case of batteries for driving electric vehicles. It was judged.
[0003]
Therefore, in order to objectively determine the degree of deterioration of the battery, that is, the lifetime, the lifetime of the battery is related to the internal resistance of the battery. Therefore, the lifetime of the battery can be determined by measuring the internal resistance of the battery. It was done.
[0004]
Furthermore, since the internal resistance varies depending on the temperature, the life of the lead storage battery is more accurately determined by correcting the temperature of the internal resistance.
[0005]
Such a conventional lead storage battery life determination device will be described with reference to FIG.
[0006]
As shown in FIG. 9, a conventional lead storage battery life determination device 101 includes an internal resistance measurement unit 103 that measures the internal resistance of the lead storage battery 102, a temperature measurement unit 104 that measures the temperature of the lead storage battery 102, and a temperature measurement. Based on the temperature measured by the means 104, temperature correction means 105 for correcting the temperature of the internal resistance measured by the internal resistance measurement means 103, and determining the life of the lead storage battery 102 based on the temperature-corrected internal resistance. It is comprised from the lifetime determination means 106. FIG.
[0007]
In this life determination apparatus 101, first, the internal resistance of the lead storage battery 102 is measured by the internal resistance measuring means 103, and the temperature at that time is measured by the temperature measuring means 104 and transmitted to the temperature correcting means 105. The temperature correction unit 105 corrects the internal resistance measured by the internal resistance measurement unit 103 based on the temperature measured by the temperature measurement unit 104. At this time, the temperature correction means 105 stores a temperature-internal resistance characteristic measured in advance, and performs temperature correction of the internal resistance based on the stored characteristic.
[0008]
The temperature-corrected internal resistance value is sent to the life determining means 106, which compares the stored internal resistance data at the time of battery life with the temperature-corrected internal resistance. Judgment is made.
[0009]
[Problems to be solved by the invention]
However, the internal resistance of the storage battery varies not only with temperature but also with the state of charge of the storage battery.
[0010]
Therefore, there is a problem that the life of the storage battery is erroneously determined only by correcting the internal resistance by temperature as in the conventional life determination device as described above.
[0011]
Furthermore, the cause of the internal resistance of the battery can be divided into several causes such as between the terminals and electrodes, the electrical resistance of the electrolyte, and the chemical reaction. Therefore, when comparing between a new product and a deteriorated product, it is possible to accurately determine the lifetime by dividing the comparison into specific resistance components, but in this case, the problem is that the apparatus becomes complicated was there.
[0012]
For example, the resistance component of the internal resistance can be divided into an ohmic resistance component, an activation polarization component, and a concentration polarization component. Generally, in order to measure these separately, an AC component is applied and this AC component is applied. It can be measured by changing the frequency of the component. However, in order to apply alternating current at a constant frequency in this way, a very complicated device is required.
[0013]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery deterioration degree determination device and a battery that can determine the life of a battery in consideration of not only the temperature but also the state of charge of the storage battery. Another object of the present invention is to provide a recording medium on which a deterioration degree calculation program is recorded.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a battery deterioration degree determination device according to a first aspect of the present invention is a deterioration degree determination apparatus that calculates a deterioration degree of a battery, and that opens a battery that is a deterioration degree determination target. Voltage representing the relationship between the circuit voltage and the state of charge of the battery that is the determination target of the deterioration level—Charge state characteristic data; and the first state of charge representing the relationship between the state of charge of the battery and the internal resistance when not in use— Resistance characteristic data, second charge state-resistance characteristic data representing the relationship between the state of charge and internal resistance of the battery at the time of life, and a first relationship representing the relationship between the internal resistance and temperature of the battery when not in use. A storage device for storing resistance-temperature characteristic data and second resistance-temperature characteristic data representing a relationship between the internal resistance and temperature of the battery at the time of the lifetime, and a battery of which the deterioration degree is to be determined A temperature sensor that measures the degree of deterioration, a voltage sensor that measures the voltage of the battery that is the determination target of the deterioration degree, a current sensor that measures the current flowing through the battery that is the determination target of the deterioration degree, and the voltage sensor Charge state calculation means for calculating a charge state of the battery whose deterioration degree is to be determined based on the voltage-charge state characteristic data, and the charge calculated by the charge state calculation means. Based on the first charging state-resistance characteristic data from the state, the internal resistance of the battery when not in use is calculated, and from the charging state, based on the second charging state-resistance characteristic data, the lifetime Internal resistance data calculation means for calculating the internal resistance of the battery at the time, and the unused battery calculated by the internal resistance data calculation means The temperature of the internal resistance is corrected based on the first resistance-temperature characteristic data and the temperature measured by the temperature sensor, and the internal resistance of the battery at the time of the lifetime is calculated based on the second resistance-temperature characteristic data and the temperature Temperature correction means for correcting the temperature based on the temperature measured by the temperature sensor, the open circuit voltage measured by the voltage sensor, and the current and voltage at the time of discharging the battery that is the determination target of the deterioration degree Based on the correlation, the internal resistance calculation means for calculating the internal resistance of the battery that is the determination target of the deterioration degree, and the internal resistance of the battery that is the determination target of the deterioration degree calculated by the internal resistance calculation means The deterioration degree is determined based on the temperature-corrected internal resistance of the battery when not in use and the temperature-corrected internal resistance of the battery at the end of life. And a deterioration degree calculating means for calculating a deterioration degree of a certain battery.
[0015]
According to the first aspect of the present invention, the degree of deterioration is calculated not only by correcting the temperature of the internal resistance but also taking the state of charge into consideration, so that the degree of deterioration can be determined more accurately.
[0016]
Furthermore, by calculating the deterioration degree A (%) as a specific numerical value, it is possible to objectively grasp the progress of deterioration.
[0017]
According to a second aspect of the present invention, there is provided a recording medium in which a deterioration degree calculation program in a battery deterioration degree determination device is recorded. Voltage-charge state characteristic data representing the relationship with the charge state, first charge state-resistance characteristic data representing the relationship between the charge state of the battery when not in use and the internal resistance, and the charge state of the battery at the end of its life A second charge state-resistance characteristic data representing a relationship with the internal resistance; a first resistance-temperature characteristic data representing a relationship between the internal resistance of the battery when not in use; and a temperature; Second resistance-temperature characteristic data representing the relationship between the internal resistance and temperature is stored in the storage device, and the deterioration degree of the battery that is the object of determination of the deterioration degree is calculated based on these data. A recording medium in which a deterioration degree calculation program is recorded in a deterioration degree determination device that performs a deterioration degree determination based on the voltage-charge state characteristic data from the open circuit voltage measured by a voltage sensor And calculating the internal resistance of the battery when not in use based on the first charge state-resistance characteristic data from the charge state calculated in the charge state calculation process. In addition, based on the second state of charge-resistance characteristic data from the state of charge, the internal resistance data calculation process for calculating the internal resistance of the battery at the time of life, and the internal resistance data calculation process calculated by the internal resistance data calculation process The internal resistance of the battery when not in use is temperature-corrected based on the first resistance-temperature characteristic data and the temperature measured by the temperature sensor. Both the temperature correction processing for correcting the internal resistance of the battery at the time of the lifetime based on the second resistance-temperature characteristic data and the temperature measured by the temperature sensor, and the opening measured by the voltage sensor. An internal resistance calculation process for calculating an internal resistance of the battery as a determination target of the deterioration degree based on a circuit voltage and a correlation between a current and a voltage when the battery as a determination target of the deterioration degree is discharged; The internal resistance of the battery that is the determination target of the degree of deterioration calculated in the internal resistance calculation process, the internal resistance of the battery that is not used after the temperature correction, and the internal resistance of the battery that is temperature-corrected during the lifetime And a deterioration level calculation process for calculating the deterioration level of the battery that is the determination target of the deterioration level.
[0018]
According to the second aspect of the present invention, the degree of deterioration is calculated not only by correcting the temperature of the internal resistance but also taking the state of charge into consideration, so that the degree of deterioration can be determined more accurately.
[0019]
Furthermore, by calculating the deterioration degree A (%) as a specific numerical value, it is possible to objectively grasp the progress of deterioration.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
First, the configuration of the battery deterioration degree determination apparatus according to the present embodiment will be described with reference to FIG.
[0021]
As shown in FIG. 1, the deterioration degree determination apparatus 1 of the present embodiment includes a voltage sensor 3 that measures an open circuit voltage (OCV) of a battery 2 that is a determination target, and a temperature sensor 4 that measures the temperature of the battery 2. A current sensor 5 for measuring the current of the battery 2, a load 6 connected to the battery 2, an A / D converter 7 for converting an analog signal from each sensor into a digital signal, and a degree of deterioration of the battery are calculated. It comprises a deterioration degree calculating device 8 and a storage device 9 storing data for calculating the deterioration degree.
[0022]
Further, the deterioration degree calculation device 8 includes a charge state calculation unit 10 that calculates the charge state of the battery 2 to be determined based on the voltage-charge state characteristic data from the open circuit voltage measured by the voltage sensor 4, and this charge. The internal resistance of the battery when not in use is calculated from the charge state calculated by the state calculation means 10 based on the first charge state-resistance characteristic data. Similarly, the second charge state-resistance characteristic data is calculated from the charge state. Based on the internal resistance data calculation means 11 for calculating the internal resistance of the battery at the time of life, and the internal resistance of the battery when not in use calculated by the internal resistance data calculation means 11 as the first resistance-temperature characteristic data. And the temperature measured by the temperature sensor 4, and the internal resistance of the battery at the time of life is measured by the second resistance-temperature characteristic data and the temperature sensor 4. Based on the temperature correction means 12 for correcting the temperature based on the measured temperature, the open circuit voltage measured by the voltage sensor 3, and the correlation between the current and voltage at the time of discharging the battery 2 to be determined, the battery The internal resistance of the battery 2 calculated by the internal resistance calculation means 13, the temperature-corrected internal resistance of the battery when not in use, and the temperature-corrected lifetime. Deterioration degree calculating means 14 for calculating the deterioration degree of the battery 2 to be determined based on the internal resistance of the battery at the time.
[0023]
The degradation degree calculation device 8 includes a normal computer system such as a microcomputer including a CPU for performing various processes and a storage unit for storing instructions for the processes. Instructions and timing constraints for each processing of the charging state calculation means 10, internal resistance data calculation means 11, temperature correction means 12, internal resistance calculation means 13, and deterioration degree calculation means 14 included in the deterioration degree calculation device 8 are stored in the storage means. It is held, loaded into the CPU as necessary, and executed.
[0024]
In addition, the storage device 9 includes voltage-charge state characteristic data representing the relationship between the open circuit voltage of the battery 2 to be determined for the degree of deterioration and the state of charge of the battery 2, and the state of charge and internal resistance of the battery when not in use. The first charging state-resistance characteristic data representing the relationship between the battery and the second charging state-resistance characteristic data representing the relationship between the state of charge of the battery during the life and the internal resistance, and the internal resistance of the battery when not in use The first resistance-temperature characteristic data representing the relationship between the temperature and the temperature, and the second resistance-temperature characteristic data representing the relationship between the internal resistance of the battery at the end of its life and the temperature are stored.
[0025]
Next, the deterioration degree determination process in the battery deterioration degree determination apparatus of this embodiment will be described based on the flowchart of FIG.
[0026]
First, the open circuit voltage (OCV) when the battery 2 to be judged for deterioration is in an equilibrium state with no load is measured by the voltage sensor 3, and the current flowing through the battery 2 is measured by the current sensor 5. (S201). Further, the temperature of the battery 2 at this time is measured by the temperature sensor 4 (S202). The analog signals of the measured temperature, OCV and current are converted into digital signals by the A / D converter 7 and sent to the deterioration degree calculation device 8.
[0027]
In the deterioration degree calculating device 8, first, the charging state calculating means 10 calculates the charging state (X) based on the voltage-charging state characteristic data stored in the storage device 9 from the OCV (S203). This voltage-charge state characteristic data records the relationship between the open circuit voltage (OCV) and the state of charge, and records that the OCV and the state of charge have a linear relationship as shown in FIG. Has been.
[0028]
Here, assuming that the measured OCV is Vn, the OCV at full charge is Vs, and the OCV at the end of discharge is Ve, the state of charge X (%) can be calculated by equation (1).
[0029]
Charge state X (%) = (Vn−Ve) / (Vs−Ve) × 100 (1)
For example, assuming that Vs = 12.863 (V) and Ve = 11.743 (V) from the initial characteristics of the battery, and the measured OCV is OCV = Vn = 12.639 (V), the state of charge X (% ) According to equation (1)
Figure 0003868692
And can be calculated.
[0030]
Next, when the state of charge X (%) is calculated in this way, the internal resistance data calculation means 11 performs first charging state stored in the storage device 9 -resistance characteristic data and second charging state- The resistance characteristic data is read out, and the internal resistance Rnew (X) when the battery is not used is calculated from the charging state X (%) based on the first charging state-resistance characteristic data, and the charging state X (%) Based on the second charge state-resistance characteristic data, the internal resistance Raged (X) at the time of battery life is calculated (S204).
[0031]
Here, the first state of charge-resistance characteristic data was recorded by measuring the relationship between the state of charge and the internal resistance of a new battery, and a correlation as shown by Rnew in FIG. 4 was obtained.
[0032]
Similarly, the second charge state-resistance characteristic data is obtained by measuring and recording the relationship between the charge state of the battery and the internal resistance at the end of its life, and has a correlation as shown by Raged in FIG. Obtained.
[0033]
Based on the correlation shown in FIG. 4, the internal resistance at the time of a new article and at the end of life is calculated from the charged state. For example, when the state of charge is 80%, Raged (80%) = 0.0128 (Ω) and Rnew (80%) = 0.766 (Ω) can be obtained.
[0034]
However, as shown in FIG. 4, the internal resistance of the battery varies depending on the state of charge of the battery. In particular, when the state of charge is high, the internal resistance changes linearly with respect to the state of charge, but when the state of charge is low, it shows a rapid increase.
[0035]
Here, in the calculation of the deterioration degree A (%) described later, since a meaningful deterioration degree can be calculated only in a region where the internal resistance and the charge state have a linear relationship, the charge state region where this linear relationship is established. Are stored in the storage device 9 as first charge state-resistance characteristic data and second charge state-resistance characteristic data.
[0036]
Next, when the internal resistance Rnew (X) at the time of a new product and the internal resistance Raged (X) at the time of life are calculated, the temperature correction means 12 shows these internal resistances Rnew (X) and Raged (X) in FIG. Temperature correction is performed based on the first resistance-temperature characteristic data shown and the second resistance-temperature characteristic data shown in FIG. 6 (S205).
[0037]
The temperature correction means 12 corrects the temperature of the internal resistance Rnew (X) when not in use based on the temperature measured by the temperature sensor 4 and the first resistance-temperature characteristic data stored in the storage device 9. The temperature-corrected internal resistance Rnew (X, t) when not in use is calculated.
[0038]
Similarly, the temperature correction unit 12 corrects the temperature of the internal resistance Raged (X) at the time of life based on the temperature measured by the temperature sensor 4 and the second resistance-temperature characteristic data stored in the storage device 9. And calculate the internal resistance Raged (X, t) at the time of the temperature corrected.
[0039]
Here, the first and second resistance-temperature characteristic data are records of the temperature characteristics of the internal resistance of the battery, and indicate the specific resistance when the internal resistance is 1 at 25.degree. For example, since the specific resistance at 25 ° C. when not in use is 1.00 and the specific resistance at 30 ° C. is 0.95, the temperature-corrected internal resistance is Rnew (80% , 25 ° C.) = 0.0076 × 1.00 = 0.0076 (Ω),
Rnew (80%, 30 ° C) = 0.0076 x 0.95 = 0.00722 (Ω)
Can be calculated.
[0040]
Thus, the internal resistance Rnew (X) in the state of charge X (%) is obtained, and the temperature is corrected for this Rnew (X) to calculate Rnew (X, t). Therefore, both the state of charge and the temperature correction are considered. It is possible to calculate the degree of deterioration included in the.
[0041]
Next, the internal resistance calculation means 13 calculates the internal resistance of the battery 2 at the time of deterioration determination from the open circuit voltage (OCV) (S206).
[0042]
First, when the battery is discharged, as shown in FIG. 7, the discharge current increases as time passes. When the battery reaches a certain current value, the discharge current starts decreasing, and then the current value becomes zero. Become.
[0043]
The current-voltage characteristic at this time is shown in FIG. In FIG. 8, the battery voltage indicates OCV before discharging, and when discharging starts, the voltage changes according to the Va line when the discharging current increases, and then changes according to the Vb line when the discharging current decreases. As a result, the current value becomes zero. At this time, the reason why the voltage of the battery does not return to OCV even when the discharge current value becomes 0 (A) is that the voltage drops due to concentration polarization or the like in the battery.
[0044]
The internal resistance calculation means 13 discharges the battery 2 and samples the relationship between current and voltage, and obtains current-voltage characteristic data as shown in FIG.
[0045]
Here, if the battery voltage value is V, the discharge current value is I, and the internal resistance of the battery is R between the current and voltage when the battery discharge current increases, V = R × I + OCV (2)
Therefore, the internal resistance R of the battery can be calculated based on the relationship when the discharge current increases in the current-voltage characteristic data shown in FIG. For example, in FIG. 8, R = −0.0080 can be calculated.
[0046]
In this way, the internal resistance R at the time of deterioration degree determination, the temperature-corrected internal resistance Rnew (X, t) when not used, and the temperature-corrected internal resistance Raged (X, t) at the lifetime are obtained. Then, the deterioration degree calculating means 14 calculates the deterioration degree A (%) by the following equation (S207).
[0047]
A (%) = {(R−Rnew (X, t)) / (Raged (X, t) −Rnew (X, t))} × 100 (3) For example, the above-described numerical value, R = 0.080 ( Ω), Rnew (80%, 25 ° C) = 0.0076 (Ω), Raged (80%, 25 ° C) = 0.0128 (Ω)
Figure 0003868692
And can be calculated.
[0048]
Thus, by calculating the deterioration degree A (%) as a specific numerical value, it is possible to objectively grasp the progress of deterioration.
[0049]
Note that a program for realizing each process of the above-described deterioration degree determination apparatus can be stored in a recording medium, and the recording medium is read by a computer system, thereby executing the program and controlling the computer. Each process of the above-described deterioration degree determination apparatus can be realized. Here, the recording medium includes a device capable of recording a program, such as a memory device, a magnetic disk device, and an optical disk device.
[0050]
【The invention's effect】
As described above, according to the battery deterioration degree determination apparatus and the recording medium in which the deterioration degree calculation program in the battery deterioration degree determination apparatus of the present invention is recorded, not only the internal resistance is temperature-corrected but also the state of charge is maintained. Since the deterioration degree is calculated in consideration, it is possible to more accurately determine the deterioration degree.
[0051]
Furthermore, by calculating the deterioration degree A (%) as a specific numerical value, it is possible to objectively grasp the progress of deterioration.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of a battery deterioration degree determination apparatus according to the present invention.
FIG. 2 is a flowchart for explaining deterioration degree calculation processing in the deterioration degree determination apparatus shown in FIG. 1;
3 is a diagram showing an example of voltage-charge state characteristic data stored in the storage device 9 shown in FIG. 1; FIG.
4 is a diagram showing an example of first and second charge state-resistance characteristic data stored in the storage device 9 shown in FIG. 1; FIG.
FIG. 5 is a diagram showing an example of first resistance-temperature characteristic data stored in the storage device 9 shown in FIG. 1;
6 is a diagram showing an example of second resistance-temperature characteristic data stored in the storage device 9 shown in FIG. 1. FIG.
7 is a diagram showing a relationship between current and time when the battery 2 shown in FIG. 1 is discharged. FIG.
FIG. 8 is a diagram showing an example of current-voltage characteristics when the battery 2 shown in FIG. 1 is discharged.
FIG. 9 is a block diagram showing a configuration of a conventional lead-acid battery life determination device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Deterioration degree determination apparatus 2 Battery 3 Voltage sensor 4 Temperature sensor 5 Current sensor 6 Load 7 A / D converter 8 Deterioration degree calculation apparatus 9 Storage device 10 Charging state calculation means 11 Internal resistance data calculation means 12 Temperature correction means 13 Internal resistance Calculation means 14 Degradation degree calculation means 101 Life determination device 102 Lead storage battery 103 Internal resistance measurement means 104 Temperature measurement means 105 Temperature correction means 106 Life determination means

Claims (2)

バッテリーの劣化度を算出する劣化度判定装置であって、
劣化度の判定対象であるバッテリーの開回路電圧と前記劣化度の判定対象であるバッテリーの充電状態との関係を表す電圧−充電状態特性データと、未使用時のバッテリーの充電状態と内部抵抗との関係を表す第1の充電状態−抵抗特性データと、寿命時のバッテリーの充電状態と内部抵抗との関係を表す第2の充電状態−抵抗特性データと、前記未使用時のバッテリーの内部抵抗と温度との関係を表す第1の抵抗−温度特性データと、前記寿命時のバッテリーの内部抵抗と温度との関係を表す第2の抵抗−温度特性データとを格納する記憶装置と、
前記劣化度の判定対象であるバッテリーの温度を測定する温度センサと、
前記劣化度の判定対象であるバッテリーの電圧を測定する電圧センサと、
前記劣化度の判定対象であるバッテリーに流れる電流を測定する電流センサと、
前記電圧センサで測定された前記開回路電圧から、前記電圧−充電状態特性データに基づいて前記劣化度の判定対象であるバッテリーの充電状態を算出する充電状態算出手段と、
この充電状態算出手段で算出された前記充電状態から前記第1の充電状態−抵抗特性データに基づいて、前記未使用時のバッテリーの内部抵抗を算出するとともに、前記充電状態から前記第2の充電状態−抵抗特性データに基づいて、前記寿命時のバッテリーの内部抵抗を算出する内部抵抗データ算出手段と、
この内部抵抗データ算出手段で算出された前記未使用時のバッテリーの内部抵抗を前記第1の抵抗−温度特性データと前記温度センサで測定された温度とに基づいて温度補正するとともに、前記寿命時のバッテリーの内部抵抗を前記第2の抵抗−温度特性データと前記温度センサで測定された温度とに基づいて温度補正する温度補正手段と、
前記電圧センサで測定された前記開回路電圧と、前記劣化度の判定対象であるバッテリーの放電時における電流と電圧との相関関係とに基づいて、前記劣化度の判定対象であるバッテリーの内部抵抗を算出する内部抵抗算出手段と、
この内部抵抗算出手段で算出された前記劣化度の判定対象であるバッテリーの内部抵抗と、温度補正された前記未使用時のバッテリーの内部抵抗と、温度補正された前記寿命時のバッテリーの内部抵抗とに基づいて、前記劣化度の判定対象であるバッテリーの劣化度を算出する劣化度算出手段と
を含むことを特徴とするバッテリーの劣化度判定装置。
A degradation level determination device for calculating a degradation level of a battery,
Voltage-charge state characteristic data representing the relationship between the open circuit voltage of the battery that is the determination target of the deterioration degree and the charge state of the battery that is the determination target of the deterioration degree, the charge state and the internal resistance of the battery when not in use The first charge state-resistance characteristic data representing the relationship between the battery, the second charge state-resistance characteristic data representing the relationship between the charge state of the battery at the end of its life and the internal resistance, and the internal resistance of the battery when not in use A storage device for storing first resistance-temperature characteristic data representing a relationship between temperature and temperature, and second resistance-temperature characteristic data representing a relationship between the internal resistance and temperature of the battery at the time of the lifetime;
A temperature sensor that measures the temperature of the battery that is the determination target of the deterioration degree;
A voltage sensor that measures a voltage of a battery that is a determination target of the deterioration degree;
A current sensor for measuring a current flowing in a battery which is a determination target of the deterioration degree;
Charge state calculation means for calculating a charge state of a battery which is a determination target of the deterioration degree based on the voltage-charge state characteristic data from the open circuit voltage measured by the voltage sensor;
Based on the first charge state-resistance characteristic data from the charge state calculated by the charge state calculation means, the internal resistance of the battery when not in use is calculated, and the second charge is calculated from the charge state. Internal resistance data calculating means for calculating the internal resistance of the battery at the time of the lifetime based on the state-resistance characteristic data;
The internal resistance of the battery calculated by the internal resistance data calculating means is temperature-corrected based on the first resistance-temperature characteristic data and the temperature measured by the temperature sensor, and at the time of the lifetime. Temperature correcting means for correcting the internal resistance of the battery based on the second resistance-temperature characteristic data and the temperature measured by the temperature sensor;
Based on the open circuit voltage measured by the voltage sensor and the correlation between the current and voltage at the time of discharge of the battery that is the determination target of the deterioration level, the internal resistance of the battery that is the determination target of the deterioration level Internal resistance calculating means for calculating
The internal resistance of the battery that is the determination target of the degree of deterioration calculated by the internal resistance calculation means, the internal resistance of the battery that has not been used after temperature correction, and the internal resistance of the battery that has been temperature corrected and that has been corrected. And a deterioration degree calculating means for calculating the deterioration degree of the battery that is the determination target of the deterioration degree.
劣化度の判定対象であるバッテリーの開回路電圧と前記劣化度の判定対象であるバッテリーの充電状態との関係を表す電圧−充電状態特性データと、未使用時のバッテリーの充電状態と内部抵抗との関係を表す第1の充電状態−抵抗特性データと、寿命時のバッテリーの充電状態と内部抵抗との関係を表す第2の充電状態−抵抗特性データと、前記未使用時のバッテリーの内部抵抗と温度との関係を表す第1の抵抗−温度特性データと、前記寿命時のバッテリーの内部抵抗と温度との関係を表す第2の抵抗−温度特性データとを記憶装置に格納し、これらのデータに基づいて前記劣化度の判定対象であるバッテリーの劣化度を算出する劣化度判定装置における劣化度算出プログラムを記録した記録媒体であって、
電圧センサで測定された前記開回路電圧から、前記電圧−充電状態特性データに基づいて前記劣化度の判定対象であるバッテリーの充電状態を算出する充電状態算出処理と、
この充電状態算出処理で算出された前記充電状態から前記第1の充電状態−抵抗特性データに基づいて、前記未使用時のバッテリーの内部抵抗を算出するとともに、前記充電状態から前記第2の充電状態−抵抗特性データに基づいて、前記寿命時のバッテリーの内部抵抗を算出する内部抵抗データ算出処理と、
この内部抵抗データ算出処理で算出された前記未使用時のバッテリーの内部抵抗を前記第1の抵抗−温度特性データと温度センサで測定された温度とに基づいて温度補正するとともに、前記寿命時のバッテリーの内部抵抗を前記第2の抵抗−温度特性データと前記温度センサで測定された温度とに基づいて温度補正する温度補正処理と、
前記電圧センサで測定された前記開回路電圧と、前記劣化度の判定対象であるバッテリーの放電時における電流と電圧との相関関係とに基づいて、前記劣化度の判定対象であるバッテリーの内部抵抗を算出する内部抵抗算出処理と、
この内部抵抗算出処理で算出された前記劣化度の判定対象であるバッテリーの内部抵抗と、温度補正された前記未使用時のバッテリーの内部抵抗と、温度補正された前記寿命時のバッテリーの内部抵抗とに基づいて、前記劣化度の判定対象であるバッテリーの劣化度を算出する劣化度算出処理と
を含むことを特徴とするバッテリーの劣化度判定装置における劣化度算出プログラムを記録した記録媒体。
Voltage-charge state characteristic data representing the relationship between the open circuit voltage of the battery that is the determination target of the deterioration degree and the charge state of the battery that is the determination target of the deterioration degree, the charge state and the internal resistance of the battery when not in use The first charge state-resistance characteristic data representing the relationship between the battery, the second charge state-resistance characteristic data representing the relationship between the charge state of the battery at the end of its life and the internal resistance, and the internal resistance of the battery when not in use The first resistance-temperature characteristic data representing the relationship between the temperature and the temperature, and the second resistance-temperature characteristic data representing the relationship between the internal resistance of the battery and the temperature at the time of the lifetime are stored in a storage device, and these A recording medium recording a deterioration degree calculation program in a deterioration degree determination device that calculates a deterioration degree of a battery that is a determination target of the deterioration degree based on data,
From the open circuit voltage measured by a voltage sensor, a charge state calculation process for calculating a charge state of a battery that is a determination target of the deterioration degree based on the voltage-charge state characteristic data;
Based on the first charge state-resistance characteristic data from the charge state calculated in the charge state calculation process, the internal resistance of the battery when not in use is calculated, and the second charge is calculated from the charge state. Internal resistance data calculation processing for calculating the internal resistance of the battery at the time of the lifetime based on the state-resistance characteristic data;
The internal resistance of the unused battery calculated in the internal resistance data calculation process is corrected based on the first resistance-temperature characteristic data and the temperature measured by the temperature sensor, and at the time of the lifetime. A temperature correction process for correcting the internal resistance of the battery based on the second resistance-temperature characteristic data and the temperature measured by the temperature sensor;
Based on the open circuit voltage measured by the voltage sensor and the correlation between the current and voltage at the time of discharge of the battery that is the determination target of the deterioration level, the internal resistance of the battery that is the determination target of the deterioration level Internal resistance calculation processing for calculating
The internal resistance of the battery that is the determination target of the degree of deterioration calculated in the internal resistance calculation process, the internal resistance of the battery that is not used after the temperature correction, and the internal resistance of the battery that is temperature-corrected during the lifetime And a deterioration degree calculation process for calculating the deterioration degree of the battery that is the determination target of the deterioration degree, based on the above, a recording medium storing a deterioration degree calculation program in the battery deterioration degree determination device.
JP2000042807A 2000-02-21 2000-02-21 Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus Expired - Fee Related JP3868692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042807A JP3868692B2 (en) 2000-02-21 2000-02-21 Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042807A JP3868692B2 (en) 2000-02-21 2000-02-21 Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus

Publications (2)

Publication Number Publication Date
JP2001228226A JP2001228226A (en) 2001-08-24
JP3868692B2 true JP3868692B2 (en) 2007-01-17

Family

ID=18565831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042807A Expired - Fee Related JP3868692B2 (en) 2000-02-21 2000-02-21 Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus

Country Status (1)

Country Link
JP (1) JP3868692B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554990C (en) * 2003-06-27 2009-10-28 古河电气工业株式会社 The determination methods of deterioration of accumulator and deterioration of accumulator judgment means
JP4646194B2 (en) * 2003-06-27 2011-03-09 古河電気工業株式会社 Storage battery deterioration determination method and deterioration determination apparatus
EP2613165B1 (en) 2003-06-27 2014-09-24 The Furukawa Electric Co., Ltd. Method and device for measuring secondary cell internal impedance
JP2005172785A (en) * 2003-11-19 2005-06-30 Yazaki Corp Method of estimating potential discharge capacity for battery, and method of calculating degree of deterioration thereof
JP4507720B2 (en) * 2004-06-29 2010-07-21 新神戸電機株式会社 Deterioration determination method and deterioration determination device for lead acid battery
JP4494895B2 (en) * 2004-07-20 2010-06-30 古河電気工業株式会社 Battery status detection unit
JP4286842B2 (en) * 2005-03-30 2009-07-01 株式会社ピーシーエヌ In-vehicle battery management device
KR100756837B1 (en) * 2005-06-30 2007-09-07 주식회사 엘지화학 Method and apparatus of estimating state of health of battery
WO2007032382A1 (en) 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
JP4389910B2 (en) 2006-08-01 2009-12-24 ソニー株式会社 Battery pack and method of calculating deterioration
US7593823B2 (en) 2006-11-21 2009-09-22 The Furukawa Electric Co., Ltd Method and device for determining state of battery, and battery power supply system therewith
KR101556786B1 (en) * 2007-11-21 2015-10-01 주식회사 엘지화학 System for estimating life time of a secondary battery and methode for estmating life time of a secondary battery
JP5624333B2 (en) * 2009-03-31 2014-11-12 プライムアースEvエナジー株式会社 Secondary battery control device and map correction method
CN102066964B (en) * 2009-07-23 2015-08-05 德克萨斯仪器股份有限公司 For determining the system and method for battery state of charge
CN102608533B (en) * 2011-01-20 2014-08-20 鸿富锦精密工业(深圳)有限公司 System and method for testing charge-discharge reliability of battery
JP5879557B2 (en) * 2011-09-12 2016-03-08 パナソニックIpマネジメント株式会社 Charger
JP5598869B2 (en) * 2012-03-27 2014-10-01 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
JP6006670B2 (en) * 2013-04-04 2016-10-12 日本電信電話株式会社 Information communication terminal device degradation status judgment system
CN103364736B (en) * 2013-07-17 2015-07-22 王凯敏 Method for calculating RAC (residual available capacity) of lithium ion battery pack
JP6171693B2 (en) * 2013-08-02 2017-08-02 株式会社Gsユアサ Lead storage battery state determination device and vehicle
FR3025663B1 (en) * 2014-09-10 2017-12-29 Renault Sas METHOD FOR MANAGING THE RANGE OF USE OF A BATTERY
CN104502855B (en) * 2014-12-23 2017-06-13 广东电网有限责任公司电力科学研究院 Lead-acid accumulator SOH detection methods and system
CN107765183B (en) * 2016-08-19 2021-03-12 上海源悦汽车电子股份有限公司 Battery supervision system and working method thereof
KR102182691B1 (en) 2017-10-20 2020-11-24 주식회사 엘지화학 Apparatus and method for estimating resistance of battery
JP6745554B2 (en) * 2018-03-28 2020-08-26 東洋システム株式会社 Degradation state determination device and degradation state determination method
CN111624505B (en) * 2020-07-15 2022-07-08 中国北方车辆研究所 Method for measuring internal resistance of power type lithium battery for composite power supply
KR102554505B1 (en) * 2021-03-22 2023-07-13 한국전력공사 Apparatus and method for diagnosing battery

Also Published As

Publication number Publication date
JP2001228226A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP3868692B2 (en) Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus
CN107045109B (en) Method and device for measuring direct current internal resistance of battery
ES2300529T3 (en) PROCEDURE FOR PREDICTING THE INTERNAL RESISTANCE OF AN ACCUMULATOR BATTERY AND SUPERVISION DEVICE FOR ACCUMULATING BATRIAS.
US8664960B2 (en) Charged state estimating device and charged state estimating method of secondary battery
US6556019B2 (en) Electronic battery tester
JP6490414B2 (en) Secondary battery state detection device and secondary battery state detection method
JP5051661B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
CN108279385A (en) State of charge evaluation method, device and the electronic equipment of battery
JP6430054B1 (en) Storage battery capacity grasping method and capacity monitoring device
US20080136378A1 (en) Method and apparatus for detecting battery state of charge
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JPH0875833A (en) Battery charged state detecting method
JPWO2008026477A1 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
JP3006298B2 (en) Battery remaining capacity meter
US20090248334A1 (en) Method for estimating the charge of a motor vehicle battery
JP6452403B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2012189373A (en) Secondary battery condition detection device and secondary battery condition detection method
JP2016109466A (en) Secondary battery state detection device and secondary battery state detection method
KR20130045093A (en) Soc estimation method using polarizing voltage and open circuit voltage
JP2010203935A (en) Device of estimating inputtable/outputtable power of secondary battery
JP4488714B2 (en) Vehicle mounted state management device for vehicle lead storage battery and method for detecting deterioration state of vehicle lead storage battery
CN112415409B (en) Method and device for estimating battery capacity, storage medium and vehicle
JPH1138107A (en) Method for estimating residual capacity of secondary battery
JPH06281711A (en) Device for detecting residual capacity of battery
JP4751381B2 (en) Engine control method and engine control apparatus for idling stop vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Ref document number: 3868692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees