JP2002222515A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JP2002222515A
JP2002222515A JP2001017962A JP2001017962A JP2002222515A JP 2002222515 A JP2002222515 A JP 2002222515A JP 2001017962 A JP2001017962 A JP 2001017962A JP 2001017962 A JP2001017962 A JP 2001017962A JP 2002222515 A JP2002222515 A JP 2002222515A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
magnetic recording
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001017962A
Other languages
Japanese (ja)
Other versions
JP3859974B2 (en
Inventor
Hitoshi Hirayama
均 平山
Kunihiro Ueda
国博 上田
Masao Nakayama
正雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001017962A priority Critical patent/JP3859974B2/en
Publication of JP2002222515A publication Critical patent/JP2002222515A/en
Application granted granted Critical
Publication of JP3859974B2 publication Critical patent/JP3859974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium having enhanced thermal deformation (cupping) resistance and running durability and excellent electromagnetic transducing characteristics. SOLUTION: In the magnetic recording medium including a magnetic layer formed by an oblique vapor deposition method on a non-magnetic substrate, the head touch of the medium is made satisfactory and the electromagnetic transducing characteristics and durability are improved, since the thermal deformation (cupping) is suppressed if the non-magnetic substrate is made of a laminated film of polyethylene naphthalate and has 3.0 μm-6.0 μm thickness, >=9,000 MPa, <=12,000 MPa Young's modulus in the width direction of the film and >=6.5% and <=9.0% coefficient of shrinkage (width direction, 150 deg.C-30 min).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、強磁性金属薄膜を備
える磁気記録媒体、特に電磁変換特性に優れた蒸着型磁
気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a ferromagnetic metal thin film, and more particularly to a deposition type magnetic recording medium having excellent electromagnetic conversion characteristics.

【0002】[0002]

【従来の技術】蒸着型の磁気記録媒体は、塗布型の磁気
記録媒体と異なり、磁性材料の充填密度が高いために高
密度記録に適している。そのため電磁変換特性上非常に
有利であり、現在すでに実用化されている。現在、蒸着
型磁気記録媒体は、二軸配向ポリエチレンテレフタレー
トフィルム、二軸配向ポリエチレンナフタレート(以下
「PEN」と略記することもある。)フィルム、ポリイ
ミドフィルム、ポリアミドフィルム等の非磁性支持体上
にCo、Co−Ni等の強磁性金属材料を真空蒸着法に
より製膜する方法をとっている。
2. Description of the Related Art Unlike a coating type magnetic recording medium, a vapor deposition type magnetic recording medium is suitable for high density recording because of a high packing density of a magnetic material. Therefore, it is very advantageous in terms of electromagnetic conversion characteristics, and has already been put to practical use. At present, a vapor deposition type magnetic recording medium is formed on a non-magnetic support such as a biaxially oriented polyethylene terephthalate film, a biaxially oriented polyethylene naphthalate (hereinafter sometimes abbreviated as “PEN”) film, a polyimide film, and a polyamide film. In this method, a ferromagnetic metal material such as Co or Co-Ni is formed by a vacuum deposition method.

【0003】金属薄膜型磁性層の磁性材料は、前記のよ
うな金属または合金からなるものであるが、Coを使用
したものは、特に電磁変換特性が良く、高記録密度媒体
に有利である。近年さらに高記録密度化が求められてお
り、それに伴い記録媒体の薄膜化も進み、非磁性支持体
もますます薄くする検討がなされている。
[0003] The magnetic material of the metal thin film type magnetic layer is composed of the above-mentioned metals or alloys, but those using Co have particularly good electromagnetic conversion characteristics and are advantageous for a high recording density medium. In recent years, higher recording densities have been demanded, and with the progress of thinning of recording media, studies have been made to further reduce the thickness of nonmagnetic supports.

【0004】[0004]

【発明が解決しようとする課題】しかしながら非磁性支
持体が薄くなるに従って、テープと磁気ヘッドとの当た
り(以下「ヘッドタッチ」という。)が悪くなり出力の
低下、特に短波長領域での出力低下が顕著となるばかり
でなく、磁気記録媒体としての走行耐久性に問題を生じ
ている。そこで、非磁性支持体が薄くてもヘッドタッチ
を良くし、出力の低下が生じないように、また走行耐久
性の向上を目的として、高強度のPENフィルムが使用
されている。
However, as the non-magnetic support becomes thinner, the contact between the tape and the magnetic head (hereinafter referred to as "head touch") becomes worse and the output decreases, particularly in the short wavelength region. Not only becomes noticeable, but also causes a problem in running durability as a magnetic recording medium. Therefore, a high-strength PEN film is used for the purpose of improving the head touch even if the nonmagnetic support is thin, preventing the output from lowering, and improving the running durability.

【0005】非磁性支持体としてPENフィルムを使用
すると、非磁性支持体の強度不足によって生じる出力の
低下及び走行耐久性の改善はなされるが、他方では、非
磁性支持体が薄くなることによって、蒸着工程における
熱変形を受け易くなり、熱変形に基づくヘッドタッチの
悪化が生じ、該ヘッドタッチの悪化による出力低下や、
走行耐久性の問題が生じている。
[0005] When a PEN film is used as the non-magnetic support, the output is reduced and the running durability is improved due to insufficient strength of the non-magnetic support. It becomes susceptible to thermal deformation in the process, the head touch deteriorates due to the thermal deformation, and the output decreases due to the deterioration of the head touch,
There is a problem of running durability.

【0006】[0006]

【課題を解決するための手段】 本願発明は、上記課題
を解決すべくなされたもので、電磁変換特性を良くする
ためには、非磁性支持体の幅方向のヤング率と幅方向の
熱収縮率とを所定の範囲に設定すれば、上記課題が解決
することを見出した。
Means for Solving the Problems The present invention has been made to solve the above problems, and in order to improve the electromagnetic conversion characteristics, the non-magnetic support has a Young's modulus in the width direction and a thermal shrinkage in the width direction. It has been found that the above problem can be solved by setting the ratio in a predetermined range.

【0007】非磁性支持体および該非磁性支持体上に斜
め蒸着法により形成される磁性層を含む磁気記録媒体に
おいて、該非磁性支持体は、ポリエチレンナフタレート
の積層フィルムであって、その厚みが3.0μm〜6.
0μmの範囲で、該フィルムの幅方向のヤング率が90
00MPa以上12000MPa以下であり、幅方向の
熱収縮率(150℃で30分間加熱維持した後の長さ
の、加熱前の長さに比較しての収縮率を意味し、以下、
熱収縮率(150℃−30分)、あるいは、単に「熱収
縮率」という。)が6.5%以上9.0%以下である
と、製膜工程後の熱変形(カッピング)が抑えられるこ
とにより、ヘッドタッチが良好となり、電磁変換特性や
耐久性が改善されることを見出した。
In a magnetic recording medium including a non-magnetic support and a magnetic layer formed on the non-magnetic support by oblique deposition, the non-magnetic support is a laminated film of polyethylene naphthalate and has a thickness of 3 μm. 0.0 μm to 6.
Within the range of 0 μm, the Young's modulus in the width direction of the film is 90.
Not less than 00 MPa and not more than 12000 MPa, which means the heat shrinkage in the width direction (meaning the shrinkage of the length after heating and maintaining at 150 ° C. for 30 minutes as compared to the length before heating,
Heat shrinkage (150 ° C. for 30 minutes), or simply “heat shrinkage”. ) Is 6.5% or more and 9.0% or less, the thermal deformation (cupping) after the film forming process is suppressed, the head touch becomes good, and the electromagnetic conversion characteristics and durability are improved. I found it.

【0008】幅方向の熱収縮率が9.0%より大きい
と、製膜後のカッピングが走行面(バックコート面)側
に過度に大(蒸着面側に凸)になり、また幅方向の熱収
縮率が6.5%未満だと、製膜後のカッピングが蒸着面
側に大(走行面側に凸)となり、どちらもヘッドタッチ
が悪くなり電磁変換特性が低下する。またカッピングに
より走行性が悪化し耐久性が劣ってしまう結果となる。
このカッピングは、蒸着面側に適度に凸(−0.2m
m)であるものがヘッドタッチに対しては好ましいが、
前記のように値が大きすぎると逆に悪影響を及ぼすよう
になる。
If the heat shrinkage in the width direction is larger than 9.0%, the cupping after film formation becomes excessively large on the running surface (backcoat surface) side (convex on the vapor deposition surface side), If the heat shrinkage is less than 6.5%, the cupping after film formation becomes large on the vapor deposition surface side (convex on the running surface side), and in both cases, the head touch is deteriorated and the electromagnetic conversion characteristics are reduced. Moreover, the running property is deteriorated due to the cupping, and the durability is deteriorated.
This cupping is moderately convex (−0.2 m
m) is preferred for head touch,
As described above, if the value is too large, adverse effects will occur.

【0009】また幅方向のヤング率が大きいほど、ヘッ
ドタッチは良くなり、電磁変換特性が向上するが、12
000MPaよりも大きくなると、幅方向の熱収縮率を
コントロールし難くなり、9.0%以下にすることが困
難となる。また、9000MPa未満になると、絶対的
な強度が不足するため、ヘッドタッチは悪くなり出力が
低下してしまう。
As the Young's modulus in the width direction increases, the head touch improves and the electromagnetic conversion characteristics improve.
When it is larger than 000 MPa, it becomes difficult to control the heat shrinkage in the width direction, and it is difficult to reduce the heat shrinkage to 9.0% or less. On the other hand, when the pressure is less than 9000 MPa, the absolute strength is insufficient, so that the head touch is deteriorated and the output is reduced.

【0010】高記録密度化のために記録媒体の厚さは薄
くなっており、本願発明においても非磁性支持体の厚み
は、3.0μm〜6.0μmと薄く、磁性層(蒸着層)
と反対側の面に0.3μm〜0.7μmのバックコート
層を有することを特徴としているが、バックコート層が
0.3μm未満だとカッピングが蒸着面側に大(走行面
側に凸)となり、ヘッドタッチが悪くなってしまう。ま
た0.7μmより大きいとカッピングが走行面側に大
(蒸着面側に凸)となってしまい、これまたヘッドタッ
チが悪くなってしまう。よってバックコート層の厚みは
0.3μm〜0.7μm、好ましくは0.4〜0.6μ
mの範囲が良い。
The thickness of the recording medium has been reduced for higher recording density. In the present invention, the thickness of the nonmagnetic support is as small as 3.0 μm to 6.0 μm.
Is characterized by having a back coat layer of 0.3 μm to 0.7 μm on the surface on the side opposite to the above, but if the back coat layer is less than 0.3 μm, cupping is large on the vapor deposition surface side (convex on the running surface side). And the head touch becomes worse. On the other hand, if it is larger than 0.7 μm, the cupping becomes large on the running surface side (convex on the vapor deposition surface side), and the head touch becomes worse. Therefore, the thickness of the back coat layer is 0.3 μm to 0.7 μm, preferably 0.4 μm to 0.6 μm.
The range of m is good.

【0011】熱収縮率の範囲を規定した公開公報として
は、特開平10−64036号および特開平11−28
3234号があるが、共に熱収縮率の範囲が6%以下で
あることを特徴としている。幅方向のヤング率を900
0MPaよりも大きくしつつ熱収縮率を6%以下にする
ことは不可能ではないが、製造上困難な点が多く、コス
トが高くなるという不具合がある。
Japanese Patent Application Laid-Open Nos. 10-64036 and 11-28 disclose the publications defining the range of the heat shrinkage.
No. 3234, both of which are characterized in that the range of the heat shrinkage is 6% or less. 900 Young's modulus in width direction
Although it is not impossible to make the heat shrinkage ratio 6% or less while making it larger than 0 MPa, there are many difficulties in manufacturing, and there is a problem that the cost becomes high.

【0012】[0012]

【発明の実施の形態】本願発明におけるポリエチレン−
2,6−ナフタレートは、少なくとも2層以上の積層フ
ィルムであって、金属薄膜磁性層を設ける側の非磁性支
持体の表面層には微細な不活性粒子を含有させることに
より、所望の表面粗さを得ることができる。含有させる
粒子の種類は、限定されるものではないが、コロイダル
シリカや架橋高分子粒子(架橋ポリスチレンや架橋ジビ
ニルベンゼン)が好ましい。あるいは、不活性粒子を含
有させることに代えて、金属薄膜層を設ける非磁性支持
体の表面層に、水溶性高分子に前記不活性粒子を分散さ
せて塗布することによっても所望の表面粗さを得ること
ができる。該粒子の粒径としては0.01〜0.10μ
m、好ましくは0.02〜0.08μmの粒子を使用す
ることによって所望の表面粗さが得られる。
BEST MODE FOR CARRYING OUT THE INVENTION
2,6-naphthalate is a laminated film of at least two layers, and the surface layer of the non-magnetic support on which the metal thin-film magnetic layer is provided contains fine inert particles to provide a desired surface roughness. You can get it. The type of particles to be contained is not limited, but colloidal silica and crosslinked polymer particles (crosslinked polystyrene and crosslinked divinylbenzene) are preferred. Alternatively, the desired surface roughness may be obtained by dispersing and coating the inert particles in a water-soluble polymer on a surface layer of a non-magnetic support on which a metal thin film layer is provided instead of including the inert particles. Can be obtained. The particle size of the particles is 0.01 to 0.10 μm
The desired surface roughness is obtained by using particles of m, preferably 0.02 to 0.08 μm.

【0013】また上記表面層と反対側の表面層にも微細
な不活性粒子を含有させることにより所望の表面粗さが
得られる。含有させる粒子の種類は限定されるものでは
ないが、コロイダルシリカや架橋高分子粒子(架橋ポリ
スチレンや架橋ジビニルベンゼン)が好ましい。該粒子
の粒径としては0.1〜0.4μm、好ましくは0.1
〜0.3μmの粒子を使用することによって所望の表面
粗さが得られる。
A desired surface roughness can be obtained by incorporating fine inert particles into the surface layer opposite to the surface layer. The type of the particles to be contained is not limited, but colloidal silica or crosslinked polymer particles (crosslinked polystyrene or crosslinked divinylbenzene) are preferred. The particle size of the particles is 0.1 to 0.4 μm, preferably 0.1 to 0.4 μm.
The desired surface roughness is obtained by using particles of 〜0.3 μm.

【0014】次に本願発明に使用されるポリエチレン−
2,6−ナフタレートの製造方法を記述するが、これに
限定されるものではない。製造法は、2,6−ナフタレ
ンジカルボン酸とエチレングリコールを用いての直接重
合法、2,6−ナフタレンジカルボン酸ジメチルエステ
ルとエチレングリコールを用いてのエステル交換法など
が公知である。前述不活性粒子を含有させる方法として
は、エチレングリコールに分散させてジカルボン酸成分
と重合せしめるのが好ましい。
Next, the polyethylene used in the present invention is
A method for producing 2,6-naphthalate is described, but is not limited thereto. Known production methods include a direct polymerization method using 2,6-naphthalenedicarboxylic acid and ethylene glycol, and a transesterification method using 2,6-naphthalenedicarboxylic acid dimethyl ester and ethylene glycol. As a method for containing the above-mentioned inert particles, it is preferable to disperse in ethylene glycol and polymerize with a dicarboxylic acid component.

【0015】作成したPENペレットを溶融し、2層ダ
イスリットより共押し出しして、冷却ドラムにより冷却
し、逐次二軸延伸法により所望のヤング率になるように
縦横の延伸倍率を調整して、長手方向に延伸した後、横
方向に延伸し、熱固定した後、フィルムの弛緩処理を行
うことによって、所望の熱収縮率を有する積層PENフ
ィルムを得ることができる。
The produced PEN pellets are melted, co-extruded from a two-layer die slit, cooled by a cooling drum, and sequentially and biaxially stretched to adjust the stretching ratio in the longitudinal and transverse directions so as to obtain a desired Young's modulus. After stretching in the longitudinal direction, stretching in the transverse direction, and heat setting, the film is subjected to a relaxation treatment, whereby a laminated PEN film having a desired heat shrinkage can be obtained.

【0016】次に、磁性層の磁性材料は、Co、Fe等
の純金属またはCo−Ni、Co−Fe、Co−Cu、
Co−Ni−Cr、Co−Pt、Co−Pt−Cr、C
o−Cr−Ta、Co−Ni−B等の合金類を使用する
ことが可能で、CoまたはCo合金が望ましい。通常
は、非磁性基体上にこのような磁性材料を直接または非
磁性基体上にNiを蒸着した後、蒸着して磁性層を形成
する。磁性層の蒸着は、蒸着用チャンバー内を10-6
orr程度にまで排気した後、磁性材料を電子銃にて溶
解し、磁性材料全体が溶解した時点で非磁性基体を冷却
したメインローラに沿って走行させてメインローラ部に
て蒸着を始める。このときに磁気特性を制御するため
に、酸素、オゾン、亜酸化窒素から選ばれる酸化性ガス
を磁性層へ導入する。得られた磁性層の上には必要に応
じてプラズマ重合硬質炭素膜層を設けても良い。
Next, the magnetic material of the magnetic layer may be a pure metal such as Co or Fe or Co-Ni, Co-Fe, Co-Cu,
Co-Ni-Cr, Co-Pt, Co-Pt-Cr, C
Alloys such as o-Cr-Ta and Co-Ni-B can be used, and Co or a Co alloy is preferable. Usually, such a magnetic material is directly deposited on a non-magnetic substrate or Ni is deposited on a non-magnetic substrate, and then a magnetic layer is formed by vapor deposition. For the deposition of the magnetic layer, the inside of the deposition chamber is 10 −6 T.
After evacuation to about orr, the magnetic material is melted by an electron gun, and when the entire magnetic material is melted, the non-magnetic substrate is caused to run along the cooled main roller to start vapor deposition at the main roller portion. At this time, in order to control the magnetic characteristics, an oxidizing gas selected from oxygen, ozone, and nitrous oxide is introduced into the magnetic layer. A plasma-polymerized hard carbon film layer may be provided on the obtained magnetic layer, if necessary.

【0017】プラズマ重合硬質炭素膜層は、繰出しロー
ラ、巻取りローラ、プラズマ重合用部分円筒面状(断面
部分円孤上)電極板を間隔をおいて対向して有するメイ
ンローラ等、及び必要に応じてパスローラを有するチャ
ンバー(真空槽)において、原反(強磁性金属を蒸着し
た基体をロール状に捲回したもの)を繰出しローラに設
置後10-5Torr以上にまで排気したのち、炭化水素
ガスと添加ガスを反応圧力として、1〜10-2Torr
になるように所定量を導入しつつ、プラズマ重合する事
によって得られる。導入量は、チャンバーの大きさに依
存するので必要に応じて適宜決定する。炭化水素ガスと
しては、メタン、エタン、プロパン、ブタン、ペンタ
ン、ヘキサン、ヘプタン、オクタン、ノナン、エチレ
ン、プロピレン、アセチレン、メチルアセチレン、トル
エンより選択され、1種または2種以上を混合して用い
る。添加ガスとしては、水素、ネオン、ヘリウム、アル
ゴン、酸素、窒素等が挙げられ、その添加比率は炭化水
素量に対し、添加ガス/炭化水素比で1〜0.01程度
とする。特に、0.1〜0.05が良い。炭化水素に対
し、添加ガス量が多すぎると成膜速度が低下し、少なす
ぎると膜が緻密にならない。放電電源は、10kHz〜
450kHzの周波数が望ましく、特に50kから20
0kHzが望ましい。10kHzより周波数が長いと長
時間の運転が困難になる。また、450kHzより波長
が短いと膜が緻密にならない。このようなプラズマ重合
硬質炭素膜はその屈折率として1.9以上でさらに2.
0から2.25程度になるように、放電周波数、反応圧
力、反応ガス流量を制御することが望ましい。
The plasma-polymerized hard carbon film layer includes a feed roller, a take-up roller, a main roller having plasma-polymerized partial cylindrical surface-shaped (partially circular in section) electrode plates facing each other at intervals, and the like. Accordingly, in a chamber (vacuum chamber) having a pass roller, a raw material (a substrate on which a ferromagnetic metal is vapor-deposited and wound into a roll) is set on a feeding roller, evacuated to 10 -5 Torr or more, and then hydrocarbons. 1 to 10 -2 Torr, with gas and additive gas as reaction pressures
It is obtained by plasma polymerization while introducing a predetermined amount so that The amount to be introduced depends on the size of the chamber, and is appropriately determined as needed. The hydrocarbon gas is selected from methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, ethylene, propylene, acetylene, methylacetylene, and toluene, and is used alone or in combination of two or more. Examples of the added gas include hydrogen, neon, helium, argon, oxygen, nitrogen, and the like. The added ratio is about 1 to 0.01 in terms of the added gas / hydrocarbon ratio with respect to the amount of hydrocarbon. In particular, 0.1 to 0.05 is preferable. If the amount of the added gas is too large with respect to the hydrocarbon, the film formation rate is reduced. If the amount is too small, the film does not become dense. Discharge power supply is 10kHz ~
A frequency of 450 kHz is desirable, especially from 50 kHz to 20 kHz.
0 kHz is desirable. If the frequency is longer than 10 kHz, long-time operation becomes difficult. If the wavelength is shorter than 450 kHz, the film does not become dense. Such a plasma-polymerized hard carbon film has a refractive index of 1.9 or more and further 2.
It is desirable to control the discharge frequency, the reaction pressure, and the flow rate of the reaction gas so as to be about 0 to 2.25.

【0018】潤滑剤としては、従来用いられている潤滑
剤でよいが、フッ素を含む潤滑剤が好ましい。該フッ素
を含む潤滑剤は基本構造としては、R1−A−R2で表
わされるものであり、 R1:CF3(CF2n−、CF3(CF2n(CH2m
−、CH3(CH2l−、H A :COO、O、COOCH(Cl2l+1)CH
COO R2:CF(CF2n−、CF3(CF2n(CH2
m−、CH3(CH2l−、 H 但し、R1≠R2、n=7〜17、m=1〜3、l=7
〜30を満足するものが望ましい。更に、R1、R2は
直鎖であると潤滑効果が大きい。nが7より小さいと撥
水効果が低く、また、17より大きいと潤滑剤と非磁性
基体あるいはバックコート層とのブロッキング現象がお
こり、摩擦が低くならない。lについてもnと同様であ
る。さらにこのような潤滑剤を2種以上混合しても良
い。
As the lubricant, a conventionally used lubricant may be used, but a lubricant containing fluorine is preferable. The lubricant base structure comprising the fluorine, which is represented by R1-A-R2, R1: CF 3 (CF 2) n -, CF 3 (CF 2) n (CH 2) m
—, CH 3 (CH 2 ) 1 —, HA: COO, O, COOCH (C 1 H 21 + 1 ) CH 2
COO R2: CF 3 (CF 2 ) n -, CF 3 (CF 2) n (CH 2)
m −, CH 3 (CH 2 ) l −, where R1 ≠ R2, n = 7 to 17, m = 1 to 3, l = 7
Those satisfying 3030 are desirable. Further, when R1 and R2 are linear, the lubricating effect is large. When n is less than 7, the water repellency is low, and when n is more than 17, a blocking phenomenon occurs between the lubricant and the nonmagnetic substrate or the back coat layer, and the friction does not decrease. The same applies to 1 for n. Further, two or more kinds of such lubricants may be mixed.

【0019】[0019]

【実施例1】平均粒径30nmのコロイダルシリカを有
するエチレングリコールと2,6−ナフタレンジカルボ
ン酸ジメチルとエステル交換反応、重縮合させ、PEN
ペレットを作成した(PEN−A)。平均粒径300n
mの架橋ビニルベンゼン粒子を有するエチレングリコー
ルと2,6−ナフタレンジカルボン酸ジメチルとエステ
ル交換反応、重縮合させ、PENペレットを作成した
(PEN−B)。このPENペレットA、Bをそれぞれ
溶融し、2層ダイスリットより共押し出しして、冷却ド
ラムにより冷却し逐次二軸延伸法により長手方向に延伸
した後、横方向に延伸し、熱固定した後、フィルムの弛
緩処理を行うことによって巻き取り表1に示すような熱
収縮率を有する4.7μm厚の積層PENフィルムを得
た。
Example 1 Ethylene glycol having colloidal silica having an average particle size of 30 nm and dimethyl 2,6-naphthalenedicarboxylate were subjected to transesterification and polycondensation to obtain PEN.
Pellets were made (PEN-A). Average particle size 300n
Then, ethylene glycol having m crosslinked vinylbenzene particles and dimethyl 2,6-naphthalenedicarboxylate were subjected to transesterification and polycondensation to prepare PEN pellets (PEN-B). The PEN pellets A and B were each melted, co-extruded from a two-layer die slit, cooled by a cooling drum, sequentially stretched in a longitudinal direction by a biaxial stretching method, stretched in a lateral direction, and heat-fixed. The film was relaxed to obtain a 4.7 μm-thick laminated PEN film having a heat shrinkage ratio as shown in Table 1.

【0020】得られた4.7μm厚のPENフィルム上
に、Co及び酸素を導入しながら、各層1000Åの膜
厚で2層成膜し磁性層を形成した。磁性層の上にエチレ
ンとAr(流量比2:1)を導入して、所定の放電周波
数(50kHz)を印加してプラズマ重合硬質炭素膜を
成膜した。該硬質炭素膜の表面に所定の放電周波数を印
加して酸素を含む炭酸ガスによりプラズマ処理を行っ
た。潤滑剤(琥珀酸誘導体COOHCH(C
1429)CHCOOCHCH(CF
)をリバース塗布法により塗布し、磁性層の設けら
れていない側に乾燥時の厚みで0.5μmのバックコー
ト層を設けた後、8mm幅にスリットしてサンプルとし
た。得られた磁気記録媒体の特性を表1に示す。プラズ
マ重合硬質炭素膜は、表と同一条件により、Siウエハ
上にも成膜して膜厚などを求めた。なお、バックコート
層の組成は以下の通りである(数字は重量部を示す。)。
On the obtained PEN film having a thickness of 4.7 μm, while introducing Co and oxygen, two layers each having a thickness of 1000 ° were formed to form a magnetic layer. Ethylene and Ar (flow ratio 2: 1) were introduced onto the magnetic layer, and a predetermined discharge frequency (50 kHz) was applied to form a plasma-polymerized hard carbon film. A predetermined discharge frequency was applied to the surface of the hard carbon film, and plasma treatment was performed with carbon dioxide containing oxygen. Lubricants (succinic acid derivative COOHCH (C
14 H 29) CH 2 COOCH 2 CH 2 (CF 2) 7 C
F 3 ) was applied by a reverse coating method, and a back coat layer having a dry thickness of 0.5 μm was provided on the side where the magnetic layer was not provided, and then slit into 8 mm width to obtain a sample. Table 1 shows the properties of the obtained magnetic recording medium. The plasma polymerized hard carbon film was also formed on a Si wafer under the same conditions as in the table, and the film thickness and the like were determined. The composition of the back coat layer is as follows (the numbers indicate parts by weight).

【0021】 カーボンブラック(粒径 80nm) 10 同 上 (粒径 20nm) 40 炭酸カルシウム (粒径 70nm) 50 Nc(ニトロセルロース) 40 (旭化成工業社製(BTH1/2S) ポリウレタン樹脂(東洋紡績社製:UR-8300) 60 メチルエチルケトン 800 トルエン 640 シクロヘキサノン 160 ポリイソシアネート(固形分50%) 40 (日本ポリウレタン工業社製:コロネートL)Carbon black (particle size 80 nm) 10 Same as above (particle size 20 nm) 40 Calcium carbonate (particle size 70 nm) 50 Nc (nitrocellulose) 40 (Asahi Kasei Kogyo Co., Ltd. (BTH1 / 2S) Polyurethane resin (Toyobo Co., Ltd.) : UR-8300) 60 methyl ethyl ketone 800 toluene 640 cyclohexanone 160 polyisocyanate (solid content 50%) 40 (Nippon Polyurethane Industry Co., Ltd .: Coronate L)

【0022】[0022]

【実施例2~比較例4】実施例1のフィルムの2層ダイ
スリットより共押し出しして、冷却ドラムにより冷却し
逐次二軸延伸法により長手方向に延伸した後、横方向に
延伸する際、幅方向のヤング率が表1に示した数値にな
るように延伸倍率を調整し、さらに熱固定した後、フィ
ルムの弛緩処理を行う際、弛緩条件を変更することによ
って巻き取り、表1に示したような熱収縮率を有する
4.7μm厚の積層PENフィルムを得た。
EXAMPLE 2 to COMPARATIVE EXAMPLE 4 The film of Example 1 was co-extruded from a two-layer die slit, cooled by a cooling drum, stretched in the longitudinal direction by a successive biaxial stretching method, and then stretched in the transverse direction. After adjusting the stretching ratio so that the Young's modulus in the width direction becomes the numerical value shown in Table 1, further heat-setting, and then, when performing the relaxation treatment of the film, the film is wound up by changing the relaxation conditions, and is shown in Table 1. A 4.7 μm-thick laminated PEN film having such a thermal shrinkage was obtained.

【0023】ヤング率と熱収縮率を調整した以外は実施
例1と同様に4.7μm厚の積層PENフィルムを得、
4.7μm厚のPENフィルム上に、Co及び酸素を導
入しながら、各層1000Åの膜厚で2層成膜し磁性層
を形成した。
A laminated PEN film having a thickness of 4.7 μm was obtained in the same manner as in Example 1 except that the Young's modulus and the heat shrinkage were adjusted.
On the 4.7 μm-thick PEN film, two layers were formed with a thickness of 1000 ° each while introducing Co and oxygen to form a magnetic layer.

【0024】以上の実施例で得られた結果を以下の判定
基準を用いて表現すると、表1のとおりとなる。 (カッピングについて)テープ端面を結んだ線からのテ
ープの最大高さでカッピングの強さを表した。蒸着面側
に凸の場合を−、走行面側に凸の場合を+で表示した。
ヘッドタッチとの関係では、−0.2程度、つまり若干
蒸着面側に凸のものがよい。
Table 1 shows the results obtained in the above embodiments using the following criteria. (About cupping) Cupping strength was expressed by the maximum height of the tape from a line connecting the tape end faces. The case of convex on the vapor deposition surface side is indicated by-, and the case of convex on the running surface side is indicated by +.
In terms of the relationship with the head touch, it is preferable that the head touch is about -0.2, that is, the head is slightly convex on the vapor deposition surface side.

【0025】(ヘッドタッチについて)レクロイ・ジャ
パン社製デジタルオシロスコープにより、テープの再生
時の波形を観察し、出力信号が正常である場合を◎、若
干歪んでいる場合を○、波形が大きく歪み、出力が大幅
に低下した場合を×で表した。
(Regarding the head touch) The waveform at the time of reproducing the tape was observed with a digital oscilloscope manufactured by LeCroy Japan Co., Ltd., when the output signal was normal, 若干; when the output signal was slightly distorted, 、; The case where the output was significantly reduced was represented by x.

【0026】(電磁変換特性について)ソニー社製ビデ
オデッキEV−S900により、10MHzの信号を記
録再生して測定した。数値は、比較例2を基準(0d
B)として、再生出力を表示した。
(Electromagnetic Conversion Characteristics) A 10 MHz signal was recorded and reproduced by a Sony VCR EV-S900 for measurement. The numerical values are based on Comparative Example 2 (0d
As B), the reproduced output was displayed.

【0027】(耐久走行性について)ソニー社製ビデオ
デッキEV−S900により、20℃−60%RH環境
下において、100回の往復走行試験を50巻のサンプ
ルで行い、走行ストップ、ヘッド目詰まり等の走行トラ
ブルの発生状況を観察し、トラブル発生0巻を◎、トラ
ブル発生1巻を○およびトラブル発生2巻以上を×と表
示した。
(Durability) With a VCR EV-S900 manufactured by Sony Corporation, a reciprocating running test was performed 100 times with 50 samples in a 20 ° C.-60% RH environment. Observation of the occurrence status of the running trouble was indicated by ◎ for the trouble occurrence volume 0, ○ for the trouble occurrence volume 1, and × for the trouble occurrence volume 2 or more.

【0028】(ヤング率について)磁性層形成前のPE
Nフィルムを長さ150mm×幅10mmの大きさに切
り出して試験片とした。切り出しの方向は、PENフィ
ルム作製時の長手方向が10mmになるようにした。こ
の定伸張型引張試験機を用い、試験片の引っ張り間隔1
00mm、引っ張り速度5mm/minで引っ張り試験
を行い、応力曲線の立ち上がり部分に接線を引き、試験
片の伸びが1%の接線上の荷重を求めた。ヤング率は、
下式より求めた ヤング率=[荷重/(幅×厚さ)]×100
(Regarding Young's Modulus) PE before forming magnetic layer
The N film was cut into a size of 150 mm in length × 10 mm in width to obtain a test piece. The cutting direction was such that the longitudinal direction at the time of producing the PEN film was 10 mm. Using this constant-stretch type tensile tester, the tensile interval of the test piece was 1
A tensile test was performed at 00 mm and a tensile speed of 5 mm / min, a tangent line was drawn at the rising portion of the stress curve, and the load on the tangent line where the elongation of the test piece was 1% was determined. Young's modulus is
Young's modulus obtained from the following equation = [load / (width x thickness)] x 100

【0029】(熱収縮率について)ヤング率と同様の試
験片(長さを150mmから100mmに変更したの
み)を3枚準備する。測定間隔用の標線を試験片に入
れ、ニコン社製微小寸法測定機(VM−250)により
加熱前の長さを測定する。その後、該試験片を熱風循環
式高温槽で一定時間加熱し取り出す。取り出した試験片
を10分間放冷した後、微小寸法測定機により再度長さを
測定する。加熱収縮率は、次の式により算出し、その平
均値を求めた。 加熱収縮率=[(加熱前の長さ−加熱後の長さ)/加熱
前の長さ]×100 なお、加熱条件は、150±1℃で30±1分である。
(Regarding the heat shrinkage) Three test pieces having the same Young's modulus (only the length was changed from 150 mm to 100 mm) were prepared. The mark line for the measurement interval is put on the test piece, and the length before heating is measured by a micrometer (VM-250) manufactured by Nikon Corporation. Thereafter, the test piece is heated in a hot-air circulation type high temperature bath for a certain period of time and taken out. After allowing the taken-out test piece to cool for 10 minutes, the length is measured again with a micrometer. The heat shrinkage was calculated by the following equation, and the average value was calculated. Heat shrinkage = [(length before heating−length after heating) / length before heating] × 100 The heating conditions are 150 ± 1 ° C. and 30 ± 1 minute.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から明らかなことは、非磁性支持体の
幅方向のヤング率が9000MPa〜12000MPa
であり、かつ、幅方向の熱収縮率が6.5%〜9.0%
であるものは、電磁変換特性を再生出力で評価して、あ
る程度出力が出るものにおいて、再生時の波形が正常で
あり、走行トラブルがなく良好である。
It is apparent from Table 1 that the Young's modulus in the width direction of the nonmagnetic support is from 9000 MPa to 12000 MPa.
And the heat shrinkage in the width direction is 6.5% to 9.0%.
In the case of (1), the electromagnetic conversion characteristics are evaluated by the reproduction output, and when the output is generated to some extent, the waveform at the time of reproduction is normal, and there is no running trouble.

【0032】[0032]

【発明の効果】非磁性支持上に、金属薄膜型磁性層、プ
ラズマ重合硬質炭素膜および潤滑剤が積層されている磁
気記録媒体において、本願発明の非磁性支持体を適用す
ると熱変形(カッピング)及び走行耐久性が著しく向上
し、電磁変換特性もすぐれた磁気記録媒体が得られる。
According to the present invention, when a non-magnetic support of the present invention is applied to a magnetic recording medium in which a metal thin film type magnetic layer, a plasma-polymerized hard carbon film and a lubricant are laminated on a non-magnetic support, thermal deformation (cupping) occurs. Further, a magnetic recording medium having significantly improved running durability and excellent electromagnetic conversion characteristics can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 正雄 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 5D006 BB07 CB01 CB07 CB08 CC03 EA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masao Nakayama 1-13-1, Nihonbashi, Chuo-ku, Tokyo FTD term (reference) 5D006 BB07 CB01 CB07 CB08 CC03 EA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非磁性支持体及び該支持体上に斜め蒸着法
により形成される磁性層を含む磁気記録媒体において、
該非磁性支持体がポリエチレンナフタレートの積層フィ
ルムであり、該フィルムの幅方向のヤング率が9000
MPa以上12000MPa以下であり、幅方向の熱収
縮率が6.5%以上9.0%以下であることを特徴とす
る磁気記録媒体。
1. A magnetic recording medium comprising a non-magnetic support and a magnetic layer formed on the support by an oblique evaporation method.
The nonmagnetic support is a laminated film of polyethylene naphthalate, and the Young's modulus in the width direction of the film is 9000.
A magnetic recording medium having a thermal shrinkage in the width direction of 6.5% or more and 9.0% or less.
【請求項2】上記非磁性支持体の厚みが3.0μm以上
6.0μm以下であることを特徴とする請求項1に記載
の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the thickness of the nonmagnetic support is 3.0 μm or more and 6.0 μm or less.
【請求項3】上記磁性層と反対側の面に0.3μm以上
0.7μm以下のバックコート層を有することを特徴と
する請求項1に記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, further comprising a backcoat layer having a thickness of 0.3 μm or more and 0.7 μm or less on a surface opposite to the magnetic layer.
JP2001017962A 2001-01-26 2001-01-26 Magnetic recording medium Expired - Fee Related JP3859974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001017962A JP3859974B2 (en) 2001-01-26 2001-01-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017962A JP3859974B2 (en) 2001-01-26 2001-01-26 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2002222515A true JP2002222515A (en) 2002-08-09
JP3859974B2 JP3859974B2 (en) 2006-12-20

Family

ID=18884062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017962A Expired - Fee Related JP3859974B2 (en) 2001-01-26 2001-01-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3859974B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436654A (en) * 2017-09-29 2021-09-24 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631427B2 (en) 2017-06-23 2023-04-18 Fujifilm Corporation Magnetic recording medium
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11462242B2 (en) 2017-09-29 2022-10-04 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
CN113436654A (en) * 2017-09-29 2021-09-24 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus
US11551716B2 (en) 2018-03-23 2023-01-10 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11581015B2 (en) 2018-03-23 2023-02-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11430475B2 (en) 2018-07-27 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11443766B2 (en) 2018-12-28 2022-09-13 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11437063B2 (en) 2019-01-31 2022-09-06 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP3859974B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP3859974B2 (en) Magnetic recording medium
US20040023066A1 (en) Magnetic recording medium and process for producing the same
US4865878A (en) Method of manufacturing vertical magnetization type recording medium
US6027801A (en) Magnetic recording medium
JP2002304719A (en) Magnetic recording medium
JPH04232611A (en) High-density magnetic recording medium
JPH08167146A (en) Production of magnetic recording medium
JP3700978B2 (en) Method for manufacturing magnetic recording medium
JP2000195035A (en) Magnetic recording medium and method of manufacturing the same
JPH09147357A (en) Production of magnetic recording medium
JP2005339648A (en) Magnetic recording medium
JPH0434715A (en) Magnetic tape
JPH0916952A (en) Production of magnetic recording medium
JP2959110B2 (en) Manufacturing method of magnetic tape
JP4325369B2 (en) Magnetic recording medium
JPH01245416A (en) Magnetic recording medium
JP4219444B2 (en) Magnetic recording medium and support thereof
JPH01245417A (en) Magnetic recording medium
JPH02158909A (en) Magnetic recording medium
JPH1148434A (en) Magnetic recording medium and substrate therefor
JPH0411322A (en) Magnetic recording medium
JPH07272269A (en) Production of magnetic recording medium
JPH07282445A (en) Production of magnetic recording medium
JPH0383225A (en) Production of magnetic recording medium
JPH05250662A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050831

A521 Written amendment

Effective date: 20051028

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060914

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130929

LAPS Cancellation because of no payment of annual fees