JP3867076B2 - Drilling rod and chemical injection method - Google Patents

Drilling rod and chemical injection method Download PDF

Info

Publication number
JP3867076B2
JP3867076B2 JP2003396402A JP2003396402A JP3867076B2 JP 3867076 B2 JP3867076 B2 JP 3867076B2 JP 2003396402 A JP2003396402 A JP 2003396402A JP 2003396402 A JP2003396402 A JP 2003396402A JP 3867076 B2 JP3867076 B2 JP 3867076B2
Authority
JP
Japan
Prior art keywords
rod
passage
excavation
injection
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003396402A
Other languages
Japanese (ja)
Other versions
JP2005155208A (en
Inventor
由紀夫 志波
貫司 檜垣
俊介 川井
力 勝田
毅彦 鈴木
敬次郎 林
将郎 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2003396402A priority Critical patent/JP3867076B2/en
Publication of JP2005155208A publication Critical patent/JP2005155208A/en
Application granted granted Critical
Publication of JP3867076B2 publication Critical patent/JP3867076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

この発明は、薬液注入による地盤改良技術に関し、特に薬液注入に用いる掘削ロッドと薬液注入工法に関する。   The present invention relates to ground improvement technology by chemical solution injection, and more particularly, to an excavation rod used for chemical solution injection and a chemical solution injection method.

砂質地盤のような軟弱地盤の上に構築された既設構造物は、地盤の液状化現象によって安定性が損なわれることから、その安全性の確保が要請されている。こうした軟弱地盤の液状化対策としては、従来から様々な地盤改良工法が知られている。本出願人も、その一例として、液状化対策としての薬液注入工法への適用も視野に入れた、地盤改良工法を提案している(特許文献1参照)。
特開2003−96762号公報
Since existing structures constructed on soft ground such as sandy ground lose their stability due to the liquefaction phenomenon of the ground, it is required to ensure their safety. As a countermeasure against liquefaction of such soft ground, various ground improvement methods have been conventionally known. As an example, the present applicant has also proposed a ground improvement method that also considers application to a chemical solution injection method as a countermeasure for liquefaction (see Patent Document 1).
JP 2003-96762 A

本出願人の提案に係る地盤改良工法は、地上から位置情報発信器を内蔵する掘削ロッドを使って掘進方向を制御しながら地盤を直線状及び曲線状に掘削する、いわゆる自在掘削工法を利用して既設構造物の直下地盤の地盤改良を行うものである。したがって、既設構造物を使用したまま非開削で、その直下地盤の改良が可能、という点で優れるが、以下の点で依然改良の余地がある。   The ground improvement method proposed by the present applicant uses a so-called free excavation method in which the ground is excavated in a straight line and a curved line while controlling the direction of excavation from the ground using a drilling rod incorporating a position information transmitter. In this way, the ground of the existing foundation will be improved. Therefore, it is excellent in that it is possible to improve the direct base board without using the existing structure while using the existing structure, but there is still room for improvement in the following points.

すなわち、上記地盤改良工法で用いる掘削ロッドは、2種類の各薬液を別々に地盤に対して噴射するものであるため、地盤内で各薬液が自然に混合されることに依存しているため、地盤によっては改良効果が出にくい場合がある、という点で改良の余地がある。   That is, since the excavation rod used in the ground improvement method is one that injects each of the two types of chemicals separately to the ground, it depends on the natural mixing of the chemicals in the ground, There is room for improvement in that the improvement effect may be difficult to achieve depending on the ground.

また、上記地盤改良工法で用いる掘削ロッドは、各薬液を外周面の1カ所から噴射するものである。このため、地盤改良域に横方向(水平方向)への広がりがある場合には、掘削ロッドを細かく前進又は後退させて各薬液を噴射させなければならない、という点でも改良の余地がある。   The excavation rod used in the ground improvement method injects each chemical from one place on the outer peripheral surface. For this reason, when the ground improvement region has a lateral spread (horizontal direction), there is room for improvement in that each chemical solution must be jetted by finely moving the drill rod forward or backward.

以上のような従来技術を背景になされたのが本発明である。本発明の目的は、2種類の薬液による地盤改良効果を向上し、薬液の注入効率を高めることにある。   The present invention has been made against the background of the prior art as described above. An object of the present invention is to improve the ground improvement effect by two types of chemical solutions and to increase the injection efficiency of the chemical solutions.

上記目的を達成すべく本発明は、二系統の薬液通路を流通する薬液を、管軸方向に対する交差方向で地盤に向けて噴射する噴射口を外周面に有する地盤掘削用の掘削ロッドについて、該噴射口を掘削ロッドの管軸方向に沿って多数設けるとともに、各噴射口と各薬液通路とに連通する混合室を設けること、また混合室を貫通し掘削ロッドの前端へと掘削ロッドの管軸に沿って延在する掘削流体の通路と、噴射口と混合室とに連通する混合薬液の通路と、を並列に設けることを特徴とする掘削ロッドを提供する。 In order to achieve the above object, the present invention relates to a drilling rod for ground excavation having an injection port on the outer peripheral surface for injecting a chemical flowing through two chemical liquid passages toward the ground in a direction intersecting the pipe axis direction. the injection port provided with a large number along the tube axis direction of the drill rod, tube drill rod to the front end of Rukoto provided mixing chamber communicating with each injection port and the respective chemical liquid passage, also through the mixing chamber drill rod Provided is a drilling rod characterized in that a drilling fluid passage extending along an axis and a mixed chemical solution passage communicating with an injection port and a mixing chamber are provided in parallel .

この掘削ロッドは、薬液の噴射口と各薬液通路とに連通する混合室を設けたので、予め混合室で2種類の薬液が混合されてから地盤に噴射される。したがって、2種類の混合薬液が直接地盤に浸透することで、高い地盤改良効果を発揮できる。尚かつ混合薬液は、掘削ロッドの管軸方向に沿って設けた多数の噴射口から噴射される。したがって、地盤改良域に横方向(水平方向)への広がりがある場合でも、管軸方向に沿う長さと広がりをもつ、あたかもカーテン状の噴射によって、前述のように予め混合された混合薬液を効率的に注入することができる。   Since this excavation rod is provided with a mixing chamber communicating with the chemical solution injection port and each chemical solution passage, two kinds of chemical solutions are mixed in advance in the mixing chamber and then injected onto the ground. Therefore, a high ground improvement effect can be exhibited because two kinds of mixed chemicals penetrate directly into the ground. Further, the mixed chemical liquid is injected from a number of injection ports provided along the tube axis direction of the excavation rod. Therefore, even when the ground improvement area has a lateral (horizontal) spread, it is efficient to use the mixed chemicals premixed as described above by curtain-like jets that have a length and spread along the tube axis direction. Can be injected.

前記掘削ロッドは、混合室を噴射口の手前側近接位置に設けたものとして構成される。   The excavation rod is configured such that the mixing chamber is provided at a position close to the front side of the injection port.

これによれば、例えば混合薬液が硬化してしまう等、混合薬液により発揮される地盤改良作用が、掘削ロッド内で生じることを抑制できる。したがって、例えば混合薬液の反応時間が遅い等、混合薬液により発揮される地盤改良作用が掘削ロッド内で生じなければ、噴射口から離れた位置(例えば自在掘削工法で用いる位置情報発信器を収容するロッドの後端位置等)に混合室を配置してもよい。   According to this, for example, the ground improvement effect exhibited by the mixed chemical liquid such as the mixed chemical liquid being hardened can be suppressed from occurring in the excavation rod. Therefore, if the ground improvement effect exhibited by the mixed chemical solution does not occur in the excavation rod, for example, the reaction time of the mixed chemical solution is slow, a position away from the injection port (for example, a position information transmitter used in the universal excavation method is accommodated) You may arrange | position a mixing chamber in the rear end position etc. of a rod.

前記掘削ロッドは、混合室に通じる各薬液通路の末端部を、前記管軸方向に対して斜めに伸長する斜め通路として形成したものとして構成される。   The excavation rod is configured such that the end portion of each chemical solution passage leading to the mixing chamber is formed as an oblique passage extending obliquely with respect to the tube axis direction.

これによれば、混合室へ斜めに各薬液が流入することで、薬液どうしの混合効果を高めることができる。ここでいう斜め通路とは、その通路の孔軸方向が、掘削ロッドの管軸方向に対して上・下・左・右の何れの方向で斜めになっているものでもよく、また複数の方向の組合せでもよい。   According to this, since each chemical | medical solution flows diagonally into a mixing chamber, the mixing effect of a chemical | medical solution can be heightened. As used herein, the oblique passage may be one in which the hole axial direction of the passage is oblique in any of the upper, lower, left, and right directions with respect to the tube axis direction of the excavation rod, and a plurality of directions. A combination of these may be used.

前記掘削ロッドは、混合室を形成する掘削ロッドの内周面を、各薬液の流入側から流出側にかけて狭くなる漏斗面として形成したものとして構成される。   The excavation rod is configured such that the inner peripheral surface of the excavation rod forming the mixing chamber is formed as a funnel surface that narrows from the inflow side to the outflow side of each chemical solution.

これによれば、漏斗面によって渦流のような混合薬液の流れを発生させることができるので、混合効果を高めることができる。そして、この場合に、前述の本発明による斜め通路との組合せによれば、斜め方向に各薬液を噴射しつつ混合室では漏斗面によって渦流のような流れを発生させることができるので、さらに高い混合効果が得られる。ここでいう漏斗面とは、混合室における各薬液の流入側(混合室の後端側)から流出側(混合室の前端側)にかけて、混合薬液を集中させることができるものであればよい。したがって、混合室の後端側から前端側にかけて漸次傾斜面でなくてもよく、例えば、段階的に傾斜面とするようなものであっても、また後端側に傾斜面がなく中間周辺から前端側にかけて傾斜面としたものであっても、さらには漏斗面に螺旋溝を形成したようなものでもよい。   According to this, since the flow of the mixed chemical solution such as a vortex can be generated by the funnel surface, the mixing effect can be enhanced. In this case, according to the combination with the above-described oblique passage according to the present invention, it is possible to generate a flow like a vortex by the funnel surface in the mixing chamber while injecting each chemical solution in an oblique direction. A mixing effect is obtained. The funnel surface here may be any surface that can concentrate the mixed chemical liquid from the inflow side (rear end side of the mixing chamber) to the outflow side (front end side of the mixing chamber) of each chemical liquid in the mixing chamber. Therefore, it may not be a gradually inclined surface from the rear end side to the front end side of the mixing chamber. For example, it may be an inclined surface stepwise, or there is no inclined surface on the rear end side and from the middle periphery. It may be an inclined surface extending toward the front end side, or may be such that a spiral groove is formed on the funnel surface.

前記掘削ロッドは、混合室に、各薬液の流れを一旦留める仕切板を設けたものとして構成される。   The excavation rod is configured as a mixing chamber provided with a partition plate for temporarily stopping the flow of each chemical solution.

これによれば、混合室で合流した混合薬液の流れを、仕切板で一旦留めることで、混合効果を高めることができる。   According to this, a mixing effect can be heightened by once stopping the flow of the mixed chemical solution merged in the mixing chamber with the partition plate.

前記掘削ロッドは、仕切板を薬液の流れ方向に沿って多段で設けたものとして構成される。このため、混合薬液の流れが仕切板ごとに一旦留まるので、さらに混合効果が高まる。   The excavation rod is configured such that partition plates are provided in multiple stages along the flow direction of the chemical liquid. For this reason, since the flow of the mixed chemical solution temporarily remains for each partition plate, the mixing effect is further enhanced.

前記掘削ロッドは、該仕切板に薬液が通る孔を設け、前後する仕切板に設けた孔の孔軸をずらしたものとして構成される。このため、後側の仕切板の孔を通過した混合薬液は、前側の仕切板の板面に対して後から突き当たり、流れ方向が強制的に変更される。よって、さらに混合効果が高まる。   The excavation rod is configured such that a hole through which a chemical solution passes is provided in the partition plate, and the hole axis of the hole provided in the front and rear partition plates is shifted. For this reason, the mixed chemical liquid that has passed through the holes in the rear partition plate strikes the plate surface of the front partition plate from the rear, and the flow direction is forcibly changed. Therefore, the mixing effect is further increased.

前記掘削ロッドは、多数の噴射口を、掘削ロッドの管軸を中心とする放射状に設けたものとして構成される。   The excavation rod is configured such that a large number of injection holes are provided radially around the tube axis of the excavation rod.

これによれば、掘削ロッドの管軸方向に沿って開口する多数の噴射口が、掘削ロッドの外周面に放射状に形成されるので、管軸方向に沿う全方向で、あたかもカーテン状に混合薬液を噴射することができ、さらに注入効果と注入効率を高めることができる。   According to this, since a large number of injection ports that open along the tube axis direction of the excavation rod are formed radially on the outer peripheral surface of the excavation rod, the mixed chemical solution is as if in a curtain shape in all directions along the tube axis direction. Can be injected, and the injection effect and injection efficiency can be further enhanced.

前記掘削ロッドは、外周面に、長手方向に通じる凹溝と、該凹溝の蓋板と、でなる薬液通路を形成したロッドを備えるものとして構成される。   The excavation rod is configured to include a rod formed on the outer peripheral surface with a chemical liquid passage formed by a concave groove communicating with the longitudinal direction and a cover plate of the concave groove.

このロッドでは、管内に地盤内の位置情報を発信する位置情報発信器等を収容する構成とすることができ、しかも薬液通路を確保することができる。この場合には、凹溝を角形凹溝としたり、幅方向がロッドの周方向に沿った断面弧状の凹溝として形成することで、大きな断面積を確保できる。そして、このロッドの管内に、前記位置情報発信器を収容することで、掘削ロッドを誘導しつつ直線状掘削と曲線状掘削を行う自在掘削が行えるようになる。   This rod can be configured to accommodate a position information transmitter or the like that transmits position information in the ground within the pipe, and can secure a chemical solution passage. In this case, a large cross-sectional area can be secured by forming the concave groove as a square concave groove or by forming the concave groove as an arc-shaped concave groove whose width direction is along the circumferential direction of the rod. And by accommodating the position information transmitter in the tube of this rod, it becomes possible to perform free excavation for performing linear excavation and curvilinear excavation while guiding the excavation rod.

前記掘削ロッドは、内部が混合室をなす薄肉筒状部を形成したものとして構成される。これによれば、容積の大きい混合室を確保できる。この場合、掘削ロッドを構成する特定のロッドを長手方向にわたって薄肉筒状部としてもよいし、部分的に薄肉筒状部を有するものとして構成してもよい。さらに、混合室は、特定のロッドの薄肉筒状部のみによって構成されるものでもよいし、連結されるロッドの双方に薄肉筒状部を形成し、これらの薄肉筒状部の内部を混合室として構成してもよい。   The excavating rod is configured as a thin-walled cylindrical part whose inside forms a mixing chamber. According to this, a mixing chamber with a large volume can be secured. In this case, the specific rod constituting the excavation rod may be a thin-walled cylindrical portion over the longitudinal direction, or may be configured to have a thin-walled tubular portion partially. Further, the mixing chamber may be constituted only by a thin cylindrical portion of a specific rod, or a thin cylindrical portion is formed on both of the connected rods, and the inside of these thin cylindrical portions is mixed into the mixing chamber. You may comprise as.

前記掘削ロッドは、少なくとも何れか一方の薬液通路を掘削流体の通路として構成される。これによれば、掘削流体用の独立の通路を確保する必要が無い。   The drilling rod is configured with at least one of the chemical liquid passages as a passage for the drilling fluid. According to this, it is not necessary to secure an independent passage for the drilling fluid.

また、本発明は、前記目的を達成すべく、地盤を掘削する掘削ロッドに二系統の薬液通路を介して各薬液を導入し、各薬液通路と連通する掘削ロッドの混合室で各薬液を一旦混合させてから、掘削ロッドの管軸に沿って混合室を貫通し掘削ロッドの前端へと延在する掘削流体の通路に対して並列に設けた混合薬液の通路を経由して、掘削ロッドの外周面に長手方向に沿って開口する多数の噴射口を通じて地盤改良域に噴射して、混合薬液を浸透注入する薬液注入工法を提供する。 Further, in order to achieve the above object, the present invention introduces each chemical solution into the drilling rod for excavating the ground through the two systems of chemical solution passages, and temporarily stores each chemical solution in the mixing chamber of the drilling rod communicating with each chemical solution passage. After mixing, it passes through the mixing chamber through the mixing chamber along the tube axis of the drilling rod and extends to the front end of the drilling rod. Provided is a chemical liquid injection method for injecting and injecting a mixed chemical liquid by injecting it into a ground improvement region through a large number of injection holes opening along the longitudinal direction on an outer peripheral surface.

この薬液注入工法によれば、2種類の薬液を一旦混合室で混合させるので、混合薬液が直接地盤に浸透することで、高い地盤改良効果を発揮できる。尚かつ混合薬液は、掘削ロッドの管軸方向に沿って設けた多数の噴射口から噴射される。したがって、地盤改良域に横方向(水平方向)への広がりがある場合であっても、管軸方向に沿う長さと広がりをもつ、あたかもカーテン状の噴射により、混合薬液を効率的に注入することができる。   According to this chemical solution injection method, since two types of chemical solutions are once mixed in the mixing chamber, a high ground improvement effect can be exhibited by the mixed chemical solution penetrating directly into the ground. Further, the mixed chemical liquid is injected from a number of injection ports provided along the tube axis direction of the excavation rod. Therefore, even when the ground improvement area has a lateral (horizontal) spread, the mixed chemical solution can be efficiently injected by a curtain-like spray having a length and spread along the tube axis direction. Can do.

前記薬液注入工法は、掘削ロッドの内部に位置情報発信器を備え、位置情報発信器からの位置情報に応じて、該掘削ロッドの前端から掘削流体を掘進方向へ噴射しつつ直線状及び曲線状に自在掘削し、地盤改良域に到達したならば前記浸透注入を行うものとして構成される。   The chemical injection method includes a position information transmitter inside the excavation rod, and in accordance with the position information from the position information transmitter, the drilling fluid is ejected from the front end of the excavation rod in the direction of digging and is linear and curved If it reaches the ground improvement zone, it is configured to perform the infiltration injection.

これによれば、自在掘削により地盤改良域にピンポイントでアプローチすることができるので、混合薬液の注入精度を高めることができ、また既設構造物の下方に地盤改良域がある場合でも、難なく薬液注入が行える。   According to this, since it is possible to approach the ground improvement area by free excavation, the injection accuracy of the mixed chemical liquid can be improved, and even if there is a ground improvement area below the existing structure, the chemical liquid can be used without difficulty. Can be injected.

前記薬液注入工法は、掘削ロッドとして、前述の本発明の掘削ロッドを用いるものとして構成される。これによれば、本発明の掘削ロッドによる利点も得られる。   The said chemical | medical solution injection | pouring method is comprised as what uses the excavation rod of this invention mentioned above as an excavation rod. According to this, the advantage by the excavation rod of this invention is also acquired.

本発明の掘削ロッド及び薬液注入工法によれば、地盤改良効果を向上することができ、注入効率も高めることができるので、高い地盤改良効果を効率的に行える。特に、特に砂質地盤の間隙水を混合薬液の浸透注入により置換し、混合薬液による砂質地盤の固化処理によって液状化現象を防ぐ浸透注入工法を、効果的且つ効率的に行える。   According to the excavation rod and the chemical solution injection method of the present invention, the ground improvement effect can be improved and the injection efficiency can be increased, so that a high ground improvement effect can be efficiently performed. In particular, it is possible to effectively and efficiently perform an osmotic injection method in which pore water in the sandy ground is replaced by osmotic injection of a mixed chemical solution, and the liquefaction phenomenon is prevented by solidifying the sandy ground with the mixed chemical solution.

以下、本発明の実施形態の例について図面を参照しつつ説明する。   Hereinafter, examples of embodiments of the present invention will be described with reference to the drawings.

掘削ロッドの概要〔図1〜図4,図6,図7〕: 本実施形態の掘削ロッド1は、図1で示すように、掘進方向における前端側から、掘削ヘッド2、注入ロッド3、混合切換ロッド4、位置情報発信器の格納ロッド5、二重管接続レデューサ6、カップリング7、延長ロッド8を相互に螺合により連結して構成される。延長ロッド8の後端部には、必要な掘削長に応じてカップリング7と延長ロッド8が交互に螺合により連結される。 Outline of excavation rod [FIGS. 1 to 4, FIG. 6, FIG. 7] : As shown in FIG. 1, the excavation rod 1 of the present embodiment includes an excavation head 2, an injection rod 3, and a mixture from the front end side in the excavation direction. The switching rod 4, the storage rod 5 of the position information transmitter, the double pipe connection reducer 6, the coupling 7, and the extension rod 8 are connected to each other by screwing. The coupling 7 and the extension rod 8 are alternately connected to the rear end portion of the extension rod 8 by screwing according to the required excavation length.

掘削ヘッド2: 掘削ヘッド2は、地盤を掘削するものであり、図2で示すように、掘削時に地盤の土圧を受ける傾斜板9がボルト止めされている。掘削ヘッド2の前端面には噴射口2aが開口しており、ここから掘削流体が前方に向けて噴射される。噴射口2aは、通路2bに連通しており、通路2bの基端側には、逆止弁として機能する樹脂製のボール10の収容部2cが形成されており、この収容部2cは通路11aを貫通形成したキャップ11で閉塞してある。したがって、掘削流体を噴射する際には、ボール10はその流圧を受けて収容部2cの前端側へ移動するが、通路2bを閉塞しないので、噴射口2aからは掘削流体が噴射される。一方、噴射口2aから掘削流体等が逆流することが想定される。この場合には、ボール10がキャップ11の球面状凹部11bに嵌り込んで逆止弁として機能し、注入ロッド3への逆流を阻止するようになっている。 Excavation Head 2 : The excavation head 2 excavates the ground, and as shown in FIG. 2, an inclined plate 9 that receives earth pressure of the ground during excavation is bolted. An injection port 2a is opened in the front end surface of the excavation head 2, and the excavation fluid is ejected forward from here. The injection port 2a communicates with the passage 2b, and a housing portion 2c of a resin ball 10 that functions as a check valve is formed on the base end side of the passage 2b. The housing portion 2c is formed in the passage 11a. It is closed with a cap 11 formed so as to penetrate through. Therefore, when the drilling fluid is ejected, the ball 10 receives the fluid pressure and moves to the front end side of the accommodating portion 2c, but does not block the passage 2b, so that the drilling fluid is ejected from the ejection port 2a. On the other hand, it is assumed that drilling fluid or the like flows backward from the injection port 2a. In this case, the ball 10 is fitted into the spherical concave portion 11b of the cap 11 and functions as a check valve, thereby preventing the back flow to the injection rod 3.

注入ロッド3: 注入ロッド3には、図2,図4で示すように、管軸に沿って貫通する中央通路3aが形成される。中央通路3aの径方向外側には、注入ロッド3の管軸方向に沿って伸長する12本の外側通路3bが形成される。各外側通路3bは、管軸を中心とする放射状に開口する多数の噴射口3cと連通する。したがって、この注入ロッド3の外周面の管軸方向では、当該方向に沿って多数の噴射口3cが列状に並んで開口することになる。したがって、地盤改良域に横方向(水平方向)への広がりがある場合であっても、管軸方向に沿う長さと広がりをもつ、あたかもカーテン状の噴射により、混合薬液を効率的且つ効果的に注入できるようになっている。また、注入ロッド3の外周面の周方向では、多数の噴射口3cが放射状に開口するので、カーテン状の噴射を全方向について行うことができ、この点でも注入効果が高められている。 Injection rod 3 : As shown in FIGS. 2 and 4, the injection rod 3 is formed with a central passage 3 a penetrating along the tube axis. Twelve outer passages 3b extending along the tube axis direction of the injection rod 3 are formed on the radially outer side of the central passage 3a. Each outer passage 3b communicates with a number of injection ports 3c that open radially about the tube axis. Therefore, in the tube axis direction of the outer peripheral surface of the injection rod 3, a large number of injection ports 3c are opened in a line along the direction. Therefore, even if the ground improvement area has a lateral (horizontal) spread, the mixed chemicals can be efficiently and effectively delivered by a curtain-like spray that has a length and spread along the tube axis direction. It can be injected. Further, in the circumferential direction of the outer peripheral surface of the injection rod 3, since many injection ports 3c are opened radially, curtain-like injection can be performed in all directions, and the injection effect is also enhanced in this respect.

注入ロッド3の後端側には、薄肉筒状部3dが形成される。その内部には、仕切キャップ12が差し込まれて、注入ロッド3に対して3カ所でボルト止めされる(図6,SG−SG断面の符号「B」。)。仕切キャップ12には、薄肉筒状部3dとの間で隙間を形成する小径部12aが形成される。本実施形態では、この小径部12aと薄肉筒状部3dの内周面との隙間が、混合室3eとなる。小径部12aの基端には外向きフランジ12bが形成される。また、仕切キャップ12には、混合室3eに連通する2つの通路12c(図6,SF−SF断面参照。)、管軸方向に沿う通路12d、弁孔12eが、それぞれ貫通形成される。   A thin cylindrical portion 3 d is formed on the rear end side of the injection rod 3. Inside, a partition cap 12 is inserted and bolted to the injection rod 3 at three positions (reference numeral “B” in FIG. 6, SG-SG cross section). The partition cap 12 is formed with a small diameter portion 12a that forms a gap with the thin cylindrical portion 3d. In the present embodiment, the gap between the small diameter portion 12a and the inner peripheral surface of the thin cylindrical portion 3d becomes the mixing chamber 3e. An outward flange 12b is formed at the proximal end of the small diameter portion 12a. The partition cap 12 is formed with two passages 12c communicating with the mixing chamber 3e (see FIG. 6, SF-SF cross section), a passage 12d along the tube axis direction, and a valve hole 12e.

混合切換ロッド4: 混合切換ロッド4には、地盤掘削時と薬液注入時とで通路を切り換える作動シリンダ13が収容される。作動シリンダ13は、先端小径部13a、中径部13b、前側大径部13c、中間軸部13d、後側大径部13eで構成される。この作動シリンダ13は、混合切換ロッド4の収容孔4aに収容される。また、作動シリンダ13は、地盤掘削時には、コイルばね14によって後方に付勢される一方で、薬液注入時には、その後端面13fで薬液の流圧を受け、コイルばね14の付勢に抗して前方にスライドする。 Mixing switching rod 4 : The mixing switching rod 4 accommodates an operating cylinder 13 for switching the path between ground excavation and chemical injection. The working cylinder 13 includes a tip small diameter portion 13a, a medium diameter portion 13b, a front large diameter portion 13c, an intermediate shaft portion 13d, and a rear large diameter portion 13e. The operation cylinder 13 is accommodated in the accommodation hole 4 a of the mixing switching rod 4. The working cylinder 13 is urged rearward by the coil spring 14 when excavating the ground, while the chemical cylinder 13 receives the fluid pressure at the rear end face 13f when injecting the chemical liquid, and resists the urging of the coil spring 14 forward. Slide to.

収容孔4aの下側には、下側通路4bが連通して形成され、これらによって断面8字状の空洞が形成される(図6,図7参照。)。下側通路4bには、混合切換ロッド4の後端部へ貫通する2つの並行通路4cが連通している。一方、収容孔4aの上側には、その後側位置に、径方向外向きに伸長し、その上端で直角に曲折してから管軸方向に沿って前方へ伸長し、前述の仕切キャップ12の一方の通路12cと連通する中間L形通路4dが連通形成される。これと同様に、中間位置には、径方向外向きに伸長し、その上端で直角に曲折してから管軸方向に沿って前方へ伸長し、前述の仕切キャップ12の他方の通路12cと連通する前側L形通路4eが連通形成される。これら中間L形通路4dと前側L形通路4eは、混合切換ロッド4の管軸中心に対する傾斜位置に、それぞれ形成される(図6,図7参照。)。また、収容孔4aの後端部には、他端が混合切換ロッド4の外周面に開口する後側L形通路4fが形成される。   A lower passage 4b is formed in communication with the lower side of the accommodation hole 4a, thereby forming a cavity having an 8-shaped cross section (see FIGS. 6 and 7). Two parallel passages 4c penetrating to the rear end portion of the mixing switching rod 4 communicate with the lower passage 4b. On the other hand, on the upper side of the accommodation hole 4a, it extends radially outward at the rear position, bends at a right angle at its upper end and then extends forward along the tube axis direction. An intermediate L-shaped passage 4d communicating with the passage 12c is formed. Similarly, at the intermediate position, it extends radially outward, bends at a right angle at its upper end, then extends forward along the tube axis direction, and communicates with the other passage 12c of the partition cap 12 described above. The front L-shaped passage 4e is formed in communication. The intermediate L-shaped passage 4d and the front L-shaped passage 4e are respectively formed at inclined positions with respect to the tube axis center of the mixing switching rod 4 (see FIGS. 6 and 7). In addition, a rear L-shaped passage 4f whose other end opens on the outer peripheral surface of the mixing switching rod 4 is formed at the rear end of the accommodation hole 4a.

格納ロッド5: 格納ロッド5には、図3,図4(b)で示すように、位置情報発信器15が格納される。位置情報発信器15には、掘削ロッド1によって自在掘削を行うべく、地盤内での位置情報を発信する図外の発信器ユニットが内蔵されている。また、図4(b)で示すように、位置情報発信器15が発信する電磁波を透過させるための、貫通孔を樹脂封止してなる透過部16が、複数箇所に形成される。なお、本実施形態では、位置情報として電磁波を発信し、地上のロケータと呼ばれる探知機によりキャッチした電磁波をもとに地盤内での位置情報が取得され、自在掘削が制御される。位置情報発信器15の両端にボルト止めしたのは、ゴム状弾性体でなる緩衝材17である。そして、これらは、格納ロッド5の内周面5aと螺合する固定具18にて固定される。 Storage rod 5 : The storage rod 5 stores a position information transmitter 15 as shown in FIGS. The position information transmitter 15 includes a transmitter unit (not shown) that transmits position information in the ground so that the excavation rod 1 can freely excavate. Moreover, as shown in FIG.4 (b), the permeation | transmission part 16 formed by resin-sealing a through-hole for permeate | transmitting the electromagnetic waves which the position information transmitter 15 transmits is formed in multiple places. In the present embodiment, electromagnetic waves are transmitted as position information, position information in the ground is acquired based on the electromagnetic waves caught by a detector called a locator on the ground, and free excavation is controlled. What is bolted to both ends of the position information transmitter 15 is a cushioning material 17 made of a rubber-like elastic body. And these are fixed with the fixing tool 18 screwed together with the internal peripheral surface 5a of the storage rod 5. FIG.

格納ロッド5の外周面5bには、その長手方向に通じる2本の凹溝5c,5dが形成される。凹溝5c,5dの底面は、外周面5bよりも径方向内向きに一段低くなっている。   On the outer peripheral surface 5b of the storage rod 5, two concave grooves 5c and 5d are formed which communicate with the longitudinal direction thereof. The bottom surfaces of the concave grooves 5c and 5d are one step lower inward in the radial direction than the outer peripheral surface 5b.

凹溝5c,5dの前端側には、内周面5aに開口する前孔5e,5fが貫通形成される。そして、格納ロッド5に混合切換ロッド4を連結すると、前孔5eは、混合切換ロッド4の後側L形通路4fと整合して連通し、また前孔5fは、固定具18と混合切換ロッド4の後端面との隙間を介して、混合切換ロッド4の2本の並行通路4cとそれぞれ連通する。   Front holes 5e and 5f that open to the inner peripheral surface 5a are formed through the front end sides of the concave grooves 5c and 5d. When the mixing switching rod 4 is connected to the retracting rod 5, the front hole 5e is in communication with the rear L-shaped passage 4f of the mixing switching rod 4 in alignment with it, and the front hole 5f is connected to the fixture 18 and the mixing switching rod. 4 communicates with the two parallel passages 4c of the mixing switching rod 4 through a gap with the rear end surface of the four.

一方、凹溝5c,5dの後端側にも、内周面5aに開口する後孔5g,5hが貫通形成される。そして、格納ロッド5に二重管接続レデューサ6を連結すると、後孔5gは、二重管接続レデューサ6のL形通路6aと整合して連通し、また後孔5hは、固定具18と二重管接続レデューサ6の前端面との隙間を介して、二重管接続レデューサ6の傾斜通路6bと連通する。   On the other hand, rear holes 5g and 5h that open to the inner peripheral surface 5a are also formed through the rear end sides of the concave grooves 5c and 5d. When the double pipe connection reducer 6 is coupled to the storage rod 5, the rear hole 5 g is aligned and communicated with the L-shaped passage 6 a of the double pipe connection reducer 6, and the rear hole 5 h is connected to the fixture 18. The double pipe connection reducer 6 communicates with the inclined passage 6 b of the double pipe connection reducer 6 through a gap with the front end surface of the double pipe connection reducer 6.

以上のような凹溝5c,5dは、それぞれ蓋板19にて閉塞され、これにより格納ロッド5には、二系統の通路が形成される。このように格納ロッド5の内部には、前述の位置情報発信器15の収容空間が形成され、そこに位置情報発信器15を格納しても、二系統の通路を確保できるようになっている。   The concave grooves 5c and 5d as described above are respectively closed by the cover plate 19, whereby two paths are formed in the storage rod 5. As described above, the housing space of the position information transmitter 15 is formed inside the storage rod 5, and even if the position information transmitter 15 is stored therein, two passages can be secured. .

二重管接続レデューサ6: 二重管接続レデューサ6には、図3で示すように、前述のL形通路6a、傾斜通路6bが形成される。L形通路6aの後側の端末口には、内管接続管6cが螺合により連結される。一方、傾斜通路6bは、二重管接続レデューサ6の管軸方向に対して斜めに貫通形成される。 Double pipe connection reducer 6 : As shown in FIG. 3, the double pipe connection reducer 6 is formed with the aforementioned L-shaped passage 6a and the inclined passage 6b. An inner pipe connecting pipe 6c is connected to the terminal port on the rear side of the L-shaped passage 6a by screwing. On the other hand, the inclined passage 6b is formed so as to penetrate obliquely with respect to the tube axis direction of the double tube connection reducer 6.

カップリング7,延長ロッド8: カップリング7は二重管ロッドとなっている。すなわち、外管7aと内管7bとで構成される。内管7bの前端には、前述した二重管接続レデューサ6の内管接続管6cが差込みにより連結される。外管7aの内部での内管7bの保持は、環状の保持具20によってなされる。保持具20には、外管7aと内管7bの間の筒状通路7cに通じる孔20aと、内管7b,8bを保持する孔20bとが貫通形成される。 Coupling 7 and extension rod 8 : The coupling 7 is a double tube rod. That is, the outer tube 7a and the inner tube 7b are configured. The inner pipe connection pipe 6c of the double pipe connection reducer 6 described above is connected to the front end of the inner pipe 7b by insertion. The inner tube 7b is held inside the outer tube 7a by an annular holder 20. The holder 20 is formed with a hole 20a communicating with the cylindrical passage 7c between the outer tube 7a and the inner tube 7b and a hole 20b for holding the inner tubes 7b and 8b.

延長ロッド8も二重管ロッドで、外管8aと内管8bで構成される。内管8bは、カップリング7の内管7bの後端に差込みにより連結されている。外管8aの内部での内管8bの保持は、保持具20によってなされる。   The extension rod 8 is also a double tube rod and includes an outer tube 8a and an inner tube 8b. The inner tube 8b is connected to the rear end of the inner tube 7b of the coupling 7 by insertion. The holder 20 holds the inner tube 8b inside the outer tube 8a.

なお、カップリング7と延長ロッド8の内管7b,8bと保持具20は、溶接部21で予め接合され連結された状態となっており、外管7a,8aに対する固定は、ボルト22によってなされる。   In addition, the inner pipes 7b and 8b of the coupling 7 and the extension rod 8 and the holder 20 are joined and connected in advance by the welded portion 21, and the outer pipes 7a and 8a are fixed by the bolts 22. The

3系統の通路: 上記構成の掘削ロッド1にあっては、以下の3系統の通路が形成される。その1つは、掘削時に掘削流体が流通する通路であり、混合室3eに到達せずに掘削ヘッド2の噴射口2aに通じるものである。すなわち、“掘削時通路”は、延長ロッド8の外管8aと内管8bとの間の通路、カップリング7の筒状通路7c、二重管接続レデューサ6の傾斜通路6b、格納ロッド5の凹溝5d、混合切換ロッド4の並行通路4c、下側通路4b、収容孔4a、仕切キャップ12の弁孔12e、通路12d、注入ロッド3の中央通路3a、掘削ヘッド2の収容部2c、通路2b、噴射口2aからなる。 Three passages : In the excavation rod 1 having the above-described configuration, the following three passages are formed. One of them is a passage through which a drilling fluid flows during excavation, and does not reach the mixing chamber 3e and leads to the injection port 2a of the excavation head 2. That is, the “passage during excavation” refers to the passage between the outer tube 8 a and the inner tube 8 b of the extension rod 8, the cylindrical passage 7 c of the coupling 7, the inclined passage 6 b of the double pipe connection reducer 6, and the storage rod 5. Concave groove 5d, parallel passage 4c of mixing switching rod 4, lower passage 4b, accommodation hole 4a, valve hole 12e of partition cap 12, passage 12d, central passage 3a of injection rod 3, accommodation portion 2c of excavation head 2, passage 2b and the injection port 2a.

そして、次の2つが、混合室3eに連通する“2系統の薬液通路”である。その一つは、延長ロッド8の外管8aと内管8bとの間の通路、カップリング7の筒状通路7c、二重管接続レデューサ6の傾斜通路6b、格納ロッド5の凹溝5d、混合切換ロッド4の並行通路4c、下側通路4b、収容孔4aにおける作動シリンダ13の中間軸部13dの外周、前側L形通路4e、仕切キャップ12の通路12cからなる“第1注入通路”である。他の一つは、延長ロッド8の内管8b、カップリング7の内管7b、二重管接続レデューサ6の通路6a、格納ロッド5の凹溝5c、混合切換ロッド4の後側L形通路4f、収容孔4a、中間L形通路4d、仕切キャップ12の通路12cからなる“第2注入通路”である。   The next two are “two systems of chemical solution passages” communicating with the mixing chamber 3e. One of them is a passage between the outer pipe 8a and the inner pipe 8b of the extension rod 8, a cylindrical passage 7c of the coupling 7, an inclined passage 6b of the double pipe connecting reducer 6, a concave groove 5d of the storage rod 5, A "first injection passage" comprising a parallel passage 4c of the mixing switching rod 4, a lower passage 4b, an outer periphery of the intermediate shaft portion 13d of the operating cylinder 13 in the accommodation hole 4a, a front L-shaped passage 4e, and a passage 12c of the partition cap 12. is there. The other one is the inner tube 8b of the extension rod 8, the inner tube 7b of the coupling 7, the passage 6a of the double tube connecting reducer 6, the concave groove 5c of the storage rod 5, and the rear L-shaped passage of the mixing switching rod 4. 4 f, the accommodation hole 4 a, the intermediate L-shaped passage 4 d, and the “second injection passage” including the passage 12 c of the partition cap 12.

このうちの第1注入通路は、混合切換ロッド4の下側通路4bまでは、掘削時通路と共通であり、下側通路4b以降の切換えは、第2注入通路への薬液の流通によって行われる。つまり、第2注入通路の流通によって、作動シリンダ13が前進することで、第1注入通路が形成される。一方、第2注入通路の非流通時には、作動シリンダ13が不動であるから、前述の掘削時通路が形成されることになる。   Of these, the first injection passage is common to the excavation passage up to the lower passage 4b of the mixing switching rod 4, and the switching after the lower passage 4b is performed by the flow of the chemical solution to the second injection passage. . That is, the first injection passage is formed by the operation cylinder 13 moving forward by the flow of the second injection passage. On the other hand, when the second injection passage is not in circulation, the working cylinder 13 does not move, so the above-described excavation passage is formed.

薬液注入工法の概要〔図5〜図7〕: 次に、掘削ロッド1を用いる薬液注入工法を説明する。本実施形態では、薬液注入工法の一例として、図5で示すように、既設構造物としてのビル30の下方を地盤改良域31とし、この地盤改良域31に混合薬液を浸透注入し、固化処理する浸透固化処理工法について説明する。本実施形態の浸透固化処理工法は、地上に設置した自在ボーリングマシン32によって行う自在掘削工程と、その自在ボーリングマシン32によって行う薬液注入工程とで構成される。なお、薬液注入工程においては別途の注入装置を使用することができるのは勿論である。 Outline of chemical injection method [FIGS. 5 to 7] : Next, a chemical injection method using the excavation rod 1 will be described. In this embodiment, as an example of the chemical solution injection method, as shown in FIG. 5, the lower part of the building 30 as an existing structure is set as a ground improvement region 31, and the mixed chemical solution is infiltrated and injected into the ground improvement region 31 to solidify. The permeation solidification method will be described. The osmosis solidification processing method according to the present embodiment includes a free excavation process performed by a free boring machine 32 installed on the ground and a chemical solution injection process performed by the free boring machine 32. Of course, a separate injection device can be used in the chemical solution injection step.

自在掘削工程〔図5(a),図6〕: 図5(a)で示すように、自在ボーリングマシン32と掘削ロッド1を使って地盤改良域31のターゲット31aに向けて直線状及び曲線状の自在掘削を行う。具体的には、掘削ロッド1を、自在ボーリングマシン32により回転力と推進力を付与しながら、地盤へ斜めに貫入していく。 Swivel excavation process [FIGS. 5 (a), 6] : As shown in FIG. 5 (a), using a flexible boring machine 32 and a drilling rod 1, a straight line and a curved line toward the target 31a in the ground improvement area 31 Perform free excavation. Specifically, the excavation rod 1 penetrates into the ground obliquely while applying a rotational force and a propulsive force by the free boring machine 32.

この地盤の掘削時には、掘削流体を前述の掘削ロッド1の“掘削時通路”に圧送する。すなわち、延長ロッド8の外管8aと内管8bとの間の通路に圧送すると、掘削流体は、カップリング7の筒状通路7c、二重管接続レデューサ6の傾斜通路6b、格納ロッド5の凹溝5d、混合切換ロッド4の並行通路4cを通じて、下側通路4bに到達する。このとき、図6で示すように、通路を切り換える作動シリンダ13は、コイルばね14によってが後方へ付勢されて後退している。したがって、掘削流体w1は、収容孔4a、仕切キャップ12の弁孔12eと通路12dを通って、注入ロッド3の中央通路3aに流入し、掘削ヘッド2の収容部2cと通路2bを通じて、その前端面に開口する噴射口2aから前方に向けて噴射される。   When excavating the ground, the excavating fluid is pumped to the “excavation passage” of the excavating rod 1 described above. That is, when pressure is fed to the passage between the outer tube 8 a and the inner tube 8 b of the extension rod 8, the drilling fluid flows into the cylindrical passage 7 c of the coupling 7, the inclined passage 6 b of the double pipe connection reducer 6, and the storage rod 5. It reaches the lower passage 4b through the concave groove 5d and the parallel passage 4c of the mixing switching rod 4. At this time, as shown in FIG. 6, the operating cylinder 13 for switching the passage is urged backward by the coil spring 14 and moved backward. Therefore, the drilling fluid w1 flows into the central passage 3a of the injection rod 3 through the accommodation hole 4a, the valve hole 12e of the partition cap 12 and the passage 12d, and passes through the accommodation portion 2c and the passage 2b of the excavation head 2 to its front end. Injected forward from the injection port 2a opening in the surface.

こうした掘削流体の噴射を伴う自在掘削における直線状掘削は、自在ボーリングマシン32で掘削ロッド1を回転させつつ推進力を付与して行う。曲線状掘削は、掘削ロッド1の回転を所定角度で停止した状態で推進力を付与して行う。これにより、地盤からの土圧を傾斜板9で受け流すことで方向転換がなされ曲線状に掘削される。以上のように自在掘削を行っていくと、地盤改良域31のターゲット31aにピンポイントで到達することができる。   The straight excavation in the free excavation accompanied with the injection of the excavating fluid is performed by applying a propulsive force while rotating the excavating rod 1 by the universal boring machine 32. Curved excavation is performed by applying a propulsive force in a state where the rotation of the excavating rod 1 is stopped at a predetermined angle. Thus, the direction is changed by receiving the earth pressure from the ground by the inclined plate 9 and excavating in a curved shape. When the free excavation is performed as described above, the target 31a in the ground improvement area 31 can be pinpointed.

薬液注入工程〔図5(b),図7〕: 薬液注入にあたっては、“第1注入通路”と“第2注入通路”にそれぞれ所定の薬液w2,w3を圧送する。そして、図7で示すように、“第2注入通路”に圧送した薬液w2が混合切換ロッド4の後側L形通路4fに到達すると、その流圧を受けた作動シリンダ13が、コイルばね14の付勢に抗して前方へスライドする。これによって、図7のSD−SD断面で示すように、収容孔4aの後端側に開口する中間L形通路4dが開通する。薬液w2は、そこから仕切キャップ12の通路12cを通じて、注入ロッド3の混合室3eに流入する。一方、“第1注入通路”に圧送した薬液w3は、作動シリンダ13のスライドによって、図7のSE−SE断面で示すように、下側通路4bから作動シリンダ13の中間軸部13dの外周を回って、前側L形通路4eに流れ込む。そして、仕切キャップ12の通路12cを通じて、注入ロッド3の混合室3eに流入する。なお、薬液w3は、作動シリンダ13の先端小径部13aが仕切キャップ12の弁孔12eに嵌り込んでいるため、そこには流入しない。 Chemical liquid injection process (FIG. 5B, FIG. 7) : In the case of chemical liquid injection, predetermined chemical liquids w2 and w3 are pumped to the “first injection passage” and the “second injection passage”, respectively. Then, as shown in FIG. 7, when the chemical liquid w <b> 2 pumped to the “second injection passage” reaches the rear side L-shaped passage 4 f of the mixing switching rod 4, the working cylinder 13 that has received the fluid pressure moves the coil spring 14. Slide forward against the bias. As a result, as shown in the SD-SD cross section of FIG. 7, the intermediate L-shaped passage 4d that opens to the rear end side of the accommodation hole 4a is opened. From there, the chemical solution w2 flows into the mixing chamber 3e of the injection rod 3 through the passage 12c of the partition cap 12. On the other hand, the chemical solution w3 pumped to the “first injection passage” is caused to slide from the lower passage 4b to the outer periphery of the intermediate shaft portion 13d of the working cylinder 13 by the slide of the working cylinder 13 as shown in the SE-SE section of FIG. Rotate and flow into the front L-shaped passage 4e. Then, it flows into the mixing chamber 3 e of the injection rod 3 through the passage 12 c of the partition cap 12. Note that the chemical liquid w <b> 3 does not flow into the small diameter portion 13 a of the operating cylinder 13 because the small diameter portion 13 a is fitted into the valve hole 12 e of the partition cap 12.

以上のようにして、円筒空間状の混合室3eに流入した薬液w2,w3は内部で混合される(SH−SH断面参照)。こうして生成される混合薬液w4は、注入ロッド3における各外側通路3bに流入する。そして、混合薬液w4は、地下水位よりも低いターゲット31aに対して、注入ロッド3の管軸方向に沿って開口する多数の噴射口3cを通じて、長さと広がりをもつ、あたかもカーテン状に噴射される。しかもこの噴射は、注入ロッド3の外周面の全周にわたってなされる。したがって、混合薬液w4を地盤に対して効率的に浸透注入することができる。しかも薬液w2,w3は予め混合されているので、地盤での自然混合に依存しないで、混合薬液w4を直接地盤に浸透させることによる高い地盤改良効果が発揮される。また、混合室3eは、噴射口3cの手前側近接位置にあるので、注入ロッド3の内部が、混合薬液w4による地盤改良作用、すなわち固化作用により閉塞されてしまうような不都合を回避できる。こうしてターゲット31aでの薬液注入を終えると、掘削ロッド1を後退させて隣接するターゲット31bでの薬液注入を行い、以降は以上の工程を繰り返すことで地盤改良域31の全体に薬液注入を行うようにする。   As described above, the chemical liquids w2 and w3 flowing into the mixing chamber 3e having the cylindrical space are mixed inside (see the SH-SH cross section). The mixed chemical liquid w4 thus generated flows into each outer passage 3b in the injection rod 3. Then, the mixed chemical liquid w4 is injected into the target 31a lower than the groundwater level through a large number of injection ports 3c that open along the tube axis direction of the injection rod 3, as if having a length and spread. . Moreover, this injection is performed over the entire circumference of the outer peripheral surface of the injection rod 3. Therefore, the mixed chemical liquid w4 can be efficiently infiltrated and injected into the ground. And since the chemical | medical solution w2, w3 is mixed previously, the high ground improvement effect by making the mixed chemical | medical solution w4 permeate | transmit directly to the ground is exhibited, without depending on the natural mixing in the ground. In addition, since the mixing chamber 3e is in a position close to the front side of the injection port 3c, it is possible to avoid the inconvenience that the inside of the injection rod 3 is blocked by the ground improvement effect by the mixed chemical liquid w4, that is, the solidification effect. When the chemical solution injection at the target 31a is finished in this way, the excavation rod 1 is moved backward to inject the chemical solution at the adjacent target 31b, and thereafter, the above steps are repeated to inject the chemical solution to the entire ground improvement region 31. To.

第2実施形態〔図8〜図10〕: 図8〜図10に示すのは、掘削ロッド1における注入ロッド3の後端側と混合切換ロッド4を変形した第2実施形態である。図8で示すように、注入ロッド3の後端側には、台形錐状の混合室3fが形成される。混合室3fの内周面3gは、漏斗面となっており、後端から前端にかけて内径が漸次小さくされている。混合室3fの前端面には、中央通路3aと外側通路3bが開口し、後端面には上側通路3h、下側通路3i、左側通路3k、右側通路3mが、注入ロッド3の管軸方向に沿って貫通形成されている。 Second Embodiment [FIGS. 8 to 10] : FIGS. 8 to 10 show a second embodiment in which the rear end side of the injection rod 3 and the mixing switching rod 4 in the excavation rod 1 are modified. As shown in FIG. 8, a trapezoidal conical mixing chamber 3 f is formed on the rear end side of the injection rod 3. The inner peripheral surface 3g of the mixing chamber 3f is a funnel surface, and the inner diameter is gradually reduced from the rear end to the front end. A central passage 3a and an outer passage 3b are opened at the front end face of the mixing chamber 3f, and an upper passage 3h, a lower passage 3i, a left passage 3k, and a right passage 3m are arranged in the tube axis direction of the injection rod 3 at the rear end face. It penetrates along.

このうち上側通路3hと下側通路3iは、図9のSM−SM断面で示すように、その孔軸が、注入ロッド3の管軸に対して水平方向で斜め外向きに伸長する斜め通路として形成される。また、左側通路3kと右側通路3mも、同図で示すように、その孔軸が、注入ロッド3の管軸に対して上下方向で斜め外向きに伸長する斜め通路として形成される。したがって、これらの各通路から流入する薬液は、混合室3fの内周面の周方向に沿うようにして斜めに噴射され、混合室3fの内部で強制的に混ざり合うようになっている。   Of these, the upper passage 3h and the lower passage 3i are oblique passages whose hole axes extend obliquely outward in the horizontal direction with respect to the tube axis of the injection rod 3, as shown in the SM-SM cross section of FIG. It is formed. Further, the left passage 3k and the right passage 3m are also formed as oblique passages whose hole axes extend obliquely outward in the vertical direction with respect to the tube axis of the injection rod 3, as shown in FIG. Therefore, the chemicals flowing in from these passages are jetted obliquely along the circumferential direction of the inner peripheral surface of the mixing chamber 3f, and are forcibly mixed in the mixing chamber 3f.

混合切換ロッド4には、管軸に沿って、作動シリンダ33及びコイルばね14の収容孔4gと、収容孔4gの後端に連通する後側中央通路4hと、が形成されている。収容孔4gの後端側には、水平方向で径方向外向きに伸長し、直角に曲折して前方に伸長する2つのL形通路が形成されている。その一つは、注入ロッド3の左側通路3kと連通する左側L形通路4iであり、もう一つは、注入ロッド3の右側通路3mと連通する右側L形通路4kである。また、その他の通路としては、薬液の流入方向における一次側通路として、混合切換ロッド4の後端側から前方に伸長してくる一次側上部F形通路4m、一次側下部F形通路4nが形成されている。さらに、混合室3fへ流出する二次側通路として、注入ロッド3の上側通路3hと連通する二次側上部L形通路4p、同じく下側通路3iと連通する二次側下部L形通路4rが形成されている。なお、混合切換ロッド4の後端側は、後側中央通路4hがそのまま真っ直ぐ貫通して、格納ロッド4の前孔5fと連通するようにしてある。また、一次側上部F形通路4mと一次側下部F形通路4nは、混合切換ロッド4の後端側の途中で合流し、格納ロッド5の前孔5eと連通するようにしてある。   The mixing switching rod 4 is formed with a receiving hole 4g of the operating cylinder 33 and the coil spring 14 and a rear central passage 4h communicating with the rear end of the receiving hole 4g along the tube axis. On the rear end side of the accommodation hole 4g, two L-shaped passages are formed that extend radially outward in the horizontal direction, bend at a right angle, and extend forward. One is a left L-shaped passage 4i that communicates with the left passage 3k of the injection rod 3, and the other is a right L-shaped passage 4k that communicates with the right passage 3m of the injection rod 3. As other passages, primary side upper F-type passages 4m and primary side lower F-type passages 4n extending forward from the rear end side of the mixing switching rod 4 are formed as primary side passages in the inflow direction of the chemical solution. Has been. Further, as the secondary passage that flows out to the mixing chamber 3f, there are a secondary upper L-shaped passage 4p that communicates with the upper passage 3h of the injection rod 3, and a secondary lower L-shaped passage 4r that communicates with the lower passage 3i. Is formed. The rear end side passage 4h passes straight through the rear end side of the mixing switching rod 4 and communicates with the front hole 5f of the storage rod 4. The primary upper F-shaped passage 4m and the primary lower F-shaped passage 4n join in the middle of the rear end side of the mixing switching rod 4 and communicate with the front hole 5e of the storage rod 5.

作動シリンダ33は、上下方向に沿う縦孔33aと、縦孔33aの中間位置から前方に伸長して注入ロッド3の中央通路3aに連通する中央通路33bが形成されている。また、作動シリンダ33には、その外周面33cよりも小径の中間軸部33dが形成されている。   The working cylinder 33 is formed with a vertical hole 33a along the vertical direction and a central passage 33b extending forward from an intermediate position of the vertical hole 33a and communicating with the central passage 3a of the injection rod 3. Further, the operating cylinder 33 is formed with an intermediate shaft portion 33d having a smaller diameter than the outer peripheral surface 33c.

掘削時の動作〔図9〕: 以上の構造の注入ロッド3と混合切換ロッド4の動作を説明する。掘削時には、図9で示すように、掘削流体w1が、混合切換ロッド4の一次側上部F形通路4m、一次側下部F形通路4nを流れる。すると、SK−SK断面で示すように、収容孔4gに向かう後側縦孔4ma,4naに流れ込むが、コイルばね14で後方に付勢された作動シリンダ33の外周面33cで閉塞されている。よって、収容孔4gには流入せずにそのまま前方へ直進していき、同じく収容孔4gに向かう前側縦孔4mb,4nbに流れ込む。すると、SL−SL断面で示すように、これらは作動シリンダ33の縦孔33aと連通している。よって、掘削流体w1は、作動シリンダ33の縦孔33aから中央通路33b、注入ロッド3の中央通路3aへと流入していく。この後は、掘削ヘッド2の前端面の噴射口2aから前方に向けて噴射される。 Operation during excavation [FIG. 9] : The operation of the injection rod 3 and the mixing switching rod 4 having the above structure will be described. At the time of excavation, as shown in FIG. 9, the excavation fluid w1 flows through the primary upper F-type passage 4m and the primary lower F-type passage 4n of the mixing switching rod 4. Then, as shown in the SK-SK cross section, it flows into the rear longitudinal holes 4ma and 4na toward the accommodation hole 4g, but is closed by the outer peripheral surface 33c of the working cylinder 33 urged rearward by the coil spring 14. Therefore, it does not flow into the accommodation hole 4g but goes straight forward as it is, and flows into the front vertical holes 4mb and 4nb toward the accommodation hole 4g. Then, as shown in the SL-SL cross section, these communicate with the vertical hole 33 a of the working cylinder 33. Therefore, the drilling fluid w1 flows from the vertical hole 33a of the working cylinder 33 into the central passage 33b and the central passage 3a of the injection rod 3. After that, the jet is ejected forward from the jet port 2a on the front end face of the excavation head 2.

薬液注入時の動作〔図10〕: 薬液注入時には、図10で示すように、薬液w2が、混合切換ロッド4の後側中央通路4hに圧送される。薬液w2は、その流圧によって、作動シリンダ33をコイルばね14の付勢に抗して前進させる。すると、左側L形通路4i、右側L形通路4kが、収容孔4gと連通する。よって、薬液w2は、SI−SI断面で示すように分流して、それらを通って前方に直進していく。そして、左側L形通路4iを流れる薬液w2は、注入ロッド3の左側通路3kを通って上向きで斜めに混合室3fへ流入する。一方、右側L形通路4kを流れる薬液w3は、それと同様に右側通路3mを通って下向きで斜めに混合室3fへ流入する。 Operation at the time of chemical solution injection [FIG. 10] : At the time of chemical solution injection, the chemical solution w2 is pumped to the rear central passage 4h of the mixing switching rod 4 as shown in FIG. The chemical liquid w2 advances the working cylinder 33 against the bias of the coil spring 14 by the fluid pressure. Then, the left L-shaped passage 4i and the right L-shaped passage 4k communicate with the accommodation hole 4g. Therefore, the chemical | medical solution w2 is shunted as shown in the SI-SI cross section, and advances straight ahead through them. And the chemical | medical solution w2 which flows through the left side L-shaped channel | path 4i flows into the mixing chamber 3f diagonally upwards through the left side channel | path 3k of the injection | pouring rod 3. FIG. On the other hand, the chemical | medical solution w3 which flows through the right side L-shaped channel | path 4k flows into the mixing chamber 3f diagonally downward through the right side channel | path 3m similarly to it.

これに対して薬液w3は、混合切換ロッド4の一次側上部F形通路4m、一次側下部F形通路4nを流れる。すると、SK−SK断面で示すように、収容孔4gに向かう後側縦孔4ma,4naに流れ込む。このときは、前述の薬液w2によって、作動シリンダ33が前進しており、中間軸部33dと整合している。よって、薬液w3は、中間軸部33dの周囲を回って、二次側上部L形通路4pと二次側下部L形通路4rに分流して流れ込む。こうして二次側上部L形通路4pに流入した薬液w3は、SM−SM断面で示すように、注入ロッド3の上側通路3hを通って右向きで斜めに混合室3fへ流入する。また、二次側上部L形通路4rに流入した薬液w3も、注入ロッド3の下側通路3iを通って左向きで斜めに混合室3fへ流入する。なお、二次側上部L形通路4p、二次側下部L形通路4rを直進する薬液w3は、収容孔4gに向かう後側縦孔4ma,4naに流れ込む。しかし、SL−SL断面で示すように、作動シリンダ33の外周面33cによって塞がれており、行き止まりとなる。   On the other hand, the chemical liquid w3 flows through the primary upper F-shaped passage 4m and the primary lower F-shaped passage 4n of the mixing switching rod 4. Then, as shown in the SK-SK cross section, it flows into the rear vertical holes 4ma and 4na toward the accommodation hole 4g. At this time, the working cylinder 33 is advanced by the above-described chemical liquid w2, and is aligned with the intermediate shaft portion 33d. Therefore, the chemical solution w3 flows around the intermediate shaft portion 33d and flows into the secondary side upper L-shaped passage 4p and the secondary side lower L-shaped passage 4r. In this way, the chemical | medical solution w3 which flowed into the secondary side upper L-shaped channel | path 4p flows into the mixing chamber 3f diagonally rightward through the upper channel | path 3h of the injection rod 3, as shown in SM-SM cross section. Further, the chemical liquid w3 flowing into the secondary side upper L-shaped passage 4r also flows into the mixing chamber 3f obliquely leftward through the lower passage 3i of the injection rod 3. In addition, the chemical | medical solution w3 which goes straight through the secondary side upper L-shaped channel | path 4p and the secondary side lower L-shaped channel | path 4r flows into the back side vertical holes 4ma and 4na which go to the accommodation hole 4g. However, as shown in the SL-SL cross section, the cylinder is blocked by the outer peripheral surface 33c of the working cylinder 33 and becomes a dead end.

以上のようにして、混合室3fへ流入する薬液w2,w3は、SM−SM断面で示すように、時計回りで回転する渦流のようになって混合される。さらに、この流れは、漏斗状の内周面3gによって、より集中するような形で混合されてから、混合薬液w4として各外側通路3bに流れ込んでいく。したがって、この実施形態によれば、混合室3fの内周面3gが漏斗面となっているので、双方に薬液w2,w3の混合効果を高めることができるようになっている。   As described above, the chemical liquids w2 and w3 flowing into the mixing chamber 3f are mixed like a vortex rotating clockwise as shown in the SM-SM cross section. Further, this flow is mixed in a more concentrated manner by the funnel-shaped inner peripheral surface 3g, and then flows into each outer passage 3b as a mixed chemical solution w4. Therefore, according to this embodiment, since the inner peripheral surface 3g of the mixing chamber 3f is a funnel surface, the mixing effect of the chemical liquids w2 and w3 can be enhanced on both sides.

第3実施形態〔図11〜図13〕: 図11〜図13は、掘削ロッド1の注入ロッド3と混合切換ロッド4の第3実施形態である。図11で示すように、注入ロッド3は、前端側を除いて薄肉筒状部3rが形成される。本実施形態の注入ロッド3には、フランジ付きで円筒状の長尺内管34が挿入されて、ボルトBで固定される。長尺内管34の後端側は、保持筒35に対して螺合により固定され、薄肉筒状部3rの内部で位置決めされる。保持筒35には、円盤状の仕切板36が2枚固定される。各仕切板36には、4つの孔36aが形成される。仕切板36どうしは、この孔36aが面中心に対して45度、角度をずらした状態で保持筒35に固定される(図12のSQ−SQ断面参照。)。 Third Embodiment [FIGS. 11 to 13] FIGS. 11 to 13 show a third embodiment of the injection rod 3 and the mixing switching rod 4 of the excavating rod 1. As shown in FIG. 11, the injection rod 3 is formed with a thin cylindrical portion 3r except for the front end side. A cylindrical long inner tube 34 with a flange is inserted into the injection rod 3 of the present embodiment and fixed with a bolt B. The rear end side of the long inner pipe 34 is fixed to the holding cylinder 35 by screwing, and is positioned inside the thin cylindrical portion 3r. Two disk-shaped partition plates 36 are fixed to the holding cylinder 35. Each partition plate 36 is formed with four holes 36a. The partition plates 36 are fixed to the holding cylinder 35 in a state in which the holes 36a are shifted by 45 degrees with respect to the center of the plane (see the SQ-SQ cross section in FIG. 12).

混合切換ロッド4には、図11で示すように、作動シリンダ37とコイルばね14の収容孔4s、上側L形通路4t、左側L形通路4u、右側L形通路4v(図12のSO−SO断面,SP−SP断面参照。)、下側通路4w、下側通路4wと連通する傾斜通路4x、後側L形通路4fが形成される。そして、本実施形態では、第1実施形態と異なり、収容孔4sを管軸に沿う位置としてその加工・形成を容易としている。また、第1実施形態のごとく断面8字状の空間が形成される態様ではなく、収容孔4sと下側通路4wとを長手方向で重合させずに隔てることで、第1実施形態よりもコイルばね14の収容安定性を向上している。   As shown in FIG. 11, the mixing switching rod 4 has a receiving hole 4s for the working cylinder 37 and the coil spring 14, an upper L-shaped passage 4t, a left L-shaped passage 4u, a right L-shaped passage 4v (SO-SO in FIG. 12). Cross section, refer to SP-SP cross section.), Lower passage 4w, inclined passage 4x communicating with lower passage 4w, and rear L-shaped passage 4f are formed. In the present embodiment, unlike the first embodiment, the accommodation hole 4s is made a position along the tube axis to facilitate its processing and formation. Moreover, it is not an aspect in which a space having an eight-shaped cross section is formed as in the first embodiment, but by separating the accommodation hole 4s and the lower passage 4w without overlapping in the longitudinal direction, the coil is formed more than in the first embodiment. The housing stability of the spring 14 is improved.

作動シリンダ37には、貫通孔37aと中間軸部37bが形成される。   The operating cylinder 37 is formed with a through hole 37a and an intermediate shaft portion 37b.

掘削時の動作〔図12〕: 以上の構造の注入ロッド3と混合切換ロッド4の動作を説明する。まず、掘削時には、図12で示すように、掘削流体w1が、混合切換ロッド4の傾斜通路4xから下側通路4wに流入する。この時、作動シリンダ37はコイルばね14で後方へ付勢されており、この状態では、下側通路4wの前孔4waが貫通孔37aと整合している。よって、掘削流体w1は、SP−SP断面で示すように、そこから作動シリンダ37に流入し、連通する長尺内管34の管内を通り、図外の掘削ヘッド2の噴射口2aから前方に噴射される。 Operation during excavation [FIG. 12] : The operation of the injection rod 3 and the mixing switching rod 4 having the above structure will be described. First, at the time of excavation, as shown in FIG. 12, the excavation fluid w1 flows from the inclined passage 4x of the mixing switching rod 4 into the lower passage 4w. At this time, the operating cylinder 37 is urged rearward by the coil spring 14, and in this state, the front hole 4wa of the lower passage 4w is aligned with the through hole 37a. Accordingly, as shown in the SP-SP cross section, the drilling fluid w1 flows into the working cylinder 37 from there, passes through the inside of the long inner pipe 34 that communicates, and forwards from the injection port 2a of the drilling head 2 (not shown). Be injected.

薬液注入時の動作〔図13〕: 次に、薬液注入時には、図13で示すように、薬液w2が、後側L形通路4fに圧送される。薬液w2は、その流圧によって、作動シリンダ37をコイルばね14の付勢に抗して前進させる。すると、SN−SN断面で示すように、上側L形通路4tが開口する。薬液w2はそこを通って、注入ロッド3に流入する。 Operation at the time of chemical solution injection [FIG. 13] : Next, at the time of chemical solution injection, as shown in FIG. 13, the chemical solution w2 is pumped to the rear L-shaped passage 4f. The chemical liquid w2 advances the operating cylinder 37 against the bias of the coil spring 14 by the fluid pressure. Then, as shown in the SN-SN cross section, the upper L-shaped passage 4t opens. The medicinal solution w2 passes therethrough and flows into the injection rod 3.

一方、薬液w3は、掘削時と同様に、傾斜通路4xから下側通路4wに流入する。この時、薬液w2によって作動シリンダ37が前進しているので、掘削時の経路となる前孔4waは貫通孔37aと整合しないが(図12参照)、後孔4wbが中間軸部37bと整合する。このため、SO−SO断面で示すように、薬液w3は、中間軸部37bの外周で、左側L形通路4uと右側L形通路4vに分岐して流れていき、注入ロッド3に流入する。   On the other hand, the chemical | medical solution w3 flows in into the lower side channel | path 4w from the inclination channel | path 4x similarly to the time of excavation. At this time, since the working cylinder 37 is moved forward by the chemical solution w2, the front hole 4wa that becomes a path during excavation does not align with the through hole 37a (see FIG. 12), but the rear hole 4wb aligns with the intermediate shaft portion 37b. . For this reason, as shown in the SO-SO cross section, the chemical solution w3 branches and flows into the left L-shaped passage 4u and the right L-shaped passage 4v on the outer periphery of the intermediate shaft portion 37b and flows into the injection rod 3.

以上のようにして混合切換ロッド4を通じる薬液w2,w3は、長手方向にわたってドーナツ形空間状とした多段混合室3sにおける後部屋3saへと流入する(SR模式図)。後室3saは後側の仕切板36で仕切られており、ここで一旦流れを留めて流量制限することで、薬液w2,w3が混合される。そして、孔36aを通過して、中部屋3sbに流入し、ここでも前側の仕切板36によって一旦流れを留めて流量制限することで、さらに混合される。最後に、孔36aを通過して、前部屋3scへと流入する。前部屋3scは、噴射口3cと連通する大きな空間となっており、ここでも混合されることになる。そして、良く混合された混合薬液w4として噴射口3cを通じて地盤に浸透注入されることになる。   As described above, the chemicals w2 and w3 passing through the mixing switching rod 4 flow into the rear chamber 3sa in the multistage mixing chamber 3s having a donut-shaped space shape in the longitudinal direction (SR schematic diagram). The rear chamber 3sa is partitioned by a rear partition plate 36, and the chemicals w2 and w3 are mixed by temporarily stopping the flow and restricting the flow rate. Then, it passes through the hole 36a and flows into the middle chamber 3sb. Here, the flow is once further stopped by the front partition plate 36 to restrict the flow rate, and further mixed. Finally, it passes through the hole 36a and flows into the front room 3sc. The front chamber 3sc is a large space that communicates with the ejection port 3c and is mixed here. Then, the mixed chemical solution w4 is mixed and injected into the ground through the injection port 3c.

以上のように、本実施形態では、2系統の薬液通路を流れてきた薬液w2,w3が合流する通路(混合室)に、流れを一旦留める仕切板を設けることで、薬液w2,w3の混合効果が高めている。そして、その仕切板を流れ方向で多段に設けることで、混合効果をさらに高めている。しかも、流れ方向で前後する仕切板36,36に形成した孔36aの孔軸を流れ方向でずらしてあるため、後側の仕切板36の孔36aを通過した薬液w2,w3は、前側の仕切板36の板面に対して後から突き当たって流れ方向が強制的に変更される。このため混合効果がより高くされている。   As described above, in the present embodiment, the chemical liquids w2 and w3 are mixed by providing a partition plate that temporarily stops the flow in the passage (mixing chamber) where the chemical liquids w2 and w3 that have flowed through the two systems of chemical liquid paths merge. The effect is increasing. And the mixing effect is further heightened by providing the partition plate in multiple stages in the flow direction. In addition, since the hole axes of the holes 36a formed in the partition plates 36 and 36 that move back and forth in the flow direction are shifted in the flow direction, the chemicals w2 and w3 that have passed through the holes 36a in the rear partition plate 36 are separated from the front partitions. The flow direction is forcibly changed by abutting on the plate surface of the plate 36 later. For this reason, the mixing effect is made higher.

実施形態の変形例〔図14〜図15〕: 図14(a)は、第2実施形態で示した混合室3fの容積を拡大した変形例を示すものである。注入ロッド3の後端側に薄肉筒状部3nを形成し、その内部を混合室3pとしたものである。この混合室3pは、後端側が漏斗面となっておらず、その中間付近から漏斗面としてあるが、これでもよい。なお、この例では、作動シリンダ33は、混合切換ロッド4の前端面の凹部に螺合した、キャップ34で抜止めしている。また、混合室の内周面形状は、例えば、階段状の漏斗面としたもの、あるいは図14(b)のように螺旋溝を付けたものとしても、高い混合効果が得られる。 Modified Example of Embodiment [FIGS. 14 to 15] FIG. 14A shows a modified example in which the volume of the mixing chamber 3f shown in the second embodiment is enlarged. A thin cylindrical portion 3n is formed on the rear end side of the injection rod 3, and the inside thereof serves as a mixing chamber 3p. The mixing chamber 3p does not have a funnel surface on the rear end side, and has a funnel surface from the middle of the mixing chamber 3p. In this example, the working cylinder 33 is secured by a cap 34 that is screwed into a recess on the front end face of the mixing switching rod 4. Moreover, even if the inner peripheral surface shape of the mixing chamber is, for example, a stepped funnel surface or a spiral groove as shown in FIG. 14B, a high mixing effect can be obtained.

前記実施形態では、注入ロッド3に混合室を設ける例を示したが、注入ロッド3と混合切換ロッド4との双方に薄肉筒状部を形成し、その内部を混合室としてもよい。また、注入ロッド3と混合切換ロッド4との間に全長を薄肉筒状部とした短管を接続し、その内部を混合室としてもよい。   In the above embodiment, an example in which the mixing chamber is provided in the injection rod 3 has been described. However, a thin cylindrical portion may be formed on both the injection rod 3 and the mixing switching rod 4 and the inside thereof may be used as the mixing chamber. Further, a short pipe whose entire length is a thin cylindrical portion may be connected between the injection rod 3 and the mixing switching rod 4, and the inside thereof may be used as a mixing chamber.

前記実施形態では、図3のように断面角形の凹溝4c,4dを例示したが、図15のように、円弧状の凹溝及び蓋板として通路を拡大してもよい。   In the embodiment, the concave grooves 4c and 4d having a square cross section are illustrated as shown in FIG. 3, but the passage may be enlarged as an arc-shaped concave groove and a cover plate as shown in FIG.

前記第3実施形態では、仕切板36を前後に2枚設けたが1枚でも2枚以上でもよく、孔36aの形状も円形以外でもよい。仕切板36は、注入ロッド3ではなく、混合切換ロッド4に設けてもよい。仕切板36を別部材ではなく、それらのロッド3,4自体に形成してもよい。仕切板36は円盤状で孔36aを設けたものを例示したが、薄肉筒状部3rの内周面との間に隙間ができるような外縁形状をもつ環状の邪魔板や、保持筒35や長尺内管34の外周面との間に隙間ができるような内縁形状をもつ環状の邪魔板を、仕切板としてもよい。さらに、逆流防止用に、例えば十字状の切込線を形成したゴム膜を、仕切板36や混合切換ロッド4の上側・左側・右側の各L形通路4t,4u,4vの末端開口に取付けてもよい。   In the third embodiment, two partition plates 36 are provided on the front and rear, but one or more may be used, and the shape of the hole 36a may be other than circular. The partition plate 36 may be provided not on the injection rod 3 but on the mixing switching rod 4. You may form the partition plate 36 in those rods 3 and 4 itself instead of another member. The partition plate 36 is exemplified by a disc-like shape provided with a hole 36a, but an annular baffle plate having an outer edge shape that forms a gap with the inner peripheral surface of the thin-walled cylindrical portion 3r, a holding cylinder 35, An annular baffle plate having an inner edge shape that creates a gap with the outer peripheral surface of the long inner tube 34 may be used as a partition plate. Further, for preventing backflow, for example, a rubber film having a cross-shaped cut line is attached to the end openings of the L-shaped passages 4t, 4u, 4v on the upper, left, and right sides of the partition plate 36 and the mixing switching rod 4. May be.

本発明の一実施形態による掘削ロッドの外観斜視図。The external appearance perspective view of the excavation rod by one Embodiment of this invention. 図1の掘削ロッド(掘削ヘッド、注入ロッド、混合切換ロッド)の断面図。Sectional drawing of the excavation rod (excavation head, injection | pouring rod, mixing switching rod) of FIG. 図1の掘削ロッド(格納ロッド、二重管接続レデューサ、カップリング、延長ロッド)の断面図。Sectional drawing of the excavation rod (a storage rod, a double pipe connection reducer, a coupling, an extension rod) of FIG. 分図(a)は図2のSA−SA断面図、分図(b)は図3のSB−SB断面図。FIG. 3A is a sectional view taken along the line SA-SA in FIG. 2, and a divided figure (b) is a sectional view taken along the line SB-SB in FIG. 3. 本発明の一実施形態による薬液注入工法の概要説明図。BRIEF DESCRIPTION OF THE DRAWINGS Outline explanatory drawing of the chemical injection method by one Embodiment of this invention. 掘削時の動作説明図。Operation | movement explanatory drawing at the time of excavation. 薬液注入時の動作説明図。Operation | movement explanatory drawing at the time of chemical | medical solution injection | pouring. 第2実施形態による注入ロッドと混合切換ロッドの断面図。Sectional drawing of the injection | pouring rod and mixing switching rod by 2nd Embodiment. 第2実施形態による掘削時の動作説明図。Operation | movement explanatory drawing at the time of excavation by 2nd Embodiment. 第2実施形態による薬液注入時の動作説明図。Operation | movement explanatory drawing at the time of chemical | medical solution injection | pouring by 2nd Embodiment. 第3実施形態による注入ロッドと混合切換ロッドの断面図。Sectional drawing of the injection rod and mixing switching rod by 3rd Embodiment. 第3実施形態による掘削時の動作説明図。Operation | movement explanatory drawing at the time of excavation by 3rd Embodiment. 第3実施形態による薬液注入時の動作説明図。Operation | movement explanatory drawing at the time of the chemical | medical solution injection | pouring by 3rd Embodiment. 分図(a)(b)ともに第2実施形態の変形例を示す断面図。Sectional drawing (a) (b) is sectional drawing which shows the modification of 2nd Embodiment. 第1実施形態の格納ロッドの変形例を示す断面図。Sectional drawing which shows the modification of the storage rod of 1st Embodiment.

符号の説明Explanation of symbols

1 掘削ロッド
2 掘削ヘッド
3 注入ロッド
3c 噴射口
3e 混合室
3f 混合室
3g 内周面(漏斗面)
3h 上側通路(斜め通路)
3i 下側通路(斜め通路)
3k 左側通路(斜め通路)
3m 右側通路(斜め通路)
3p 混合室
3s 多段混合室
4 混合切換ロッド
5 格納ロッド
5b 外周面
5c,5d 凹溝
5e,5f 前孔
8 延長ロッド
15 位置情報発信器
31 地盤改良域
32 自在ボーリングマシン
36 仕切板
36a 孔
DESCRIPTION OF SYMBOLS 1 Drilling rod 2 Drilling head 3 Injection rod 3c Injection port 3e Mixing chamber 3f Mixing chamber 3g Inner peripheral surface (funnel surface)
3h Upper passage (oblique passage)
3i Lower passage (oblique passage)
3k Left passage (oblique passage)
3m right passage (diagonal passage)
3p mixing chamber 3s multistage mixing chamber 4 mixing switching rod 5 storage rod 5b outer peripheral surface 5c, 5d concave groove 5e, 5f front hole 8 extension rod 15 position information transmitter 31 ground improvement area 32 free boring machine 36 partition plate 36a hole

Claims (10)

二系統の薬液通路を流通する薬液を、管軸方向に対する交差方向で地盤に向けて噴射する噴射口を外周面に有する地盤掘削用の掘削ロッドにおいて、
該噴射口を掘削ロッドの管軸方向に沿って多数設けるとともに、各噴射口と各薬液通路とに連通する混合室を設け
混合室を貫通し掘削ロッドの前端へと掘削ロッドの管軸に沿って延在する掘削流体の通路と、噴射口と混合室とに連通する混合薬液の通路と、を並列に設けることを特徴とする掘削ロッド。
In the excavation rod for ground excavation having an injection port on the outer peripheral surface for injecting the chemical liquid flowing through the two chemical liquid passages toward the ground in the direction intersecting the pipe axis direction,
A large number of the injection ports are provided along the tube axis direction of the excavation rod, and a mixing chamber is provided that communicates with each injection port and each chemical passage ,
A drilling fluid passage extending through the mixing chamber to the front end of the drilling rod along the tube axis of the drilling rod and a mixed chemical solution passage communicating with the injection port and the mixing chamber are provided in parallel. And drilling rod.
混合室を各噴射口の手前側近接位置に設けた請求項1記載の掘削ロッド。   The excavation rod according to claim 1, wherein the mixing chamber is provided at a position adjacent to the front side of each injection port. 混合室に通じる各薬液通路の末端部を、前記管軸方向に対して斜めに伸長する斜め通路として形成した請求項1又は請求項2記載の掘削ロッド。   The excavation rod according to claim 1 or 2, wherein an end portion of each chemical solution passage leading to the mixing chamber is formed as an oblique passage extending obliquely with respect to the tube axis direction. 混合室を形成する掘削ロッドの内周面を、各薬液の流入側から流出側にかけて狭くなる漏斗面として形成した請求項1〜請求項3何れか1項記載の掘削ロッド。   The excavation rod according to any one of claims 1 to 3, wherein an inner peripheral surface of the excavation rod forming the mixing chamber is formed as a funnel surface that narrows from the inflow side to the outflow side of each chemical solution. 混合室に、各薬液の流れを一旦留める仕切板を設けた請求項1〜請求項4何れか1項記載の掘削ロッド。   The excavation rod according to any one of claims 1 to 4, wherein a partition plate for temporarily stopping the flow of each chemical solution is provided in the mixing chamber. 仕切板を薬液の流れ方向に沿って多段で設けるとともに該仕切板に薬液が通る孔を設け、前後する仕切板に設けた孔の孔軸をずらしてある請求項5記載の掘削ロッド。   6. The excavation rod according to claim 5, wherein the partition plate is provided in multiple stages along the flow direction of the chemical solution, holes through which the chemical solution passes are provided in the partition plate, and the hole axes of the holes provided in the front and rear partition plates are shifted. 多数の噴射口を、掘削ロッドの管軸を中心とする放射状に設けた請求項1〜請求項6何れか1項記載の掘削ロッド。   The excavation rod according to any one of claims 1 to 6, wherein a plurality of injection holes are provided radially around the tube axis of the excavation rod. 外周面に、長手方向に通じる凹溝と、該凹溝の蓋板と、でなる薬液通路を形成したロッドを備える請求項1〜請求項7何れか1項記載の掘削ロッド。   The excavation rod according to any one of claims 1 to 7, further comprising a rod formed with a chemical channel including a concave groove communicating with a longitudinal direction and a cover plate of the concave groove on an outer peripheral surface. 地盤を掘削する掘削ロッドに二系統の薬液通路を介して各薬液を導入し、各薬液通路と連通する掘削ロッドの混合室で各薬液を一旦混合させてから、掘削ロッドの管軸に沿って混合室を貫通し掘削ロッドの前端へと延在する掘削流体の通路に対して並列に設けた混合薬液の通路を経由して、掘削ロッドの外周面に長手方向に沿って開口する多数の噴射口を通じて地盤改良域に噴射して、混合薬液を浸透注入する薬液注入工法。 Each chemical solution is introduced into the drilling rod for excavating the ground through two chemical channels, and each chemical solution is once mixed in the mixing chamber of the drilling rod communicating with each chemical channel, and then along the tube axis of the drilling rod. A number of jets that open along the longitudinal direction on the outer circumferential surface of the drilling rod via a mixed chemical solution passage that is provided in parallel to the passage of the drilling fluid that passes through the mixing chamber and extends to the front end of the drilling rod A chemical injection method that injects the mixed chemical solution through the mouth and injects it into the ground improvement area. 掘削ロッドの内部に位置情報発信器を備え、位置情報発信器からの位置情報に応じて、該掘削ロッドの前端から掘削流体を掘進方向へ噴射しつつ直線状及び曲線状に自在掘削し、地盤改良域に到達したならば前記浸透注入を行う請求項9記載の薬液注入工法。   The excavation rod is provided with a position information transmitter, and according to the position information from the position information transmitter, the excavation fluid is jetted from the front end of the excavation rod in the direction of excavation and freely excavated linearly and curvedly, The chemical injection method according to claim 9, wherein the osmotic injection is performed when the improved region is reached.
JP2003396402A 2003-11-26 2003-11-26 Drilling rod and chemical injection method Expired - Fee Related JP3867076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396402A JP3867076B2 (en) 2003-11-26 2003-11-26 Drilling rod and chemical injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396402A JP3867076B2 (en) 2003-11-26 2003-11-26 Drilling rod and chemical injection method

Publications (2)

Publication Number Publication Date
JP2005155208A JP2005155208A (en) 2005-06-16
JP3867076B2 true JP3867076B2 (en) 2007-01-10

Family

ID=34721861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396402A Expired - Fee Related JP3867076B2 (en) 2003-11-26 2003-11-26 Drilling rod and chemical injection method

Country Status (1)

Country Link
JP (1) JP3867076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084382B2 (en) * 2011-06-28 2017-02-22 三信建設工業株式会社 Drilling device and injection pipe laying method using the same

Also Published As

Publication number Publication date
JP2005155208A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
EP0081620B1 (en) Grout injection method and apparatus
US8992130B2 (en) Arrangement for a down-the-hole hammer drill for use in soil consolidation through jet grouting
CN103806836A (en) Self-feeding rotary jet flow multi-hole spray nozzle
JP2004346734A (en) Device for injecting quick setting agent using high-speed jet fluid
JP3867076B2 (en) Drilling rod and chemical injection method
KR101028218B1 (en) Jet-propelled rotational tube for grouting and jet-propelled rotational device for the same
JP4988061B1 (en) Ground improvement device and ground improvement method
CN212479214U (en) Sand bed probing sampling drilling tool
JP3672638B2 (en) Drilling bit
JP3731886B2 (en) Drilling rod and chemical injection method
JPS6358972B2 (en)
JP3859639B2 (en) Swivel excavator and ground improvement method
JP2005036390A (en) Drilling bit, self-drilling rock bolt using the same, and construction method for self-drilling rock bolt
JP2007132091A (en) Steel pipe driving method and steel pipe driving tool
KR20020035082A (en) JSP and its device
KR100937766B1 (en) Hammer Bit Apparatus
JP3652288B2 (en) Ground improvement method and excavation equipment
JP2006348478A (en) Peripheral bit of steel pipe
JP4318603B2 (en) Drilling bit in a steel pipe for ground reinforcement
JP2006016783A (en) Driving steel pipe for reinforcing natural ground
JP3755124B2 (en) Drilling bit
KR200325158Y1 (en) The Rapid-set Injection System by High-speed Jet Fluid
JP4349522B2 (en) Ground improvement method
JPS6329049B2 (en)
CN118390520A (en) High-pressure water jet matched static-pressure pile forming method and device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3867076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees