JP3856023B2 - Heat pump bath water supply system - Google Patents

Heat pump bath water supply system Download PDF

Info

Publication number
JP3856023B2
JP3856023B2 JP2004276869A JP2004276869A JP3856023B2 JP 3856023 B2 JP3856023 B2 JP 3856023B2 JP 2004276869 A JP2004276869 A JP 2004276869A JP 2004276869 A JP2004276869 A JP 2004276869A JP 3856023 B2 JP3856023 B2 JP 3856023B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
bath
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004276869A
Other languages
Japanese (ja)
Other versions
JP2005016944A (en
Inventor
竹司 渡辺
寛明 米久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004276869A priority Critical patent/JP3856023B2/en
Publication of JP2005016944A publication Critical patent/JP2005016944A/en
Application granted granted Critical
Publication of JP3856023B2 publication Critical patent/JP3856023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明はヒートポンプによる風呂給湯システムに関するものである。   The present invention relates to a bath water supply system using a heat pump.

従来、この種のヒートポンプシステムは特開平7−71839号公報に示すものがある。以下、その構成について図19を参照しながら説明する。図19に示すように、圧縮機1の吐出側につながる高圧ガス管、圧縮機1の吸入側につながる低圧ガス管、高圧および低圧ガス管とともに配置された液管に開閉弁50a、50b、50c、50d、50e、50fを介して、給湯加熱器3、廃熱利用熱交換器5、大気熱利用熱交換器28が並列につながっている。そして、開閉弁50a、50b、50c、50d、50e、50fの切り替えにより給湯運転、風呂追い焚き運転、給湯熱利用風呂追い焚き運転、浴槽廃熱利用給湯運転がおこなわれる。例えば、浴槽廃熱利用給湯運転時は、開閉弁50aと50dを開放して、廃熱利用熱交換器5を介して浴槽10の湯を吸熱し、給湯加熱器3で加熱して貯湯する。
特開平7−71839号公報
Conventionally, this type of heat pump system is disclosed in Japanese Patent Laid-Open No. 7-71839. The configuration will be described below with reference to FIG. As shown in FIG. 19, the high-pressure gas pipe connected to the discharge side of the compressor 1, the low-pressure gas pipe connected to the suction side of the compressor 1, and the liquid pipes arranged together with the high-pressure and low-pressure gas pipes are opened and closed valves 50a, 50b, 50c. , 50d, 50e, 50f, the hot water heater 3, the waste heat utilization heat exchanger 5, and the atmospheric heat utilization heat exchanger 28 are connected in parallel. Then, the hot water supply operation, the bath reheating operation, the hot water heat utilization bath renewal operation, and the bathtub waste heat utilization hot water supply operation are performed by switching the on-off valves 50a, 50b, 50c, 50d, 50e, and 50f. For example, in the bathtub waste heat utilization hot water supply operation, the on-off valves 50a and 50d are opened, the hot water in the bathtub 10 is absorbed through the waste heat utilization heat exchanger 5, and heated by the hot water heater 3 to be stored.
Japanese Patent Laid-Open No. 7-71839

しかしながら、上記のような構成では、給湯加熱器3より流出した高圧液冷媒は冷媒流量制御弁51で低圧の二相冷媒となり、さらに冷媒流量制御弁52を通って廃熱利用熱交換器5に流入することになる。よって、冷媒流量がかなり絞られるため、所定の冷媒流量が得られず、圧縮機1の吸入冷媒ガスは高温の過熱ガスとなり、圧縮機1の信頼性確保が課題となる。また、冷媒流量の低下により、廃熱利用熱交換器5での採熱量が少なくなるため高効率化が得られない。それを防止するには冷媒流量制御弁51および52は流量制御巾の範囲が非常に大きなものが必須となる。また、その場合には廃熱利用熱交換器5に流入する湯温は大気よりも高温であるため、圧縮機1の低圧がかなり上昇し、採熱量増加にともなって給湯加熱器3が大きくなる。また、開閉弁50、冷媒流量制御手段51、52は複数必要となり、システムが複雑となる。   However, in the above configuration, the high-pressure liquid refrigerant that has flowed out of the hot water heater 3 becomes a low-pressure two-phase refrigerant at the refrigerant flow control valve 51, and further passes through the refrigerant flow control valve 52 to the waste heat utilization heat exchanger 5. Will flow in. Therefore, since the refrigerant flow rate is considerably reduced, a predetermined refrigerant flow rate cannot be obtained, and the refrigerant gas sucked into the compressor 1 becomes a high-temperature superheated gas, and ensuring the reliability of the compressor 1 becomes a problem. Moreover, since the amount of heat collected in the waste heat utilization heat exchanger 5 decreases due to a decrease in the refrigerant flow rate, high efficiency cannot be obtained. In order to prevent this, it is essential that the refrigerant flow rate control valves 51 and 52 have a very large flow rate control range. In that case, since the temperature of the hot water flowing into the waste heat utilization heat exchanger 5 is higher than that of the atmosphere, the low pressure of the compressor 1 rises considerably, and the hot water heater 3 becomes larger as the amount of heat collected increases. . In addition, a plurality of on-off valves 50 and refrigerant flow rate control means 51 and 52 are required, which complicates the system.

本発明は上記課題を解決するもので、部品点数削減と浴槽廃熱利用給湯運転時の高効率化をはかると共に圧縮機等の耐久信頼性を向上することを主目的とするものである。   SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and has as its main object to reduce the number of parts and increase the efficiency during hot water supply operation using waste water from a bathtub and improve the durability and reliability of a compressor and the like.

本発明のヒートポンプ式風呂給湯システムにおいては、圧縮機を有する冷媒回路と、この冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記風呂循環回路の水出口温度
検知する温度検知手段と、外気温度を検知する外気温度検知手段と、風呂排熱利用運転を制御する運転制御手段とを備え、前記運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との相関関係に基づき風呂排熱利用運転を制御するようにし、浴槽追い焚き運転において、風呂熱交換器の出口温度を温度検知手段が検出し、温度検知手段の信号が所定温度の信号となるように制御をおこなうようにしたものである。
In the heat pump hot water supply system of the present invention, a refrigerant circuit having a compressor, a hot water heater and a waste heat utilization heat exchanger connected to the refrigerant circuit, hot water in a hot water tank flows, and the hot water heater A hot water supply circuit in the middle of a hot water supply heat exchanger having a heat exchange relationship and a bath heat exchanger having a heat exchange relationship with the exhaust heat utilization heat exchanger while circulating hot water in the bathtub via a bath circulation pump A bath circulation circuit connected halfway, a temperature detection means for detecting the water outlet temperature of the bath circulation circuit , an outside air temperature detection means for detecting the outside air temperature, and an operation control means for controlling the bath exhaust heat utilization operation. the operation control means, so as to control the bath waste heat utilization operation based on the correlation between the temperature and the sensed to have been detected temperature by the outside air temperature detecting means by said temperature detecting means, the bath In reheating operation, the outlet temperature of the bath heat exchanger detected by the temperature detection means, in which the signal of the temperature detecting means has to perform control so that the signal of a predetermined temperature.

この本発明によれば、浴槽から外気への自然放熱は低減されて熱が有効に活用されるようになる。   According to the present invention, natural heat radiation from the bathtub to the outside air is reduced, and heat is effectively utilized.

本発明のヒートポンプ式風呂給湯システムにおいては、圧縮機を有する冷媒回路と、この冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記風呂循環回路を流れる流体温度を検知する温度検知手段と、外気温度を検知する外気温度検知手段と、風呂排熱利用運転を制御する運転制御手段とを備え、前記運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との相関関係に基づき風呂排熱利用運転を制御するようにしたものである。   In the heat pump hot water supply system of the present invention, a refrigerant circuit having a compressor, a hot water heater and a waste heat utilization heat exchanger connected to the refrigerant circuit, hot water in a hot water tank flows, and the hot water heater A hot water supply circuit in the middle of a hot water supply heat exchanger having a heat exchange relationship and a bath heat exchanger having a heat exchange relationship with the exhaust heat utilization heat exchanger while circulating hot water in the bathtub via a bath circulation pump A bath circulation circuit connected in the middle, a temperature detection means for detecting the temperature of fluid flowing through the bath circulation circuit, an outside air temperature detection means for detecting the outside air temperature, and an operation control means for controlling a bath exhaust heat utilization operation. The operation control means controls the bath exhaust heat utilization operation based on the correlation between the temperature detected by the temperature detection means and the temperature detected by the outside air temperature detection means. It is intended.

この本発明によれば、浴槽から外気への自然放熱は低減されて熱が有効に活用されるようになる。   According to the present invention, natural heat radiation from the bathtub to the outside air is reduced, and heat is effectively utilized.

本発明は上記目的を達成するため、圧縮機を有する冷媒回路と、この冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記風呂循環回路を流れる流体温度を検知する温度検知手段と、外気温度を検知する外気温度検知手段と、風呂排熱利用運転を制御する運転制御手段とを備え、前記運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との相関関係に基づき風呂排熱利用運転を制御するようにしたものである。   To achieve the above object, the present invention provides a refrigerant circuit having a compressor, a hot water heater and a waste heat utilization heat exchanger connected to the refrigerant circuit, hot water in a hot water tank, and the hot water heater and the heat. A hot water supply circuit connecting a hot water supply heat exchanger having an exchange relationship in the middle and circulating hot water in the bathtub through a bath circulation pump, and a hot water bath having a heat exchange relationship with the exhaust heat utilization heat exchanger in the middle A bath circulation circuit connected to, a temperature detection means for detecting the temperature of fluid flowing through the bath circulation circuit, an outside air temperature detection means for detecting the outside air temperature, and an operation control means for controlling the bath exhaust heat utilization operation, The operation control means controls bath exhaust heat utilization operation based on the correlation between the temperature detected by the temperature detection means and the temperature detected by the outside air temperature detection means.

また、前述の運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との相関関係に基づき風呂排熱利用運転を停止するものである。   Further, the operation control means described above stops the bath exhaust heat utilization operation based on the correlation between the temperature detected by the temperature detection means and the temperature detected by the outside air temperature detection means.

また、前述の運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との温度差が所定温度に達したときに、風呂排熱利用運転を停止するものである。   In addition, the operation control unit described above stops the bath exhaust heat utilization operation when the temperature difference between the temperature detected by the temperature detection unit and the temperature detected by the outside air temperature detection unit reaches a predetermined temperature. To do.

それによって、浴槽から外気への自然放熱は低減されて熱が有効に活用されるようになる。   As a result, the natural heat radiation from the bathtub to the outside air is reduced and the heat is effectively utilized.

(実施例1)
以下、本発明の実施例1を図1、図2を参照しながら説明する。図1、図2において、1は圧縮機、2は四方弁、3は給湯加熱器、4は減圧装置、5は排熱利用熱交換器であり、圧縮機1、四方弁2、給湯加熱器3、減圧装置4、排熱利用熱交換器5で冷媒回路を構成する。6は貯湯槽、7は給湯用ポンプ、8は給湯熱交換器であり、給湯加熱器3と熱交換関係を有する。また、貯湯槽6、給湯用ポンプ7、給湯熱交換器8で給湯回路9を構成する。10は浴槽、11は風呂循環ポンプ、12は風呂熱交換器であり、排熱利用熱交換器5と熱交換関係を有する。13は流量制御手段であり、風呂循環回路14の流量制御をおこなう。15は風呂循環ポンプであり、回転数制御型である。16は回転数制御手段であり、風呂循環ポンプ15の回転数制御をおこなう。
Example 1
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 and 2, 1 is a compressor, 2 is a four-way valve, 3 is a hot water heater, 4 is a pressure reducing device, 5 is a heat exchanger utilizing waste heat, and the compressor 1, the four-way valve 2, and a hot water heater 3, the decompression device 4 and the exhaust heat utilization heat exchanger 5 constitute a refrigerant circuit. 6 is a hot water storage tank, 7 is a hot water supply pump, 8 is a hot water supply heat exchanger, and has a heat exchange relationship with the hot water heater 3. The hot water storage tank 6, the hot water supply pump 7, and the hot water supply heat exchanger 8 constitute a hot water supply circuit 9. 10 is a bathtub, 11 is a bath circulation pump, 12 is a bath heat exchanger, and has a heat exchange relationship with the exhaust heat utilization heat exchanger 5. Reference numeral 13 denotes a flow rate control means for controlling the flow rate of the bath circulation circuit 14. Reference numeral 15 denotes a bath circulation pump, which is a rotational speed control type. Reference numeral 16 denotes a rotational speed control means for controlling the rotational speed of the bath circulation pump 15.

つぎに、上記構成において動作を説明する。風呂廃熱利用の給湯運転において、圧縮機1から吐出した高温高圧のガス冷媒は四方弁2を通り給湯加熱器3に流入する。一方、貯湯槽6の水は給湯ポンプ7によって給湯熱交換器8に流入し、ここで、冷媒の凝縮熱によって給湯加熱器3を介して加熱されて貯湯槽6に流入する。そして、凝縮液化した冷媒は減圧装置4で減圧されて廃熱利用熱交換器5に流入する。一方、浴槽10の残湯は風呂循環ポンプ11によって風呂熱交換器12に流入し、ここで風呂熱交換器12を介して廃熱利用熱交換器5を流れる冷媒を蒸発ガス化する。この動作において、流量制御手段13は風呂循環回路の流量制御をおこない、廃熱利用熱交換器5での吸熱量を調整する。よって、大気熱より高温の浴槽9残湯熱から採熱するため、高効率高能力で給湯運転ができる。また、図2に示すように、流量制御手段13の代わりに風呂循環ポンプ15を用いて、回転数制御手段16で風呂循環ポンプ15の回転数制御をおこない、流量制御しても同じ効果が得られる。   Next, the operation in the above configuration will be described. In hot water supply operation using bath waste heat, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the hot water heater 3. On the other hand, the water in the hot water storage tank 6 flows into the hot water supply heat exchanger 8 by the hot water supply pump 7, where it is heated through the hot water heater 3 by the condensation heat of the refrigerant and flows into the hot water storage tank 6. The condensed and liquefied refrigerant is decompressed by the decompression device 4 and flows into the waste heat utilization heat exchanger 5. On the other hand, the remaining hot water in the bathtub 10 flows into the bath heat exchanger 12 by the bath circulation pump 11, and evaporates the refrigerant flowing through the waste heat utilization heat exchanger 5 through the bath heat exchanger 12. In this operation, the flow rate control means 13 controls the flow rate of the bath circulation circuit and adjusts the heat absorption amount in the waste heat utilizing heat exchanger 5. Therefore, since the heat is collected from the remaining hot water of the bathtub 9 which is higher than the atmospheric heat, the hot water supply operation can be performed with high efficiency and high capacity. Further, as shown in FIG. 2, the same effect can be obtained by controlling the flow rate of the bath circulation pump 15 by using the bath circulation pump 15 instead of the flow rate control unit 13 and controlling the rotation rate of the bath circulation pump 15 by the rotation number control unit 16. It is done.

(実施例2)
本発明の実施例2を図3を参照しながら説明する。図3において、実施例1と同じ構成、動作するものについては、同一符号とし、説明を省略する。17は冷媒温度検知手段であり、排熱利用熱交換器5の冷媒入口温度を検出する。18は流量制御部であり、冷媒温度検知手段17の信号に基づき流量制御手段13を制御する。
(Example 2)
A second embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same configuration and operation as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 17 denotes a refrigerant temperature detecting means for detecting the refrigerant inlet temperature of the exhaust heat utilization heat exchanger 5. Reference numeral 18 denotes a flow rate control unit which controls the flow rate control means 13 based on a signal from the refrigerant temperature detection means 17.

上記構成において動作を図3によって説明する。風呂廃熱利用の給湯運転において、排熱利用熱交換器5に流入する冷媒温度を冷媒温度検知手段17が検出し、流量制御部18に信号を送る。そして、流量制御部18は流量制御手段13を制御して、風呂循環流量を変える。よって、ヒートポンプサイクルは予め設定された冷媒温度、圧力で運転することになり、圧縮機の高圧が異常上昇することもなく、信頼性が向上する。   The operation of the above configuration will be described with reference to FIG. In the hot water supply operation using bath waste heat, the refrigerant temperature detection means 17 detects the refrigerant temperature flowing into the exhaust heat utilization heat exchanger 5 and sends a signal to the flow rate control unit 18. The flow rate control unit 18 controls the flow rate control means 13 to change the bath circulation flow rate. Therefore, the heat pump cycle is operated at a preset refrigerant temperature and pressure, and the high pressure of the compressor does not rise abnormally and the reliability is improved.

(実施例3)
本発明の実施例3を図4を参照しながら説明する。図4において、実施例1、2と同じ構成、動作するものについては、同一符号とし、説明を省略する。19はインバータ電源部であり、圧縮機1の駆動周波数を可変する。20は温度検知手段であり、風呂熱交換器の水出口温度を検出する。21は周波数制御手段であり、温度検知手段20の信号に基づきインバータ電源部19の周波数制御をおこなう。
Example 3
A third embodiment of the present invention will be described with reference to FIG. In FIG. 4, the same configuration and operation as those of the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 19 denotes an inverter power supply unit that varies the drive frequency of the compressor 1. Reference numeral 20 denotes a temperature detecting means for detecting the water outlet temperature of the bath heat exchanger. Reference numeral 21 denotes frequency control means for controlling the frequency of the inverter power supply unit 19 based on a signal from the temperature detection means 20.

上記構成において動作を説明する。風呂廃熱利用の給湯運転において、温度検知手段20の信号が高温を示す場合には、周波数制御手段21はインバータ電源部19に信号を送り、圧縮機1の駆動周波数を下げて、温度検知手段20の信号が所定温度の信号となるように駆動周波数を制御する。また、温度検知手段20の信号が低温を示す場合には、周波数制御手段21はインバータ電源部19に信号を送り、圧縮機1の駆動周波数を増加して、温度検知手段20の信号が所定温度の信号となるように駆動周波数を制御する。よって、圧縮機1の駆動周波数を制御して給湯熱交換器8での加熱量および廃熱利用熱交換器5での風呂廃熱交換量を調整するため、熱交換器のスペックに適した高効率運転ができるようになる。また、給湯熱交換器、給湯加熱器、廃熱利用熱交換器、風呂熱交換器の小型化が達成できるようになる。   The operation in the above configuration will be described. In the hot water supply operation using bath waste heat, when the signal of the temperature detection means 20 indicates a high temperature, the frequency control means 21 sends a signal to the inverter power supply unit 19 to lower the drive frequency of the compressor 1 and the temperature detection means. The drive frequency is controlled so that the 20 signal becomes a signal of a predetermined temperature. When the signal from the temperature detection means 20 indicates a low temperature, the frequency control means 21 sends a signal to the inverter power supply unit 19 to increase the drive frequency of the compressor 1, and the signal from the temperature detection means 20 changes to a predetermined temperature. The drive frequency is controlled so that Therefore, since the driving frequency of the compressor 1 is controlled to adjust the heating amount in the hot water supply heat exchanger 8 and the bath waste heat exchange amount in the waste heat utilization heat exchanger 5, it is suitable for the specifications of the heat exchanger. Efficient operation becomes possible. Moreover, miniaturization of the hot water supply heat exchanger, the hot water supply heater, the waste heat utilization heat exchanger, and the bath heat exchanger can be achieved.

(実施例4)
本発明の実施例4を図5を参照しながら説明する。図5において、実施例1〜3と同じ構成、動作するものについては、同一符号とし、説明を省略する。22は温度検知手段であり、風呂循環回路の流体温度を検出して信号を発する。23は流量制御部であり、温度検知手段22の信号に基づき流量制御手段13を制御する。
Example 4
A fourth embodiment of the present invention will be described with reference to FIG. In FIG. 5, the same configuration and operation as those of the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. Reference numeral 22 denotes a temperature detecting means for detecting a fluid temperature in the bath circulation circuit and generating a signal. Reference numeral 23 denotes a flow rate control unit that controls the flow rate control means 13 based on a signal from the temperature detection means 22.

上記構成において動作を図5によって説明する。風呂廃熱利用の給湯運転において、風呂熱交換器12で採熱されて温度低下した湯温を温度検知手段22が検出し、流量制御部23に信号を送る。そして、流量制御部23は温度検知手段22の信号が所定温度の信号となるように流量制御手段13で流量調整をおこなう。例えば、温度検知手段22の信号が所定温度よりも高温を示す場合には、流量制御部23は流量制御手段13において流量を下げるように調整する。一方、所定温度よりも低温を示す場合には、流量制御手段13において流量を上げるように調整する。よって、風呂循環回路の循環流量を制御して、風呂廃熱の熱交換量を調整するため、浴槽湯温が高いために低圧が異常に高くなり、それによって圧縮機の高圧が異常に上昇することもない。また、浴槽追い焚き運転において、風呂熱交換器12の出口温度を温度検知手段22が検出し、流量制御部23に信号を送る。そして、流量制御部23は温度検知手段22の信号が所定温度の信号となるように流量制御手段13で流量調整をおこなう。よって、ひとつの温度検知手段22で風呂廃熱利用給湯運転と浴槽追い焚き運転ができる。また、高温湯が浴槽に流入することもないため、浴槽の耐久性が向上する。   The operation in the above configuration will be described with reference to FIG. In the hot water supply operation using bath waste heat, the temperature detecting means 22 detects the temperature of the hot water that has been collected by the bath heat exchanger 12 and lowered in temperature, and sends a signal to the flow rate control unit 23. Then, the flow rate controller 23 adjusts the flow rate with the flow rate control means 13 so that the signal of the temperature detection means 22 becomes a signal of a predetermined temperature. For example, when the signal from the temperature detection unit 22 indicates a temperature higher than a predetermined temperature, the flow rate control unit 23 adjusts the flow rate control unit 13 to decrease the flow rate. On the other hand, when the temperature is lower than the predetermined temperature, the flow rate control means 13 adjusts to increase the flow rate. Therefore, the flow rate of the bath circulation circuit is controlled to adjust the heat exchange amount of the bath waste heat, so the bath water temperature is high and the low pressure becomes abnormally high, which causes the compressor high pressure to rise abnormally There is nothing. Further, in the bathtub chasing operation, the temperature detection means 22 detects the outlet temperature of the bath heat exchanger 12 and sends a signal to the flow rate control unit 23. Then, the flow rate controller 23 adjusts the flow rate with the flow rate control means 13 so that the signal of the temperature detection means 22 becomes a signal of a predetermined temperature. Therefore, the bath waste heat utilization hot water supply operation and the bathtub reheating operation can be performed by one temperature detection means 22. Moreover, since hot water does not flow into the bathtub, the durability of the bathtub is improved.

(実施例5)
本発明の実施例5を図6〜図9を参照しながら説明する。図6、図8において、実施例1〜4と同じ構成、動作するものについては、同一符号とし、説明を省略する。24は風呂循環ポンプであり、風呂循環回路に設けられ、水循環方向の可逆が可能である。
(Example 5)
A fifth embodiment of the present invention will be described with reference to FIGS. 6 and 8, the same configuration and operation as those of the first to fourth embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 24 denotes a bath circulation pump, which is provided in the bath circulation circuit and can be reversible in the water circulation direction.

上記構成において動作を説明する。最初に風呂廃熱利用の給湯運転について説明する。図6において、冷媒の流れを実線、風呂循環回路内の水の流れを破線で表す。圧縮機1から吐出した高温高圧のガス冷媒は四方弁2を通り給湯加熱器3に流入する。一方、貯湯槽6の水は給湯ポンプ7によって給湯熱交換器8に流入し、ここで、冷媒の凝縮熱によって給湯加熱器3を介して加熱されて貯湯槽6に流入する。そして、凝縮液化した冷媒は減圧装置4で減圧されて廃熱利用熱交換器5に流入する。一方、浴槽10の残湯は風呂循環ポンプ24によって風呂熱交換器12に流入し、ここで風呂熱交換器12を介して廃熱利用熱交換器5を流れる冷媒を蒸発ガス化させる。この動作において、廃熱利用熱交換器5の冷媒流れ方向と風呂熱交換器12の水流れ方向は対向流で熱交換をおこなう。図7に廃熱利用熱交換器5内の冷媒温度と風呂熱交換器12の水温の変化を表す。図7において、廃熱利用熱交換器5内を流れる冷媒は二相域で流入するが、圧力損失を伴うため冷媒温度は次第に低下する。そして、圧縮機1にガス冷媒で戻すため廃熱利用熱交換器5の出口は過熱ガスにする必要があるが、風呂循環の水は入口であるため、比較的温度が高い。よって、水と冷媒の温度差は大きくとれるため、熱交換器の効率は高い。   The operation in the above configuration will be described. First, the hot water supply operation using bath waste heat will be described. In FIG. 6, the refrigerant flow is indicated by a solid line, and the water flow in the bath circulation circuit is indicated by a broken line. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the hot water heater 3. On the other hand, the water in the hot water storage tank 6 flows into the hot water supply heat exchanger 8 by the hot water supply pump 7, where it is heated through the hot water heater 3 by the condensation heat of the refrigerant and flows into the hot water storage tank 6. The condensed and liquefied refrigerant is decompressed by the decompression device 4 and flows into the waste heat utilization heat exchanger 5. On the other hand, the remaining hot water in the bathtub 10 flows into the bath heat exchanger 12 by the bath circulation pump 24, and evaporates the refrigerant flowing through the waste heat utilization heat exchanger 5 through the bath heat exchanger 12. In this operation, heat exchange is performed in a counter flow between the refrigerant flow direction of the waste heat utilization heat exchanger 5 and the water flow direction of the bath heat exchanger 12. FIG. 7 shows changes in the refrigerant temperature in the waste heat utilization heat exchanger 5 and the water temperature in the bath heat exchanger 12. In FIG. 7, the refrigerant flowing in the waste heat utilization heat exchanger 5 flows in a two-phase region, but the refrigerant temperature gradually decreases because of pressure loss. And since it returns to the compressor 1 with a gas refrigerant, it is necessary to make the exit of the waste heat utilization heat exchanger 5 into superheated gas, but since the water of bath circulation is an inlet, temperature is comparatively high. Therefore, since the temperature difference between water and the refrigerant can be large, the efficiency of the heat exchanger is high.

次に浴槽追い焚き運転について説明する。図8において、冷媒の流れを実線、風呂循環回路内の水の流れを破線で表す。圧縮機1から吐出した高温高圧のガス冷媒は四方弁2を通り廃熱利用熱交換器5に流入する。一方、浴槽10の水は風呂循環ポンプ24によって風呂廃熱利用給湯運転時と逆方向に流れ、風呂熱交換器12に流入する。ここで、冷媒の凝縮熱によって廃熱利用熱交換器5を介して加熱されて浴槽10に流入する。そして、凝縮液化した冷媒は減圧装置4で減圧されて給湯加熱器3に流入する。一方、貯湯槽6の湯は給湯用ポンプ7によって給湯熱交換器8に流入し、ここで給湯熱交換器8を介して給湯加熱器3を流れる冷媒を蒸発ガス化させる。この動作において、廃熱利用熱交換器5の冷媒流れ方向と風呂熱交換器12の水流れ方向は対向流で熱交換をおこなう。図9に廃熱利用熱交換器5内の冷媒温度と風呂熱交換器12の水温の変化を表す。図9において、廃熱利用熱交換器5内を流れる冷媒は過熱ガス冷媒で流入し、二相域となり、過冷却の液冷媒で流出する。一方、水は低温で流入し、加熱されて昇温して流出する。よって、水と冷媒の温度差は大きくとれるため、熱交換器の効率は高い。   Next, the bathtub chasing operation will be described. In FIG. 8, the flow of the refrigerant is represented by a solid line, and the flow of water in the bath circulation circuit is represented by a broken line. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the waste heat utilization heat exchanger 5. On the other hand, the water in the bathtub 10 flows in the opposite direction to that in the bath waste heat utilization hot water supply operation by the bath circulation pump 24 and flows into the bath heat exchanger 12. Here, it is heated through the waste heat utilization heat exchanger 5 by the heat of condensation of the refrigerant and flows into the bathtub 10. The condensed and liquefied refrigerant is decompressed by the decompression device 4 and flows into the hot water heater 3. On the other hand, hot water in the hot water storage tank 6 flows into the hot water supply heat exchanger 8 by the hot water supply pump 7, and evaporates the refrigerant flowing through the hot water supply heater 3 through the hot water supply heat exchanger 8. In this operation, heat exchange is performed in a counter flow between the refrigerant flow direction of the waste heat utilization heat exchanger 5 and the water flow direction of the bath heat exchanger 12. FIG. 9 shows changes in the refrigerant temperature in the waste heat utilization heat exchanger 5 and the water temperature in the bath heat exchanger 12. In FIG. 9, the refrigerant flowing in the waste heat utilization heat exchanger 5 flows in as superheated gas refrigerant, becomes a two-phase region, and flows out as supercooled liquid refrigerant. On the other hand, water flows in at a low temperature, is heated, rises in temperature, and flows out. Therefore, since the temperature difference between water and the refrigerant can be large, the efficiency of the heat exchanger is high.

(実施例6)
本発明の実施例6を図10を参照しながら説明する。図10において実施例1〜5と同じ構成、動作するものについては、同一符号とし、説明を省略する。25は温度検知手段であり、風呂循環回路に設けて流体温度を検出して信号を発する。26は外気温度検知手段、27は運転制御手段であり、温度検知手段25の信号と外気温度検知手段27の信号を受けて風呂廃熱利用運転を制御する。
(Example 6)
A sixth embodiment of the present invention will be described with reference to FIG. In FIG. 10, the same configuration and operation as those of the first to fifth embodiments are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 25 denotes a temperature detection means, which is provided in the bath circulation circuit to detect the fluid temperature and emit a signal. Reference numeral 26 denotes an outside air temperature detection means, and 27 denotes an operation control means. The bath waste heat utilization operation is controlled by receiving a signal from the temperature detection means 25 and a signal from the outside air temperature detection means 27.

上記構成において動作を説明する。風呂廃熱利用の給湯運転において、給湯運転の時間経過とともに風呂循環回路の水温は低下する。そして、温度検知手段25で風呂循環回路の流体温度を検出し、一方、外気温度検知手段26で外気温度を検出する。そして、風呂循環回路の水温と外気温度を比較し、所定温度差に達すると運転制御手段27は風呂廃熱利用の給湯運転を停止する。ここで、例えば、浴槽の水を再加熱して追い焚きする場合に、追い焚きまで長時間放置すると中温の浴槽湯は自然放熱で温度低下する。しかし、本発明では、浴槽湯は廃熱利用されるとともに外気との温度差が小さくなった状態で放置するため、浴槽から外気への自然放熱は低減されて熱が有効に活用されるようになる。ここで、温度検知手段は風呂熱交換器の入口側に設けても、出口側に設けても外気温度との所定温度差の初期設定値が変わるだけで何ら効果は変わらない。   The operation in the above configuration will be described. In hot water supply operation using bath waste heat, the water temperature of the bath circulation circuit decreases with the passage of time of the hot water supply operation. Then, the temperature detecting means 25 detects the fluid temperature of the bath circulation circuit, while the outside air temperature detecting means 26 detects the outside air temperature. Then, the water temperature of the bath circulation circuit is compared with the outside air temperature, and when a predetermined temperature difference is reached, the operation control means 27 stops the hot water supply operation using the bath waste heat. Here, for example, when the water in the bathtub is reheated and reheated, if the bath water is left for a long time until it is reheated, the temperature of the intermediate temperature bath water is reduced by natural heat dissipation. However, in the present invention, since the bathtub water is used as waste heat and is left in a state where the temperature difference from the outside air is small, the natural heat radiation from the bathtub to the outside air is reduced so that the heat is effectively utilized. Become. Here, even if the temperature detection means is provided on the inlet side or the outlet side of the bath heat exchanger, the effect does not change as long as the initial set value of the predetermined temperature difference from the outside air temperature changes.

(実施例7)
本発明の実施例7を図11を参照しながら説明する。図11において、実施例1〜6と同じ構成、動作するものについては、同一符号とし、説明を省略する。28は大気熱利用蒸発器であり、排熱利用熱交換器5と並列に連結されて、圧縮機1の吸入側に一端がつながっている。29は切替え弁であり、単一あるいは複数具備して排熱利用熱交換器5と大気熱利用蒸発器28を流れる冷媒の流路を切り替える。切替え弁29を単一で用いる場合には図11中のAの分岐部に三方弁を設ける。また、複数の切替え弁を用いる場合は排熱利用熱交換器5の流路に設けた切替え弁29aと、大気熱利用蒸発器28の流路に設けた切替え弁29bからなる。30は温度検知手段であり、風呂循環回路に設けて流体温度を検出して信号を発する。31は制御手段であり、温度検知手段30の信号を受けて切替え弁29あるいは29a、29bを制御する。
(Example 7)
A seventh embodiment of the present invention will be described with reference to FIG. In FIG. 11, the same configuration and operation as those of the first to sixth embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 28 denotes an atmospheric heat utilization evaporator, which is connected in parallel with the exhaust heat utilization heat exchanger 5 and has one end connected to the suction side of the compressor 1. Reference numeral 29 denotes a switching valve, which is provided with a single or a plurality of switching valves to switch the refrigerant flow path flowing through the exhaust heat utilization heat exchanger 5 and the atmospheric heat utilization evaporator 28. When the switching valve 29 is used singly, a three-way valve is provided at the branch portion A in FIG. When a plurality of switching valves are used, the switching valve 29a is provided in the flow path of the exhaust heat utilization heat exchanger 5 and the switching valve 29b is provided in the flow path of the atmospheric heat utilization evaporator 28. Reference numeral 30 denotes a temperature detection means, which is provided in the bath circulation circuit to detect the fluid temperature and emit a signal. 31 is a control means, and controls the switching valve 29 or 29a, 29b in response to a signal from the temperature detection means 30.

上記構成において動作を説明する。風呂廃熱利用の給湯運転において、温度検知手段30は浴槽湯温が所定温度まで下がったことを検出し、その信号を制御手段31に送る。そして、制御手段31は切替え弁29aを閉状態、29bを開放状態へ切替え、冷媒が大気熱利用蒸発器28へ流れるようにして大気熱利用で給湯運転を継続する。ここで、切替え弁29a、29bの切替えをおこなう浴槽湯温は、予め設定された浴槽追い焚き運転時間で浴槽が沸き上がるように設定することができる。よって、貯湯槽への給湯熱量は増加するとともに浴槽追い焚き運転時間の短縮化が図られ、入浴の利便性が向上する。また、浴槽の追い焚き・保温運転において、温度検知手段30の信号を受けて制御手段31は切替え弁29a、29bに信号をおくり、冷媒の流路が排熱利用熱交換器5および大気熱利用蒸発器28ともに流れるように開放状態にする。そして、圧縮機1からの吐出冷媒は四方弁2を通り、排熱利用熱交換器5に流入し、風呂熱交換器を介して、凝縮熱を放熱して浴槽10の水を加熱する。そして、冷媒流量制御手段4bで減圧されて大気熱利用蒸発器28に流入し、ここで大気熱を集熱して圧縮機1に戻る。ここで、大気熱利用蒸発器28は大気熱以外に太陽熱も集熱する集熱器として用いることも可能である。なお、集熱器として用いることが可能な点は以下に説明する実施例8〜13についても同様であり、以下の説明では省略する。   The operation in the above configuration will be described. In the hot water supply operation using bath waste heat, the temperature detection means 30 detects that the bath water temperature has dropped to a predetermined temperature and sends a signal to the control means 31. Then, the control means 31 switches the switching valve 29a to the closed state and 29b to the open state, and continues the hot water supply operation using the atmospheric heat so that the refrigerant flows to the evaporator 28 using the atmospheric heat. Here, the bathtub hot water temperature at which the switching valves 29a and 29b are switched can be set so that the bathtub boils up in a preset bathtub reheating operation time. Accordingly, the amount of hot water supplied to the hot water tank is increased and the time required for bathing the bathtub is shortened, so that the convenience of bathing is improved. In addition, in the reheating and heat insulation operation of the bathtub, the control means 31 sends a signal to the switching valves 29a and 29b in response to the signal from the temperature detection means 30, and the refrigerant flow path uses the exhaust heat utilization heat exchanger 5 and the atmospheric heat utilization. The evaporator 28 is opened so that it can flow together. Then, the refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the exhaust heat utilization heat exchanger 5 to dissipate the heat of condensation through the bath heat exchanger and heat the water in the bathtub 10. Then, the pressure is reduced by the refrigerant flow rate control means 4 b and flows into the atmospheric heat utilization evaporator 28, where the atmospheric heat is collected and returned to the compressor 1. Here, the atmospheric heat utilization evaporator 28 can also be used as a heat collector that collects solar heat in addition to atmospheric heat. In addition, the point which can be used as a heat collector is the same also about Examples 8-13 demonstrated below, and it abbreviate | omits in the following description.

(実施例8)
本発明の実施例8を図12を参照しながら説明する。図12において、実施例1〜7と同じ構成、動作するものについては、同一符号とし、説明を省略する。32は着霜温度検知手段であり、大気熱利用蒸発器28の冷媒入口温度を検知する。33は制御手段であり、着霜温度検知手段32の信号を受けて冷媒の流路を大気熱利用蒸発器28から廃熱利用熱交換器への切替えをおこなう。
(Example 8)
An eighth embodiment of the present invention will be described with reference to FIG. In FIG. 12, the same configuration and operation as those of the first to seventh embodiments are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 32 denotes frosting temperature detecting means for detecting the refrigerant inlet temperature of the atmospheric heat utilization evaporator 28. A control means 33 receives the signal from the frosting temperature detection means 32 and switches the refrigerant flow path from the atmospheric heat utilization evaporator 28 to the waste heat utilization heat exchanger.

上記構成において動作を説明する。冬季の大気熱利用給湯運転において、大気熱利用蒸発器28の冷媒温度が所定温度まで低下したことを着霜温度検知手段32が検出し、制御手段33へ信号を送る。そして、制御手段33は冷媒の流路を大気熱利用蒸発器28から廃熱利用熱交換器5へ切替えをおこない、風呂熱交換器12から風呂の廃熱を利用して給湯運転が継続される。よって、着霜条件下においても、高効率給湯運転は可能となり、貯湯槽6への給湯熱量は増加することになる。   The operation in the above configuration will be described. In the winter hot air hot water supply operation, the frosting temperature detection means 32 detects that the refrigerant temperature of the atmospheric heat use evaporator 28 has decreased to a predetermined temperature, and sends a signal to the control means 33. And the control means 33 switches the flow path of a refrigerant | coolant from the atmospheric heat utilization evaporator 28 to the waste heat utilization heat exchanger 5, and the hot water supply operation is continued using the waste heat of the bath from the bath heat exchanger 12. . Therefore, even under frosting conditions, a highly efficient hot water supply operation is possible, and the amount of hot water supplied to the hot water storage tank 6 is increased.

(実施例9)
本発明の実施例9を図13を参照しながら説明する。図13において、実施例1〜8と同じ構成、動作するものについては、同一符号とし、説明を省略する。34は第1の冷媒流量制御装置であり、大気熱利用蒸発器の入口に設けられている。35は第2の冷媒流量制御装置であり、排熱利用熱交換器の入口に設けられている。
Example 9
A ninth embodiment of the present invention will be described with reference to FIG. In FIG. 13, the same configuration and operation as those in the first to eighth embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 34 denotes a first refrigerant flow control device, which is provided at the inlet of the atmospheric heat utilization evaporator. Reference numeral 35 denotes a second refrigerant flow rate control device, which is provided at the inlet of the exhaust heat utilization heat exchanger.

上記構成において動作を説明する。給湯運転において、圧縮機1から吐出した高温高圧のガス冷媒は四方弁2を通り給湯加熱器3に流入する。一方、貯湯槽6の水は給湯ポンプ7によって給湯熱交換器8に流入し、ここで、冷媒の凝縮熱によって給湯加熱器3を介して加熱されて貯湯槽6に流入する。そして、凝縮液化した冷媒は減圧装置4で減圧されて大気熱利用蒸発器28と廃熱利用熱交換器5に流れる。その際に大気熱利用蒸発器28と廃熱利用熱交換器5は熱源温度および熱源からの吸熱量が異なるため、最適な冷媒流量は異なる。従って、第1の冷媒流量制御装置34は大気熱利用蒸発器28へ流れる冷媒流量を調整し、第2の冷媒流量制御装置35は廃熱利用熱交換器5へ流れる冷媒流量を調整する。よって、大気熱と風呂廃熱を同時に集熱できるため、集熱量が増大する。また、集熱量を得るのに大気熱利用熱交換器および廃熱利用熱交換器は小型化が可能となる。   The operation in the above configuration will be described. In the hot water supply operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and flows into the hot water heater 3. On the other hand, the water in the hot water storage tank 6 flows into the hot water supply heat exchanger 8 by the hot water supply pump 7, where it is heated through the hot water heater 3 by the condensation heat of the refrigerant and flows into the hot water storage tank 6. The condensed and liquefied refrigerant is decompressed by the decompression device 4 and flows to the atmospheric heat utilization evaporator 28 and the waste heat utilization heat exchanger 5. At that time, since the atmospheric heat utilizing evaporator 28 and the waste heat utilizing heat exchanger 5 have different heat source temperatures and heat absorption amounts from the heat sources, the optimum refrigerant flow rates are different. Accordingly, the first refrigerant flow control device 34 adjusts the refrigerant flow rate flowing to the atmospheric heat utilization evaporator 28, and the second refrigerant flow control device 35 adjusts the refrigerant flow amount flowing to the waste heat utilization heat exchanger 5. Therefore, since the atmospheric heat and the bath waste heat can be collected at the same time, the amount of heat collection increases. In addition, it is possible to reduce the size of the heat exchanger using atmospheric heat and the heat exchanger using waste heat in order to obtain a heat collection amount.

(実施例10)
本発明の実施例10を図14を参照しながら説明する。図14において、実施例1〜9と同じ構成、動作するものについては、同一符号とし、説明を省略する。36は温度検知手段であり、貯湯槽に設け、貯湯温度を検出し信号を発する。37は出湯管であり、貯湯槽6の出湯口と風呂循環回路14を接続する。38は開閉弁であり、出湯管37に設けられている。39は運転制御手段であり、温度検知手段36の信号に基づき開閉弁38の制御および圧縮機1による大気熱利用ヒートポンプ運転の制御をおこなう。
(Example 10)
A tenth embodiment of the present invention will be described with reference to FIG. In FIG. 14, the same configuration and operation as those of the first to ninth embodiments are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 36 denotes temperature detection means, which is provided in the hot water storage tank and detects the hot water storage temperature and emits a signal. Reference numeral 37 denotes a hot water pipe which connects the hot water outlet of the hot water storage tank 6 and the bath circulation circuit 14. An open / close valve 38 is provided on the hot water outlet pipe 37. Reference numeral 39 denotes an operation control means, which controls the on-off valve 38 and the heat pump operation using the atmospheric heat by the compressor 1 based on the signal from the temperature detection means 36.

上記構成において動作を説明する。風呂追い焚き運転開始時において、温度検知手段36は貯湯槽6内の湯温を検出し、その信号を運転制御手段39に送る。そして、運転制御手段39は、その信号から貯湯槽6内に所定湯量が有ると認識した場合には開閉弁38を開状態にして貯湯槽6の湯を出湯管37を介して浴槽10に送る。よって、浴槽の湯温は短時間で上昇する。一方、貯湯槽6内に所定湯量がないと認識した場合には、圧縮機1による大気熱利用ヒートポンプ運転で風呂の追い焚き運転をおこなう。よって、貯湯槽6の湯を多量に貯湯した状態はなくなり、貯湯熱量の有効活用と入浴時の利便性向上を図ることができる。   The operation in the above configuration will be described. At the start of the bath chasing operation, the temperature detection means 36 detects the hot water temperature in the hot water tank 6 and sends a signal to the operation control means 39. When the operation control means 39 recognizes from the signal that there is a predetermined amount of hot water in the hot water storage tank 6, the open / close valve 38 is opened and the hot water in the hot water storage tank 6 is sent to the bathtub 10 through the hot water pipe 37. . Therefore, the bath temperature rises in a short time. On the other hand, when it is recognized that there is no predetermined amount of hot water in the hot water storage tank 6, the reheating operation of the bath is performed by the heat pump operation using the atmospheric heat by the compressor 1. Therefore, there is no state in which a large amount of hot water is stored in the hot water storage tank 6, and it is possible to effectively use the amount of stored hot water and improve convenience during bathing.

(実施例11)
本発明の実施例11を図15を参照しながら説明する。図15において、実施例1〜10と同じ構成、動作するものについては、同一符号とし、説明を省略する。40は給湯回路であり、給湯熱交換器8と貯湯槽6上部を接続する。41は流路切替え弁であり、給湯回路40に設けられ、給湯熱交換器8と貯湯槽の上部あるいは下部への流路切替えをおこなう。
(Example 11)
Embodiment 11 of the present invention will be described with reference to FIG. In FIG. 15, the same configuration and operation as those of the first to tenth embodiments are denoted by the same reference numerals, and description thereof is omitted. A hot water supply circuit 40 connects the hot water supply heat exchanger 8 and the upper part of the hot water tank 6. Reference numeral 41 denotes a flow path switching valve which is provided in the hot water supply circuit 40 and switches the flow path to the upper or lower part of the hot water supply heat exchanger 8 and the hot water storage tank.

上記構成において動作を説明する。貯湯槽6内の給湯熱を利用した風呂追い焚き運転において、廃熱利用熱交換器5で風呂追い焚きをおこない、給湯加熱器3は蒸発作用をおこなって貯湯槽6内の給湯熱から吸熱する。その際、給湯加熱器3を介して採熱された湯は温度低下して給湯熱交換器8から流出する。そして、流路切替え弁41を通り、貯湯槽6下部へ流入する。よって、貯湯槽6上部の高温湯に低温水が流入することもない。   The operation in the above configuration will be described. In the bath reheating operation using the hot water supply heat in the hot water storage tank 6, the hot water use heat exchanger 5 reheats the bath, and the hot water supply heater 3 performs an evaporating action to absorb heat from the hot water supply heat in the hot water storage tank 6. . At that time, the hot water collected through the hot water heater 3 drops in temperature and flows out of the hot water heat exchanger 8. Then, it passes through the flow path switching valve 41 and flows into the lower part of the hot water tank 6. Therefore, the low temperature water does not flow into the high temperature hot water in the upper part of the hot water tank 6.

(実施例12)
本発明の実施例12を図16を参照しながら説明する。図16において、実施例1〜11と同じ構成、動作するものについては、同一符号とし、説明を省略する。42は給湯用ポンプであり、回転数制御型である。43は電気ヒータなどの熱源、44は加熱器であり、給湯回路40に設けられ、熱源43を具備する。45は温度検知手段であり、加熱器の出口に設けられ、流体温度を検出して信号を発する。46は回転数制御手段であり、温度検知手段45の信号に基づき給湯用ポンプ42の回転数を制御する。
(Example 12)
A twelfth embodiment of the present invention will be described with reference to FIG. In FIG. 16, the same configurations and operations as those in the first to eleventh embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 42 denotes a hot water supply pump, which is a rotational speed control type. Reference numeral 43 denotes a heat source such as an electric heater, and 44 denotes a heater, which is provided in the hot water supply circuit 40 and includes a heat source 43. Reference numeral 45 denotes a temperature detecting means, which is provided at the outlet of the heater and detects a fluid temperature to generate a signal. Reference numeral 46 denotes a rotation speed control means for controlling the rotation speed of the hot water supply pump 42 based on a signal from the temperature detection means 45.

上記構成において動作を説明する。貯湯槽内の給湯熱を利用した風呂追い焚き運転において、給湯熱交換器8から流出する低温水は加熱器44に流入し、熱源43によって加熱される。そして、温度検知手段45は出口温度を検出し、その信号を受けて回転数制御手段46は所定温度となるように給湯用ポンプ42の回転数制御をおこなう。よって、加熱器44出口の湯温は貯湯槽6上部の湯温と同じ温度で上部から流入する。よって、貯湯熱を利用した浴槽追い焚き運転において、貯湯熱量の減少防止と貯湯槽上部の湯温の安定化を図ることができる。   The operation in the above configuration will be described. In the bath chasing operation using the hot water supply heat in the hot water storage tank, the low temperature water flowing out from the hot water supply heat exchanger 8 flows into the heater 44 and is heated by the heat source 43. Then, the temperature detecting means 45 detects the outlet temperature, and upon receiving the signal, the rotational speed control means 46 controls the rotational speed of the hot water supply pump 42 so as to reach a predetermined temperature. Therefore, the hot water temperature at the outlet of the heater 44 flows from the upper part at the same temperature as the hot water temperature at the upper part of the hot water storage tank 6. Therefore, it is possible to prevent a decrease in the amount of stored hot water and stabilize the hot water temperature in the upper portion of the hot water tank in the bathtub reheating operation using the hot water.

(実施例13)
本発明の実施例13を図17、図18を参照しながら説明する。図17、図18において、実施例1〜12と同じ構成、動作するものについては、同一符号とし、説明を省略する。47は貯湯ユニットであり、圧縮機1などの冷媒回路部、貯湯槽6、給湯用ポンプなどの給湯回路部9、風呂循環ポンプ11及び風呂熱交換器12を具備する。48は大気熱利用蒸発器であり、貯湯ユニットの外装周囲に装着し、自然の風を利用した、いわゆる送風ファンレスで熱交換をおこなう。図18は貯湯ユニットと大気熱利用蒸発器の構成を表す。
(Example 13)
A thirteenth embodiment of the present invention will be described with reference to FIGS. 17 and 18, the same configuration and operation as those of the first to twelfth embodiments are denoted by the same reference numerals and description thereof is omitted. A hot water storage unit 47 includes a refrigerant circuit section such as the compressor 1, a hot water storage tank 6, a hot water supply circuit section 9 such as a hot water supply pump, a bath circulation pump 11, and a bath heat exchanger 12. Reference numeral 48 denotes an atmospheric heat utilization evaporator, which is mounted around the exterior of the hot water storage unit, and performs heat exchange without using a so-called blower fan using natural wind. FIG. 18 shows the configuration of the hot water storage unit and the atmospheric heat utilization evaporator.

上記構成において動作を説明する。大気熱利用蒸発器48近傍では、大気熱は冷媒に吸熱されて温度を下げ、自然下降流が生じる。その自然下降流で冷媒と大気熱は熱交換する。よって、送風ファン不要となるため低騒音化が図られる。また、貯湯ユニット47にすべて収納しているため、設置スペースも縮小化できる。また、給湯回路9の接続工事は不要となるため、省工事となる。   The operation in the above configuration will be described. In the vicinity of the atmospheric heat utilization evaporator 48, the atmospheric heat is absorbed by the refrigerant to lower the temperature, and a natural downward flow is generated. The natural downward flow causes heat exchange between the refrigerant and the atmospheric heat. Therefore, noise reduction is achieved because a blower fan is not required. Moreover, since all the hot water storage units 47 are housed, the installation space can be reduced. Further, since the connection work for the hot water supply circuit 9 is not required, the work is saved.

以上の説明から明らかのように本発明のヒートポンプ式風呂給湯システムによれば、次の効果を奏する。   As is apparent from the above description, the heat pump bath water heating system of the present invention has the following effects.

風呂廃熱利用の給湯運転において、風呂循環回路に流量制御手段を備え、廃熱利用熱交換器での吸熱量を調整することができるため、給湯側の熱交換器が小型化すると共に高効率給湯運転が可能となる。   In hot water supply operation using waste heat from the bath, a flow control means is provided in the bath circulation circuit, and the amount of heat absorbed by the heat exchanger using waste heat can be adjusted, so the heat exchanger on the hot water supply side is downsized and highly efficient. Hot water supply operation is possible.

また、排熱利用熱交換器の入口温度を検出する冷媒温度検知手段と、冷媒温度検知手段の信号に基づき流量制御手段を制御する流量制御部とを備え、冷媒温度を検出して、風呂循環流量を変えることによって、ヒートポンプサイクルは予め設定された冷媒温度、圧力で運転することになり、圧縮機の高圧が異常上昇することがなく信頼性が向上する。   The apparatus further comprises a refrigerant temperature detecting means for detecting the inlet temperature of the exhaust heat utilization heat exchanger, and a flow rate control unit for controlling the flow rate control means based on a signal from the refrigerant temperature detecting means to detect the refrigerant temperature and to circulate the bath. By changing the flow rate, the heat pump cycle is operated at a preset refrigerant temperature and pressure, and the high pressure of the compressor does not rise abnormally and the reliability is improved.

また、圧縮機の回転周波数を可変するインバータ電源部と、風呂熱交換器の水出口温度を検出する温度検知手段と、温度検知手段の信号に基づきインバータ電源部の周波数制御をおこなう周波数制御手段とを備え、風呂廃熱利用の給湯運転において、温度検知手段により、圧縮機の回転周波数を制御して給湯熱交換器での加熱量および廃熱利用熱交換器での風呂廃熱交換量を調整するため、熱交換器のスペックに適した高効率運転ができるようになる。また給湯熱交換器、給湯加熱器、廃熱利用熱交換器、風呂熱交換器の小型化が達成できるようになる。   In addition, an inverter power supply unit that varies the rotation frequency of the compressor, a temperature detection unit that detects a water outlet temperature of the bath heat exchanger, and a frequency control unit that performs frequency control of the inverter power supply unit based on a signal of the temperature detection unit In the hot water supply operation using waste heat from the bath, the temperature detection means controls the rotation frequency of the compressor to adjust the heating amount in the hot water supply heat exchanger and the waste heat exchange amount in the waste heat utilization heat exchanger. Therefore, high efficiency operation suitable for the specifications of the heat exchanger can be performed. Further, miniaturization of hot water supply heat exchangers, hot water supply heaters, waste heat utilization heat exchangers, and bath heat exchangers can be achieved.

また、風呂熱交換器の水出口温度を検出する温度検知手段と、温度検知手段の信号に基づき流量制御手段を制御する流量制御部とを備え、風呂廃熱利用の給湯運転において、温度検知手段の信号に基づき風呂循環回路の循環流量を制御し、風呂廃熱交換量を調整するため、圧縮機の高圧が異常に上昇することもない。また、温度検知手段は浴槽追い焚き運転時において、風呂熱交換器の出口湯温を制御して、所定温度で浴槽に返すことができるため、一つの温度検知手段で風呂廃熱利用給湯運転と浴槽追い焚き運転が可能となる。また、浴槽に高温湯が流入することもなくなるため、浴槽の耐久性が向上する。   The temperature detecting means for detecting the water outlet temperature of the bath heat exchanger, and the flow rate control unit for controlling the flow rate controlling means based on the signal of the temperature detecting means, in the hot water supply operation using the bath waste heat, the temperature detecting means Since the circulation flow rate of the bath circulation circuit is controlled based on the signal and the bath waste heat exchange amount is adjusted, the high pressure of the compressor does not rise abnormally. In addition, the temperature detection means can control the temperature of the hot water at the outlet of the bath heat exchanger and return it to the bathtub at a predetermined temperature during the bathing operation. Bathtub chasing operation becomes possible. Moreover, since hot water does not flow into the bathtub, the durability of the bathtub is improved.

また、水吐出方向・吸入方向を可逆可能は風呂循環ポンプを備え、風呂廃熱利用給湯運転時と浴槽追い焚き運転時で風呂循環ポンプの流れ方向を変え、廃熱利用熱交換器を流れる冷媒と風呂熱交換器を流れる水が絶えず対向流で熱交換するようにしているため、熱交換効率が高くなる。   In addition, the water circulation direction and reversible direction are equipped with a bath circulation pump, which changes the flow direction of the bath circulation pump during bath waste heat hot water supply operation and bathtub reheating operation, and flows through the waste heat heat exchanger. Since the water flowing through the bath heat exchanger constantly exchanges heat in the counterflow, the heat exchange efficiency is increased.

また、風呂循環回路に設けた温度検知手段と、外気温度検知手段と、温度検知手段の信号と外気温度検知手段の信号を受けて風呂廃熱利用運転を制御する運転制御手段を備え、風呂廃熱利用の給湯運転において、運転経過につれて低下する浴槽湯温と外気温度を比較し、所定温度差に達すると風呂廃熱利用の給湯運転を停止する。よって、浴槽湯は廃熱利用され、外気温度に近い温度で放置されるため、浴槽から外気への自然放熱は低減され、熱が有効に活用される。   Also provided with a temperature detection means provided in the bath circulation circuit, an outside air temperature detection means, an operation control means for receiving a signal from the temperature detection means and a signal from the outside air temperature detection means to control the operation using the waste heat from the bath. In the hot water supply operation using heat, the hot water temperature operation using the bath waste heat is stopped when the bath water temperature and the outside air temperature, which decrease as the operation progresses, are compared and a predetermined temperature difference is reached. Therefore, since the bathtub water is used as waste heat and is left at a temperature close to the outside air temperature, natural heat radiation from the bathtub to the outside air is reduced, and heat is effectively utilized.

また、排熱利用熱交換器と並列に連結されて圧縮機の吸入側に一端がつながっている大気熱利用蒸発器と、冷媒の流路を排熱利用熱交換器と大気熱利用蒸発器の切替えをおこなう単一あるいは複数の切替え弁と、風呂循環回路に設けて流体温度を検出する温度検知手段と、温度検知手段の信号を受けて切替え弁を制御する制御手段とを備え、風呂廃熱利用の給湯運転において、浴槽湯温が所定温度まで下がったことを検出し、冷媒を大気熱利用蒸発器へ流して大気熱利用で給湯運転を継続する。ここで、予め設定された浴槽追い焚き運転時間で浴槽が沸き上がるように大気熱利用給湯運転に切り替えれば、貯湯槽への給湯熱量は増加するとともに浴槽追い焚き運転時間の短縮化が図られ、入浴の利便性が向上する。   In addition, an atmospheric heat utilization evaporator connected in parallel with the exhaust heat utilization heat exchanger and connected at one end to the suction side of the compressor, and a refrigerant flow path between the exhaust heat utilization heat exchanger and the atmospheric heat utilization evaporator. Waste bath heat is provided with a single or plural switching valves for switching, temperature detection means for detecting a fluid temperature provided in a bath circulation circuit, and control means for controlling the switching valve in response to a signal from the temperature detection means. In the hot water supply operation for use, it is detected that the bath water temperature has fallen to a predetermined temperature, and the hot water supply operation is continued using the atmospheric heat by flowing the refrigerant to the atmospheric heat utilization evaporator. Here, if switching to hot water supply operation using atmospheric heat so that the bathtub boils up in the preset bath reheating operation time, the amount of hot water supplied to the hot water tank will increase and the bath reheating operation time will be shortened. Improved convenience.

また、大気熱利用蒸発器の冷媒入口温度を検知する着霜温度検知手段と、着霜温度検知手段の信号を受けて冷媒の流路を大気熱利用蒸発器から風呂熱交換器への切替えをおこなう制御手段とを備え、冬季の大気熱利用給湯運転において、大気熱利用蒸発器の冷媒温度が所定温度まで低下したことを着霜温度検知手段が検出し、冷媒の流路を大気熱利用蒸発器から廃熱利用熱交換器へ切替えをおこなう。従って、着霜条件下においても、高効率給湯運転ができるとともに貯湯槽への給湯熱量を増加することができる。   In addition, the frosting temperature detecting means for detecting the refrigerant inlet temperature of the atmospheric heat utilization evaporator and the signal of the frosting temperature detection means are used to switch the refrigerant flow path from the atmospheric heat utilization evaporator to the bath heat exchanger. Control means to perform, in the atmospheric hot water supply hot water operation in winter, the frost temperature detection means detects that the refrigerant temperature of the atmospheric heat utilization evaporator has decreased to a predetermined temperature, and the refrigerant flow is evaporated using the atmospheric heat Switch from heat exchanger to waste heat heat exchanger. Therefore, even under frosting conditions, a highly efficient hot water supply operation can be performed and the amount of hot water supplied to the hot water storage tank can be increased.

また、大気熱利用蒸発器に流れる冷媒流量を制御する第1の冷媒流量制御弁と、排熱利用熱交換器交換器に流れる冷媒流量を制御する第2の冷媒流量制御弁とを備え、大気熱利用と風呂廃熱利用を同時におこなうようにしたことにより、集熱量が増大し、同じ集熱量を得るのに大気熱利用熱交換器および廃熱利用熱交換器は小型化が可能となる。   And a first refrigerant flow control valve that controls the flow rate of the refrigerant flowing through the atmospheric heat utilization evaporator, and a second refrigerant flow control valve that controls the flow rate of the refrigerant flowing through the exhaust heat utilization heat exchanger exchanger. By using heat and bath waste heat at the same time, the amount of heat collection increases, and the air heat heat exchanger and the waste heat heat exchanger can be downsized to obtain the same amount of heat collection.

また、貯湯槽に設けた温度検知手段と、貯湯槽の出湯口と風呂循環回路を接続する出湯管に設けた開閉弁と、温度検知手段の信号に基づき開閉弁の制御および圧縮機による大気熱利用ヒートポンプ運転制御をおこなう運転制御手段とを備え、貯湯槽内の湯温を検出し、貯湯槽内に所定湯量が有る場合には開閉弁を開状態にして貯湯槽の湯を出湯管を介して浴槽に送る。一方、貯湯槽内に所定湯量がない場合には、圧縮機による大気熱利用ヒートポンプ運転で風呂の追い焚き運転をおこなうようにしたことにより、貯湯槽の湯は多量に貯湯されることがなく、貯湯熱量の有効活用と入浴時の利便性向上をはかることができる。   In addition, the temperature detection means provided in the hot water tank, the open / close valve provided in the hot water pipe connecting the hot water outlet and the bath circulation circuit, the control of the open / close valve based on the signal of the temperature detection means and the atmospheric heat generated by the compressor Operation control means for performing heat pump operation control, detects the hot water temperature in the hot water storage tank, and when there is a predetermined amount of hot water in the hot water storage tank, the open / close valve is opened and the hot water in the hot water storage tank is passed through the outlet pipe. And send it to the bathtub. On the other hand, when there is no predetermined amount of hot water in the hot water storage tank, the hot water of the hot water storage tank is not stored in large quantities by performing the reheating operation of the bath with the heat pump operation using atmospheric heat by the compressor. It is possible to effectively use the amount of heat stored in the hot water and improve convenience when taking a bath.

また、給湯熱交換器と貯湯槽上部を接続する給湯回路に、貯湯槽下部へ流路切替えをおこなう流路切替え弁とを備え、貯湯槽内の給湯熱を利用した風呂追い焚き運転において、給湯熱交換器から流出する温度低下した貯湯槽湯を流路切替え弁で貯湯槽下部へ流入するようにしているため、貯湯槽上部の高温湯に低温水が流入することがなくなる。   In addition, a hot water supply circuit connecting the hot water supply heat exchanger and the upper part of the hot water storage tank is provided with a flow path switching valve for switching the flow path to the lower part of the hot water storage tank. Since the temperature-reduced hot water tank hot water flowing out from the heat exchanger flows into the hot water tank lower part by the flow path switching valve, the low temperature water does not flow into the high temperature hot water at the upper part of the hot water tank.

また、回転数制御型の給湯用ポンプと、給湯熱交換器と貯湯槽上部を接続する給湯回路に設けた熱源を有する加熱器と、加熱器の出口に設けた温度検知手段と、温度検知手段の信号に基づき給湯用ポンプの回転数を制御する回転数制御手段とを備え、貯湯槽内の給湯熱を利用した風呂追い焚き運転において、給湯熱交換器から流出する低温水を加熱器に流入させて熱源によって加熱し、その出口温度が所定温度となるように給湯用ポンプの回転数制御をおこなっているため、加熱器出口の湯温は貯湯槽上部の湯温と同じ温度で上部から流入する。よって、貯湯熱利用の浴槽追い焚き運転において、貯湯熱量の減少防止と貯湯槽上部の湯温安定化を図ることができる。   Also, a rotation speed control type hot water supply pump, a heater having a heat source provided in a hot water supply circuit connecting the hot water supply heat exchanger and the upper part of the hot water storage tank, a temperature detection means provided at the outlet of the heater, and a temperature detection means Rotational speed control means for controlling the rotational speed of the hot water supply pump based on the signal of the hot water in the bath reheating operation using the hot water supply heat in the hot water tank, the low temperature water flowing out from the hot water heat exchanger flows into the heater The temperature of the hot water supply pump is controlled so that the outlet temperature becomes a predetermined temperature, and the hot water temperature at the heater outlet flows from the top at the same temperature as the hot water temperature at the top of the hot water tank. To do. Therefore, it is possible to prevent a decrease in the amount of stored hot water and stabilize the hot water temperature in the upper part of the hot water tank in the bathtub reheating operation using the hot water stored heat.

また、冷媒回路部品と給湯回路部品および風呂循環ポンプ、風呂熱交換器を具備する貯湯ユニットと、ファンレスの大気熱利用蒸発器を貯湯ユニットの外側に装着した構成にして、1つのユニットに収納しているため設置スペースが縮小し、水関連工事が簡単になり、また、ファンレスで大気熱集熱をするため低騒音化が図られる。   In addition, a hot water storage unit including a refrigerant circuit component, a hot water supply circuit component, a bath circulation pump, and a bath heat exchanger, and a fanless atmospheric heat utilization evaporator are mounted on the outside of the hot water storage unit and stored in one unit. As a result, the installation space is reduced, water-related work is simplified, and noise is reduced due to the fanless air heat collection.

以上の説明から明らかなように、本発明のヒートポンプ式風呂給湯システムによれば、浴槽から外気への自然放熱は低減されて熱が有効に活用されるようになる。   As is clear from the above description, according to the heat pump type hot water supply system of the present invention, the natural heat radiation from the bathtub to the outside air is reduced and the heat is effectively utilized.

本発明の実施例1のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type bath hot water supply system of Example 1 of this invention 同システムの別に示した構成図Configuration diagram shown separately for the system 本発明の実施例2のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type bath hot-water supply system of Example 2 of this invention 本発明の実施例3のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type bath hot water supply system of Example 3 of this invention 本発明の実施例4のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type hot-water supply system of Example 4 of this invention 本発明の実施例5のヒートポンプ式給湯システムにおいて風呂廃熱利用の場合を示す構成図The block diagram which shows the case of using bath waste heat in the heat pump type hot-water supply system of Example 5 of this invention 同システムの風呂廃熱利用給湯運転時の熱交換器内の温度分布図Temperature distribution diagram in heat exchanger during hot water supply operation using bath waste heat of the system 同システムの浴槽追い焚きの場合を示す構成図Configuration diagram showing the case of bathing in the same system 同システムの浴槽追い焚き運転時の熱交換器内の温度分布図Temperature distribution diagram in the heat exchanger during bathing operation of the system 本発明の実施例6のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type bath hot water supply system of Example 6 of this invention 本発明の実施例7のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type bath hot-water supply system of Example 7 of this invention 本発明の実施例8のヒートポンプ式風呂給湯システムの構成図Configuration diagram of heat pump type hot water supply system of embodiment 8 of the present invention 本発明の実施例9のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type bath hot water supply system of Example 9 of this invention 本発明の実施例10のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type hot-water supply system of Example 10 of this invention 本発明の実施例11のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type hot-water supply system of Example 11 of this invention 本発明の実施例12のヒートポンプ式風呂給湯システムの構成図The block diagram of the heat pump type bath hot water supply system of Example 12 of this invention 本発明の実施例13のヒートポンプ式風呂給湯システムの構成図Configuration diagram of heat pump bath water heating system according to Embodiment 13 of the present invention 同システムの貯湯ユニットと大気熱利用蒸発器の構成図Configuration diagram of hot water storage unit and atmospheric heat utilizing evaporator 従来のヒートポンプシステムの構成図Configuration diagram of conventional heat pump system

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3 給湯加熱器
4 減圧装置
5 排熱利用熱交換器
6 貯湯槽
7、42 給湯用ポンプ
8 給湯熱交換器
9 給湯回路
10 浴槽
11、24 風呂循環ポンプ
12 風呂熱交換器
13 流量調整手段
14 風呂循環回路
15 風呂循環ポンプ
16、46 回転数制御手段
17 冷媒温度検知手段
18、23 流量制御部
19 インバータ電源部
20、22、25、30、36、45 温度検知手段
21 周波数制御手段
26 外気温度検知手段
27、39 運転制御手段
28、48 大気熱利用蒸発器
29a、29b 切替え弁
31、33 制御手段
32 着霜温度検知手段
34 第1の冷媒流量制御手段
35 第2の冷媒流量制御手段
37 出湯管
38 開閉弁
40 給湯回路
41 流路切替え弁
43 熱源
44 加熱器
47 貯湯ユニット
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Hot-water heater 4 Depressurization device 5 Waste heat utilization heat exchanger 6 Hot water storage tank 7, 42 Hot-water supply pump 8 Hot-water supply heat exchanger 9 Hot-water supply circuit 10 Bathtub 11, 24 Bath circulation pump 12 Bath heat exchanger DESCRIPTION OF SYMBOLS 13 Flow volume adjustment means 14 Bath circulation circuit 15 Bath circulation pump 16, 46 Rotational speed control means 17 Refrigerant temperature detection means 18, 23 Flow rate control part 19 Inverter power supply part 20, 22, 25, 30, 36, 45 Temperature detection means 21 Frequency Control means 26 Outside air temperature detection means 27, 39 Operation control means 28, 48 Atmospheric heat utilization evaporators 29a, 29b Switching valves 31, 33 Control means 32 Frosting temperature detection means 34 First refrigerant flow rate control means 35 Second refrigerant Flow rate control means 37 Hot water outlet pipe 38 On-off valve 40 Hot water supply circuit 41 Channel switching valve 43 Heat source 44 Heater 47 Hot water storage unit

Claims (3)

圧縮機を有する冷媒回路と、この冷媒回路に接続した給湯加熱器および排熱利用熱交換器と、貯湯槽の湯水が流動し、前記給湯加熱器と熱交換関係を有する給湯熱交換器を途中に接続した給湯回路と、風呂循環ポンプを介して浴槽の湯水を循環させるとともに、前記排熱利用熱交換器と熱交換関係を有する風呂熱交換器を途中に接続した風呂循環回路と、前記風呂循環回路の水出口温度を検知する温度検知手段と、外気温度を検知する外気温度検知手段と、風呂排熱利用運転を制御する運転制御手段とを備え、前記運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との相関関係に基づき風呂排熱利用運転を制御するようにし、浴槽追い焚き運転において、風呂熱交換器の出口温度を温度検知手段が検出し、温度検知手段の信号が所定温度の信号となるように制御をおこなうヒートポンプ式風呂給湯システム。 A refrigerant circuit having a compressor, a hot water heater and a waste heat utilization heat exchanger connected to the refrigerant circuit, and hot water in the hot water tank flow, and a hot water heater having a heat exchange relationship with the hot water heater is provided on the way. A hot water supply circuit connected to the bath, a hot water in the bathtub circulated through a bath circulation pump, and a bath circulation circuit in which a bath heat exchanger having a heat exchange relationship with the exhaust heat utilization heat exchanger is connected halfway, and the bath A temperature detection means for detecting a water outlet temperature of the circulation circuit ; an outside air temperature detection means for detecting an outside air temperature; and an operation control means for controlling a bath exhaust heat utilization operation, wherein the operation control means is the temperature detection means. so as to control the bath waste heat utilization operation based on the correlation between the temperature sensed by the sensed temperature and the outside air temperature detecting means, the in bath reheating operation, the outlet temperature of the bath heat exchanger temperature Detecting means detects, heat pump bath hot-water supply system for the control so that the signal of the temperature detecting means becomes a signal of a predetermined temperature. 前記運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との相関関係に基づき風呂排熱利用運転を停止する請求項1記載のヒートポンプ式風呂給湯システム。 The heat pump bath water heater according to claim 1, wherein the operation control means stops the bath exhaust heat utilization operation based on a correlation between the temperature detected by the temperature detection means and the temperature detected by the outside air temperature detection means. system. 前記運転制御手段は、前記温度検知手段により検知された温度と前記外気温度検知手段とにより検知された温度との温度差が所定温度に達したときに、風呂排熱利用運転を停止する請求項2記載のヒートポンプ式風呂給湯システム。 The operation control means stops the bath exhaust heat utilization operation when the temperature difference between the temperature detected by the temperature detection means and the temperature detected by the outside air temperature detection means reaches a predetermined temperature. 2. A heat pump hot water supply system according to 2.
JP2004276869A 2004-09-24 2004-09-24 Heat pump bath water supply system Expired - Lifetime JP3856023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276869A JP3856023B2 (en) 2004-09-24 2004-09-24 Heat pump bath water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276869A JP3856023B2 (en) 2004-09-24 2004-09-24 Heat pump bath water supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17636596A Division JP3632306B2 (en) 1996-07-05 1996-07-05 Heat pump bath water supply system

Publications (2)

Publication Number Publication Date
JP2005016944A JP2005016944A (en) 2005-01-20
JP3856023B2 true JP3856023B2 (en) 2006-12-13

Family

ID=34191832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276869A Expired - Lifetime JP3856023B2 (en) 2004-09-24 2004-09-24 Heat pump bath water supply system

Country Status (1)

Country Link
JP (1) JP3856023B2 (en)

Also Published As

Publication number Publication date
JP2005016944A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
CN104949409B (en) A kind of flexible air source heat pump defrosting system and method that need not start compressor
JP4059616B2 (en) Heat pump water heater
CN102466374B (en) Heat pump type water heating apparatus
JP3856024B2 (en) Heat pump bath water supply system
JP5958411B2 (en) HEAT PUMP SYSTEM AND ITS CONTROL DEVICE
JP3855695B2 (en) Heat pump water heater
JP3632306B2 (en) Heat pump bath water supply system
JP5194492B2 (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP2012013350A (en) Hot-water heater
JP2005308344A (en) Heat pump water heater
JP5678098B2 (en) Water heater
JP4466084B2 (en) Hybrid heat source machine and water heater
JP3856023B2 (en) Heat pump bath water supply system
JP2002340400A (en) Heat pump hot water supply apparatus
JP2006017377A (en) Heat pump water heater
JPH08152193A (en) Hot water supplying device
JP3703995B2 (en) Heat pump water heater
JP2005188923A (en) Heat pump water heater
JP4790538B2 (en) Hot water storage hot water heater
JP2006194537A (en) Heat pump device
JP2009085476A (en) Heat pump water heater
JP2005043047A (en) Heat pump type hot-water supply system for bath
JP2006234211A (en) Heat pump water heater
JP2004012057A (en) Heat pump type water heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6