JP3859974B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP3859974B2
JP3859974B2 JP2001017962A JP2001017962A JP3859974B2 JP 3859974 B2 JP3859974 B2 JP 3859974B2 JP 2001017962 A JP2001017962 A JP 2001017962A JP 2001017962 A JP2001017962 A JP 2001017962A JP 3859974 B2 JP3859974 B2 JP 3859974B2
Authority
JP
Japan
Prior art keywords
film
recording medium
layer
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001017962A
Other languages
Japanese (ja)
Other versions
JP2002222515A (en
Inventor
均 平山
国博 上田
正雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001017962A priority Critical patent/JP3859974B2/en
Publication of JP2002222515A publication Critical patent/JP2002222515A/en
Application granted granted Critical
Publication of JP3859974B2 publication Critical patent/JP3859974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本願発明は、強磁性金属薄膜を備える磁気記録媒体、特に電磁変換特性に優れた蒸着型磁気記録媒体に関する。
【0002】
【従来の技術】
蒸着型の磁気記録媒体は、塗布型の磁気記録媒体と異なり、磁性材料の充填密度が高いために高密度記録に適している。そのため電磁変換特性上非常に有利であり、現在すでに実用化されている。現在、蒸着型磁気記録媒体は、二軸配向ポリエチレンテレフタレートフィルム、二軸配向ポリエチレンナフタレート(以下「PEN」と略記することもある。)フィルム、ポリイミドフィルム、ポリアミドフィルム等の非磁性支持体上にCo、Co−Ni等の強磁性金属材料を真空蒸着法により製膜する方法をとっている。
【0003】
金属薄膜型磁性層の磁性材料は、前記のような金属または合金からなるものであるが、Coを使用したものは、特に電磁変換特性が良く、高記録密度媒体に有利である。近年さらに高記録密度化が求められており、それに伴い記録媒体の薄膜化も進み、非磁性支持体もますます薄くする検討がなされている。
【0004】
【発明が解決しようとする課題】
しかしながら非磁性支持体が薄くなるに従って、テープと磁気ヘッドとの当たり(以下「ヘッドタッチ」という。)が悪くなり出力の低下、特に短波長領域での出力低下が顕著となるばかりでなく、磁気記録媒体としての走行耐久性に問題を生じている。そこで、非磁性支持体が薄くてもヘッドタッチを良くし、出力の低下が生じないように、また走行耐久性の向上を目的として、高強度のPENフィルムが使用されている。
【0005】
非磁性支持体としてPENフィルムを使用すると、非磁性支持体の強度不足によって生じる出力の低下及び走行耐久性の改善はなされるが、他方では、非磁性支持体が薄くなることによって、蒸着工程における熱変形を受け易くなり、熱変形に基づくヘッドタッチの悪化が生じ、該ヘッドタッチの悪化による出力低下や、走行耐久性の問題が生じている。
【0006】
【課題を解決するための手段】
本願発明は、上記課題を解決すべくなされたもので、電磁変換特性を良くするためには、非磁性支持体の幅方向のヤング率と幅方向の熱収縮率とを所定の範囲に設定すれば、上記課題が解決することを見出した。
【0007】
非磁性支持体および該非磁性支持体上に斜め蒸着法により形成される磁性層を含む磁気記録媒体において、該非磁性支持体は、ポリエチレンナフタレートの積層フィルムであって、その厚みが3.0μm〜6.0μmの範囲で、該フィルムの幅方向のヤング率が9000MPa以上12000MPa以下であり、幅方向の熱収縮率(150℃で30分間加熱維持した後の長さの、加熱前の長さに比較しての収縮率を意味し、以下、熱収縮率(150℃−30分)、あるいは、単に「熱収縮率」という。)が6.5%以上9.0%以下であると、製膜工程後の熱変形(カッピング)が抑えられることにより、ヘッドタッチが良好となり、電磁変換特性や耐久性が改善されることを見出した。
【0008】
幅方向の熱収縮率が9.0%より大きいと、製膜後のカッピングが走行面(バックコート面)側に過度に大(蒸着面側に凸)になり、また幅方向の熱収縮率が6.5%未満だと、製膜後のカッピングが蒸着面側に大(走行面側に凸)となり、どちらもヘッドタッチが悪くなり電磁変換特性が低下する。またカッピングにより走行性が悪化し耐久性が劣ってしまう結果となる。このカッピングは、蒸着面側に適度に凸(−0.2mm)であるものがヘッドタッチに対しては好ましいが、前記のように値が大きすぎると逆に悪影響を及ぼすようになる。
【0009】
また幅方向のヤング率が大きいほど、ヘッドタッチは良くなり、電磁変換特性が向上するが、12000MPaよりも大きくなると、幅方向の熱収縮率をコントロールし難くなり、9.0%以下にすることが困難となる。また、9000MPa未満になると、絶対的な強度が不足するため、ヘッドタッチは悪くなり出力が低下してしまう。
【0010】
高記録密度化のために記録媒体の厚さは薄くなっており、本願発明においても非磁性支持体の厚みは、3.0μm〜6.0μmと薄く、磁性層(蒸着層)と反対側の面に0.3μm〜0.7μmのバックコート層を有することを特徴としているが、バックコート層が0.3μm未満だとカッピングが蒸着面側に大(走行面側に凸)となり、ヘッドタッチが悪くなってしまう。また0.7μmより大きいとカッピングが走行面側に大(蒸着面側に凸)となってしまい、これまたヘッドタッチが悪くなってしまう。よってバックコート層の厚みは0.3μm〜0.7μm、好ましくは0.4〜0.6μmの範囲が良い。
【0011】
熱収縮率の範囲を規定した公開公報としては、特開平10−64036号および特開平11−283234号があるが、共に熱収縮率の範囲が6%以下であることを特徴としている。幅方向のヤング率を9000MPaよりも大きくしつつ熱収縮率を6%以下にすることは不可能ではないが、製造上困難な点が多く、コストが高くなるという不具合がある。
【0012】
【発明の実施の形態】
本願発明におけるポリエチレン−2,6−ナフタレートは、少なくとも2層以上の積層フィルムであって、金属薄膜磁性層を設ける側の非磁性支持体の表面層には微細な不活性粒子を含有させることにより、所望の表面粗さを得ることができる。含有させる粒子の種類は、限定されるものではないが、コロイダルシリカや架橋高分子粒子(架橋ポリスチレンや架橋ジビニルベンゼン)が好ましい。あるいは、不活性粒子を含有させることに代えて、金属薄膜層を設ける非磁性支持体の表面層に、水溶性高分子に前記不活性粒子を分散させて塗布することによっても所望の表面粗さを得ることができる。該粒子の粒径としては0.01〜0.10μm、好ましくは0.02〜0.08μmの粒子を使用することによって所望の表面粗さが得られる。
【0013】
また上記表面層と反対側の表面層にも微細な不活性粒子を含有させることにより所望の表面粗さが得られる。含有させる粒子の種類は限定されるものではないが、コロイダルシリカや架橋高分子粒子(架橋ポリスチレンや架橋ジビニルベンゼン)が好ましい。該粒子の粒径としては0.1〜0.4μm、好ましくは0.1〜0.3μmの粒子を使用することによって所望の表面粗さが得られる。
【0014】
次に本願発明に使用されるポリエチレン−2,6−ナフタレートの製造方法を記述するが、これに限定されるものではない。
製造法は、2,6−ナフタレンジカルボン酸とエチレングリコールを用いての直接重合法、2,6−ナフタレンジカルボン酸ジメチルエステルとエチレングリコールを用いてのエステル交換法などが公知である。前述不活性粒子を含有させる方法としては、エチレングリコールに分散させてジカルボン酸成分と重合せしめるのが好ましい。
【0015】
作成したPENペレットを溶融し、2層ダイスリットより共押し出しして、冷却ドラムにより冷却し、逐次二軸延伸法により所望のヤング率になるように縦横の延伸倍率を調整して、長手方向に延伸した後、横方向に延伸し、熱固定した後、フィルムの弛緩処理を行うことによって、所望の熱収縮率を有する積層PENフィルムを得ることができる。
【0016】
次に、磁性層の磁性材料は、Co、Fe等の純金属またはCo−Ni、Co−Fe、Co−Cu、Co−Ni−Cr、Co−Pt、Co−Pt−Cr、Co−Cr−Ta、Co−Ni−B等の合金類を使用することが可能で、CoまたはCo合金が望ましい。通常は、非磁性基体上にこのような磁性材料を直接または非磁性基体上にNiを蒸着した後、蒸着して磁性層を形成する。磁性層の蒸着は、蒸着用チャンバー内を10-6Torr程度にまで排気した後、磁性材料を電子銃にて溶解し、磁性材料全体が溶解した時点で非磁性基体を冷却したメインローラに沿って走行させてメインローラ部にて蒸着を始める。このときに磁気特性を制御するために、酸素、オゾン、亜酸化窒素から選ばれる酸化性ガスを磁性層へ導入する。得られた磁性層の上には必要に応じてプラズマ重合硬質炭素膜層を設けても良い。
【0017】
プラズマ重合硬質炭素膜層は、繰出しローラ、巻取りローラ、プラズマ重合用部分円筒面状(断面部分円孤上)電極板を間隔をおいて対向して有するメインローラ等、及び必要に応じてパスローラを有するチャンバー(真空槽)において、原反(強磁性金属を蒸着した基体をロール状に捲回したもの)を繰出しローラに設置後10-5Torr以上にまで排気したのち、炭化水素ガスと添加ガスを反応圧力として、1〜10-2Torrになるように所定量を導入しつつ、プラズマ重合する事によって得られる。導入量は、チャンバーの大きさに依存するので必要に応じて適宜決定する。炭化水素ガスとしては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、エチレン、プロピレン、アセチレン、メチルアセチレン、トルエンより選択され、1種または2種以上を混合して用いる。添加ガスとしては、水素、ネオン、ヘリウム、アルゴン、酸素、窒素等が挙げられ、その添加比率は炭化水素量に対し、添加ガス/炭化水素比で1〜0.01程度とする。特に、0.1〜0.05が良い。炭化水素に対し、添加ガス量が多すぎると成膜速度が低下し、少なすぎると膜が緻密にならない。放電電源は、10kHz〜450kHzの周波数が望ましく、特に50kから200kHzが望ましい。10kHzより周波数が長いと長時間の運転が困難になる。また、450kHzより波長が短いと膜が緻密にならない。このようなプラズマ重合硬質炭素膜はその屈折率として1.9以上でさらに2.0から2.25程度になるように、放電周波数、反応圧力、反応ガス流量を制御することが望ましい。
【0018】
潤滑剤としては、従来用いられている潤滑剤でよいが、フッ素を含む潤滑剤が好ましい。該フッ素を含む潤滑剤は基本構造としては、R1−A−R2で表わされるものであり、
R1:CF3(CF2n−、CF3(CF2n(CH2m−、CH3(CH2l−、H
A :COO、O、COOCH(Cl l +1)CHCOO
R2:CF(CF2n−、CF3(CF2n(CH2m−、CH3(CH2l−、 H
但し、R1≠R2、n=7〜17、m=1〜3、l=7〜30を満足するものが望ましい。更に、R1、R2は直鎖であると潤滑効果が大きい。nが7より小さいと撥水効果が低く、また、17より大きいと潤滑剤と非磁性基体あるいはバックコート層とのブロッキング現象がおこり、摩擦が低くならない。lについてもnと同様である。さらにこのような潤滑剤を2種以上混合しても良い。
【0019】
【実施例1】
平均粒径30nmのコロイダルシリカを有するエチレングリコールと2,6−ナフタレンジカルボン酸ジメチルとエステル交換反応、重縮合させ、PENペレットを作成した(PEN−A)。平均粒径300nmの架橋ビニルベンゼン粒子を有するエチレングリコールと2,6−ナフタレンジカルボン酸ジメチルとエステル交換反応、重縮合させ、PENペレットを作成した(PEN−B)。このPENペレットA、Bをそれぞれ溶融し、2層ダイスリットより共押し出しして、冷却ドラムにより冷却し逐次二軸延伸法により長手方向に延伸した後、横方向に延伸し、熱固定した後、フィルムの弛緩処理を行うことによって巻き取り表1に示すような熱収縮率を有する4.7μm厚の積層PENフィルムを得た。
【0020】
得られた4.7μm厚のPENフィルム上に、Co及び酸素を導入しながら、各層1000Åの膜厚で2層成膜し磁性層を形成した。磁性層の上にエチレンとAr(流量比2:1)を導入して、所定の放電周波数(50kHz)を印加してプラズマ重合硬質炭素膜を成膜した。該硬質炭素膜の表面に所定の放電周波数を印加して酸素を含む炭酸ガスによりプラズマ処理を行った。潤滑剤(琥珀酸誘導体COOHCH(C1429)CHCOOCHCH(CFCF)をリバース塗布法により塗布し、磁性層の設けられていない側に乾燥時の厚みで0.5μmのバックコート層を設けた後、8mm幅にスリットしてサンプルとした。得られた磁気記録媒体の特性を表1に示す。プラズマ重合硬質炭素膜は、表と同一条件により、Siウエハ上にも成膜して膜厚などを求めた。なお、バックコート層の組成は以下の通りである(数字は重量部を示す。)。
【0021】
カーボンブラック(粒径 80nm) 10
同 上 (粒径 20nm) 40
炭酸カルシウム (粒径 70nm) 50
Nc(ニトロセルロース) 40
(旭化成工業社製(BTH1/2S)
ポリウレタン樹脂(東洋紡績社製:UR-8300) 60
メチルエチルケトン 800
トルエン 640
シクロヘキサノン 160
ポリイソシアネート(固形分50%) 40
(日本ポリウレタン工業社製:コロネートL)
【0022】
【実施例2 ̄比較例4】
実施例1のフィルムの2層ダイスリットより共押し出しして、冷却ドラムにより冷却し逐次二軸延伸法により長手方向に延伸した後、横方向に延伸する際、幅方向のヤング率が表1に示した数値になるように延伸倍率を調整し、さらに熱固定した後、フィルムの弛緩処理を行う際、弛緩条件を変更することによって巻き取り、表1に示したような熱収縮率を有する4.7μm厚の積層PENフィルムを得た。
【0023】
ヤング率と熱収縮率を調整した以外は実施例1と同様に4.7μm厚の積層PENフィルムを得、4.7μm厚のPENフィルム上に、Co及び酸素を導入しながら、各層1000Åの膜厚で2層成膜し磁性層を形成した。
【0024】
以上の実施例で得られた結果を以下の判定基準を用いて表現すると、表1のとおりとなる。
(カッピングについて)
テープ端面を結んだ線からのテープの最大高さでカッピングの強さを表した。蒸着面側に凸の場合を−、走行面側に凸の場合を+で表示した。ヘッドタッチとの関係では、−0.2程度、つまり若干蒸着面側に凸のものがよい。
【0025】
(ヘッドタッチについて)
レクロイ・ジャパン社製デジタルオシロスコープにより、テープの再生時の波形を観察し、出力信号が正常である場合を◎、若干歪んでいる場合を○、波形が大きく歪み、出力が大幅に低下した場合を×で表した。
【0026】
(電磁変換特性について)
ソニー社製ビデオデッキEV−S900により、10MHzの信号を記録再生して測定した。数値は、比較例2を基準(0dB)として、再生出力を表示した。
【0027】
(耐久走行性について)
ソニー社製ビデオデッキEV−S900により、20℃−60%RH環境下において、100回の往復走行試験を50巻のサンプルで行い、走行ストップ、ヘッド目詰まり等の走行トラブルの発生状況を観察し、トラブル発生0巻を◎、トラブル発生1巻を○およびトラブル発生2巻以上を×と表示した。
【0028】
(ヤング率について)
磁性層形成前のPENフィルムを長さ150mm×幅10mmの大きさに切り出して試験片とした。切り出しの方向は、PENフィルム作製時の長手方向が10mmになるようにした。この定伸張型引張試験機を用い、試験片の引っ張り間隔100mm、引っ張り速度5mm/minで引っ張り試験を行い、応力曲線の立ち上がり部分に接線を引き、試験片の伸びが1%の接線上の荷重を求めた。ヤング率は、下式より求めた
ヤング率=[荷重/(幅×厚さ)]×100
【0029】
(熱収縮率について)
ヤング率と同様の試験片(長さを150mmから100mmに変更したのみ)を3枚準備する。測定間隔用の標線を試験片に入れ、ニコン社製微小寸法測定機(VM−250)により加熱前の長さを測定する。その後、該試験片を熱風循環式高温槽で一定時間加熱し取り出す。取り出した試験片を10分間放冷した後、微小寸法測定機により再度長さを測定する。加熱収縮率は、次の式により算出し、その平均値を求めた。
加熱収縮率=[(加熱前の長さ−加熱後の長さ)/加熱前の長さ]
×100
なお、加熱条件は、150±1℃で30±1分である。
【0030】
【表1】

Figure 0003859974
【0031】
表1から明らかなことは、非磁性支持体の幅方向のヤング率が9000MPa〜12000MPaであり、かつ、幅方向の熱収縮率が6.5%〜9.0%であるものは、電磁変換特性を再生出力で評価して、ある程度出力が出るものにおいて、再生時の波形が正常であり、走行トラブルがなく良好である。
【0032】
【発明の効果】
非磁性支持上に、金属薄膜型磁性層、プラズマ重合硬質炭素膜および潤滑剤が積層されている磁気記録媒体において、本願発明の非磁性支持体を適用すると熱変形(カッピング)及び走行耐久性が著しく向上し、電磁変換特性もすぐれた磁気記録媒体が得られる。[0001]
[Industrial application fields]
The present invention relates to a magnetic recording medium provided with a ferromagnetic metal thin film, and more particularly to a vapor deposition type magnetic recording medium excellent in electromagnetic conversion characteristics.
[0002]
[Prior art]
Unlike the coating type magnetic recording medium, the vapor deposition type magnetic recording medium is suitable for high density recording because of the high packing density of the magnetic material. Therefore, it is very advantageous in terms of electromagnetic conversion characteristics and is already in practical use. At present, the vapor deposition type magnetic recording medium is formed on a nonmagnetic support such as a biaxially oriented polyethylene terephthalate film, a biaxially oriented polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”) film, a polyimide film, a polyamide film or the like. A method is used in which a ferromagnetic metal material such as Co or Co—Ni is formed by vacuum deposition.
[0003]
The magnetic material of the metal thin film type magnetic layer is made of the metal or alloy as described above, but those using Co are particularly good for electromagnetic conversion characteristics and are advantageous for high recording density media. In recent years, there has been a demand for higher recording density. Along with this, the recording medium has been made thinner, and studies have been made to make the nonmagnetic support thinner and thinner.
[0004]
[Problems to be solved by the invention]
However, as the non-magnetic support becomes thinner, not only does the contact between the tape and the magnetic head (hereinafter referred to as “head touch”) worsen, but the output decreases, particularly in the short wavelength region, and the output decreases significantly. There is a problem in running durability as a recording medium. Therefore, a high-strength PEN film is used for the purpose of improving the head touch even if the non-magnetic support is thin and preventing the output from decreasing, and improving the running durability.
[0005]
When a PEN film is used as the nonmagnetic support, the output is reduced due to insufficient strength of the nonmagnetic support and the running durability is improved. On the other hand, the nonmagnetic support is thinned so that the heat in the vapor deposition process is reduced. The head touch is likely to be deformed and the head touch is deteriorated due to the thermal deformation, and the output is lowered due to the head touch deterioration and the problem of running durability is caused.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems. In order to improve electromagnetic conversion characteristics, the Young's modulus in the width direction and the heat shrinkage rate in the width direction of the nonmagnetic support are set within a predetermined range. It has been found that the above problems can be solved.
[0007]
In a magnetic recording medium including a nonmagnetic support and a magnetic layer formed on the nonmagnetic support by oblique vapor deposition, the nonmagnetic support is a laminated film of polyethylene naphthalate, and has a thickness of 3.0 μm to In the range of 6.0 μm, the Young's modulus in the width direction of the film is 9000 MPa or more and 12000 MPa or less, and the heat shrinkage rate in the width direction (the length after heating at 150 ° C. for 30 minutes, It means the shrinkage rate in comparison. Hereinafter, when the heat shrinkage rate (150 ° C.-30 minutes) or simply “heat shrinkage rate” is 6.5% or more and 9.0% or less, It has been found that by suppressing the thermal deformation (cupping) after the film process, the head touch is improved and the electromagnetic conversion characteristics and durability are improved.
[0008]
If the thermal contraction rate in the width direction is larger than 9.0%, cupping after film formation becomes excessively large on the running surface (back coat surface) side (convex on the deposition surface side), and the thermal contraction rate in the width direction. If it is less than 6.5%, the cupping after film formation becomes large on the vapor deposition surface side (convex on the running surface side), and in both cases, the head touch becomes poor and the electromagnetic conversion characteristics deteriorate. In addition, running performance deteriorates due to cupping, resulting in poor durability. This cupping is suitably convex (−0.2 mm) on the vapor deposition surface side, but it is preferable for head touch. However, if the value is too large as described above, it adversely affects.
[0009]
In addition, the larger the Young's modulus in the width direction, the better the head touch and the better the electromagnetic conversion characteristics. However, when it exceeds 12000 MPa, it becomes difficult to control the heat shrinkage rate in the width direction, and it should be 9.0% or less. It becomes difficult. On the other hand, when the pressure is less than 9000 MPa, the absolute strength is insufficient, so that the head touch becomes worse and the output is reduced.
[0010]
In order to increase the recording density, the thickness of the recording medium is reduced. In the present invention, the thickness of the nonmagnetic support is as thin as 3.0 μm to 6.0 μm, which is opposite to the magnetic layer (deposition layer). It is characterized by having a back coat layer of 0.3 μm to 0.7 μm on the surface, but if the back coat layer is less than 0.3 μm, the cupping becomes large on the deposition surface side (convex on the running surface side), and head touch Will get worse. On the other hand, if it is larger than 0.7 μm, the cupping becomes large on the running surface side (convex on the vapor deposition surface side), and the head touch becomes worse. Therefore, the thickness of the back coat layer is 0.3 μm to 0.7 μm, preferably 0.4 to 0.6 μm.
[0011]
There are JP-A-10-64036 and JP-A-11-283234 as publications defining the range of the heat shrinkage rate, both of which are characterized in that the range of the heat shrinkage rate is 6% or less. While it is not impossible to make the heat shrinkage rate 6% or less while increasing the Young's modulus in the width direction to more than 9000 MPa, there are many problems in manufacturing and there is a problem that the cost becomes high.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The polyethylene-2,6-naphthalate in the present invention is a laminated film of at least two layers, and the surface layer of the nonmagnetic support on the side where the metal thin film magnetic layer is provided contains fine inert particles. The desired surface roughness can be obtained. Although the kind of particle | grains to contain is not limited, Colloidal silica and crosslinked polymer particle (crosslinked polystyrene and crosslinked divinylbenzene) are preferable. Alternatively, the desired surface roughness can be obtained by dispersing the inert particles in a water-soluble polymer and applying them to the surface layer of the nonmagnetic support on which the metal thin film layer is provided instead of containing the inert particles. Can be obtained. A desired surface roughness can be obtained by using particles having a particle diameter of 0.01 to 0.10 μm, preferably 0.02 to 0.08 μm.
[0013]
Moreover, desired surface roughness can be obtained by including fine inert particles in the surface layer opposite to the surface layer. Although the kind of particle | grains to contain is not limited, Colloidal silica and crosslinked polymer particle (crosslinked polystyrene and crosslinked divinylbenzene) are preferable. The desired surface roughness can be obtained by using particles having a particle size of 0.1 to 0.4 μm, preferably 0.1 to 0.3 μm.
[0014]
Next, although the manufacturing method of the polyethylene-2, 6-naphthalate used for this invention is described, it is not limited to this.
As the production method, a direct polymerization method using 2,6-naphthalenedicarboxylic acid and ethylene glycol, a transesterification method using 2,6-naphthalenedicarboxylic acid dimethyl ester and ethylene glycol, and the like are known. As a method of containing the above-mentioned inert particles, it is preferable to disperse in ethylene glycol and polymerize with a dicarboxylic acid component.
[0015]
The prepared PEN pellets are melted, co-extruded from the two-layer die slit, cooled by a cooling drum, and adjusted in the longitudinal direction by adjusting the longitudinal and transverse stretch ratios to obtain a desired Young's modulus by successive biaxial stretching methods. After stretching, the film is stretched in the transverse direction, heat-set, and then subjected to a relaxation treatment of the film, whereby a laminated PEN film having a desired heat shrinkage rate can be obtained.
[0016]
Next, the magnetic material of the magnetic layer is pure metal such as Co or Fe, or Co—Ni, Co—Fe, Co—Cu, Co—Ni—Cr, Co—Pt, Co—Pt—Cr, Co—Cr—. Alloys such as Ta and Co—Ni—B can be used, and Co or Co alloy is desirable. Usually, such a magnetic material is directly deposited on a nonmagnetic substrate or Ni is deposited on the nonmagnetic substrate, and then deposited to form a magnetic layer. The vapor deposition of the magnetic layer is performed by evacuating the inside of the vapor deposition chamber to about 10 −6 Torr and then melting the magnetic material with an electron gun. When the entire magnetic material is dissolved, the nonmagnetic substrate is cooled along the main roller. And start vapor deposition at the main roller. At this time, in order to control the magnetic characteristics, an oxidizing gas selected from oxygen, ozone, and nitrous oxide is introduced into the magnetic layer. A plasma-polymerized hard carbon film layer may be provided on the obtained magnetic layer as necessary.
[0017]
The plasma polymerized hard carbon film layer is composed of a feed roller, a take-up roller, a main roller having a partly cylindrical surface for plasma polymerization (a cross-sectional partial circle) electrode plates facing each other at an interval, and a pass roller as necessary. In a chamber (vacuum chamber) having a substrate, a raw material (a roll of a ferromagnetic metal-deposited substrate wound in a roll shape) is placed on a feeding roller and then evacuated to 10 −5 Torr or more, and then added with a hydrocarbon gas. It can be obtained by plasma polymerization while introducing a predetermined amount of gas at a reaction pressure of 1 to 10 −2 Torr. Since the amount of introduction depends on the size of the chamber, it is appropriately determined as necessary. The hydrocarbon gas is selected from methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, ethylene, propylene, acetylene, methylacetylene, and toluene, and one or a mixture of two or more is used. Examples of the additive gas include hydrogen, neon, helium, argon, oxygen, nitrogen, and the like. The additive ratio is about 1 to 0.01 in terms of additive gas / hydrocarbon ratio with respect to the amount of hydrocarbon. In particular, 0.1 to 0.05 is preferable. If the amount of the added gas is too large with respect to the hydrocarbon, the film forming rate decreases, and if it is too small, the film does not become dense. The discharge power source preferably has a frequency of 10 kHz to 450 kHz, and particularly preferably 50 k to 200 kHz. If the frequency is longer than 10 kHz, long-time operation becomes difficult. If the wavelength is shorter than 450 kHz, the film will not be dense. It is desirable to control the discharge frequency, the reaction pressure, and the reaction gas flow rate so that the plasma-polymerized hard carbon film has a refractive index of 1.9 or more and about 2.0 to 2.25.
[0018]
As the lubricant, a conventionally used lubricant may be used, but a lubricant containing fluorine is preferable. The lubricant containing fluorine has a basic structure represented by R1-A-R2.
R1: CF 3 (CF 2) n -, CF 3 (CF 2) n (CH 2) m -, CH 3 (CH 2) l -, H
A: COO, O, COOCH (C l H 2 l +1 ) CH 2 COO
R2: CF 3 (CF 2) n -, CF 3 (CF 2) n (CH 2) m -, CH 3 (CH 2) l -, H
However, it is desirable to satisfy R1 ≠ R2, n = 7 to 17, m = 1 to 3, and l = 7 to 30. Furthermore, if R1 and R2 are linear, the lubricating effect is large. If n is less than 7, the water repellent effect is low, and if it is more than 17, a blocking phenomenon occurs between the lubricant and the nonmagnetic substrate or the back coat layer, and the friction does not decrease. The same applies to l as n. Further, two or more kinds of such lubricants may be mixed.
[0019]
[Example 1]
PEN pellets were prepared by transesterification and polycondensation of ethylene glycol having colloidal silica with an average particle size of 30 nm and dimethyl 2,6-naphthalenedicarboxylate (PEN-A). PEN pellets were prepared by transesterification and polycondensation of ethylene glycol having crosslinked vinylbenzene particles having an average particle size of 300 nm and dimethyl 2,6-naphthalenedicarboxylate (PEN-B). Each of these PEN pellets A and B was melted and co-extruded from a two-layer die slit, cooled by a cooling drum and successively stretched in the longitudinal direction by a biaxial stretching method, then stretched in the transverse direction and heat-set, The film was subjected to a relaxation treatment to obtain a 4.7 μm thick laminated PEN film having a thermal shrinkage as shown in Table 1.
[0020]
On the obtained 4.7 μm-thick PEN film, while introducing Co and oxygen, two layers having a thickness of 1000 mm were formed to form a magnetic layer. A plasma-polymerized hard carbon film was formed by introducing ethylene and Ar (flow ratio 2: 1) on the magnetic layer and applying a predetermined discharge frequency (50 kHz). A predetermined discharge frequency was applied to the surface of the hard carbon film, and plasma treatment was performed with carbon dioxide gas containing oxygen. Lubricant (succinic acid derivative COOHCH (C 14 H 29 ) CH 2 COOCH 2 CH 2 (CF 2 ) 7 CF 3 ) was applied by a reverse coating method, and the thickness when dried was 0 on the side where the magnetic layer was not provided. After providing a .5 μm back coat layer, the sample was slit to 8 mm width. Table 1 shows the characteristics of the obtained magnetic recording medium. The plasma-polymerized hard carbon film was formed on a Si wafer under the same conditions as in the table, and the film thickness and the like were obtained. The composition of the back coat layer is as follows (numbers indicate parts by weight).
[0021]
Carbon black (particle size 80nm) 10
Same as above (particle size 20 nm) 40
Calcium carbonate (particle size 70nm) 50
Nc (nitrocellulose) 40
(Asahi Kasei Corporation (BTH1 / 2S)
Polyurethane resin (Toyobo Co., Ltd .: UR-8300) 60
Methyl ethyl ketone 800
Toluene 640
Cyclohexanone 160
Polyisocyanate (solid content 50%) 40
(Nippon Polyurethane Industry Co., Ltd .: Coronate L)
[0022]
Example 2 Comparative Example 4
When the film of Example 1 is co-extruded from the two-layer die slit, cooled by a cooling drum and successively stretched in the longitudinal direction by the biaxial stretching method, the Young's modulus in the width direction is shown in Table 1 when stretched in the transverse direction. The film is wound by changing the relaxation conditions when the film is subjected to a relaxation treatment after adjusting the draw ratio to the indicated numerical value and further heat-fixed, and has a thermal shrinkage ratio as shown in Table 1 4 A laminated PEN film having a thickness of 7 μm was obtained.
[0023]
A laminated PEN film having a thickness of 4.7 μm was obtained in the same manner as in Example 1 except that the Young's modulus and the heat shrinkage rate were adjusted. A film having a thickness of 1000 μm was obtained while introducing Co and oxygen onto the 4.7 μm-thick PEN film. Two layers with a thickness were formed to form a magnetic layer.
[0024]
When the results obtained in the above examples are expressed using the following criteria, Table 1 is obtained.
(About cupping)
The maximum height of the tape from the line connecting the tape end faces represents the strength of the cupping. The case of convexity on the vapor deposition surface side is indicated by-, and the case of convexity on the traveling surface side is indicated by +. In relation to the head touch, about -0.2, that is, slightly convex on the deposition surface side is preferable.
[0025]
(About head touch)
Observe the waveform during tape playback using a digital oscilloscope manufactured by LeCroy Japan, ◎ if the output signal is normal, ○ if it is slightly distorted, ○ if the waveform is greatly distorted, and the output drops significantly Expressed with ×.
[0026]
(Electromagnetic conversion characteristics)
Measurement was performed by recording and reproducing a 10 MHz signal using a Sony video deck EV-S900. As for the numerical value, the reproduction output was displayed on the basis of Comparative Example 2 (0 dB).
[0027]
(About durability running)
With a VCR EV-S900 manufactured by Sony Corporation, 100 reciprocating tests were conducted with 50 samples in a 20 ° C-60% RH environment, and the occurrence of running troubles such as running stops and head clogging were observed. The trouble occurrence volume 0 is indicated by ◎, the trouble occurrence volume 1 is indicated by ○, and the trouble occurrence volume 2 or more is indicated by ×.
[0028]
(About Young's modulus)
The PEN film before forming the magnetic layer was cut into a size of 150 mm long × 10 mm wide to obtain a test piece. The cutting direction was set to 10 mm in the longitudinal direction when the PEN film was produced. Using this constant elongation type tensile tester, a tensile test is performed at a tensile interval of 100 mm and a tensile speed of 5 mm / min, a tangent line is drawn at the rising portion of the stress curve, and the load on the tangential line where the elongation of the test piece is 1%. Asked. Young's modulus is obtained from the following formula: Young's modulus = [load / (width × thickness)] × 100
[0029]
(About heat shrinkage)
Three test pieces similar to the Young's modulus (only the length is changed from 150 mm to 100 mm) are prepared. A marked line for the measurement interval is put in a test piece, and the length before heating is measured by a micro dimension measuring machine (VM-250) manufactured by Nikon Corporation. Thereafter, the test piece is taken out for a certain period of time in a hot-air circulating high temperature bath. The taken specimen is allowed to cool for 10 minutes, and then the length is measured again with a micro-dimension measuring machine. The heat shrinkage was calculated by the following formula, and the average value was obtained.
Heat shrinkage rate = [(length before heating−length after heating) / length before heating]
× 100
The heating conditions are 150 ± 1 ° C. and 30 ± 1 minutes.
[0030]
[Table 1]
Figure 0003859974
[0031]
It is clear from Table 1 that the nonmagnetic support has a Young's modulus in the width direction of 9000 MPa to 12000 MPa and a heat shrinkage in the width direction of 6.5% to 9.0%. When the characteristics are evaluated by the reproduction output and the output is obtained to some extent, the waveform at the time of reproduction is normal, and there is no running trouble and it is good.
[0032]
【The invention's effect】
In a magnetic recording medium in which a metal thin film type magnetic layer, a plasma polymerized hard carbon film, and a lubricant are laminated on a nonmagnetic support, when the nonmagnetic support of the present invention is applied, thermal deformation (capping) and running durability are achieved. A magnetic recording medium with significantly improved and excellent electromagnetic conversion characteristics can be obtained.

Claims (3)

非磁性支持体及び該支持体上に斜め蒸着法により形成される金属薄膜磁性層を含む磁気記録媒体において、該磁性層上にプラズマ重合硬質炭素膜層を有し、該炭素膜層上に潤滑剤を有し、該非磁性支持体がポリエチレンナフタレートの積層フィルムであり、該フィルムの幅方向のヤング率が9000MPa以上12000MPa以下であり、幅方向の熱収縮率が6.5%以上9.0%以下であり、該潤滑剤は、基本構造としては、R1−A−R2で表わされるものであり、
R1:CF3(CF2n−、CF3(CF2n(CH2m−、CH3(CH2l−、H
A :COOCH(C l l +1 )CH COO
R2:CF(CF2n−、CF3(CF2n(CH2m−、CH3(CH2l−、H
但し、R1≠R2、n=7〜17、m=1〜3、l=7〜30を満足することを特徴とする磁気記録媒体。
In a magnetic recording medium including a nonmagnetic support and a metal thin film magnetic layer formed by oblique vapor deposition on the support, the magnetic layer has a plasma-polymerized hard carbon film layer, and the carbon film layer is lubricated. The nonmagnetic support is a polyethylene naphthalate laminated film, the Young's modulus in the width direction of the film is 9000 MPa to 12000 MPa, and the thermal shrinkage in the width direction is 6.5% to 9.0. %, And the lubricant has a basic structure represented by R1-A-R2.
R1: CF 3 (CF 2) n -, CF 3 (CF 2) n (CH 2) m -, CH 3 (CH 2) l -, H
A: COOCH (C l H 2 l +1 ) CH 2 COO
R2: CF 3 (CF 2) n -, CF 3 (CF 2) n (CH 2) m -, CH 3 (CH 2) l -, H
However, a magnetic recording medium characterized by satisfying R1 ≠ R2, n = 7 to 17, m = 1 to 3, and l = 7 to 30.
上記非磁性支持体の厚みが3.0μm以上6.0μm以下であることを特徴とする請求項1に記載の磁気記録媒体。The magnetic recording medium according to claim 1, wherein the nonmagnetic support has a thickness of 3.0 μm to 6.0 μm. 上記磁性層と反対側の面に0.3μm以上0.7μm以下のバックコート層を有することを特徴とする請求項1に記載の磁気記録媒体。The magnetic recording medium according to claim 1, further comprising a backcoat layer having a thickness of 0.3 μm or more and 0.7 μm or less on a surface opposite to the magnetic layer.
JP2001017962A 2001-01-26 2001-01-26 Magnetic recording medium Expired - Fee Related JP3859974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001017962A JP3859974B2 (en) 2001-01-26 2001-01-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017962A JP3859974B2 (en) 2001-01-26 2001-01-26 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2002222515A JP2002222515A (en) 2002-08-09
JP3859974B2 true JP3859974B2 (en) 2006-12-20

Family

ID=18884062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017962A Expired - Fee Related JP3859974B2 (en) 2001-01-26 2001-01-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3859974B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6691512B2 (en) 2017-06-23 2020-04-28 富士フイルム株式会社 Magnetic recording medium
JP6884874B2 (en) 2017-09-29 2021-06-09 富士フイルム株式会社 Magnetic tape and magnetic recording / playback device
WO2019065200A1 (en) 2017-09-29 2019-04-04 富士フイルム株式会社 Magnetic tape and magnetic recording/reproducing apparatus
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP6830931B2 (en) 2018-07-27 2021-02-17 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP6784738B2 (en) 2018-10-22 2020-11-11 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP6830945B2 (en) 2018-12-28 2021-02-17 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP7042737B2 (en) 2018-12-28 2022-03-28 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge and magnetic tape device
JP7003073B2 (en) 2019-01-31 2022-01-20 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP6778804B1 (en) 2019-09-17 2020-11-04 富士フイルム株式会社 Magnetic recording medium and magnetic recording / playback device

Also Published As

Publication number Publication date
JP2002222515A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
JP3859974B2 (en) Magnetic recording medium
US20040023066A1 (en) Magnetic recording medium and process for producing the same
JP2004030809A (en) Substrate for magnetic recording medium and magnetic recording medium
US6027801A (en) Magnetic recording medium
US6726988B2 (en) Magnetic recording medium
JPH04232611A (en) High-density magnetic recording medium
JPH08167146A (en) Production of magnetic recording medium
JP3700978B2 (en) Method for manufacturing magnetic recording medium
JPS6050624A (en) Production of magnetic recording medium
JP4045947B2 (en) Biaxially oriented polyester film
JPH0434715A (en) Magnetic tape
JPS6145412A (en) Production of magnetic recording medium
JPH02155934A (en) Biaxially oriented polyester film
JP2959110B2 (en) Manufacturing method of magnetic tape
JPH05290371A (en) Production of magnetic recording medium
JPH0916952A (en) Production of magnetic recording medium
JPH07282445A (en) Production of magnetic recording medium
JPH0411322A (en) Magnetic recording medium
JPH01245416A (en) Magnetic recording medium
JPH01245417A (en) Magnetic recording medium
JPH08180363A (en) Magnetic recording medium and its production
JPH0950626A (en) Production of magnetic recording medium
JPH04172621A (en) Production of magnetic tape
JP2002074645A (en) Magnetic recording medium
JPH07272269A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees