KR20130045093A - Soc estimation method using polarizing voltage and open circuit voltage - Google Patents

Soc estimation method using polarizing voltage and open circuit voltage Download PDF

Info

Publication number
KR20130045093A
KR20130045093A KR1020110109551A KR20110109551A KR20130045093A KR 20130045093 A KR20130045093 A KR 20130045093A KR 1020110109551 A KR1020110109551 A KR 1020110109551A KR 20110109551 A KR20110109551 A KR 20110109551A KR 20130045093 A KR20130045093 A KR 20130045093A
Authority
KR
South Korea
Prior art keywords
battery
voltage
remaining capacity
open circuit
circuit voltage
Prior art date
Application number
KR1020110109551A
Other languages
Korean (ko)
Other versions
KR101268082B1 (en
Inventor
신현주
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020110109551A priority Critical patent/KR101268082B1/en
Publication of KR20130045093A publication Critical patent/KR20130045093A/en
Application granted granted Critical
Publication of KR101268082B1 publication Critical patent/KR101268082B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: An SOC estimation method using a polarizing voltage and an open circuit voltage is provided to estimate the state of charging of a battery by using internal resistance and the polarizing voltage per temperature and per current. CONSTITUTION: Idle time in case of initial power-on is judged in order to calculate the state of charging of an initial battery. When the battery is not used for more than a constant time, the state of charging of the battery is estimated by measuring an open circuit voltage per temperature. When the idle time is less a predetermined constant time, the stored existing state of charging of the battery is used. [Reference numerals] (AA) Start; (BB) Measure current and temperature; (CC) Estimate an initial SOC value through OCV data; (DD) OCV state? Rest time > 15 minutes ?; (EE) Use the SOC value stored in a memory; (FF) Measure voltage, current, and temperature; (GG) Load state?; (HH) Calculate a polarization potential by temperature and current; (II) Estimate residual quantity of a battery; (JJ) Store the SOC value in the memory

Description

분극전압과 개로전압을 이용한 배터리 잔존용량 추정방법{SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage}SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage}

본 발명은 배터리의 잔존용량을 추정하는 방법에 관한 것으로, 보다 상세하게는 초기 배터리의 잔존용량을 계산하기 위해 초기 파워 온 하였을 때 휴지시간(Rest Time)을 판단하여 15분 이상으로 배터리가 사용되지 않은 경우 온도별 개로전압을 측정하여 배터리 잔존용량을 추정하고, 15분 이하는 사용중에 주기적으로 저장된 데이터를 이용하여 초기 배터리 잔존용량을 계산하며, 초기 이후 배터리 잔존용량의 추정은 부하의 충방전 상태를 판단하여 온도별 및 전류별 분극전압과 안정된 후의 전압인 개로전압에 의한 내부저항을 이용하여 분극전압 대비 잔존용량을 추정하는 분극전압과 개로전압을 이용한 배터리 잔존용량 추정방법에 관한 것이다.The present invention relates to a method for estimating the remaining capacity of a battery. More specifically, the battery is not used for more than 15 minutes by determining a rest time when the power is initially turned on to calculate the remaining capacity of the initial battery. If not, estimate the remaining battery capacity by measuring the open-circuit voltage by temperature, and calculate the initial battery remaining capacity using the data stored periodically during 15 minutes or less, and the estimation of the remaining battery capacity after the initial The present invention relates to a battery residual capacity estimation method using a polarization voltage and an open circuit voltage to estimate a residual capacity relative to a polarization voltage by using a polarization voltage for each temperature and a current, and an internal resistance by an open circuit voltage that is a stable voltage.

일반적으로 배터리의 잔존용량인 SOC(State Of Charge)는 정격용량에 대해서 % 단위로 표현하는 배터리의 사용 가능한 용량으로 정의 할 수 있는데, SOC의 정확한 정보는 배터리를 이용하는 시스템에서는 필수적인 요소로 이에 대한 많은 연구가 이루어지고 있지만 배터리의 전기화학적인 비선형적인 특성과 고려해야 할 많은 변수들로 인해 SOC 정보를 산출하는데 상당히 어려움을 겪고 있다.In general, SOC (State Of Charge), which is the remaining capacity of a battery, can be defined as the usable capacity of a battery expressed in% with respect to the rated capacity. Accurate information of SOC is an essential element in a battery-based system. Although research is being done, the electrochemical nonlinear nature of the battery and many variables to consider make it difficult to produce SOC information.

배터리의 정확한 잔존용량 추정을 위해서는 배터리의 셀 전압을 균등하게 해주는 배터리 셀 밸런싱 과정이 필요하다.Accurate estimation of the battery's remaining capacity requires a battery cell balancing process that equalizes the cell's cell voltage.

배터리는 제조공정이나 그 외의 환경적인 요인들로 인해 배터리 전압간에는 셀의 불균등이 존재한다.Due to manufacturing processes or other environmental factors, there are cell inequality between battery voltages.

이런 셀 전압간의 불균등으로 인해 충전과정에서 다른 셀들이 완충되기 전에 가장 높은 전압의 셀이 먼저 완충됨으로써 배터리의 사용영역이 줄어들거나 과 충전의 문제가 생기기도 하며, 방전과정 중에는 낮은 전압의 셀이 먼저 저 전압으로 떨어지는 경우가 생겨 전체 배터리의 수명을 떨어뜨리는 경우가 발생한다.Due to the inequality between the cell voltages, the highest voltage cell is fully charged before other cells are fully charged in the charging process, thereby reducing the area of use of the battery or causing an overcharging problem. Sometimes it will fall to low voltage, which will shorten the life of the entire battery.

이러한 문제점을 해결함으로써 배터리 셀 전압이 균등하게 되어 배터리의 잔존용량을 추정하는데 용이하게 되었다.By solving these problems, the battery cell voltages are equalized, making it easy to estimate the remaining capacity of the battery.

기존의 배터리의 잔존용량을 산출하는 방법으로는 개로전압 측정법, 내부 저항 측정법, AH 누적법, 비중 측정법 등이 있다.Methods of calculating the remaining capacity of a conventional battery include open circuit voltage measurement, internal resistance measurement, AH accumulation method, specific gravity measurement method.

그러나, 개로전압 측정법은 구조가 간단하여 측정이 용이한 반면, 충 방전에 따른 분극현상 후 전압이 안정화되는데 시간이 필요하며, AH 누적법은 신호변환에 따른 누적오차가 쌓이게 되어 누적오차를 줄이는 방안으로 A/D 컨버터의 사양과 전류센서의 정밀도를 높이는 방법이 있는데 이는 전체 시스템 비용이 상승되는 문제가 있으며, 비중 측정법은 장착이나 안전상의 문제가 있으며 납산 배터리에만 사용 가능한 것으로 일반적으로 적용하기엔 문제점이 있다.However, the open-circuit measuring method is easy to measure because of its simple structure, but it takes time for voltage to stabilize after polarization due to charging and discharging, and the AH accumulation method accumulates cumulative errors due to signal conversion and reduces cumulative errors. There is a method to increase the specifications of the A / D converter and the accuracy of the current sensor, which increases the overall system cost, and the specific gravity measurement method has a mounting or safety problem, and is only available for lead-acid batteries. have.

따라서, 본 발명은 상기 종래의 문제점을 고려하여 배터리의 가장 큰 영향을 미치는 요소로 알려진 내부 저항과 온도별 및 전류별 분극전압을 이용하여 배터리의 잔존용량의 추정방법을 제시하는 것을 목적으로 하고 있다.Accordingly, an object of the present invention is to provide a method for estimating the remaining capacity of a battery using an internal resistance and a polarization voltage for each temperature and current, which are known to be the most influential factors of the battery. .

상기의 목적을 달성하기 위한 본 발명 분극전압과 개로전압을 이용한 배터리 잔존용량 추정방법은, 배터리의 잔존용량을 추정하는데 있어서, 초기 배터리의 잔존용량을 계산하기 위해 초기 파워 온 하였을 때 휴지시간(Rest Time)을 판단하여 일정시간(예; 15분 이상)으로 배터리가 사용되지 않은 경우 온도별 개로전압을 측정하여 배터리 잔존용량을 추정하고, 휴지시간이 일정시간(예; 15분 이하)인 경우는 저장된 기존의 배터리 잔존용량을 사용하는 것을 특징으로 한다.Battery residual capacity estimation method using the polarization voltage and the open circuit voltage of the present invention for achieving the above object, in estimating the remaining capacity of the battery, when the initial power-on to calculate the remaining capacity of the initial battery (Rest When the battery is not used for a certain time (e.g., 15 minutes or more), the open-circuit voltage is estimated by temperature, and the remaining battery time is estimated. It is characterized by using the existing remaining battery capacity stored.

또한, 배터리 잔존용량의 추정은, 배터리의 잔존용량의 초기값을 설정하기 위해 배터리 전압이 안정화 상태에서 각각의 온도에 따라 개로전압에 따른 배터리 잔존용량을 계산하여 저장시켜 놓고 온도별 및 전류별 분극전압과 안정된 후의 전압인 개로전압 관계에 따른 내부저항을 계산하여 저장하고 저장된 관계표를 이용하여 분극전압 대비 잔존용량을 추정하는 것을 특징으로 한다.In addition, the estimation of the remaining battery capacity, in order to set the initial value of the remaining capacity of the battery to calculate the battery remaining capacity according to the open-circuit voltage according to each temperature in the battery voltage is stabilized state and polarization by temperature and current It is characterized by calculating and storing the internal resistance according to the open circuit voltage relationship, which is the voltage after the voltage is stabilized, and estimating the remaining capacity relative to the polarized voltage using the stored relation table.

또한, 상기 배터리 잔존용량의 추정은 부하에 따라 배터리 잔존용량을 추정하기 위해 충 방전 전류에 따라 온도별 및 전류별 분극전압 측정하고, 안정된 후의 전압인 개로전압 값의 관계에 따른 내부저항을 계산하여 저장하며, 저장된 관계표를 이용하여 분극전압 대비 잔존용량을 추정하도록 한 것이다.In addition, the estimation of the battery residual capacity is to measure the polarization voltage for each temperature and current according to the charge and discharge current in order to estimate the battery remaining capacity according to the load, and calculate the internal resistance according to the relationship between the open-circuit voltage value which is the voltage after stabilization The remaining capacity is estimated by using the stored relation table.

본 발명에 의하면, 온도별 및 전류별 분극전압을 통해 배터리 잔존용량을 추정하는 방법을 제공하는 효과를 기대할 수 있다.According to the present invention, it is possible to expect the effect of providing a method for estimating battery remaining capacity through polarization voltage for each temperature and current.

도 1은 본 발명에 따른 바람직한 실시예에 따른 본 발명의 흐름도를 도시한 블록도.
도 2는 캐패시터 성분을 포함하는 배터리의 등가회로도.
도 3은 캐패시터 성분의 전체 SOC의 구성도.
도 4는 캐패시터 성분을 제외한 배터리의 등가회로도.
도 5,7는 충 방전시의 분극전압의 일부와 그에 따른 개로전압의 관계를 도시한 도면.
도 6,8은 도 5,7에 도시된 도면의 전체 분극전압과 개로전압 관계를 도시한 도면.
도 9는 충전 전류별 분극전압의 관계를 도시한 도면.
1 is a block diagram illustrating a flowchart of the present invention in accordance with a preferred embodiment of the present invention.
2 is an equivalent circuit diagram of a battery including a capacitor component.
3 is a configuration diagram of an entire SOC of a capacitor component.
4 is an equivalent circuit diagram of a battery excluding a capacitor component.
5 and 7 are diagrams showing a relationship between a part of polarization voltage during charge and discharge, and thus an open circuit voltage.
6 and 8 show the relationship between the total polarization voltage and the open circuit voltage in the drawings shown in FIGS. 5 and 7;
9 is a diagram illustrating a relationship between polarization voltages for charging currents.

이하 첨부된 도면을 참조하여 본 발명에 따른 실시예를 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

본 발명을 설명함에 있어서 정의되는 용어들은 본 발명에서의 기능을 고려하여 정의 내려진 것으로, 본 발명의 기술적 구성요소를 한정하는 의미로 이해되어서는 아니 될 것이다.The terms defined in describing the present invention have been defined in consideration of the functions of the present invention and should not be construed to limit the technical elements of the present invention.

상기 도면에 의하면, 본 발명은 각각의 온도에 따른 초기전압을 읽어 개로전압에 의한 배터리의 잔존용량 관계 데이터에 의해 초기의 배터리 잔존용량을 계산하고, 온도와 전류의 변화에 따른 분극전압 대비 배터리 잔존용량을 추정하게 하는 것을 특징으로 한다.According to the drawings, the present invention reads the initial voltage according to each temperature, calculates the initial battery remaining capacity based on the remaining capacity relationship data of the battery by the open-circuit voltage, and the battery remaining compared to the polarization voltage according to the change of temperature and current Characterized in that the capacity is estimated.

도 1은 본 발명에 따른 바람직한 실시예에 따른 본 발명의 흐름도를 도시한 블록도이고, 도 2는 캐패시터 성분을 포함하는 배터리의 등가회로를 나타내며, 도 3은 캐패시터 성분의 전체 SOC의 구성부분을 나타내며, 도 5,7는 충 방전시의 분극전압의 일부와 그에 따른 개로전압의 관계를 도시한 도면이며, 도 6,8은 도 5,7에 도시된 도면의 전체 분극전압과 개로전압 관계를 설명하기 위해 도시한 도면이다.1 is a block diagram showing a flowchart of the present invention according to a preferred embodiment of the present invention, FIG. 2 shows an equivalent circuit of a battery including a capacitor component, and FIG. 3 shows a constituent part of the entire SOC of the capacitor component. 5 and 7 show the relationship between a part of the polarization voltage at the time of charging and discharging and the resulting open circuit voltage, and FIGS. 6 and 8 show the relationship between the total polarization voltage and the open circuit voltage of the drawings shown in FIGS. 5 and 7. It is a figure shown for description.

첨부된 도 1 내지 도 7에 도시된 바와 같이, 배터리는 충 방전시 개로 전압상태에서 화학반응이 일어나면서 개로전압 외에 가 전압을 일으키는 현상이 나타나는데 이때 발생한 가 전압이 분극전압이다.As shown in FIGS. 1 to 7, the battery has a phenomenon in which a chemical reaction occurs in the open-circuit voltage state during charging and discharging, causing a voltage in addition to the open-circuit voltage, wherein the generated voltage is a polarization voltage.

가 전압을 일으키는 성분은 배터리 단자의 저항, 전극의 표면 저항과 전해질의 저항으로 구성된 옴저항과 전극과 전해질 사이의 전하분포에 의해 생기는 캐패시턴스 성분인의 전기 이중층 그리고 전극표면의 전해질 농도차에 의한 확산층으로 이루어져 있다.The component that generates the applied voltage is an ohmic resistance consisting of resistance of the battery terminal, resistance of the electrode and resistance of the electrode, an electric double layer of capacitance component generated by the charge distribution between the electrode and the electrolyte, and a diffusion layer due to the difference in electrolyte concentration on the electrode surface. Consists of

도 2는 배터리의 전기적 등가회로를 나타내는 도면으로, 이 등가회로에 따른 충 방전시의 배터리의 전압은 아래의 수학식1과 같다.2 is a diagram illustrating an electrical equivalent circuit of a battery, wherein the voltage of the battery at the time of charging and discharging according to the equivalent circuit is represented by Equation 1 below.

[수학식 1][Equation 1]

Vbat = Emf - 캐패시터성분 - 내부저항성분Vbat = Emf-Capacitor Components-Internal Resistance Components

이때 캐패시터 성분은 충전초기에 배터리에 유입되는 충전전류를 나타내는 성분으로 도 3의 빗금친 부분에 해당되는데, 이는 하이브리드 자동차, 전기자동차, 구난정 등과 같이 배터리를 사용하는 충 방전시스템에서 볼 때 무시할 수 있는 SOC 사용범위로 판단되어 도 4의 배터리 내부저항만을 포함하는 전기적 등가회로를 배터리 모델로 사용하였다. 여기서 도 5,7는 충 방전시에 화학반응에 의한 분극 전압과 일정한 시간이 흐른 후 안정된 개로전압의 관계를 도시한 도면을 나타낸다.At this time, the capacitor component represents the charging current flowing into the battery at the initial stage of charging and corresponds to the hatched portion of FIG. 3, which can be ignored when viewed in a charge and discharge system using a battery such as a hybrid vehicle, an electric vehicle, and a rescue boat. Since it is determined that the SOC range is used, an electrical equivalent circuit including only the battery internal resistance of FIG. 4 was used as a battery model. 5 and 7 show a relationship between the polarization voltage due to a chemical reaction during charging and discharging and the stable open circuit voltage after a certain time passes.

이때 배터리의 내부 저항값은 다음과 같이 나타낼 수 있다.In this case, the internal resistance value of the battery may be expressed as follows.

[수학식 2]&Quot; (2) "

Figure pat00001
,
Figure pat00002
Figure pat00001
,
Figure pat00002

(단, RC: 충전시 내부저항, RD: 방전시 내부저항, V1: 분극전압, V2: 개로전압, Ibat : 배터리전류)(However, R C : Internal resistance when charging, R D : Internal resistance when discharging, V1: Polarization voltage, V2: Opening voltage, I bat : Battery current)

도 9는 25℃에서 충전시 각각의 전류(25A, 50A, 75A, 100A)에 따른 분극전압과 SOC관계를 나타내는 도면이다.9 is a view showing the polarization voltage and SOC relationship according to each of the current (25A, 50A, 75A, 100A) when charging at 25 ℃.

위의 내부 저항값의 계산식에 의해 분극전압 대비 개로 전압을 계산할 수 있으며, 각각의 온도와 전류의 변화에 따른 OCV-SOC 관계 데이터에 의해 분극전압 대비 배터리 잔존용량을 추정하도록 한 것이다.The open-circuit voltage versus polarization voltage can be calculated by the above formula of internal resistance value, and the remaining battery capacity is compared with the polarization voltage by OCV-SOC relation data according to the change of temperature and current.

이와 같이 구성되는 본 발명의 동작을 설명하면 다음과 같다.Hereinafter, the operation of the present invention will be described.

우선, 시스템으로 전원이 공급되어 작동하면, 초기 배터리의 잔존용량을 표시하기 위해 초기 파워 온 하였을때 휴지시간(Rest Time)을 판단한다.First, when power is supplied to the system and operated, the rest time is determined when the power is initially turned on to display the remaining capacity of the initial battery.

상기 판단결과 일정시간 즉, 15분 이상 배터리가 사용되지 않은 경우에는 온도별 개로전압(1)을 측정하여 배터리 잔존용량을 추정하고, 상기 판단결과 휴지시간이 일정시간 즉, 15분 이하이면 기존에 저장되어 있는 배터리 잔존용량을 사용하여 표시하는 것이다.If the determination result is that the battery is not used for a predetermined time, that is, 15 minutes or more, the battery residual capacity is estimated by measuring the open circuit voltage (1) for each temperature. The remaining battery capacity is displayed.

다음으로, 개로전압(1)을 이용한 배터리 잔존용량 추정을 설명하면, 우선 부하에 따른 배터리 잔존용량을 추정하기 위하여 충방전 전류에 따른 온도별, 전류별 분극전압(3)을 측정하고, 안정된 후의 전압인 개로전압(1)에 따른 내부저항(2)을 앞서 소개한 수학식2에 의해 계산하여 저장한다.Next, the battery residual capacity estimation using the open circuit voltage (1) will be described. First, in order to estimate the battery residual capacity according to the load, the polarized voltage (3) by temperature and current according to the charge / discharge current is measured, and after The internal resistance 2 according to the open circuit voltage 1, which is a voltage, is calculated and stored according to Equation 2 introduced above.

여기서 저장된 관계표를 이용하여 분극전압(3) 대비 배터리 잔존용량을 추정하는 것이다.In this case, the battery remaining capacity is estimated with respect to the polarization voltage 3 using the stored relation table.

이상에서 본 발명의 배터리 잔존용량 추정방법에 대한 기술사상을 첨부도면과 함께 서술하였지만, 이는 본 발명의 가장 양호한 실시 예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다.Although the technical idea of the method for estimating the remaining battery capacity of the present invention has been described with the accompanying drawings, this is illustrative of the best embodiments of the present invention and is not intended to limit the present invention.

따라서 이 기술분야의 통상의 지식을 가진 자이면 누구나 본 발명의 기술사상의 범위를 이탈하지 않는 범위 내에서 치수 및 모양 그리고 구조 등의 다양한 변형 및 모방할 수 있음은 명백한 사실이며 이러한 변형 및 모방은 본 발명의 기술 사상의 범위에 포함된다.Accordingly, it is a matter of course that various modifications and variations of the present invention are possible without departing from the scope of the present invention. And are included in the technical scope of the present invention.

1 : 개로전압 2 : 내부저항
3 : 분극전압 4 : 배터리 전류
1: open circuit voltage 2: internal resistance
3: polarization voltage 4: battery current

Claims (3)

배터리의 잔존용량을 추정하는데 있어서,
초기 배터리의 잔존용량을 계산하기 위해 초기 파워 온 하였을 때 휴지시간을 판단하여 일정시간 이상으로 배터리가 사용되지 않은 경우 온도별 개로전압을 측정하여 배터리 잔존용량을 추정하고,
상기 휴지시간이 일정시간 이하인 경우에는 저장된 기존의 배터리 잔존용량을 사용하는 것을 특징으로 분극전압과 개로전압을 이용한 배터리 잔존용량 추정하는 방법.
In estimating the remaining capacity of the battery,
In order to calculate the remaining capacity of the initial battery, the idle time is determined when the initial power is turned on, and when the battery is not used for a predetermined time or more, the battery residual capacity is estimated by measuring the open circuit voltage for each temperature.
If the idle time is less than a predetermined time, using the existing battery remaining capacity stored, characterized in that the battery residual capacity estimation using the polarization voltage and the open-circuit voltage.
제 1 항에 있어서, 상기 측정된 개로전압 값에 의해 배터리 잔존용량을 계산하거나 저장된 배터리 잔존용량에 의해 배터리 잔존용량을 추정하여 저장시켜 놓는 것을 특징으로 분극전압과 개로전압을 이용한 배터리 잔존용량 추정하는 방법.The method of claim 1, wherein the battery remaining capacity is calculated based on the measured open circuit voltage value, or the battery remaining capacity is estimated and stored based on the stored battery remaining capacity. Way. 제 1 항에 있어서, 배터리 잔존용량의 추정은,
부하에 따라 배터리 잔존용량을 추정하기 위해 충 방전 전류에 따라 온도별 및 전류별 분극전압 측정하고,
안정된 후의 전압인 개로전압 값의 관계에 따른 내부저항을 계산하여 저장하며,
상기 저장된 관계표를 이용하여 분극전압 대비 잔존용량을 추정하는 것을 특징으로 하는 분극전압과 개로전압을 이용한 배터리 잔존용량 추정방법.
The method of claim 1, wherein the estimation of the battery remaining capacity,
Measure the polarization voltage by temperature and current according to the charge and discharge current to estimate battery remaining capacity according to load.
Calculate and save the internal resistance according to the relationship between the open circuit voltage value, which is the voltage after stabilization,
A method for estimating battery remaining capacity using polarization voltage and open circuit voltage, comprising: estimating remaining capacity relative to polarization voltage using the stored relation table;
KR1020110109551A 2011-10-25 2011-10-25 SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage KR101268082B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110109551A KR101268082B1 (en) 2011-10-25 2011-10-25 SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110109551A KR101268082B1 (en) 2011-10-25 2011-10-25 SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage

Publications (2)

Publication Number Publication Date
KR20130045093A true KR20130045093A (en) 2013-05-03
KR101268082B1 KR101268082B1 (en) 2013-06-04

Family

ID=48657360

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110109551A KR101268082B1 (en) 2011-10-25 2011-10-25 SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage

Country Status (1)

Country Link
KR (1) KR101268082B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391107A (en) * 2014-08-29 2016-03-09 福特全球技术公司 Method for battery state of charge estimation
CN108363009A (en) * 2017-12-26 2018-08-03 浙江大学 A method of realizing lithium ion battery maximum allowable power online Prediction
CN110333449A (en) * 2018-10-08 2019-10-15 林德(中国)叉车有限公司 A kind of lead-acid battery remaining capacity calculation method and monitoring system
CN111044909A (en) * 2019-12-31 2020-04-21 北京理工大学 Battery state prediction method and device
CN112130077A (en) * 2020-09-30 2020-12-25 东风汽车集团有限公司 SOC estimation method of power battery pack under different working conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515829B1 (en) 2015-11-02 2023-03-29 삼성전자주식회사 Method and apparatus for estimating an initial condition of battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641367B2 (en) 1998-08-14 2005-04-20 日本電信電話株式会社 Alkaline battery capacity remaining amount estimation method and capacity estimation device
JP2004327331A (en) 2003-04-25 2004-11-18 Japan Storage Battery Co Ltd Charge control method of nonaqueous electrolyte battery
KR101175369B1 (en) * 2006-01-18 2012-08-20 엘지전자 주식회사 Apparatus and Methode of measuring charges in a battery
JP5184791B2 (en) 2006-02-28 2013-04-17 パナソニック株式会社 Battery life determination device and battery life determination method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391107A (en) * 2014-08-29 2016-03-09 福特全球技术公司 Method for battery state of charge estimation
CN105391107B (en) * 2014-08-29 2020-07-24 福特全球技术公司 Method for battery state of charge estimation
CN108363009A (en) * 2017-12-26 2018-08-03 浙江大学 A method of realizing lithium ion battery maximum allowable power online Prediction
CN110333449A (en) * 2018-10-08 2019-10-15 林德(中国)叉车有限公司 A kind of lead-acid battery remaining capacity calculation method and monitoring system
CN110333449B (en) * 2018-10-08 2021-09-17 林德(中国)叉车有限公司 Lead-acid battery residual capacity calculation method and monitoring system
CN111044909A (en) * 2019-12-31 2020-04-21 北京理工大学 Battery state prediction method and device
CN111044909B (en) * 2019-12-31 2022-02-08 北京理工大学 Battery state prediction method and device
CN112130077A (en) * 2020-09-30 2020-12-25 东风汽车集团有限公司 SOC estimation method of power battery pack under different working conditions

Also Published As

Publication number Publication date
KR101268082B1 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
CN110914696B (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery
KR101238478B1 (en) The Measurment Method of Battery SOC
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
CN103454501B (en) Internal resistance estimating device and internal resistance presumption method
US11346887B2 (en) Method and apparatus for calculating SOH of battery power pack, and electric vehicle
US8004243B2 (en) Battery capacity estimating method and apparatus
US9506988B2 (en) Condition estimation device and method of estimating condition
US10845417B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
CN109342950B (en) Method, device and equipment for evaluating state of charge of lithium battery
KR101268082B1 (en) SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage
US20140111214A1 (en) Electric storage condition detecting apparatus
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
CN111175664B (en) Method for determining aging state of battery, controller and vehicle
KR20130129096A (en) Open circuit voltage estimation device, state estimation device, method of open circuit voltage estimation
JP5409840B2 (en) Apparatus for estimating cell state of battery pack
Çadırcı et al. Microcontroller-based on-line state-of-charge estimator for sealed lead–acid batteries
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
US11835587B2 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
Dambrowski Review on methods of state-of-charge estimation with viewpoint to the modern LiFePO4/Li4Ti5O12 lithium-ion systems
JP2020079764A (en) Secondary-battery state determination method
JP2014059251A (en) Internal resistance estimation device and internal resistance estimation method
JP2021071415A (en) Power storage amount estimation device, method for estimating power storage amount, and computer program
JP7228118B2 (en) METHOD OF CORRECTING ESTIMATED STATE OF CHARGE OF ELECTRICAL STORAGE ELEMENT, MANAGEMENT DEVICE FOR ELECTRICAL STORAGE ELEMENT, AND ELECTRICAL STORAGE DEVICE

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee