JP3859771B2 - Vacuum multi-layer glass and method for producing the same - Google Patents

Vacuum multi-layer glass and method for producing the same Download PDF

Info

Publication number
JP3859771B2
JP3859771B2 JP15580696A JP15580696A JP3859771B2 JP 3859771 B2 JP3859771 B2 JP 3859771B2 JP 15580696 A JP15580696 A JP 15580696A JP 15580696 A JP15580696 A JP 15580696A JP 3859771 B2 JP3859771 B2 JP 3859771B2
Authority
JP
Japan
Prior art keywords
glass
vacuum
tube
glass tube
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15580696A
Other languages
Japanese (ja)
Other versions
JPH102161A (en
Inventor
修 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP15580696A priority Critical patent/JP3859771B2/en
Priority to TW086106753A priority patent/TW341615B/en
Priority to KR1019980700692A priority patent/KR19990036027A/en
Priority to PCT/JP1997/001841 priority patent/WO1997048650A1/en
Priority to CN97190721A priority patent/CN1195334A/en
Priority to IDP972051A priority patent/ID17172A/en
Publication of JPH102161A publication Critical patent/JPH102161A/en
Priority to JP2000207114A priority patent/JP3828341B2/en
Application granted granted Critical
Publication of JP3859771B2 publication Critical patent/JP3859771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66314Section members positioned at the edges of the glazing unit of tubular shape
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes
    • E06B3/67334Assembling spacer elements with the panes by soldering; Preparing the panes therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67339Working the edges of already assembled units
    • E06B3/6736Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Description

【0001】
【発明の属する技術分野】
本発明は真空複層ガラス及びその製造方法に関する。
【0002】
【従来の技術】
図6(a)、(b)は従来の真空複層ガラスの製造方法の説明図である。
(a)において、2枚のガラス板100,101の周辺をシール材102でシールする。次に、ガラス板100の差込み穴103に低融点のガラス管104を差込み、このガラス管104とガラス板100とをはんだガラス105で固定する。
【0003】
次いで、ガラス管104の他端を真空ポンプ106に連結し、この真空ポンプ106で真空引きしてガラス板100とガラス板101との間を真空状態に保つ。この状態で、ガラス管104の高さh1の部位を加熱手段(バーナ、電気ヒータ等)で加熱して溶融する。
【0004】
(b)において、高さh1の部位でガラス管104を封じて、突出端104aを形成する。これにより、真空複層ガラスの製造が完了する。
【0005】
一方、特表平5−501896号公報「断熱ガラスパネル及びその構築方法」に従来の真空複層ガラスの製造方法が開示されている。この製造方法を次に示す。
【0006】
図7(a)、(b)は別の従来の真空複層ガラスの製造方法の説明図である。
(a)において、2枚のガラス板110,111の周辺をシール材112でシールする。次に、上方のガラス板110に備えた座ぐり面113にガラス短管114をはんだガラス115で固定する。
【0007】
次に、ガラス短管114に真空引きチャンバ116を被せ、真空引きチャンバ116に吸込み管117を取付ける。そして、吸込み管117を介して真空ポンプで真空引きチャンバ116内を真空引きして、ガラス短管114を通じて2枚のガラス板110,111の間の空気を抜く。
次に、真空引きチャンバ116内に設けた局所加熱手段(局所ヒータ又は赤外線ランプ等)を用いて、ガラス短管114の上部を加熱して溶融する。
【0008】
(b)において、ガラス短管114の突出端114aの出口を密封する。これにより、ガラス短管114の出口が閉じて、真空複層ガラスの製造が完了する。
また、(a)において、座ぐり面113はガラス板100の厚さ中心からa1だけ深く形成されている。
【0009】
【発明が解決しようとする課題】
図6では、加熱手段でガラス管104を溶融するとき溶融位置をガラス板100に近づけると、はんだガラス105が加熱溶融して真空リークの原因となる。このため、高さh1を十分に大きくする必要がある。この結果、ガラス管104の突起が高くなる。ガラス管104の突起が高くなると、住宅用窓ガラスとして使用する際、窓の開閉時にサッシ枠にガラス管104が当るという問題がある。
【0010】
図7では、ガラス短管114の上方から局所加熱手段でガラス短管114を加熱溶融して、ガラス短管114の出口を密閉する。このため、局所加熱手段による加熱時に、はんだガラス115やその周辺のガラス板110が加熱溶融しないように熱量を抑える必要があり、外径の小さいガラス短管114を使用せざるを得ない。外径の小さいガラス短管114を使用すると、ハンドリング中にガラス短管114が破損しやすくなるという問題がある。
また、ガラス短管114の内径が小さいと、その部分の排気抵抗が大きくなり、所定の真空度に到達するまでの時間がかかってしまう。
【0011】
さらに、2枚のガラス板110,111の間が真空状態になると、ガラス板110,111は大気圧で中央が凹んだ状態に反るので、ガラス板110の厚みの1/2を越えた部位では引張応力が発生し、厚みの1/2を越えない部位では圧縮応力が発生する。ガラス板110の座ぐり面113は、ガラス厚みの1/2からa1下方に位置しているので座ぐりの段部には引張応力が発生する。
ガラス板は一般に圧縮に強く、引張に弱いので、図7(a)のように引張応力が発生する部位に座ぐり面を備えることはガラス板の耐久性上好ましくない。
さらに、図7(a)では穿孔の他に座ぐり加工が必要になるので生産効率に問題がある。
【0012】
そこで、本発明の目的は、ガラス管の突出端を低くし、ハンドリング中にガラス短管の破損がなく、耐久性に優れた真空複層ガラスを提供する技術を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1は、2枚のガラス板をスペーサを介して周辺でシールし、中間を真空引きしてなる真空複層ガラスにおいて、この真空複層ガラスは、一方のガラス板の主表面に前記中間から排気するときに使用するガラス管を備え、このガラス管の出口を排気後に溶融法で閉じたものであり、前記ガラス板の主表面からガラス管の突出端までの距離が3mmを越えないように構成した真空複層ガラスであって、前記一方のガラス板の主表面に前記ガラス管の基部を取付けるに際し、その差込み深さを前記ガラス板の厚みの1/2を越えないようにしたことを特徴とする。
【0014】
ガラス管の出口を溶融して閉じたとき、ガラス板の主表面からガラス管の突出端までの距離が3mmを越えないよう構成した。従って、この真空複層ガラスを住宅用窓ガラスとして使用する際、窓の開閉時にサッシ枠にガラス管の突起が当たらない。
さらに、ガラス管の差込み深さをガラス板の厚みの1/2を越えないようにしたので、ガラス管の差込み穴を段付き穴とすると、段付き穴の段部はガラス板の厚みの1/2を越えない位置にある。2枚のガラス板の中間を真空状態にすることにより、2枚のガラス板は大気圧で中央が凹んだ状態に反り、段付き穴の段部に圧縮応力が作用する。ガラス板は一般に圧縮に強いのでガラス板の耐久性の低下を阻止することができる。
【0015】
請求項は、2枚のガラス板をスペーサを介して周辺でシールし、中間を一方のガラス板の主表面に取付けたガラス管を介して真空排気し、次に、前記ガラス管の出口を溶融・密閉する真空複層ガラスの製造方法において、前記溶融の前に、溶融の際に発生する熱がガラス板に到るのを防止する遮熱部材を前記ガラス管の途中に取付けることを特徴とする。
【0016】
溶融の前に遮熱部材をガラス管の途中に取付けた。従って、溶融時の輻射熱がはんだガラスや周囲のガラス板に到達しないように遮熱部材で遮ることができるので、ガラス管の溶融位置をガラス板に近づけることができる。従って、ガラス管の出口を溶融して閉じたとき、ガラス板の主表面からガラス管の突出端までの距離が3mmを越えないよう短くすることができる。これにより、この真空複層ガラスを住宅用窓ガラスとして使用する際、窓の開閉時にサッシ枠にガラス管の突起が当たらない。
また、溶融時の熱量を増加させても、はんだガラスや周囲のガラス板が溶融しないので、ガラス管の外径を大きくすることができる。従って、ハンドリング中にガラス管が破損することを防止できるので生産性が向上する。
【0017】
請求項は、前記遮熱部材の材質は、金属、貴金属若しくは耐火物であることを特徴とする。
遮熱部材の材質に金属(ステンレス、モリブデン、タンタル、ニオブ)、貴金属(白金、ロジウム)若しくは耐火物(雲母積層板、アルミナ)等を使用することにより、遮熱部材の耐酸化性が向上して寿命が延びる。
【0018】
請求項は、前記溶融工程を真空中で行うことを特徴とする。
溶融工程を真空中で行うようにしたので、遮熱部材を高温に加熱しても空気中と比較すると酸化腐食しないので、遮熱部材の寿命が著しく延びる。
また、真空中では、遮熱部材をはんだガラスに対して非接触とすることにより、遮熱部材の熱は直接はんだガラスに伝わらないので、はんだガラスが溶融し難い。
【0019】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る真空複層ガラスの斜視図である。
真空複層ガラス1は、一定の隙間をおいて配置した第1のガラス板2及び第2のガラス板3と、第1、第2のガラス板2,3の周辺をシールするシール材4と、第1、第2のガラス板2,3間から排気するために第1のガラス板2の主表面に取付けた排気部5とからなる。
【0020】
図2は図1の2−2線断面図である。
排気部5は、第1のガラス板2の厚さtの1/2を越えない位置(すなわち、中心線cの上方位置)に段部6aを配置した段付き穴6と、段付き穴6に差込み突出端7aを溶融して閉じたガラス短管7と、ガラス短管7と第1のガラス板2とを固定するはんだガラス8とからなる。
ガラス短管7の突出端7aは、高さhが3mmを越えないものである。
【0021】
段付き穴6は大径部6bと小径部6cとからなる。寸法の具体例は後述するが、大径部6bの穴径は、ガラス短管7の外径より僅かに大径とする。小径部6cの穴径は、ガラス短管7が小径部6cから抜け落ちないようにガラス短管7の外径より小さく、かつ真空引きに要する時間がかかりすぎない大きさとする。
はんだガラス8は、粉体をプレス、焼成などで製造したリング形状のものや、ペースト状に混練したものを使用する。
【0022】
次に、本発明に係る真空複層ガラスの製造方法を説明する。
図3(a)〜(c)は本発明に係る真空複層ガラスの第1製造工程図である。
(a)において、第1のガラス板2に段付き穴6を形成する。段付き穴6は段付きドリルを使用して1回の穿孔工程で大径部6bと小径部6cとを同時に加工できるので、従来の座ぐり(図7(a)参照)の加工処理が不要になり生産効率が向上する。
次に、第1のガラス板2と第2のガラス板3とを一定間隔をおいて配置し、これらのガラス板2,3の周辺をシール材4(図1参照)でシールする。
【0023】
(b)において、ガラス短管7を第1のガラス板2の段付き穴6に差込み、ガラス管の周囲にリング状のはんだガラス8を配置する。
はんだガラス8は、ペースト状に混練した状態のものを塗布してもよい。
(c)において、焼成炉ではんだガラス8を焼成して、ガラス短管7と第1のガラス板2とを固定する。
【0024】
図4(a)〜(c)は本発明に係る真空複層ガラスの第2製造工程図である。
(a)において、ガラス短管7に穴開き板状の遮熱板(遮熱部材)10を差込む。
遮蔽板10は中央に穴の開いた板状のものであれば、円板、矩形板、多角形板のいずれでもよい。但し、遮熱板10の外径は(b)に示す赤外線輻射ヒータ11のスポット径dより十分に大きくする。
また、遮熱板10の穴径は、ガラス短管7の溶融時に溶融したガラス短管7が遮蔽板10に付着しないようにガラス短管7に対して余裕をもった大きさとし、かつ赤外線が遮熱板10の穴を通り抜けて下部のはんだガラス8を溶融することのない大きさとする。
【0025】
遮熱板10は、金属(ステンレス、モリブデン、タンタル、ニオブ等)、貴金属(白金、ロジウム等)や耐火物(雲母積層板、アルミナ等)の材質が好適である。ステンレス、白金、雲母積層板は耐酸化性に優れているからである。
なお、金属や貴金属製の遮熱板10を使用する場合、遮熱板10をはんだガラス8と接触させないようにする必要がある。両者が接触すると遮熱板10の熱がはんだガラス8に直接伝導して、はんだガラス8が溶融することがあるからである。
【0026】
(b)において、排気部5の周辺の第1のガラス板2にOリング12を介して真空引きチャンバ13を密着し、真空引きチャンバ13で排気部5を覆う。真空引きチャンバ13は上窓に赤外線透過ガラス(石英ガラス等)14を備える。
そして、排気路15を介して真空引きチャンバ13内を真空排気して、第1、第2のガラス板2,3間の空気を矢印▲1▼に示すように排気する。これにより、第1、第2のガラス板2,3間が真空状態になる。
次に、赤外線透過ガラス14の上方に配置した赤外線輻射ヒータ11から赤外線11aを放射する。
【0027】
(c)において、赤外線11aでガラス短管7の突出端7aを溶融してガラス短管7の上端を閉じる。この際に、ガラス短管7の周囲に直進した赤外線11aを遮熱板10で反射する。従って、ガラス短管7の周囲に直進した赤外線11aは、はんだガラス8まで到達しない。
次に、(b)に示す真空引きチャンバ13を第1のガラス板2から取り除き、且つガラス短管7から遮熱板10を取り除いて図1に示す真空複層ガラス1の製造を完了する。
【0028】
図5(a),(b)は本発明に係る真空複層ガラスの弾性変形を示す説明図である。
(a)において、ガラス短管7の差込み深さを第1のガラス板2の厚みの1/2を越えないようにしたので、段付き穴6の段部6aは第1のガラス板2の中心線cよりaだけ上方に位置する。
【0029】
(b)において、第1、第2のガラス板2,3の間を真空状態にすることにより、第1、第2のガラス板2,3は大気圧で中央が凹んだ状態に反る。従って、第1のガラス板2の中心線cの下方では引張応力σ1が発生し、中心線cの上方では圧縮応力σ2が発生する。第1のガラス板2の段部6aには圧縮応力σ1が発生する。
ガラス板は一般に圧縮に強いので、第1のガラス板2の耐久性の低下を防止することができる。
【0030】
前記実施の形態では赤外線輻射ヒータ11を使用してガラス短管7の突出端7aを溶融する場合について説明したが、これに限定されるものではなく、例えば熱風発生装置や赤外線レーザ等を使用することもできる。
【0031】
【実施例】
以下に、本発明に係る発明の実施例を表1を参照の上説明する。
【0032】
【表1】

Figure 0003859771
【0033】
真空複層ガラス1を構成する第1、第2のガラス板2,3の厚さは3.0mmである。第1のガラス板2に形成した段付き穴6は、大径部6bの穴径が2.2mm、その深さが1.5mmであり、小径部6cの穴径が1.5mmである。段付き穴6に差込むガラス短管7は外径が2.0mm、内径1.5mmであり、長さが4.0mmである。ガラス短管7に取付ける遮熱板10は穴径が2.5mmである。
以上の条件でガラス短管7の上端を溶融したところ、ガラス短管7の突出端7aの高さは2.8mmとなった。この値は目標値3mmより十分小さい。
【0034】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1は、ガラス管の出口を溶融して閉じたとき、ガラス板の主表面からガラス管の突出端までの距離が3mmを越えないよう構成した。従って、この真空複層ガラスを住宅用窓ガラスとして使用する際、窓の開閉時にサッシ枠にガラス管の突起が当たらない。
【0035】
さらに、ガラス管の差込み深さをガラス板の厚みの1/2を越えないようにしたので、ガラス管の差込み穴を段付き穴とすると、段付き穴の段部はガラス板の厚みの1/2を越えない位置にある。2枚のガラス板の中間を真空状態にすることにより、2枚のガラス板は大気圧で中央が凹んだ状態に反り、段付き穴の段部に圧縮応力が作用する。ガラス板は一般に圧縮に強いのでガラス板の耐久性の低下を阻止することができる。
【0036】
請求項は、溶融の前に遮熱部材をガラス管の途中に取付けた。従って、溶融時の輻射熱がはんだガラスや周囲のガラス板に到達しないように遮熱部材で遮ることができるので、ガラス管の溶融位置をガラス板に近づけることができる。
従って、ガラス管の出口を溶融して閉じたとき、ガラス板からガラス管の突出端までの距離が3mmを越えないよう短くすることができる。これにより、この真空複層ガラスを住宅用窓ガラスとして使用する際、窓の開閉時にサッシ枠にガラス管の突起が当たらない。
また、溶融時の熱量を増加させても、はんだガラスや周囲のガラス板が溶融しないので、ガラス管の外径を大きくすることができる。従って、ハンドリング中にガラス管が破損することを防止できるので生産性が向上する。
【0037】
請求項は、遮熱部材の材質に金属(ステンレス、モリブデン、タンタル、ニオブ)、貴金属(白金、ロジウム)若しくは耐火物(雲母積層板、アルミナ)等を使用することにより、遮熱部材の耐酸化性が向上して寿命が延びる。
【0038】
請求項は、溶融工程を真空中で行うようにしたので、遮熱部材を高温に加熱しても空気中と比較すると酸化腐食しないので、遮熱部材の寿命が著しく延びる。
また、真空中では、遮熱部材をはんだガラスに対して非接触とすることにより、遮熱部材の熱は直接はんだガラスに伝わらないので、はんだガラスが溶融し難い。
【図面の簡単な説明】
【図1】本発明に係る真空複層ガラスの斜視図
【図2】図1の2−2線断面図
【図3】本発明に係る真空複層ガラスの第1製造工程図
【図4】本発明に係る真空複層ガラスの第2製造工程図
【図5】本発明に係る真空複層ガラスの弾性変形を示す説明図
【図6】従来の真空複層ガラスの製造方法の説明図
【図7】別の従来の真空複層ガラスの製造方法の説明図
【符号の説明】
1…真空複層ガラス、2…第1のガラス板、3…第2のガラス板、4…シール材、7…ガラス短管(ガラス管)、7a…突出端、10…遮熱板(遮熱部材)、13…真空引きチャンバ、t…厚さ、c…中心線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum double-glazed glass and a method for producing the same.
[0002]
[Prior art]
6 (a) and 6 (b) are explanatory diagrams of a conventional method for producing a vacuum double-layer glass.
In (a), the periphery of the two glass plates 100 and 101 is sealed with a sealing material 102. Next, a glass tube 104 having a low melting point is inserted into the insertion hole 103 of the glass plate 100, and the glass tube 104 and the glass plate 100 are fixed with solder glass 105.
[0003]
Next, the other end of the glass tube 104 is connected to a vacuum pump 106, and the vacuum pump 106 is evacuated to maintain a vacuum state between the glass plate 100 and the glass plate 101. In this state, the portion of the glass tube 104 having a height h 1 is heated and melted by a heating means (burner, electric heater, etc.).
[0004]
In (b), the glass tube 104 is sealed at the height h 1 to form the protruding end 104a. Thereby, manufacture of a vacuum double layer glass is completed.
[0005]
On the other hand, Japanese Laid-Open Patent Publication No. 5-501896 “Heat-insulating glass panel and construction method thereof” discloses a conventional method for producing a vacuum double-glazed glass. This manufacturing method is as follows.
[0006]
7 (a) and 7 (b) are explanatory views of another conventional method for manufacturing a vacuum double-layer glass.
In (a), the periphery of the two glass plates 110 and 111 is sealed with a sealing material 112. Next, the short glass tube 114 is fixed to the counterbore surface 113 provided on the upper glass plate 110 with the solder glass 115.
[0007]
Next, the short vacuum tube 114 is covered with a vacuum chamber 116, and the suction tube 117 is attached to the vacuum chamber 116. Then, the vacuum chamber 116 is evacuated by a vacuum pump through the suction pipe 117, and the air between the two glass plates 110 and 111 is evacuated through the short glass pipe 114.
Next, the upper part of the glass short tube 114 is heated and melted by using a local heating means (local heater, infrared lamp or the like) provided in the vacuum chamber 116.
[0008]
In (b), the outlet of the protruding end 114a of the short glass tube 114 is sealed. Thereby, the outlet of the short glass tube 114 is closed, and the production of the vacuum double-glazed glass is completed.
Further, in (a), the spot facing surface 113 is formed deeper by a 1 from the thickness center of the glass plate 100.
[0009]
[Problems to be solved by the invention]
In FIG. 6, when the glass tube 104 is melted by the heating means, if the melting position is brought close to the glass plate 100, the solder glass 105 is heated and melted, causing a vacuum leak. For this reason, it is necessary to make the height h 1 sufficiently large. As a result, the protrusion of the glass tube 104 becomes high. When the projection of the glass tube 104 becomes high, there is a problem that when the glass tube 104 is used as a window glass for a house, the glass tube 104 hits the sash frame when the window is opened and closed.
[0010]
In FIG. 7, the short glass tube 114 is heated and melted from above the short glass tube 114 by local heating means, and the outlet of the short glass tube 114 is sealed. For this reason, it is necessary to suppress the amount of heat so that the solder glass 115 and the surrounding glass plate 110 are not heated and melted when heated by the local heating means, and a short glass tube 114 having a small outer diameter must be used. When the short glass tube 114 having a small outer diameter is used, there is a problem that the short glass tube 114 is easily broken during handling.
Further, if the inner diameter of the short glass tube 114 is small, the exhaust resistance at that portion increases, and it takes time to reach a predetermined degree of vacuum.
[0011]
Furthermore, when the space between the two glass plates 110 and 111 is in a vacuum state, the glass plates 110 and 111 are warped in a state where the center is recessed at atmospheric pressure, and therefore, a portion exceeding 1/2 of the thickness of the glass plate 110. Then, a tensile stress is generated, and a compressive stress is generated at a portion not exceeding 1/2 of the thickness. The counterbore surface 113 of the glass plate 110 is positioned a 1/2 below the glass thickness by a 1, so that tensile stress is generated at the stepped portion of the counterbore.
Since a glass plate is generally strong in compression and weak in tension, it is not preferable in terms of durability of the glass plate to provide a counterbore surface at a site where tensile stress is generated as shown in FIG.
Further, in FIG. 7 (a), there is a problem in production efficiency because counterbore processing is required in addition to drilling.
[0012]
Accordingly, an object of the present invention is to provide a technique for providing a vacuum double-glazed glass having a low protruding end of a glass tube, which is free from breakage of the short glass tube during handling, and excellent in durability.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, claim 1 of the present invention is a vacuum double-layer glass in which two glass plates are sealed at the periphery via a spacer and the middle is evacuated. A glass tube used when evacuating from the middle is provided on the main surface of one glass plate, and the exit of the glass tube is closed by a melting method after evacuation, and the glass tube protrudes from the main surface of the glass plate A vacuum double-layer glass constructed so that the distance to the end does not exceed 3 mm, and when the base of the glass tube is attached to the main surface of the one glass plate, the insertion depth is the thickness of the glass plate It is characterized by not exceeding 1/2.
[0014]
When the exit of the glass tube was melted and closed, the distance from the main surface of the glass plate to the protruding end of the glass tube did not exceed 3 mm. Therefore, when this vacuum double-glazed glass is used as a window glass for a house, the projection of the glass tube does not hit the sash frame when the window is opened and closed.
In addition, since the insertion depth of the glass tube is made not to exceed 1/2 of the thickness of the glass plate, if the insertion hole of the glass tube is a stepped hole, the stepped portion of the stepped hole is 1 of the thickness of the glass plate. The position does not exceed / 2. By making the middle of the two glass plates into a vacuum state, the two glass plates warp in a state where the center is recessed at atmospheric pressure, and compressive stress acts on the step portion of the stepped hole. Since the glass plate is generally resistant to compression, it is possible to prevent a decrease in the durability of the glass plate.
[0015]
In the second aspect , two glass plates are sealed at the periphery through spacers, and the middle is evacuated through a glass tube attached to the main surface of one glass plate. In the method for producing a vacuum double-layer glass to be melted and sealed, before the melting, a heat-shielding member for preventing heat generated during melting from reaching the glass plate is attached in the middle of the glass tube. And
[0016]
Prior to melting, a heat shield was attached in the middle of the glass tube. Therefore, since the heat shielding member can block the radiant heat at the time of melting so as not to reach the solder glass or the surrounding glass plate, the melting position of the glass tube can be brought close to the glass plate. Therefore, when the outlet of the glass tube is melted and closed, the distance from the main surface of the glass plate to the protruding end of the glass tube can be shortened so as not to exceed 3 mm. Thereby, when using this vacuum double-glazed glass as a window glass for houses, the projection of the glass tube does not hit the sash frame when the window is opened and closed.
Even if the amount of heat at the time of melting is increased, the outer diameter of the glass tube can be increased because the solder glass and the surrounding glass plate are not melted. Accordingly, it is possible to prevent the glass tube from being broken during handling, so that productivity is improved.
[0017]
According to a third aspect of the present invention, the material of the heat shield member is a metal, a noble metal, or a refractory.
By using metal (stainless steel, molybdenum, tantalum, niobium), noble metals (platinum, rhodium) or refractory (mica laminate, alumina) as the material of the heat shield, the oxidation resistance of the heat shield is improved. Life is extended.
[0018]
According to a fourth aspect of the present invention, the melting step is performed in a vacuum.
Since the melting step is performed in a vacuum, even if the heat shield member is heated to a high temperature, it does not oxidize and corrode as compared with the air, so that the life of the heat shield member is significantly extended.
Further, in a vacuum, by making the heat shield member non-contact with the solder glass, the heat of the heat shield member is not directly transmitted to the solder glass, so that the solder glass is difficult to melt.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a perspective view of a vacuum multilayer glass according to the present invention.
The vacuum double-glazed glass 1 includes a first glass plate 2 and a second glass plate 3 arranged with a certain gap, and a sealing material 4 for sealing the periphery of the first and second glass plates 2 and 3. The exhaust part 5 is attached to the main surface of the first glass plate 2 in order to exhaust air between the first and second glass plates 2 and 3.
[0020]
2 is a cross-sectional view taken along line 2-2 of FIG.
The exhaust portion 5 includes a stepped hole 6 in which a stepped portion 6a is disposed at a position not exceeding ½ of the thickness t of the first glass plate 2 (that is, a position above the center line c), and a stepped hole 6. The glass short tube 7 is formed by melting and closing the protruding end 7 a and the solder glass 8 for fixing the glass short tube 7 and the first glass plate 2.
The protruding end 7a of the short glass tube 7 has a height h that does not exceed 3 mm.
[0021]
The stepped hole 6 includes a large diameter portion 6b and a small diameter portion 6c. Although the specific example of a dimension is mentioned later, the hole diameter of the large diameter part 6b shall be slightly larger than the outer diameter of the glass short tube 7. FIG. The hole diameter of the small diameter portion 6c is set to be smaller than the outer diameter of the short glass tube 7 so that the short glass tube 7 does not fall out of the small diameter portion 6c and does not take too much time for evacuation.
As the solder glass 8, a ring-shaped powder manufactured by pressing, baking, or the like, or a paste kneaded is used.
[0022]
Next, the manufacturing method of the vacuum multilayer glass concerning this invention is demonstrated.
3A to 3C are first manufacturing process diagrams of the vacuum double-layer glass according to the present invention.
In (a), a stepped hole 6 is formed in the first glass plate 2. Since the stepped hole 6 can be processed simultaneously with the large diameter portion 6b and the small diameter portion 6c in a single drilling process using a stepped drill, the conventional counterbore processing (see FIG. 7A) is unnecessary. And production efficiency improves.
Next, the 1st glass plate 2 and the 2nd glass plate 3 are arrange | positioned at fixed intervals, and the periphery of these glass plates 2 and 3 is sealed with the sealing material 4 (refer FIG. 1).
[0023]
In (b), the glass short tube 7 is inserted into the stepped hole 6 of the first glass plate 2, and a ring-shaped solder glass 8 is disposed around the glass tube.
The solder glass 8 may be applied in a paste kneaded state.
In (c), the solder glass 8 is fired in a firing furnace to fix the short glass tube 7 and the first glass plate 2.
[0024]
4 (a) to 4 (c) are second manufacturing process diagrams of the vacuum multilayer glass according to the present invention.
In (a), a perforated plate-like heat shield plate (heat shield member) 10 is inserted into the short glass tube 7.
As long as the shielding plate 10 has a plate shape with a hole in the center, it may be any one of a circular plate, a rectangular plate, and a polygonal plate. However, the outer diameter of the heat shield plate 10 is made sufficiently larger than the spot diameter d of the infrared radiation heater 11 shown in FIG.
Further, the hole diameter of the heat shield plate 10 is set to a size having a margin with respect to the glass short tube 7 so that the molten glass short tube 7 does not adhere to the shield plate 10 when the glass short tube 7 is melted, and infrared rays are transmitted. The size is such that the lower solder glass 8 does not melt through the hole of the heat shield plate 10.
[0025]
The heat shield plate 10 is preferably made of metal (stainless steel, molybdenum, tantalum, niobium, etc.), noble metal (platinum, rhodium, etc.) or refractory (mica laminate, alumina, etc.). This is because stainless steel, platinum, and mica laminate are excellent in oxidation resistance.
In addition, when using the heat shield plate 10 made of metal or noble metal, it is necessary to prevent the heat shield plate 10 from coming into contact with the solder glass 8. This is because when the two come into contact, the heat of the heat shield plate 10 is directly conducted to the solder glass 8 and the solder glass 8 may be melted.
[0026]
In (b), the vacuum chamber 13 is brought into close contact with the first glass plate 2 around the exhaust unit 5 via the O-ring 12, and the exhaust unit 5 is covered with the vacuum chamber 13. The evacuation chamber 13 includes an infrared transmitting glass (quartz glass or the like) 14 on the upper window.
Then, the evacuation chamber 13 is evacuated through the exhaust passage 15, and the air between the first and second glass plates 2 and 3 is exhausted as shown by the arrow (1). Thereby, between the 1st, 2nd glass plates 2 and 3 will be in a vacuum state.
Next, infrared rays 11 a are emitted from an infrared radiation heater 11 disposed above the infrared transmission glass 14.
[0027]
In (c), the protruding end 7a of the short glass tube 7 is melted with the infrared ray 11a, and the upper end of the short glass tube 7 is closed. At this time, the infrared rays 11 a that have traveled straight around the short glass tube 7 are reflected by the heat shield plate 10. Therefore, the infrared rays 11 a that have traveled straight around the short glass tube 7 do not reach the solder glass 8.
Next, the vacuum chamber 13 shown in (b) is removed from the first glass plate 2 and the heat shield plate 10 is removed from the short glass tube 7 to complete the production of the vacuum double-glazed glass 1 shown in FIG.
[0028]
5A and 5B are explanatory views showing elastic deformation of the vacuum double-glazed glass according to the present invention.
In (a), since the insertion depth of the short glass tube 7 is set not to exceed 1/2 of the thickness of the first glass plate 2, the step portion 6 a of the stepped hole 6 is formed of the first glass plate 2. It is located above the center line c by a.
[0029]
In (b), when the space between the first and second glass plates 2 and 3 is set to a vacuum state, the first and second glass plates 2 and 3 warp in a state where the center is recessed at atmospheric pressure. Accordingly, a tensile stress σ 1 is generated below the center line c of the first glass plate 2 and a compressive stress σ 2 is generated above the center line c. A compressive stress σ 1 is generated at the step 6 a of the first glass plate 2.
Since the glass plate is generally resistant to compression, it is possible to prevent a decrease in the durability of the first glass plate 2.
[0030]
In the above embodiment, the case where the infrared radiation heater 11 is used to melt the protruding end 7a of the glass short tube 7 is not limited to this. For example, a hot air generator or an infrared laser is used. You can also.
[0031]
【Example】
Embodiments of the present invention will be described below with reference to Table 1.
[0032]
[Table 1]
Figure 0003859771
[0033]
The thickness of the 1st, 2nd glass plates 2 and 3 which comprise the vacuum multilayer glass 1 is 3.0 mm. The stepped hole 6 formed in the first glass plate 2 has a large diameter portion 6b having a hole diameter of 2.2 mm, a depth of 1.5 mm, and a small diameter portion 6c having a hole diameter of 1.5 mm. The short glass tube 7 to be inserted into the stepped hole 6 has an outer diameter of 2.0 mm, an inner diameter of 1.5 mm, and a length of 4.0 mm. The heat shield plate 10 attached to the short glass tube 7 has a hole diameter of 2.5 mm.
When the upper end of the short glass tube 7 was melted under the above conditions, the height of the protruding end 7a of the short glass tube 7 was 2.8 mm. This value is sufficiently smaller than the target value of 3 mm.
[0034]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
According to the first aspect, when the outlet of the glass tube is melted and closed, the distance from the main surface of the glass plate to the protruding end of the glass tube does not exceed 3 mm. Therefore, when this vacuum double-glazed glass is used as a window glass for a house, the projection of the glass tube does not hit the sash frame when the window is opened and closed.
[0035]
In addition , since the insertion depth of the glass tube is made not to exceed 1/2 of the thickness of the glass plate, if the insertion hole of the glass tube is a stepped hole, the stepped portion of the stepped hole is 1 of the thickness of the glass plate. The position does not exceed / 2. By making the middle of the two glass plates into a vacuum state, the two glass plates warp in a state where the center is recessed at atmospheric pressure, and compressive stress acts on the step portion of the stepped hole. Since the glass plate is generally resistant to compression, it is possible to prevent a decrease in the durability of the glass plate.
[0036]
According to the second aspect of the present invention, the heat shielding member is attached in the middle of the glass tube before melting. Therefore, since the heat shielding member can block the radiant heat at the time of melting so as not to reach the solder glass or the surrounding glass plate, the melting position of the glass tube can be brought close to the glass plate.
Therefore, when the outlet of the glass tube is melted and closed, the distance from the glass plate to the protruding end of the glass tube can be shortened so as not to exceed 3 mm. Thereby, when using this vacuum double-glazed glass as a window glass for houses, the projection of the glass tube does not hit the sash frame when the window is opened and closed.
Even if the amount of heat at the time of melting is increased, the outer diameter of the glass tube can be increased because the solder glass and the surrounding glass plate are not melted. Accordingly, it is possible to prevent the glass tube from being broken during handling, so that productivity is improved.
[0037]
The third aspect of the present invention is to use a metal (stainless steel, molybdenum, tantalum, niobium), a noble metal (platinum, rhodium), a refractory (a mica laminate, alumina), or the like as the material of the heat shield member, so Improves chemical properties and extends life.
[0038]
According to the fourth aspect of the present invention, since the melting step is performed in a vacuum, even if the heat shield member is heated to a high temperature, it does not oxidize and corrode as compared with the air.
Further, in a vacuum, by making the heat shield member non-contact with the solder glass, the heat of the heat shield member is not directly transmitted to the solder glass, so that the solder glass is difficult to melt.
[Brief description of the drawings]
FIG. 1 is a perspective view of a vacuum multilayer glass according to the present invention. FIG. 2 is a sectional view taken along line 2-2 of FIG. 1. FIG. 3 is a first manufacturing process diagram of a vacuum multilayer glass according to the present invention. FIG. 5 is an explanatory view showing the elastic deformation of the vacuum double-glazed glass according to the present invention. FIG. 6 is an explanatory view of a conventional method for manufacturing the vacuum double-glazed glass. FIG. 7 is an explanatory view of another conventional method for producing a vacuum double-glazed glass.
DESCRIPTION OF SYMBOLS 1 ... Vacuum multilayer glass, 2 ... 1st glass plate, 3 ... 2nd glass plate, 4 ... Sealing material , 7 ... Glass short tube (glass tube), 7a ... Projection end, 10 ... Heat shield plate (shield) (Thermal member), 13 ... evacuation chamber, t ... thickness, c ... center line.

Claims (4)

2枚のガラス板をスペーサを介して周辺でシールし、中間を真空引きしてなる真空複層ガラスにおいて、
この真空複層ガラスは、一方のガラス板の主表面に前記中間から排気するときに使用するガラス管を備え、このガラス管の出口を排気後に溶融法で閉じたものであり、前記ガラス板の主表面からガラス管の突出端までの距離が3mmを越えないように構成した真空複層ガラスであって、
前記一方のガラス板の主表面に前記ガラス管の基部を取付けるに際し、その差込み深さを前記ガラス板の厚みの1/2を越えないようにしたことを特徴とする真空複層ガラス。
In vacuum double-glazed glass formed by sealing two glass plates around via spacers and evacuating the middle,
This vacuum double-glazed glass is provided with a glass tube used when exhausting from the middle on the main surface of one glass plate, and the exit of this glass tube is closed by a melting method after exhausting, A vacuum double-glazed glass constructed such that the distance from the main surface to the protruding end of the glass tube does not exceed 3 mm,
A vacuum double-glazed glass characterized in that when the base portion of the glass tube is attached to the main surface of the one glass plate, the insertion depth does not exceed 1/2 of the thickness of the glass plate.
2枚のガラス板をスペーサを介して周辺でシールし、中間を一方のガラス板の主表面に取付けたガラス管を介して真空排気し、次に、前記ガラス管の出口を溶融・密閉する真空複層ガラスの製造方法において、前記溶融の前に、溶融の際に発生する熱がガラス板に到るのを防止する遮熱部材を前記ガラス管の途中に取付けたことを特徴とする真空複層ガラスの製造方法。  Two glass plates are sealed at the periphery through spacers, the middle is evacuated through a glass tube attached to the main surface of one glass plate, and then the vacuum that melts and seals the outlet of the glass tube In the method for producing a double-glazed glass, a vacuum compounding device is provided, wherein a heat shielding member for preventing heat generated during melting from reaching the glass plate is attached in the middle of the glass tube before the melting. A method for producing layer glass. 前記遮熱部材の材質は、金属、貴金属若しくは耐火物であることを特徴とする請求項記載の真空複層ガラスの製造方法。The method for producing a vacuum double-glazed glass according to claim 2 , wherein the material of the heat shield member is a metal, a noble metal or a refractory. 前記溶融工程を真空中で行うことを特徴とする請求項記載の真空複層ガラスの製造方法。The method for producing a vacuum multilayer glass according to claim 2, wherein the melting step is performed in a vacuum.
JP15580696A 1996-06-17 1996-06-17 Vacuum multi-layer glass and method for producing the same Expired - Lifetime JP3859771B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15580696A JP3859771B2 (en) 1996-06-17 1996-06-17 Vacuum multi-layer glass and method for producing the same
TW086106753A TW341615B (en) 1996-06-17 1997-05-20 Vacuum double layer glass and its manufacturing method
PCT/JP1997/001841 WO1997048650A1 (en) 1996-06-17 1997-05-28 Vacuum double glazing unit and method of manufacturing same
CN97190721A CN1195334A (en) 1996-06-17 1997-05-28 Vacuum double glazing unit and method of manufacturing same
KR1019980700692A KR19990036027A (en) 1996-06-17 1997-05-28 Vacuum Laminated Glass and Manufacturing Method Thereof
IDP972051A ID17172A (en) 1996-06-17 1997-06-16 DOUBLE VACUUM GLASS COATING AND METHOD OF MAKING SUCH GLASS LAYER.
JP2000207114A JP3828341B2 (en) 1996-06-17 2000-07-07 Vacuum double-glazed glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15580696A JP3859771B2 (en) 1996-06-17 1996-06-17 Vacuum multi-layer glass and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000207114A Division JP3828341B2 (en) 1996-06-17 2000-07-07 Vacuum double-glazed glass

Publications (2)

Publication Number Publication Date
JPH102161A JPH102161A (en) 1998-01-06
JP3859771B2 true JP3859771B2 (en) 2006-12-20

Family

ID=15613870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15580696A Expired - Lifetime JP3859771B2 (en) 1996-06-17 1996-06-17 Vacuum multi-layer glass and method for producing the same

Country Status (6)

Country Link
JP (1) JP3859771B2 (en)
KR (1) KR19990036027A (en)
CN (1) CN1195334A (en)
ID (1) ID17172A (en)
TW (1) TW341615B (en)
WO (1) WO1997048650A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049443B2 (en) * 1998-04-30 2008-02-20 日本板硝子株式会社 Glass panel
KR100598706B1 (en) * 1998-07-14 2006-07-10 닛폰 이타가라스 가부시키가이샤 Glass Panel and Its Forming Method
JP2000203891A (en) * 1999-01-18 2000-07-25 Nippon Sheet Glass Co Ltd Glass panel
JP2000203892A (en) * 1999-01-18 2000-07-25 Nippon Sheet Glass Co Ltd Glass panel
DE60014333T2 (en) * 1999-12-24 2005-10-06 Nippon Sheet Glass Co., Ltd. METHOD FOR PRODUCING A GLASS PLATE AND GLASS PLATE
JP2004168627A (en) * 2002-11-22 2004-06-17 Nippon Sheet Glass Co Ltd Heat shielding instrument
JP2009158252A (en) * 2007-12-26 2009-07-16 Hitachi Ltd Manufacturing method of plasma display device
TW201104721A (en) * 2009-07-29 2011-02-01 Teco Nanotech Co Ltd Vacuum flat glass structure and its manufacturing method
CN102020428B (en) * 2009-09-16 2012-09-05 东元奈米应材股份有限公司 Vacuum plane glass structure and manufacture method thereof
CN102587798A (en) * 2011-08-23 2012-07-18 童明伟 Adsorption type interlayer heat-insulation vacuum organic glass plate
KR101322585B1 (en) * 2011-08-25 2013-10-28 (주)엘지하우시스 Vacuum glass panel and method of manufacturing thereof
US8794033B2 (en) * 2011-12-15 2014-08-05 Guardian Industries Corp. Apparatuses for vacuum insulating glass (VIG) unit tip-off, and/or associated methods
JP5821011B2 (en) 2012-05-18 2015-11-24 パナソニックIpマネジメント株式会社 Method for producing double-glazed glass
US9371683B2 (en) * 2012-05-18 2016-06-21 Guardian Industries Corp. Method and apparatus for making vacuum insulated glass (VIG) window unit including pump-out tube
US10829984B2 (en) 2012-05-18 2020-11-10 Guardian Glass, LLC Method and apparatus for making vacuum insulated glass (VIG) window unit including pump-out tube
US8833105B2 (en) 2012-05-18 2014-09-16 Guardian Industries Corp. Method and apparatus for making vacuum insulated glass (VIG) window unit including pump-out tube sealing technique
EP3225604B1 (en) 2012-05-18 2019-03-13 Panasonic Intellectual Property Management Co., Ltd. Production method of multiple panes
CN103420582B (en) * 2013-07-17 2016-03-30 戴长虹 There is the open holes of the two vacuum layer glass of the plane of pipe and sealing groove
CN103567725B (en) * 2013-11-12 2015-12-02 无锡英特派金属制品有限公司 A kind of platinum rhodium composite material and preparation method thereof delaying rhodium diffusion
EP3307977B1 (en) * 2015-06-11 2021-12-08 The University Of Sydney Pump out tube preform
JP6391892B1 (en) 2015-08-20 2018-09-19 ブイケイアール・ホールディング・エイ/エス Method for manufacturing a VIG unit with improved temperature distribution
JP6757912B2 (en) 2016-03-31 2020-09-23 パナソニックIpマネジメント株式会社 Glass panel unit manufacturing method, fitting manufacturing method, glass panel unit manufacturing equipment, and glass panel unit
CN107265889A (en) * 2017-06-15 2017-10-20 朱盛菁 A kind of vacuum pumping method of vacuum glass
US10900275B2 (en) * 2019-01-04 2021-01-26 Guardian Glass, LLC Integrated tube for vacuum insulated glass (VIG) unit evacuation and hermetic sealing, VIG unit including integrated tube, and associated methods
CN112969286B (en) * 2021-01-05 2022-06-28 深圳市金雷曼科技有限公司 5G antenna PCB module blind hole processing equipment and blind hole processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE136093T1 (en) * 1989-08-23 1996-04-15 Univ Sydney METHOD FOR PRODUCING A HEAT-DAMPED GLASS PANEL AND HEAT-DAMPED GLASS PANEL THEREFORE.

Also Published As

Publication number Publication date
WO1997048650A1 (en) 1997-12-24
CN1195334A (en) 1998-10-07
JPH102161A (en) 1998-01-06
KR19990036027A (en) 1999-05-25
ID17172A (en) 1997-12-04
TW341615B (en) 1998-10-01

Similar Documents

Publication Publication Date Title
JP3859771B2 (en) Vacuum multi-layer glass and method for producing the same
EP1506945B1 (en) Translucent glass panel
JP3916009B2 (en) Heat insulation double glazing
JP2003192400A (en) Glass panel
JP5195419B2 (en) Heat treatment furnace
WO2003084892A1 (en) Method of manufacturing glass panel, and glass panel manufactured by the method
JP3828341B2 (en) Vacuum double-glazed glass
JP2002226235A (en) Low pressure double layered glass
EP3363982B1 (en) Vacuum insulated glazing unit
US11913277B2 (en) Method for manufacturing glass panel unit
JP2002255593A (en) Method for manufacturing low pressure double glazing
JP2004168627A (en) Heat shielding instrument
JP3467565B2 (en) Heating furnace with heat radiation reflector
JP2000352274A (en) Double glazing having multiple low-pressure space and manufacture of the same
WO2004099097A1 (en) Glass panel
RU19317U1 (en) KITCHEN STOVE
JP2002255594A (en) Method for manufacturing glass panel
JPS6057176B2 (en) Cathode ray tube manufacturing method
US7821189B2 (en) Method for maintaining vacuum-tight inside a panel module and structure for the same
JPS62131440A (en) Manufacture of cathode-ray tube
JPH01209686A (en) Manufacture of infrared ray heater
JPH11153385A (en) Muffle tube support member for high temperature furnace
JPS60205942A (en) Exhausting of electron tube
JP2002324655A (en) Manufacturing method of heating plate having sheath heater
JPS62226534A (en) Heating method for bulb

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

EXPY Cancellation because of completion of term