JP3703995B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3703995B2
JP3703995B2 JP15328099A JP15328099A JP3703995B2 JP 3703995 B2 JP3703995 B2 JP 3703995B2 JP 15328099 A JP15328099 A JP 15328099A JP 15328099 A JP15328099 A JP 15328099A JP 3703995 B2 JP3703995 B2 JP 3703995B2
Authority
JP
Japan
Prior art keywords
temperature
discharge
discharge temperature
outside air
decompression device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15328099A
Other languages
Japanese (ja)
Other versions
JP2000346447A5 (en
JP2000346447A (en
Inventor
昌宏 尾浜
竹司 渡辺
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP15328099A priority Critical patent/JP3703995B2/en
Publication of JP2000346447A publication Critical patent/JP2000346447A/en
Publication of JP2000346447A5 publication Critical patent/JP2000346447A5/ja
Application granted granted Critical
Publication of JP3703995B2 publication Critical patent/JP3703995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は貯湯式のヒートポンプ給湯機に関するものである。
【0002】
【従来の技術】
従来のこの種のヒートポンプ給湯機は特開昭60−164157号公報に示すようなものがある。図14は従来のヒートポンプ給湯機の構成説明図である。図14において、圧縮機1、冷媒対水熱交換器2、減圧装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記冷媒対水熱交換器2、補助加熱器7を接続した給湯回路からなり前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記冷媒対水熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた水を加熱する。そして、凝縮液化した冷媒は前記減圧装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1に戻る。一方、前記冷媒対水熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、前記冷媒対水熱交換器2の入口水温が設定値に達すると水温度検出手段8が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器7の単独運転に切り換えるものである。
【0003】
【発明が解決しようとする課題】
上記図14に示す従来例のヒートポンプ給湯機では、減圧装置3としてキャピラリーチューブや温度式膨張弁を用いていた。減圧装置3としてキャピラリーチューブを用いる場合、一般的に、冷媒循環量の多い夏季の温度条件を基準にキャピラリーチューブの仕様を設計する。そのため、夏季以外の特に給湯負荷の大きい冬季には運転の効率が悪くなるという課題を有していた。また、同様に夏季以外の特に外気温度の低い冬季には冷媒循環回路に必要以上の冷媒が循環するため、圧縮機1に液冷媒が吸い込まれ、その結果、液圧縮となり圧縮機の耐久性が悪くなるという課題を有していた。
【0004】
他方、減圧装置3として温度式膨張弁を用いる場合、一般的に、蒸発器4の出口の冷媒は過熱度がとれた過熱ガス状態となるように、減圧装置3としての温度式膨張弁の仕様を設計する。そのため、設計した外気温度よりも高い時には吐出圧力が上昇したり、外気温度の低い冬季には吐出温度が上昇したりして圧縮機の耐久性が悪くなるという課題を有していた。また、冬季において蒸発器4に着霜したときも、蒸発器4の出口の冷媒状態を過熱度がとれるように制御するため、いっそう着霜が進み、運転の効率が悪くなるという課題を有していた。
【0005】
本発明の目的は圧縮機の異常温度上昇ならびに異常圧力上昇がない給湯加熱運転を実現することである。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するため、圧縮機と冷媒対水熱交換器と減圧装置とを備えた冷凍サイクルと、貯湯槽と、前記冷媒対水熱交換器を有する給湯回路と、外気温度を検出する外気温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段と、前記吐出温度検出手段により検出された温度が予め設定された目標吐出温度になるように減圧装置の開度を制御する制御手段とを有し、前記制御手段は、圧縮機の吐出圧力が予め設定された常用最大吐出圧力より高くなる外気温度のときは常用最大吐出圧力を越えないように減圧装置の開度を制御し、圧縮機の吐出温度が予め設定された常用最大吐出温度より高くなる外気温度のときは常用最大吐出温度を越えないように減圧装置の開度を制御するヒートポンプ給湯機とする。
【0007】
上記発明において、圧縮機の吐出圧力が予め設定された常用最大吐出圧力より高くなる外気温度のときは常用最大吐出圧力を越えないように減圧装置の開度を制御し、圧縮機の吐出温度が予め設定された常用最大吐出温度より高くなる外気温度のときは常用最大吐出温度を越えないように減圧装置の開度を制御するので、圧縮機の異常圧力上昇がなく、圧縮機の異常温度上昇もなく、耐久性の高いヒートポンプ給湯機が実現できる。
【0008】
【発明の実施の形態】
本発明は、圧縮機と冷媒対水熱交換器と減圧装置とを備えた冷凍サイクルと、貯湯槽と、前記冷媒対水熱交換器を有する給湯回路と、外気温度を検出する外気温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段と、前記吐出温度検出手段により検出された温度が予め設定された目標吐出温度になるように減圧装置の開度を制御する制御手段とを有し、前記制御手段は、圧縮機の吐出圧力が予め設定された常用最大吐出圧力より高くなる外気温度のときは常用最大吐出圧力を越えないように減圧装置の開度を制御し、圧縮機の吐出温度が予め設定された常用最大吐出温度より高くなる外気温度のときは常用最大吐出温度を越えないように減圧装置の開度を制御するヒートポンプ給湯機とすることにより、圧縮機の異常圧力上昇がなく、圧縮機の異常温度上昇もなく、耐久性の高いヒートポンプ給湯機が実現できる。
【0009】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0010】
(実施例1)
図1は本発明の実施例1のヒートポンプ給湯機の構成説明図、図2は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図3は同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図である。なお、従来例で説明した図14と同じ構成部材には同一符号を用い説明を省略する。
【0011】
図1において、冷媒対水熱交換器2の水側出口に設けられた沸き上げ温度検出手段9からの信号で回転数制御手段10は循環ポンプ6の回転数を制御して、冷媒対水熱交換器2の出口水温(沸き上げ温度)をほぼ一定になるように沸き上げる。また、制御手段11は、外気温度を検出する外気温度検出手段12と圧縮機1の吐出温度を検出する吐出温度検出手段13からの信号で減圧装置3を制御する。14は外気温度に対する目標吐出温度を記憶している第一の記憶手段である。なお、減圧装置3として電動膨張弁(図示せず)等がある。
【0012】
次に動作、作用について説明する。
【0013】
図2は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある外気温度の時の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図からわかるように、効率は減圧装置3の開度に対して極大値がある。また、同図において、一点鎖線は圧縮機の通常使用時の最大温度である常用最大吐出温度を示しており、二点鎖線は圧縮機の通常使用時の最大圧力である常用最大吐出圧力を示している。ここで、効率が極大になる減圧装置3の開度Xに対する吐出温度を目標吐出温度Yとする。そして、各外気温度に対して、この目標吐出温度Yを求めると、図3のようになる。この外気温度に対する目標吐出温度の関係を第一の記憶手段14に予め記憶させる。
【0014】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は外気温度検出手段12と吐出温度検出手段13からの信号で外気温度と吐出温度とを検出する。そして、外気温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる方向)ように制御する。
【0015】
上記のように、制御手段11による吐出温度制御をある時間毎に行えば、外気温度が変化しても常に効率の良い給湯運転が可能となる。
【0016】
(実施例2)
図4は本発明の実施例2のヒートポンプ給湯機の構成説明図、図5は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図6は同ヒートポンプ給湯機の外気温度に対する吐出圧力と減圧装置の開度を示す説明図である。
【0017】
本実施例において、実施例1と異なる点は、圧縮機1の吐出側に圧力検出手段15を設けた構成としている点である。
【0018】
なお、実施例1と同符号の部分は同一構成を有し、説明は省略する。
【0019】
次に動作、作用について説明する。
【0020】
図5は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある外気温度の高い場合の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図に示すように、外気温度がかなり高くなると、効率が極大値になる減圧装置3の開度において吐出圧力が常用最大吐出圧力(例えば2.4MPa)を越えるときがある。この場合、減圧装置3の開度をAからBに変更すると吐出圧力はCからDに減少することになる。
【0021】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は圧力検出手段15からの信号で吐出圧力を検出する。この吐出圧力が常用最大吐出圧力(例えば2.4MPa)よりも低ければ、制御手段11は外気温度検出手段12と吐出温度検出手段13からの信号で外気温度と吐出温度とを検出し、そして、外気温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる方向)ように制御する。
【0022】
他方、圧力検出手段15からの信号で検出した吐出圧力が常用最大吐出圧力(例えば2.4MPa)よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。
【0023】
図6は横軸に外気温度をとり、縦軸に吐出圧力と減圧装置3の開度をとって、外気温度に対する吐出圧力と減圧装置3の開度の変化を示したものである。同図において、外気温度が高くなれば、上記説明のように吐出圧力による制御を行うことによって吐出圧力が常用最大吐出圧力を越えないようにすることができるので、この吐出圧力制御をある時間毎に行えば、異常圧力上昇のない給湯運転が可能となる。なお、図中の点線は実施例1で説明した吐出温度による制御の場合であり、記号A、B、C、Dは図5の同記号に対応する。
【0024】
(実施例3)
図7は本発明の実施例3のヒートポンプ給湯機の構成説明図、図8は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図9は同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図である。
【0025】
本実施例において、実施例2と異なる点は、圧力検出手段として外気温度検出手段12と吐出温度検出手段13を用い、さらに第二の記憶手段16を設けた構成としている点である。
【0026】
なお、実施例2と同符号の部分は同一構成を有し、説明は省略する。
【0027】
次に動作、作用について説明する。
【0028】
図8は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある外気温度の高い場合の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図に示すように、外気温度がかなり高くなると、効率が極大値になる減圧装置3の開度において吐出圧力が常用最大吐出圧力(例えば2.4MPa)を越えるときがある。この場合、減圧装置3の開度をAからBに変更すると吐出圧力はCからDに減少し、吐出温度はEからFに減少する。結局、同図に示す外気温度の場合には吐出圧力をDにするためには吐出温度をFにすればよいことになる。この減圧装置3の開度Bに対する吐出温度を目標吐出温度Zとする。そして、各外気温度に対して、この目標吐出温度Zを求めると、図9の実線のようになる。この外気温度に対する目標吐出温度Zの関係を第二の記憶手段16に予め記憶させる。同図において、点線は実施例1で説明した吐出温度による制御の場合であり、実線と点線の交点の外気温度を高温側限界外気温度Tuとする。
【0029】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は外気温度検出手段12からの信号で外気温度を検出する。この外気温度が高温側限界外気温度Tuよりも低ければ、さらに、制御手段11は外気温度検出手段12と吐出温度検出手段13からの信号で外気温度と吐出温度とを検出し、そして、外気温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる方向)ように制御する。
【0030】
他方、外気温度検出手段12からの信号で検出した外気温度が高温側限界外気温度Tuよりも高ければ、吐出温度検出手段13からの信号で吐出温度を検出し、そして、第二の記憶手段16からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる方向)ように制御する。
【0031】
上記のように制御手段11による吐出温度制御をある時間毎に行えば、吐出温度による制御を行うことによって吐出圧力が常用最大吐出圧力を越えないようにすることができるので、異常圧力上昇のない給湯運転が可能となる。
【0032】
(実施例4)
図10は本発明の実施例4のヒートポンプ給湯機の構成説明図、図11は同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図、図12は同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図である。
【0033】
本実施例において、実施例1と異なる点は第三の記憶手段17を設けた構成としている点である。
【0034】
なお、実施例1と同符号の部分は同一構成を有し、説明は省略する。
【0035】
次に動作、作用について説明する。
【0036】
図11は横軸に減圧装置3の開度をとり、縦軸に吐出温度と吐出圧力と効率をとって、ある外気温度の低い場合の減圧装置3の開度に対する吐出温度と吐出圧力と効率の関係を示したものである。同図に示すように、外気温度がかなり低くなると、効率が極大値になる減圧装置3の開度において吐出温度が常用最大吐出温度(例えば105゜C)を越えるときがある。この場合、減圧装置3の開度をAからBに変更すると吐出温度はCからDに減少することになる。また、図12は横軸に外気温度をとり、縦軸に目標吐出温度をとって、外気温度に対する目標吐出温度Wの関係を示したものである。同図中の実線で示すように、低外気温度の場合の目標吐出温度Wは常用最大吐出温度(例えば105゜C)が一定となる。この外気温度に対する目標吐出温度Wの関係を第三の記憶手段17に予め記憶させる。また、同図の点線は実施例1で説明した吐出温度による制御の場合であり、実線と点線の交点の外気温度を低温側限界外気温度Tlとする。
【0037】
つまり、給湯運転が始まり圧縮機1が起動すると、制御手段11は外気温度検出手段12からの信号で外気温度を検出する。この外気温度が低温側限界外気温度Tlよりも高ければ、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出し、そして、外気温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる方向)ように制御する。
【0038】
他方、外気温度検出手段12からの信号で検出した外気温度が低温側限界外気温度Tlよりも低ければ、制御手段11は吐出温度検出手段13からの信号で吐出温度を検出し、そして、外気温度と目標吐出温度との関係を記憶している第三の記憶手段17からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は減圧装置3の開度を小さくする(閉じる方向)ように制御する。
【0039】
上記のように制御手段11による吐出温度制御をある時間毎に行えば、吐出温度が常用最大吐出温度を越えないようにすることができるので、異常温度上昇のない給湯運転が可能となる。
【0040】
(実施例5)
図13は本発明の実施例5のヒートポンプ給湯機の構成説明図である。
【0041】
本実施例において、実施例1と異なる点は減圧装置3の最小開度を記憶している最小開度記憶手段18を設けた構成としている点である。
【0042】
なお、実施例1と同符号の部分は同一構成を有し、説明は省略する。
【0043】
次に動作、作用について説明する。
【0044】
給湯運転が始まり圧縮機1が起動すると、制御手段11は外気温度検出手段12と吐出温度検出手段13からの信号で外気温度と吐出温度とを検出する。そして、外気温度と目標吐出温度との関係を記憶している第一の記憶手段14からの情報で、今の吐出温度が目標吐出温度よりも高ければ、制御手段11は減圧装置3の開度を大きくする(開く方向)ように制御する。逆に、今の吐出温度が目標吐出温度よりも低ければ、制御手段11は最小開度記憶手段18からの信号で得た減圧装置3の最小開度と現在の減圧装置3の開度とを比較する。そして、現在の減圧装置3の開度のほうが前記最小開度よりも大きければ、減圧装置3の開度を前記最小開度を下まわらない範囲で小さくする(閉じる方向)ように制御する。また、現在の減圧装置3の開度のほうが前記最小開度よりも小さいか等しければ、減圧装置3の開度を前記最小開度になるように制御する。
【0045】
このようにすれば、外気温度が低い場合に蒸発器4に霜が付着して吐出温度や蒸発温度が低下しても減圧装置3の開度を必要以上に小さくすることがないので、効率の良い給湯加熱運転が維持できる。
【0046】
【発明の効果】
以上説明したように本発明のヒートポンプ給湯機は、圧縮機の異常圧力上昇がない、或いは液圧縮のない、耐久性の高いヒートポンプ給湯機が実現できる。
【図面の簡単な説明】
【図1】 本発明の実施例1のヒートポンプ給湯機を示す構成説明図
【図2】 同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図
【図3】 同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図
【図4】 本発明の実施例2のヒートポンプ給湯機の構成説明図
【図5】 同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図
【図6】 同ヒートポンプ給湯機の外気温度に対する吐出圧力と減圧装置の開度を示す説明図
【図7】 本発明の実施例3のヒートポンプ給湯機の構成説明図
【図8】 同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図
【図9】 同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図
【図10】 本発明の実施例4のヒートポンプ給湯機の構成説明図
【図11】 同ヒートポンプ給湯機の減圧装置の開度に対する吐出温度と吐出圧力と効率を示す説明図
【図12】 同ヒートポンプ給湯機の外気温度に対する目標吐出温度を示す説明図
【図13】 本発明の実施例5のヒートポンプ給湯機の構成説明図
【図14】 従来例におけるヒートポンプ給湯機の構成説明図
【符号の説明】
1 圧縮機
2 冷媒対水熱交換器
3 減圧装置
4 蒸発器
5 貯湯槽
6 循環ポンプ
11 制御手段
12 外気温度検出手段
13 吐出温度検出手段
14 第一の記憶手段
15 圧力検知手段
16 第二の記憶手段
17 第三の記憶手段
18 最小開度記憶手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water storage type heat pump water heater.
[0002]
[Prior art]
A conventional heat pump water heater of this type is shown in Japanese Patent Laid-Open No. 60-164157. FIG. 14 is a diagram illustrating the configuration of a conventional heat pump water heater. In FIG. 14, a refrigerant circulation circuit including a compressor 1, a refrigerant-to-water heat exchanger 2, a decompression device 3, and an evaporator 4, a hot water tank 5, a circulation pump 6, the refrigerant-to-water heat exchanger 2, and an auxiliary heater The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 is connected to the refrigerant-to-water heat exchanger 2 where the water sent from the circulation pump 6 is heated. . The condensed and liquefied refrigerant is decompressed by the decompression device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated in the refrigerant-to-water heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. When the inlet water temperature of the refrigerant-to-water heat exchanger 2 reaches a set value, the water temperature detecting means 8 detects it, stops the heat pump operation by the compressor 1, and switches to the auxiliary operation of the auxiliary heater 7. Is.
[0003]
[Problems to be solved by the invention]
In the conventional heat pump water heater shown in FIG. 14, a capillary tube or a temperature type expansion valve is used as the decompression device 3. When a capillary tube is used as the decompression device 3, the specification of the capillary tube is generally designed based on the summer temperature conditions in which the refrigerant circulation amount is large. For this reason, there is a problem that the operation efficiency is deteriorated in the winter season when the hot water supply load is particularly large except the summer season. Similarly, during the winter when the outside air temperature is low except in summer, excessive refrigerant circulates in the refrigerant circuit, so that the liquid refrigerant is sucked into the compressor 1, resulting in liquid compression and the durability of the compressor. Had the problem of getting worse.
[0004]
On the other hand, when a temperature expansion valve is used as the decompression device 3, generally, the specification of the temperature expansion valve as the decompression device 3 is such that the refrigerant at the outlet of the evaporator 4 is in a superheated gas state with a superheat degree. To design. Therefore, there has been a problem that the discharge pressure rises when the temperature is higher than the designed outside air temperature, or the discharge temperature rises in winter when the outside air temperature is low, and the durability of the compressor deteriorates. In addition, when the evaporator 4 is frosted in winter, the refrigerant state at the outlet of the evaporator 4 is controlled so that the degree of superheat can be obtained, so that frosting further proceeds and the efficiency of operation is deteriorated. It was.
[0005]
An object of the present invention is to realize an abnormal temperature rise and abnormal pressure rise such have supply hot water heating operation of the compressor.
[0006]
[Means for Solving the Problems]
To solve the present invention the above object, a refrigeration cycle provided with a compression device and the refrigerant-water heat exchanger and the pressure reducing device, and the hot water storage tank, a hot water supply circuit having a refrigerant to water heat exchanger, the outside air temperature The outside air temperature detecting means for detecting the discharge temperature, the discharge temperature detecting means for detecting the discharge temperature of the compressor, and the decompression device open so that the temperature detected by the discharge temperature detecting means becomes a preset target discharge temperature. Control means for controlling the degree of pressure, the control means of the decompression device so as not to exceed the normal maximum discharge pressure when the discharge pressure of the compressor is an outside air temperature higher than a preset normal maximum discharge pressure A heat pump water heater that controls the opening degree and controls the opening degree of the decompression device so that it does not exceed the normal maximum discharge temperature when the discharge temperature of the compressor is outside air temperature that is higher than the preset normal discharge temperature .
[0007]
The invention smell Te, when the outside air temperature discharge pressure of the compressors is higher than the conventional maximum discharge pressure which is set in advance to control the opening of the pressure reducing device so as not to exceed the usual maximum discharge pressure, the discharge of the compressor When the outside air temperature is higher than the preset normal discharge temperature, the opening of the decompression device is controlled so that the maximum discharge temperature is not exceeded. A heat pump water heater with high durability without temperature rise can be realized.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes a refrigeration cycle provided with a compression device and the refrigerant-water heat exchanger and the pressure reducing device, and the hot water storage tank, a hot water supply circuit having a refrigerant to water heat exchanger, outdoor air temperature detection for detecting the outside air temperature Means, a discharge temperature detecting means for detecting the discharge temperature of the compressor, and a control means for controlling the opening of the pressure reducing device so that the temperature detected by the discharge temperature detecting means becomes a preset target discharge temperature. The control means controls the opening of the decompression device so that the normal maximum discharge pressure is not exceeded when the discharge temperature of the compressor is an outside air temperature that is higher than a preset maximum normal discharge pressure, By using a heat pump water heater that controls the opening of the decompression device so that it does not exceed the normal maximum discharge temperature when the discharge temperature of the compressor is higher than the preset normal maximum discharge temperature, Abnormal pressure rise Without no abnormal temperature rise of the compressor, durable heat pump water heater can be realized.
[0009]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0010]
(Example 1)
FIG. 1 is a diagram illustrating the configuration of a heat pump water heater according to a first embodiment of the present invention, FIG. 2 is a diagram illustrating discharge temperature, discharge pressure, and efficiency with respect to the opening of a decompression device of the heat pump water heater, and FIG. It is explanatory drawing which shows the target discharge temperature with respect to the external temperature of a machine. In addition, the same code | symbol is used for the same component as FIG. 14 demonstrated in the prior art example, and description is abbreviate | omitted.
[0011]
In FIG. 1, the rotation speed control means 10 controls the rotation speed of the circulation pump 6 by a signal from the boiling temperature detection means 9 provided at the water-side outlet of the refrigerant-to-water heat exchanger 2, and the refrigerant-to-water heat The outlet water temperature (boiling temperature) of the exchanger 2 is boiled so as to be substantially constant. Further, the control unit 11 controls the decompression device 3 with signals from the outside temperature detection unit 12 that detects the outside temperature and the discharge temperature detection unit 13 that detects the discharge temperature of the compressor 1. Reference numeral 14 denotes first storage means for storing a target discharge temperature with respect to the outside air temperature. The decompression device 3 includes an electric expansion valve (not shown).
[0012]
Next, the operation and action will be described.
[0013]
In FIG. 2, the opening of the decompression device 3 is taken on the horizontal axis, and the discharge temperature, the discharge pressure, and the efficiency are taken on the vertical axis, and the discharge temperature, the discharge pressure, and the efficiency with respect to the opening of the decompression device 3 at a certain outside air temperature. It shows the relationship. As can be seen from the figure, the efficiency has a maximum value with respect to the opening of the decompression device 3. In the figure, the alternate long and short dash line indicates the maximum normal discharge temperature, which is the maximum temperature during normal use of the compressor, and the double dotted line indicates the maximum normal discharge pressure, which is the maximum pressure during normal use of the compressor. ing. Here, the discharge temperature with respect to the opening degree X of the pressure reducing device 3 at which the efficiency is maximized is defined as a target discharge temperature Y. And when this target discharge temperature Y is calculated | required with respect to each external temperature, it will become like FIG. The relationship between the target discharge temperature and the outside air temperature is stored in the first storage unit 14 in advance.
[0014]
That is, when the hot water supply operation starts and the compressor 1 is started, the control unit 11 detects the outside air temperature and the discharge temperature based on signals from the outside air temperature detection unit 12 and the discharge temperature detection unit 13. If the current discharge temperature is higher than the target discharge temperature in the information from the first storage unit 14 storing the relationship between the outside air temperature and the target discharge temperature, the control unit 11 opens the opening of the decompression device 3. To increase (opening direction). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 performs control so that the opening degree of the decompression device 3 is reduced (in the closing direction).
[0015]
As described above, if the discharge temperature control by the control means 11 is performed every certain time, an efficient hot water supply operation can always be performed even if the outside air temperature changes.
[0016]
(Example 2)
4 is a diagram illustrating the configuration of the heat pump water heater according to the second embodiment of the present invention, FIG. 5 is a diagram illustrating the discharge temperature, the discharge pressure, and the efficiency with respect to the opening of the decompression device of the heat pump water heater, and FIG. It is explanatory drawing which shows the discharge pressure with respect to the external temperature of an apparatus, and the opening degree of a decompression device.
[0017]
The present embodiment is different from the first embodiment in that the pressure detecting means 15 is provided on the discharge side of the compressor 1.
[0018]
In addition, the part of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0019]
Next, the operation and action will be described.
[0020]
In FIG. 5, the opening of the decompression device 3 is taken on the horizontal axis, and the discharge temperature, the discharge pressure, and the efficiency are taken on the vertical axis, and the discharge temperature, the discharge pressure, and the efficiency with respect to the opening of the decompression device 3 when a certain outside air temperature is high. This shows the relationship. As shown in the figure, when the outside air temperature becomes considerably high, the discharge pressure sometimes exceeds the normal maximum discharge pressure (for example, 2.4 MPa) at the opening of the decompression device 3 at which the efficiency reaches a maximum value. In this case, when the opening degree of the decompression device 3 is changed from A to B, the discharge pressure decreases from C to D.
[0021]
That is, when the hot water supply operation is started and the compressor 1 is started, the control means 11 detects the discharge pressure by the signal from the pressure detection means 15. If this discharge pressure is lower than the normal maximum discharge pressure (for example, 2.4 MPa), the control means 11 detects the outside air temperature and the discharge temperature by signals from the outside air temperature detection means 12 and the discharge temperature detection means 13, and If the current discharge temperature is higher than the target discharge temperature in the information from the first storage unit 14 storing the relationship between the outside air temperature and the target discharge temperature, the control unit 11 increases the opening of the decompression device 3. Control to do (opening direction). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 performs control so that the opening degree of the decompression device 3 is reduced (in the closing direction).
[0022]
On the other hand, if the discharge pressure detected by the signal from the pressure detection means 15 is higher than the normal maximum discharge pressure (for example, 2.4 MPa), the control means 11 controls to increase the opening of the decompression device 3 (in the opening direction). To do.
[0023]
FIG. 6 shows changes in the discharge pressure and the opening degree of the decompression device 3 with respect to the outside air temperature, with the outside air temperature on the horizontal axis and the discharge pressure and the opening degree of the decompression device 3 on the vertical axis. In the same figure, if the outside air temperature becomes high, it is possible to prevent the discharge pressure from exceeding the normal maximum discharge pressure by performing the control by the discharge pressure as described above. In this way, a hot water supply operation without an abnormal pressure increase is possible. In addition, the dotted line in a figure is the case of control by the discharge temperature demonstrated in Example 1, and symbol A, B, C, D respond | corresponds to the same symbol of FIG.
[0024]
(Example 3)
FIG. 7 is a diagram illustrating the configuration of a heat pump water heater according to a third embodiment of the present invention, FIG. 8 is a diagram illustrating discharge temperature, discharge pressure, and efficiency with respect to the opening of the decompression device of the heat pump water heater, and FIG. It is explanatory drawing which shows the target discharge temperature with respect to the external temperature of a machine.
[0025]
The present embodiment is different from the second embodiment in that the outside temperature detecting means 12 and the discharge temperature detecting means 13 are used as the pressure detecting means, and the second storage means 16 is further provided.
[0026]
In addition, the part of the same code | symbol as Example 2 has the same structure, and description is abbreviate | omitted.
[0027]
Next, the operation and action will be described.
[0028]
In FIG. 8, the opening of the decompression device 3 is taken on the horizontal axis, and the discharge temperature, the discharge pressure, and the efficiency are taken on the vertical axis, and the discharge temperature, the discharge pressure, and the efficiency with respect to the opening of the decompression device 3 when a certain outside air temperature is high. This shows the relationship. As shown in the figure, when the outside air temperature becomes considerably high, the discharge pressure sometimes exceeds the normal maximum discharge pressure (for example, 2.4 MPa) at the opening of the decompression device 3 at which the efficiency reaches a maximum value. In this case, when the opening degree of the decompression device 3 is changed from A to B, the discharge pressure decreases from C to D, and the discharge temperature decreases from E to F. Eventually, in the case of the outside air temperature shown in the figure, in order to set the discharge pressure to D, the discharge temperature may be set to F. The discharge temperature with respect to the opening degree B of the decompression device 3 is set as a target discharge temperature Z. And when this target discharge temperature Z is calculated | required with respect to each external temperature, it will become like the continuous line of FIG. The relationship between the target discharge temperature Z and the outside air temperature is stored in advance in the second storage unit 16. In the figure, a dotted line is the case of control by the discharge temperature demonstrated in Example 1, and let the external temperature of the intersection of a solid line and a dotted line be the high temperature side limit external temperature Tu.
[0029]
That is, when the hot water supply operation is started and the compressor 1 is started, the control unit 11 detects the outside air temperature by a signal from the outside air temperature detecting unit 12. If the outside air temperature is lower than the high temperature side limit outside air temperature Tu, the control means 11 further detects the outside air temperature and the discharge temperature by signals from the outside air temperature detecting means 12 and the discharge temperature detecting means 13, and the outside air temperature is detected. If the current discharge temperature is higher than the target discharge temperature by the information from the first storage means 14 storing the relationship between the target discharge temperature and the target discharge temperature, the control means 11 increases the opening of the decompression device 3 ( Open direction). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 performs control so that the opening degree of the decompression device 3 is reduced (in the closing direction).
[0030]
On the other hand, if the outside air temperature detected by the signal from the outside air temperature detecting means 12 is higher than the high temperature side limit outside air temperature Tu, the discharge temperature is detected by the signal from the discharge temperature detecting means 13, and the second storage means 16 is used. If the current discharge temperature is higher than the target discharge temperature, the control means 11 performs control to increase the opening of the decompression device 3 (in the opening direction). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 performs control so that the opening degree of the decompression device 3 is reduced (in the closing direction).
[0031]
If the discharge temperature control by the control means 11 is performed at a certain time as described above, it is possible to prevent the discharge pressure from exceeding the normal maximum discharge pressure by performing the control based on the discharge temperature, so there is no abnormal pressure increase. Hot water supply operation is possible.
[0032]
(Example 4)
FIG. 10 is a diagram illustrating the configuration of a heat pump water heater according to a fourth embodiment of the present invention, FIG. 11 is a diagram illustrating discharge temperature, discharge pressure, and efficiency with respect to the opening of the decompression device of the heat pump water heater, and FIG. It is explanatory drawing which shows the target discharge temperature with respect to the external temperature of a machine.
[0033]
The present embodiment is different from the first embodiment in that the third storage unit 17 is provided.
[0034]
In addition, the part of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0035]
Next, the operation and action will be described.
[0036]
FIG. 11 shows the opening temperature of the decompression device 3 on the horizontal axis and the discharge temperature, discharge pressure, and efficiency on the vertical axis, and the discharge temperature, discharge pressure, and efficiency with respect to the opening of the decompression device 3 when a certain outside air temperature is low. This shows the relationship. As shown in the figure, when the outside air temperature becomes considerably low, the discharge temperature sometimes exceeds the normal maximum discharge temperature (for example, 105 ° C.) at the opening of the decompression device 3 at which the efficiency reaches a maximum value. In this case, when the opening degree of the decompression device 3 is changed from A to B, the discharge temperature decreases from C to D. FIG. 12 shows the relationship of the target discharge temperature W with respect to the outside air temperature, with the outside air temperature on the horizontal axis and the target discharge temperature on the vertical axis. As shown by the solid line in the figure, the target maximum discharge temperature W (for example, 105 ° C.) is constant as the target discharge temperature W in the case of the low outside air temperature. The relationship between the target discharge temperature W and the outside air temperature is stored in advance in the third storage unit 17. Also, the dotted line in the figure shows the case of control by the discharge temperature described in the first embodiment, and the outside air temperature at the intersection of the solid line and the dotted line is the low limit side outside air temperature Tl.
[0037]
That is, when the hot water supply operation is started and the compressor 1 is started, the control unit 11 detects the outside air temperature by a signal from the outside air temperature detecting unit 12. If the outside air temperature is higher than the low-temperature side limit outside air temperature Tl, the control means 11 detects the discharge temperature by a signal from the discharge temperature detecting means 13 and stores the relationship between the outside air temperature and the target discharge temperature. If the current discharge temperature is higher than the target discharge temperature based on the information from the first storage means 14, the control means 11 performs control so that the opening degree of the decompression device 3 is increased (in the opening direction). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 performs control so that the opening degree of the decompression device 3 is reduced (in the closing direction).
[0038]
On the other hand, if the outside air temperature detected by the signal from the outside air temperature detecting means 12 is lower than the low limit side outside air temperature Tl, the control means 11 detects the discharge temperature by the signal from the discharge temperature detecting means 13, and the outside air temperature If the current discharge temperature is higher than the target discharge temperature by the information from the third storage means 17 storing the relationship between the target discharge temperature and the target discharge temperature, the control means 11 increases the opening of the decompression device 3 ( Open direction). Conversely, if the current discharge temperature is lower than the target discharge temperature, the control means 11 performs control so that the opening degree of the decompression device 3 is reduced (in the closing direction).
[0039]
If the discharge temperature control by the control means 11 is performed at certain intervals as described above, the discharge temperature can be prevented from exceeding the normal maximum discharge temperature, so that a hot water supply operation without an abnormal temperature rise is possible.
[0040]
(Example 5)
FIG. 13 is a configuration explanatory diagram of a heat pump water heater according to a fifth embodiment of the present invention.
[0041]
The present embodiment is different from the first embodiment in that a minimum opening degree storage means 18 that stores the minimum opening degree of the decompression device 3 is provided.
[0042]
In addition, the part of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0043]
Next, the operation and action will be described.
[0044]
When the hot water supply operation is started and the compressor 1 is started, the control unit 11 detects the outside air temperature and the discharge temperature based on signals from the outside air temperature detecting unit 12 and the discharge temperature detecting unit 13. If the current discharge temperature is higher than the target discharge temperature in the information from the first storage unit 14 storing the relationship between the outside air temperature and the target discharge temperature, the control unit 11 opens the opening of the decompression device 3. To increase (opening direction). On the contrary, if the current discharge temperature is lower than the target discharge temperature, the control means 11 determines the minimum opening degree of the decompression device 3 and the current opening degree of the decompression device 3 obtained from the signal from the minimum opening degree storage means 18. Compare. And if the opening degree of the present decompression device 3 is larger than the minimum opening degree, the opening degree of the decompression device 3 is controlled to be smaller (in the closing direction) within a range not lowering the minimum opening degree. Further, if the current opening of the decompression device 3 is smaller than or equal to the minimum opening, the opening of the decompression device 3 is controlled to be the minimum opening.
[0045]
In this way, when the outside air temperature is low, even if frost adheres to the evaporator 4 and the discharge temperature or the evaporation temperature decreases, the opening of the decompression device 3 is not reduced more than necessary. Good hot water heating operation can be maintained.
[0046]
【The invention's effect】
The above-described heat pump water heater of the present invention as described, it is not abnormal pressure rise in the compressors, or without liquid compression, durable heat pump water heater can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a heat pump water heater according to a first embodiment of the present invention. FIG. 2 is an explanatory diagram showing discharge temperature, discharge pressure, and efficiency with respect to the opening of a pressure reducing device of the heat pump water heater. Explanatory drawing which shows target discharge temperature with respect to the outside temperature of a heat pump water heater [FIG. 4] Structure explanatory drawing of the heat pump water heater of Example 2 of this invention [FIG. 5] Discharge temperature with respect to the opening degree of the decompression device of the heat pump water heater Explanatory diagram showing discharge pressure and efficiency [FIG. 6] Explanatory diagram showing discharge pressure with respect to the outside air temperature of the heat pump water heater and the opening of the pressure reducing device [FIG. 7] FIG. FIG. 8 is an explanatory diagram showing discharge temperature, discharge pressure and efficiency with respect to the opening of the pressure reducing device of the heat pump water heater. FIG. 9 is an explanatory diagram showing target discharge temperature with respect to the outside air temperature of the heat pump water heater. FIG. 11 is a diagram illustrating the configuration of a heat pump water heater according to a fourth embodiment of the present invention. FIG. 11 is a diagram illustrating discharge temperature, discharge pressure, and efficiency with respect to the opening of a decompression device of the heat pump water heater. Explanatory drawing which shows the target discharge temperature with respect to the outside air temperature of FIG. 13 FIG. 14 is a structural explanatory diagram of a heat pump water heater according to a fifth embodiment of the present invention. FIG. 14 is a structural explanatory diagram of a heat pump water heater in a conventional example.
DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant to water heat exchanger 3 Pressure reducing device 4 Evaporator 5 Hot water storage tank 6 Circulating pump 11 Control means 12 Outside air temperature detection means 13 Discharge temperature detection means 14 First storage means 15 Pressure detection means 16 Second memory Means 17 Third memory means 18 Minimum opening degree memory means

Claims (1)

圧縮機と冷媒対水熱交換器と減圧装置とを備えた冷凍サイクルと、貯湯槽と、前記冷媒対水熱交換器を有する給湯回路と、外気温度を検出する外気温度検出手段と、前記圧縮機の吐出温度を検出する吐出温度検出手段と、前記吐出温度検出手段により検出された温度が予め設定された目標吐出温度になるように減圧装置の開度を制御する制御手段とを有し、前記制御手段は、圧縮機の吐出圧力が予め設定された常用最大吐出圧力より高くなる外気温度のときは常用最大吐出圧力を越えないように減圧装置の開度を制御し、圧縮機の吐出温度が予め設定された常用最大吐出温度より高くなる外気温度のときは常用最大吐出温度を越えないように減圧装置の開度を制御するヒートポンプ給湯機。  A refrigeration cycle comprising a compressor, a refrigerant-to-water heat exchanger, and a pressure reducing device; a hot water storage tank; a hot water supply circuit having the refrigerant-to-water heat exchanger; an outside air temperature detecting means for detecting an outside air temperature; and the compression Discharge temperature detection means for detecting the discharge temperature of the machine, and control means for controlling the opening of the decompression device so that the temperature detected by the discharge temperature detection means becomes a preset target discharge temperature, The control means controls the opening of the decompression device so that the normal maximum discharge pressure is not exceeded when the discharge pressure of the compressor is higher than the preset maximum normal discharge pressure, so that the maximum discharge pressure is not exceeded. A heat pump water heater that controls the opening of the decompression device so that the maximum discharge temperature is not exceeded when the outside air temperature is higher than the preset maximum discharge temperature.
JP15328099A 1999-06-01 1999-06-01 Heat pump water heater Expired - Fee Related JP3703995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15328099A JP3703995B2 (en) 1999-06-01 1999-06-01 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15328099A JP3703995B2 (en) 1999-06-01 1999-06-01 Heat pump water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005034040A Division JP3900186B2 (en) 2005-02-10 2005-02-10 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2000346447A JP2000346447A (en) 2000-12-15
JP2000346447A5 JP2000346447A5 (en) 2005-05-26
JP3703995B2 true JP3703995B2 (en) 2005-10-05

Family

ID=15559028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15328099A Expired - Fee Related JP3703995B2 (en) 1999-06-01 1999-06-01 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3703995B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693308B2 (en) * 2001-09-13 2011-06-01 三洋電機株式会社 Heat pump type water heater
JP4215735B2 (en) * 2005-03-24 2009-01-28 日立アプライアンス株式会社 Heat pump water heater
JP4548298B2 (en) * 2005-10-11 2010-09-22 株式会社デンソー Heat pump type water heater
JP5113447B2 (en) * 2007-08-09 2013-01-09 東芝キヤリア株式会社 Control method for heat pump water heater
JP5300441B2 (en) * 2008-11-28 2013-09-25 三菱電機株式会社 Heat pump water heater, hot water storage system using this heat pump water heater, and water break prevention method and water break cause determination method for heat pump water heater
JP2013079760A (en) * 2011-10-04 2013-05-02 Hitachi Appliances Inc Heat pump type liquid supply device
CN110848786A (en) * 2019-12-12 2020-02-28 宁夏塞上阳光太阳能有限公司 Integrated hybrid cycle system heat pump cooling and heating machine

Also Published As

Publication number Publication date
JP2000346447A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP4337880B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP2002081768A5 (en)
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP3700474B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP3740380B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP5194492B2 (en) Heat pump water heater
JP3800862B2 (en) Heat pump water heater
JP2002188860A5 (en)
JP3937715B2 (en) Heat pump water heater
JP3632306B2 (en) Heat pump bath water supply system
JP3856025B2 (en) Heat pump water heater
JP3985773B2 (en) Hot water storage water heater
JP3912035B2 (en) Heat pump water heater
JP2000346447A5 (en)
JP3690229B2 (en) Heat pump water heater
JP3849577B2 (en) Heat pump bath water heater
JP4449779B2 (en) Heat pump water heater
JP3719155B2 (en) Heat pump water heater
JP3719162B2 (en) Heat pump water heater
JP3633500B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees