JP3846086B2 - Anti-vibration support device and vehicle equipped with the same - Google Patents

Anti-vibration support device and vehicle equipped with the same Download PDF

Info

Publication number
JP3846086B2
JP3846086B2 JP1576699A JP1576699A JP3846086B2 JP 3846086 B2 JP3846086 B2 JP 3846086B2 JP 1576699 A JP1576699 A JP 1576699A JP 1576699 A JP1576699 A JP 1576699A JP 3846086 B2 JP3846086 B2 JP 3846086B2
Authority
JP
Japan
Prior art keywords
vibration
lid
support
lid member
load sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1576699A
Other languages
Japanese (ja)
Other versions
JP2000213587A (en
Inventor
和重 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1576699A priority Critical patent/JP3846086B2/en
Publication of JP2000213587A publication Critical patent/JP2000213587A/en
Application granted granted Critical
Publication of JP3846086B2 publication Critical patent/JP3846086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば車両のエンジン等のような周期的な振動を発する振動体を車体等の支持体に防振しつつ支持する防振支持装置及びそれを搭載した車両に関わり、特に、振動伝達体と蓋部材との間に配設されて支持体側の残留振動を検出する荷重センサを備えたものである。
【0002】
【従来の技術】
この種の先行技術として、例えば本出願人が先に提案した特願平10−55254号に記載した防振支持装置が知られている。
この防振支持装置は、図6に示すように、円筒状の装置ケース43を有し、この装置ケース43の上端と下端とを内周側に折曲してケース上部かしめ部43a、ケース下部かしめ部43bが形成されており、このケース上部かしめ部43a及びケース下部かしめ部43bによって以下に述べるマウント部品が装置ケース43内部に収納されている。
【0003】
装置ケース43内の上方には、ゴム材にて構成した支持弾性体32が配置されており、この支持弾性体32にはエンジン側連結部材30が埋設状態で固定されている。このエンジン側連結部材30には上方に突出する連結ボルト30aが設けられている。この連結ボルト30aは防振支持装置20の軸心P1 位置に配設され、この連結ボルト30aに振動体(図示せず)がねじ締結によって固定されている。
【0004】
また、支持弾性体32の下部は下方に向かうに従って径を大きくした円錐筒状を有し、この円錐筒状の下側端面がオリフィス構成部材36の内面に固定されている。支持弾性体32は後述する主液室84の隔壁の一部として構成され、流体室84の液圧によって弾性バネとしてバネ定数が可変となる。
オリフィス構成部材36は、同一外周径とした上端筒部36a及び下端筒部36bの間に小径筒部36cを連続して形成した部材である。このオリフィス構成部材36の外周側には外筒34が嵌合しており、この外筒34は本体ケース43の内周側に嵌合されている。外筒体34には開口部34aが形成されており、この開口部34aの全周にゴム製の薄膜弾性体からなるダイアフラム42の外周が固定されて外筒34の内側に向けて膨出している。
【0005】
そして、ダイアフラム42と本体ケース43との間には空気室42cが形成され、この空気室42cは本体ケース43に形成した空気孔43cを介して外部と連通している。また、ダイアフラム42とオリフィス構成部材36との間の領域が副液室40となっており、この副液室40はダイアフラム42の形状変化によってその容積が可変となる。
【0006】
また、オリフィス構成部材36の内周側には内筒37が固定されており、この内筒37とオリフィス構成部材36との間の領域がアイドル共振用オリフィス45となっている。このアイドル共振用オリフィス45は、オリフィス構成部材36に形成した第1開口部(図示せず)を介して副液室40に連通している。また、内筒37の内周側で、前記支持弾性体32の内周面や後述する隔壁形成部材78A及びシール部材86に囲まれた領域に主液室84が設けられている。この主液室84とアイドル共振用オリフィス45とは、内筒37に形成した第2開口部37dを介して連通している。
【0007】
つまり、主液室84及び副液室40とはアイドル共振用オリフィス45を介して連通しており、双方の室84、40及びアイドル共振用オリフィス45内には液体が封入されている。主液室84の容積変化(液圧変化)によって液体がアイドル共振用オリフィス45を介して双方の室84、40を流出入し、これによって振動がダンピングされる。
【0008】
また、装置ケース43の下方位置の内周に嵌合したスペーサ70は、その上部に外筒34の下端が当接している。このスペーサ70は、円筒形状の上部筒体70a及び下部筒体70bと、これらを連結するゴム製の薄膜弾性体からなるダイアフラム70cとで構成されており、上部筒体70の内周側に、上から順にリング状のシールリング72、バネ支持リング74及びギャップ保持リング76が嵌合している。スペーサ70はこれらリング72、74、76や後述するヨーク52aに対して軸心P1 への位置決めを行っている。
【0009】
前記リング72、74、76の内側には可動部材78が配設されており、この可動部材78は、隔壁形成部材78Aと、この隔壁形成部材78Aの下部にボルト80でねじ締結されている磁路形成部材78Bとで構成されている。
隔壁形成部材78Aの外周とシールリング72との間の全周には、リング状に形成されたゴム製のシール部材86が介在している。これにより、隔壁形成部材78Aとシール部材86によって主液室84の下方が画成されているとともに、隔壁形成部材78Aの上下方向の変位がシール部材86の弾性変形で許容されている。
【0010】
また、磁路形成部材78Bと隔壁形成部材78Aとの間には、くびれ空間79が設けられている。そして、磁路形成部材78Bの外周端部の全周は、上下端面が切り欠かれて薄肉環状部78B1 が形成されており、この薄肉環状部78B1 を弾性体からなるストッパ部材78cで覆っている。そして、磁路形成部材78Bの配置スペースは、ギャップ保持リング76によって設定され、また、磁路形成部材78Bの上下方向の変位は、ストッパ部材78cがバネ支持リング74、または後述するヨーク52aに突き当たることによってそれぞれ上方又は下方の変位が規制される。
【0011】
図中符号82は、中心部が切り欠かれた円板状の板ばねであり、この板ばね82は、隔壁形成部材78Aと磁路形成部材78Bとの間のくびれ空間79に配置されている。この板ばね82の外周部下面はバネ支持リング74に当接し、板ばね82の上面は隔壁形成部材78Aの下面に当接している。つまり、可動部材78は、後述する電磁アクチュエータ52の通電による磁力が作用しない状態では主液室84の液体の重量や後述する永久磁石52cの磁力等と板ばね82のバネ力とが釣り合う中立位置に位置する。
【0012】
図中符号52は電磁アクチュエータであり、この電磁アクチュエータ52は、、本体ケース43の下部に配置したヨーク52aと、ヨーク52aの上面に配置した永久磁石52cと、ヨーク52aの上面に臨む位置で永久磁石の52cの外周側にリング状に配置した励磁コイル52bとで構成されている。
ヨーク52aは、上ヨーク部材53aと下ヨーク部材53bとを組み合わせた部材であり、上ヨーク部材53aの上面外周端部はギャップ保持リング76の下面に当接している。また、上ヨーク部材53aと下ヨーク部材53bとの外周面には凹部52dが形成されており、この凹部52dに前述したダイアフラム70cが配置されている。
【0013】
ダイアフラム70cと本体ケース43との間には空気室70dが画成されており、この空気室70dは本体ケース43の空気孔43dを介して本体ケース43の外部と連通している。また、ダイアフラム70cとヨーク52aとの間にも空気室70eが画成されており、この空気室70eは磁路形成部材78Bとヨーク52aとの間のギャップ空間71と連通している。そして、可動部材78の変位に追従してダイアフラム70cが変動し、このダイアフラム70cの変動によって前述した空間71の圧力変動が防止されて可動部材78の移動がスムーズに行われるようになっている。
【0014】
永久磁石52cは円板状を有し、その上面がギャップ空間71を介して磁路形成部材78Bの下面に対向している。永久磁石52cの磁力は上下方向を向いており、この磁力線はギャップ空間71を介して磁路形成部材78Bに入る。磁路形成部材78Bに入った磁力線は、磁路形成部材78Bの外周端より出て、ギャップ空間71及びギャップ保持リング76を介してヨーク52aに戻る磁気回路となる。
【0015】
励磁コイル52bには、図示しないコントローラから駆動電流が供給されるようになっており、励磁コイル52bへの通電によって永久磁石52cの磁力と逆方向の磁力が発生すると可動部材78は液体の圧力等に抗して上方に移動し、永久磁石52cの磁力と同方向の磁力が発生すると可動部材78は板ばね82のバネ力に抗して下方に移動する。
【0016】
図中符号64で示す荷重センサは、ヨーク52aとこの下方に配置した蓋部材62との間に配置されており、圧電素子,磁歪素子,歪ゲージ等が使用されている。荷重センサ64は、その中心が軸心P1 に位置するように配置され、荷重センサ64の上面は下ヨーク部材53bの下面中央部に当接している。
また、蓋部材62は略円板状を有し、その外周端部62aが下ヨーク部材53bに当接している。この蓋部材62には、軸心P1 から離間した位置から下方に突出する複数本の連結ボルト60が固定されており、これら連結ボルト60に支持体側(図示せず)が締結によって固定される。つまり、荷重センサ64は、ヨーク52aと蓋部材62間に伝達される振動(伝達力)を所定の荷重値で検出し、この検出結果を残留振動信号としてコントローラ(図示せず)に出力する。
【0017】
コントローラは、この伝達力を打ち消すために必要な駆動電流を演算し、演算して得た駆動電流を励磁コイル52cに出力する。電磁アクチュエータ52には、励磁コイル52cへの通電に応じた磁力が発生し、この磁力によって可動部材78が変位(振動)し、主液室84の容量変化で液圧が変化する。この液圧変化により上記伝達力を打ち消すためのキャンセル力が発生し、このキャンセル力で上記伝達力が相殺されて、支持体側に伝わる力がゼロ又は低減されるようになっている。
【0018】
【発明が解決しようとする課題】
ところで、前述した防振支持装置20は、ヨーク52aの下面中央部と蓋部材62の上面中央部との間に荷重センサ64を挟み込み、ヨーク52aの下面外周に蓋部材62の外周端部62aを当接し、ヨーク52a及び装置ケース43の下部にヨークかしめ部52a1 、ケース下部かしめ部43bを形成して荷重センサ64、蓋部材62を装置ケース43内に固定した構造であり、振動体側で発生した振動(伝達力)は、ヨーク52aの複数の伝達経路を通過して直接荷重センサ64に入力する。
【0019】
すなわち、その伝達経路は、主に、主流体室84を介さないで支持弾性体32の支持ばねや拡張ばねを通じてシールリング72、バネ支持リング74及びギャップ保持リング76、ヨーク52aを介して荷重センサ64に至る経路(以下、第1の伝達経路と称する)と、主流体室84を介してシールリング72、バネ支持リング74及びギャップ保持リング76、ヨーク52aを介して荷重センサ64に至る経路(以下、第2の伝達経路と称する)が考えられる。
【0020】
そして、ギャップ保持リング76から荷重センサ64までの距離が短いと、すなわちヨーク52aの高さが十分でないと、ヨーク52a外周部の上下方向の剛性が軸心部に対して小さくなり、ヨーク52aの軸心を通る経路と外周を通る経路とができ、第1の伝達経路及び第2の伝達経路を通過した振動は、位相がずれた状態で荷重センサ64に入力し、荷重センサ64はその位相がずれた振動を残留振動として検出してしまうので、残留振動を正確に検出することができない。
【0021】
このため、ヨーク52aの上下方向の剛性を十分に確保するためにある程度の高さが必要となり、防振支持装置全体の高さが大きくなってしまうという問題があった。
本発明は、このような先行する防振支持装置が有する未解決の課題に着目してなされたものであって、装置全体の小型化を図ると同時に、残留振動を荷重センサが正確に検出して支持体側の振動を確実に防止することができる防振支持装置及びそれを搭載した車両を提供することを目的としている。
【0022】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、振動体及び支持体間に介在する支持弾性体と、この支持弾性体によって画成された流体室と、この流体室内に封入された流体と、前記流体室の隔壁の一部を形成する可動部材と、この可動部材を変位させるアクチュエータと、前記支持弾性体及び前記流体等から振動を受ける振動伝達体と、前記支持体側に配設され、前記振動伝達体に伝達してきた振動を所定の荷重値で検出する荷重センサと、この荷重センサの検出結果に基づいて前記アクチュエータを制御するコントローラとを備えた防振支持装置において、前記振動伝達体と前記支持体との間の前記振動伝達体側に第1蓋部材を配置し、前記支持体側に第2蓋部材を配置し、これら第1及び第2蓋部材の間の中央部に前記荷重センサを挟み込んで支持するとともに、前記第1蓋部材は、前記振動伝達体の前記支持体側を向く面の外周に当接する第1蓋外周部を備え、当該第1蓋外周部以外の部分は前記振動伝達体との間に間隙を設けた構造とし、前記第2蓋部材は、前記支持体とねじ締結する一本の連結ボルトを中心位置に固定した蓋中央部と、前記第1蓋部材の第1蓋外周部に前記支持体側から当接する第2蓋外周部と、この第2蓋外周部及び前記蓋中央部の間に形成され、前記振動が入力したときに前記第1蓋部材が支持体側に変位するのを許容する剛性の小さな蓋周面部とを備えている。
【0023】
また、請求項2記載の発明は、請求項1記載の防振支持装置において、前記第1蓋部材と前記荷重センサとの間に皿ばねを介在した。
また、請求項3記載の発明は、請求項1記載の防振支持装置において、前記第1蓋部材及び前記第2蓋部材の前記荷重センサを向く面に、当該荷重センサの中央部に当接する突起部を設けた。
【0024】
また、請求項4記載の発明は、請求項1乃至3の何れかに記載の防振支持装置において、前記支持体に、平板形状の裏当て部材を当接し、これら支持体及び裏当て部材に形成した貫通孔に前記連結ボルトを挿通し、逆側から突出した前記連結ボルトのねじ部にナットを締め付けることにより、前記第2蓋部材を支持体側に連結するようにした。
【0025】
さらに、請求項5記載の発明は、請求項1乃至4の何れかに記載の防振支持装置を搭載した車両において、前記第2蓋部材の車両前後方向に延在する肉厚を厚く形成した。
【0026】
【発明の効果】
請求項1記載の発明によると、支持弾性体で減衰されなかった残留振動が振動伝達体に伝達されてくると、第1蓋部材の第1蓋外周部のみが振動伝達体に当接しているので、振動伝達体の外周に伝達されてきた残留振動が第1蓋外周部に入力する。その際、第1蓋外周部に、第2蓋部材の第2蓋外周部が支持体側から当接しているが、第2蓋部材の蓋周面部は剛性が小さいので、第1蓋部材が支持体側に変位するのを許容する。したがって、残留振動は第1蓋外周部を介して第1蓋部材の中央部に伝達され、第1蓋部材に当接している荷重センサに所定の荷重値で入力する。このように、本発明では、振動伝達体の外周だけを通る残留振動が荷重センサに入力されるため、振動伝達体の剛性を小さくしても、複数の経路(振動伝達体の軸心を通る経路及び振動伝達体の外周を通る経路)を介して位相がずれた残留振動が荷重センサに入力することがないので、防振支持装置全体の大きさを小さくできるとともに、残留振動を正確に検出することが可能となり、荷重センサのセンシング性能を向上させることができる。
【0027】
また、本発明の第2蓋部材は、蓋中央部の中心位置に一本の連結ボルトを固定しているので、蓋周面部の径方向の寸法が長い構造となり、蓋周面部の剛性を容易に変更することができる。これにより、第1蓋部材の支持体側への変位量を調整し、荷重センサに入力する荷重レベルを自在に設定することができる。
また、請求項2記載の発明によると、振動伝達体に伝達されてきた残留振動は、第1蓋部材、皿ばねを介して荷重センサに入力する。ここで、皿ばねに入力した荷重は、荷重センサに向かう分力と、皿ばね自体を径方向外方に弾性変形させる分力とに分けられるので、荷重センサに入力する荷重が小さくなる。このように荷重センサに入力する荷重が小さくなると、荷重センサの耐荷重が小さくなり、小型の荷重センサを用いることができるので、防振支持装置のコストダウンを図ることができる。
【0028】
また、請求項3記載の発明によると、防振支持装置の軸心に対してずれた方向から残留振動が伝達しても、第1及び第2蓋部材の突起部が荷重センサの中央部に残留振動を入力するので、荷重センサは残留振動を正確に検出する。したがって、荷重センサの感度を良好とすることができる。
また、請求項4記載の発明によると、支持体側に向かう方向、或いは支持体かた離間する方向に外力が作用しても、連結ボルト及びナットを介して支持体と一体に連結した裏当て部材が、前記外力に抗する支持体の補強材として機能するので、支持体の耐久性を向上させることができる。
【0029】
さらに、請求項5記載の発明によると、車両に搭載した防振支持装置の第1蓋部材を、車両前後方向に延在する肉厚を厚く形成したので、車両の前後方向に衝撃が加わっても第1蓋部材が容易に変形することがなく、防振支持装置の衝撃耐久性を向上させることができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る防振支持装置を搭載した車両の概略側面図である。
先ず、構成を説明すると、横置きに搭載したエンジン(振動体)17が、車体前後方向の後方に配置した防振支持装置20を介して、サスペンションメンバ等から構成される車体メンバ(支持体)18に支持されている。なお、実際には、エンジン17及び車体メンバ18間には、防振支持装置20の他にエンジン17及び車体メンバ18間の相対変位に応じた受動的な支持力を発生する複数のエンジンマウントも介在している。受動的なエンジンマウントとしては、例えばゴム状の弾性体で荷重を支持する通常のエンジンマウントや、ゴム状の弾性体内部に減衰力発生可能に流体を封入してなる公知の流体封入式のマウントインシュレータ等が適用できる。 ここで、エンジン17で発生するアイドル振動やこもり音振動は、例えばレシプロ4気筒エンジンの場合、エンジン回転2次成分のエンジン振動が車体メンバ18に伝達されることが主な原因であるから、そのエンジン回転2次成分に同期して駆動信号yを生成し出力すれば、車体側振動の低減が可能となる。そこで、本実施の形態では、エンジン17のクランク軸の回転に同期した(例えば、レシプロ4気筒エンジンの場合には、クランク軸が180度回転する度に一つの)インパルス信号を生成し基準信号xとして出力するパルス信号生成器19を設けていて、その基準信号xが、コントローラ25に供給される。
【0031】
また、防振支持装置20に内蔵されている荷重センサ64も、車体メンバ18の振動状況を荷重の形で検出して残留振動信号eとして出力し、その残留振動信号eが干渉後における振動を表す信号としてコントローラ25に供給されている。
コントローラ25は、マイクロコンピュータ,必要なインタフェース回路,A/D変換器,D/A変換器,アンプ、ROM,RAM等の記憶媒体等を含んで構成されている。
【0032】
そして、コントローラ25は、供給される残留振動信号e及び基準信号xに基づき、逐次更新型の適応アルゴリズムの一つである同期式Filtered−XLMSアルゴリズムを実行することにより、エンジン17で発生する振動を低減できる能動的な支持力が防振支持装置20に発生する駆動信号yを演算して防振支持装置20に出力し、電磁アクチュエータ52の励磁コイル52bが前記駆動信号yに応じた所定の電磁力を発生するになっている。
【0033】
具体的には、コントローラ25は、フィルタ係数Wi (i=0,1,2,…,I−1:Iはタップ数)可変の適応ディジタルフィルタWを有していて、最新の基準信号xが入力された時点から所定のサンプリング・クロックの間隔で、その適応ディジタルフィルタWのフィルタ係数Wi を順番に駆動信号yとして出力する一方、基準信号x及び残留振動信号eに基づいて適応ディジタルフィルタWのフィルタ係数Wi を適宜更新する処理を実行するようになっている。
【0034】
適応ディジタルフィルタWの更新式は、Filtered−X LMSアルゴリズムに従った下記の(1)式のようになる。
i (n+1)=Wi (n)−μRT e(n) ……(1)
ここで、(n),(n+1)が付く項はサンプリング時刻n,n+1における値であることを表し、μは収束係数である。また、更新用基準信号RT は、理論的には、基準信号xを、防振支持装置1の電磁アクチュエータ52及び荷重センサ64間の伝達関数Cを有限インパルス応答型フィルタでモデル化した伝達関数フィルタC^でフィルタ処理した値であるが、基準信号xの大きさは“1”であるから、伝達関数フィルタC^のインパルス応答を基準信号xに同期して次々と生成した場合のそれらインパルス応答波形のサンプリング時刻nにおける和に一致する。また、理論的には、基準信号xを適応ディジタルフィルタWでフィルタ処理して駆動信号yを生成するのであるが、基準信号xの大きさが“1”であるため、フィルタ係数Wi を順番に駆動信号yとして出力しても、フィルタ処理の結果を駆動信号yとしたのと同じ結果になる。
【0035】
そして、エンジンの駆動によって振動すると、このエンジンの振動が連結ボルト30aを介して防振支持装置20に伝達される。防振支持装置20は、上記振動が支持弾性体32等にて減衰されるが、減衰されなかった振動伝達力がシールリング72、バネ支持リング74、ギャップ保持リング76を介して振動伝達体であるヨーク52に伝達されると、荷重センサ64が車体メンバ18側に伝わろうとする残留振動信号eを検出する。
【0036】
この残留振動信号eが入力したコントローラ25は、車体メンバ18側に伝わろうとする振動と同じ周期で且つ位相が逆相の制御振動が防振支持装置20に発生し、車体メンバ18への振動の伝達力が“0”となるように(より具体的には、エンジン17側の振動によって防振支持装置20に入力される加振力が、電磁アクチュエータ52の電磁力に得られる制御力で相殺されるように)、駆動信号yが生成し励磁コイル52bに供給される。そして、電磁アクチュエータ52には、励磁コイル52cへの通電に応じた磁力が発生し、この磁力によって主液室84の容量変化で液圧が変化する。この液圧変化により上記伝達力を打ち消すためのキャンセル力が発生し、このキャンセル力で上記伝達力が相殺されて、車体に伝わる力がゼロ又は低減されるようになっている。
【0037】
次に、図2は、本発明に係る第1実施形態の防振支持装置を示す要部断面図である。なお、図6に示した従来技術と同一構成部分は重複説明をさけるために図面に同一符号を付してその説明を省略する。
本実施形態のヨーク(振動伝達体)52aは、上ヨーク部材53aと下ヨーク部材53bとで構成されているが、下ヨーク部材53bの下面に、中央部が最も深く、且つ、外周に向かうに従い段階的に浅くなっている凹部53b1 が形成されており、この凹部52内及びその下方に上蓋部材(第1蓋部材)88及び下蓋部材(第2蓋部材)90が配置されている。
【0038】
上蓋部材88は、中央部が上方に凹んだ薄肉の円板形状を有しており、外周端部(第1蓋外周部:以下、上蓋外周端部と称する)88aが下ヨーク部材53bに当接している。この上蓋部材88は、上蓋外周端部88a以外の箇所では下ヨーク部材53bの下面と接触せず、所定の間隙Sを設けて配置されている。
また、下蓋部材90は、軸心位置にボルト貫通孔90a1 を形成した厚肉の蓋中央部90aと、上蓋部材88の外周端部88bに当接する外周端部(第2蓋外周部:以下、下蓋外周端部と称する)90bと、蓋中央部90aから下蓋外周端部90bに向かうに従い徐々に薄肉形状とした椀型の蓋周面部90cとを備えた略円板形状の部材であり、ボルト貫通孔90a1 に一本の連結ボルト92が嵌入されている。
【0039】
ここで、図3は、下蓋部材90を平面視で示したものであり、前記蓋周面部90cは、軸心を通過して図3の左右方向に延在する斜線部分90c1 を、肉厚が厚い厚肉部とし、この厚肉部90c1 以外の上下の領域を、肉厚が薄い薄肉部90c2 としている。
そして、上蓋部材88及び下蓋部材90の間に荷重センサ64を配置し、下蓋部材90の下蓋外周端部90bを下側から覆うようにヨークかしめ部52a1 、ケース下部かしめ部43bを形成することによって、上蓋部材88及び下蓋部材90の間に挟み込まれた荷重センサ64が装置ケース43内に配置される。
【0040】
ここで、下蓋部材90は、前述した蓋周面部90cの厚肉部90c1 が車両の前後方向に延在するように配置されている。
そして、下蓋部材90は、車体メンバ18の貫通孔18aと、車体メンバ18の下部に配置した裏当て部材94の貫通孔94aに連結ボルト92を挿通し、裏当て部材94の下方から突出したねじ部にナット96を螺合して締め付けることにより固定される。
【0041】
上記構成において、エンジン17が駆動すると、エンジン17の振動が上部の連結ボルト30aを介して防振支持装置20に伝達され、その大部分が支持弾性体32で減衰されるが、減衰されなかった残留振動がヨーク52aに伝達されてくる。
ここで、上蓋部材88は、上蓋外周端部88aのみがヨーク52a(下ヨーク部材53b)に当接しているので、ヨーク52aの外周に伝達されてきた残留振動が上蓋外周部88a及び下蓋外周部90bに入力する。その際、下蓋外周部90bに連続している蓋周面部90cは薄肉形状とされて剛性が小さいので、上蓋部材88が下方へ変位するのを許容する。したがって、残留振動は上蓋外周部88aを介して上蓋部材88の中央部に伝達され、上蓋部材88の下面に当接した荷重センサ32に所定の荷重値で入力する。
【0042】
このように、本実施形態では、ヨーク52aの高さを小さくして上下方向の剛性を小さくしても、複数の経路(ヨーク52aの軸心を通る経路及びヨーク52aの外周を通る経路)を介して位相がずれた残留振動が荷重センサ64に入力せず、ヨーク52aの外周だけを通る残留振動が荷重センサ64に入力するようになっているため、従来装置のように上下方向の剛性を確保するために上下方向に高くすることなく残留振動を正確に検出することが可能となり、防振支持装置全体の大きさを小さくして荷重センサ64のセンシング性能を向上させることができる。
【0043】
また、本実施形態の下蓋部材90は、蓋中央部90aの軸心位置に一本の連結ボルト92を固定しているので、蓋周面部90cの径方向の寸法(図2の符号D1 で示す寸法)が長くなり、蓋周面部90cの肉厚を変えることで剛性を容易に変更することができる。これにより、上蓋部材88の下方への変位量を調整し、荷重センサ64に入力する荷重レベルを自在に設定することができる。
【0044】
また、下蓋部材90は、蓋周面部90cの厚肉部90c1 が車両の前後方向に延在するように配置されているので、車両の前後方向に衝撃が加わっても下蓋部材90が容易に変形することがなく、防振支持装置20の衝撃耐久性を向上させることができる。
また、上下方向の大きな外力が防振支持装置20を介して車体メンバ18に作用しても、車体メンバ18の下部に、連結ボルト92及びナット96を介して車体メンバ18と一体に連結した裏当て部材94が前記外力に抗する車体メンバ18の補強材として機能するので、車体メンバ18の耐久性を向上させることができる。
【0045】
次に、図4に示すものは、第2実施形態の防振支持装置20の要部を示すものである。図1から図3に示した第1実施形態の構成と同一構成部分には、同一符号を付してその説明を省略する。
本実施形態は、上蓋部材(第1蓋部材)98と下蓋部材90との間に、荷重センサ64及び皿ばね100を挟み込んでいる。
【0046】
上蓋部材98は、中央部の上方に凹んだ部分を厚肉とした円板形状を有しており、外周端部(第1蓋外周部:以下、上蓋外周端部と称する)98aが下ヨーク部材53bに当接している。この上蓋部材98も、第1実施形態と同様に、上蓋外周端部98a以外の箇所では下ヨーク部材53bの下面と接触せず、所定の間隙Sを設けて配置されている。
【0047】
また、皿ばね100は、外観円錐台形状の環状ばねであり、外径の小さな軸方向端部が荷重センサ64の上面中央部に当接し、外径の大きな軸方向端部が上蓋部材98の下面中央部に当接している。
上記構成において、ヨーク52aの外周に伝達されてきた残留振動が上蓋外周部98a及び下蓋外周部90bに入力すると、剛性が小さな蓋周面部90cが上蓋部材88が下方へ変位するのを許容し、残留振動が上蓋外周部88aを介して上蓋部材88の中央部に伝達され、所定の荷重が皿ばね100を介して荷重センサ64に入力する。ここで、皿ばね100に入力した荷重は、荷重センサ64に向かう下方の分力と、皿ばね100自体を径方向外方に弾性変形させる分力とに分けられるので、荷重センサ64に入力する荷重が小さくなる。
【0048】
このように荷重センサ64に入力する荷重が小さくなると、荷重センサ64の耐荷重が小さくなり、それだけ小型の荷重センサ64を用いることができるので、防振支持装置20のコストダウンを図ることができる。
また、皿ばね100に当接している上蓋部材98の中央部を厚肉形状として変形しにくい構造としているので、上蓋部材88から皿ばね100に荷重が入力するときの偏荷重の入力(皿ばね100に局部的に荷重が入力すること)が防止され、この皿ばね100から荷重センサ64の上面全域に均等に荷重が入力するので、荷重センサ64の感度を良好とすることができる。
【0049】
次に、図5に示すものは、第3実施形態の防振支持装置20の要部を示すものである。
本実施形態は、上蓋部材(第1蓋部材)102と下蓋部材90との間に、荷重センサ64及びセンサ当接部材104を挟み込んでいる。
上蓋部材102は、中央部の上方に凹んだ部分から下方に向けて突起部102bを形成した円板形状であり、外周端部(第1蓋外周部:以下、上蓋外周端部と称する)102aが下ヨーク部材53bに当接している。この上蓋部材102も、第1実施形態と同様に、上蓋外周端部98a以外の箇所では下ヨーク部材53bの下面と接触せず、所定の間隙Sを設けて配置されている。
【0050】
また、センサ当接部材104は、下蓋部材90の蓋中央部90aの上部に載置された略円板形状の部材であり、中央部から上方に向けて突起部104aが形成されている。
そして、上蓋部材102及び下蓋部材90の間に荷重センサ64及びセンサ当接部材104を配置すると、荷重センサ64の上下面に突起部102b、104aが当接する。
【0051】
上記構成において、ヨーク52aから伝達されてきた残留振動が上蓋外周部102a及び下蓋外周部90bに入力すると、剛性が小さな蓋周面部90cが上蓋部材88が下方へ変位するのを許容し、残留振動が上蓋外周部88aを介して上蓋部材88の中央部に伝達され、所定の荷重が荷重センサ64に入力する。
ここで、装置20の軸心P1 に対してずれた方向から残留振動が伝達してきても、上蓋部材102及び下蓋部材90の突起部102b、104aを介して荷重センサ64の中央部に残留振動(荷重)が入力して荷重センサ64が残留振動を正確に検出するので、第2実施形態と同様に、荷重センサ64の感度を良好とすることができる。
【0052】
なお、本発明の適用対象は車両に限定されるものではなく、エンジン17以外で発生する振動を低減するための防振支持装置であっても本発明は適用可能であり、適用対象に関係なく上記各実施の形態と同様の作用効果を奏することができる。例えば、工作機械からフロアや室内に伝達される振動を低減する防振支持装置であっても、本発明は適用可能である。
【図面の簡単な説明】
【図1】車両の概略側面図である。
【図2】本発明の第1実施形態の防振支持装置の構成を示す断面図である。
【図3】本発明に係る第2蓋部材の肉厚形状を示す平面図である。
【図4】本発明の第2実施形態の防振支持装置の構成を示す断面図である。
【図5】本発明の第3実施形態の防振支持装置の構成を示す断面図である。
【図6】先行する防振支持装置の構成を示す断面図である。
【符号の説明】
17 エンジン(振動体)
18 車体メンバ(支持体)
20 防振支持装置
25 コントローラ
32 支持弾性体
52 電磁アクチュエータ(アクチュエータ)
52a ヨーク(振動伝達体)
78 可動部材
84 流体室
64 荷重センサ
88、98、102 上蓋部材(第1蓋部材)
88a、98a、102a 外周端部(第1蓋外周部)
90 下蓋部材(第2蓋部材)
90a 蓋中央部
90b 外周端部(第2蓋外周部)
90c 蓋周面部
92 連結ボルト
94 裏当て部材
96 ナット
100 皿ばね
102b、104a 突起部
104 センサ当接部材
S 間隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-vibration support device that supports a vibration body that generates periodic vibrations such as an engine of a vehicle while supporting the vibration body on a support body such as a vehicle body, and a vehicle equipped with the vibration-proof support device. A load sensor is provided between the body and the lid member and detects residual vibration on the support side.
[0002]
[Prior art]
As this type of prior art, for example, an anti-vibration support device described in Japanese Patent Application No. 10-55254 previously proposed by the present applicant is known.
As shown in FIG. 6, this anti-vibration support device has a cylindrical device case 43. The upper and lower ends of the device case 43 are bent toward the inner peripheral side, and a case upper caulking portion 43a and a case lower portion are formed. A caulking portion 43b is formed, and mount parts described below are accommodated in the device case 43 by the case upper caulking portion 43a and the case lower caulking portion 43b.
[0003]
A support elastic body 32 made of a rubber material is disposed above the device case 43, and the engine side connecting member 30 is fixed to the support elastic body 32 in an embedded state. The engine side connecting member 30 is provided with a connecting bolt 30a protruding upward. The connecting bolt 30a is the axis P of the vibration isolating support device 20. 1 The vibrating body (not shown) is fixed to the connecting bolt 30a by screw fastening.
[0004]
Further, the lower portion of the support elastic body 32 has a conical cylinder shape whose diameter increases toward the lower side, and the lower end surface of the conical cylinder shape is fixed to the inner surface of the orifice constituting member 36. The support elastic body 32 is configured as a part of a partition wall of a main liquid chamber 84 to be described later, and a spring constant is variable as an elastic spring by the liquid pressure of the fluid chamber 84.
The orifice constituting member 36 is a member in which a small diameter cylindrical portion 36c is continuously formed between an upper end cylindrical portion 36a and a lower end cylindrical portion 36b having the same outer diameter. An outer cylinder 34 is fitted on the outer peripheral side of the orifice constituting member 36, and the outer cylinder 34 is fitted on the inner peripheral side of the main body case 43. An opening 34 a is formed in the outer cylinder 34, and the outer periphery of a diaphragm 42 made of a rubber thin film elastic body is fixed to the entire circumference of the opening 34 a and bulges toward the inside of the outer cylinder 34. Yes.
[0005]
An air chamber 42 c is formed between the diaphragm 42 and the main body case 43, and the air chamber 42 c communicates with the outside through an air hole 43 c formed in the main body case 43. Further, a region between the diaphragm 42 and the orifice constituting member 36 is a secondary liquid chamber 40, and the volume of the secondary liquid chamber 40 is variable due to a shape change of the diaphragm 42.
[0006]
An inner cylinder 37 is fixed on the inner peripheral side of the orifice constituting member 36, and an area between the inner cylinder 37 and the orifice constituting member 36 is an idle resonance orifice 45. The idle resonance orifice 45 communicates with the auxiliary liquid chamber 40 through a first opening (not shown) formed in the orifice component member 36. A main liquid chamber 84 is provided on the inner peripheral side of the inner cylinder 37 in a region surrounded by an inner peripheral surface of the support elastic body 32 and a partition forming member 78A and a seal member 86 described later. The main liquid chamber 84 and the idle resonance orifice 45 communicate with each other through a second opening 37 d formed in the inner cylinder 37.
[0007]
That is, the main liquid chamber 84 and the sub liquid chamber 40 communicate with each other via the idle resonance orifice 45, and the liquid is sealed in both the chambers 84 and 40 and the idle resonance orifice 45. Due to the volume change (hydraulic pressure change) of the main liquid chamber 84, the liquid flows into and out of both chambers 84 and 40 via the idle resonance orifice 45, thereby damping the vibration.
[0008]
In addition, the spacer 70 fitted to the inner periphery of the lower position of the device case 43 is in contact with the lower end of the outer cylinder 34 on the upper portion thereof. The spacer 70 includes a cylindrical upper cylindrical body 70a and a lower cylindrical body 70b, and a diaphragm 70c made of a rubber thin film elastic body for connecting them, and on the inner peripheral side of the upper cylindrical body 70, A ring-shaped seal ring 72, a spring support ring 74, and a gap retaining ring 76 are fitted in order from the top. The spacer 70 has an axial center P with respect to the rings 72, 74, 76 and a yoke 52a described later. 1 Positioning is performed.
[0009]
A movable member 78 is disposed inside the rings 72, 74, and 76. The movable member 78 is a partition forming member 78A and a magnetic member screwed to the lower portion of the partition forming member 78A with a bolt 80. It is comprised with the path | route formation member 78B.
A rubber seal member 86 formed in a ring shape is interposed on the entire periphery between the outer periphery of the partition wall forming member 78A and the seal ring 72. Thus, the partition wall forming member 78A and the seal member 86 define the lower part of the main liquid chamber 84, and the partition wall forming member 78A is allowed to move in the vertical direction by elastic deformation of the seal member 86.
[0010]
Further, a constricted space 79 is provided between the magnetic path forming member 78B and the partition forming member 78A. The entire circumference of the outer peripheral end portion of the magnetic path forming member 78B is cut off at the upper and lower end surfaces, and the thin annular portion 78B. 1 This thin annular portion 78B is formed. 1 Is covered with a stopper member 78c made of an elastic body. The arrangement space of the magnetic path forming member 78B is set by the gap retaining ring 76, and the vertical displacement of the magnetic path forming member 78B causes the stopper member 78c to abut against the spring support ring 74 or a yoke 52a described later. As a result, the upward or downward displacement is restricted.
[0011]
Reference numeral 82 in the drawing is a disc-shaped leaf spring having a center portion cut out, and this leaf spring 82 is disposed in a constricted space 79 between the partition wall forming member 78A and the magnetic path forming member 78B. . The lower surface of the outer peripheral portion of the leaf spring 82 is in contact with the spring support ring 74, and the upper surface of the leaf spring 82 is in contact with the lower surface of the partition wall forming member 78A. That is, the movable member 78 is in a neutral position where the weight of the liquid in the main liquid chamber 84, the magnetic force of the permanent magnet 52c described later, and the spring force of the leaf spring 82 are balanced in a state where no magnetic force is applied by energization of the electromagnetic actuator 52 described later. Located in.
[0012]
Reference numeral 52 in the figure denotes an electromagnetic actuator. The electromagnetic actuator 52 is permanent at a position facing the upper surface of the yoke 52a, a yoke 52a disposed at the lower portion of the main body case 43, a permanent magnet 52c disposed on the upper surface of the yoke 52a. It is comprised with the exciting coil 52b arrange | positioned at the outer peripheral side of the magnet 52c at the ring shape.
The yoke 52 a is a member in which the upper yoke member 53 a and the lower yoke member 53 b are combined. The upper surface outer peripheral end portion of the upper yoke member 53 a is in contact with the lower surface of the gap retaining ring 76. A recess 52d is formed on the outer peripheral surfaces of the upper yoke member 53a and the lower yoke member 53b, and the diaphragm 70c described above is disposed in the recess 52d.
[0013]
An air chamber 70 d is defined between the diaphragm 70 c and the main body case 43, and the air chamber 70 d communicates with the outside of the main body case 43 through the air holes 43 d of the main body case 43. An air chamber 70e is also defined between the diaphragm 70c and the yoke 52a, and the air chamber 70e communicates with the gap space 71 between the magnetic path forming member 78B and the yoke 52a. Then, the diaphragm 70c fluctuates following the displacement of the movable member 78, and the fluctuation of the diaphragm 70c prevents the pressure fluctuation in the space 71 described above, and the movable member 78 moves smoothly.
[0014]
The permanent magnet 52c has a disk shape, and the upper surface thereof faces the lower surface of the magnetic path forming member 78B with the gap space 71 interposed therebetween. The magnetic force of the permanent magnet 52c is directed in the vertical direction, and the magnetic field lines enter the magnetic path forming member 78B through the gap space 71. The magnetic lines of force that have entered the magnetic path forming member 78B become a magnetic circuit that comes out of the outer peripheral end of the magnetic path forming member 78B and returns to the yoke 52a via the gap space 71 and the gap holding ring 76.
[0015]
A drive current is supplied to the excitation coil 52b from a controller (not shown). When a magnetic force in the direction opposite to the magnetic force of the permanent magnet 52c is generated by energization of the excitation coil 52b, the movable member 78 has a liquid pressure or the like. When the magnetic force in the same direction as the magnetic force of the permanent magnet 52c is generated, the movable member 78 moves downward against the spring force of the leaf spring 82.
[0016]
A load sensor denoted by reference numeral 64 in the drawing is disposed between the yoke 52a and the lid member 62 disposed below the yoke 52a, and a piezoelectric element, a magnetostrictive element, a strain gauge, or the like is used. The center of the load sensor 64 is the axis P 1 The upper surface of the load sensor 64 is in contact with the center of the lower surface of the lower yoke member 53b.
Further, the lid member 62 has a substantially disk shape, and an outer peripheral end 62a thereof is in contact with the lower yoke member 53b. The lid member 62 has an axis P 1 A plurality of connecting bolts 60 projecting downward from positions separated from the fixing bolts 60 are fixed, and a support body side (not shown) is fixed to the connecting bolts 60 by fastening. That is, the load sensor 64 detects the vibration (transmitting force) transmitted between the yoke 52a and the lid member 62 with a predetermined load value, and outputs the detection result to a controller (not shown) as a residual vibration signal.
[0017]
The controller calculates a drive current necessary to cancel the transmission force, and outputs the drive current obtained by the calculation to the exciting coil 52c. The electromagnetic actuator 52 generates a magnetic force corresponding to the energization of the excitation coil 52 c, and the movable member 78 is displaced (vibrated) by this magnetic force, and the hydraulic pressure changes due to the change in the capacity of the main liquid chamber 84. A canceling force for canceling out the transmission force is generated by the change in the hydraulic pressure, and the transmission force is canceled by the cancellation force, so that the force transmitted to the support side is zero or reduced.
[0018]
[Problems to be solved by the invention]
By the way, in the vibration isolating support device 20 described above, the load sensor 64 is sandwiched between the lower surface central portion of the yoke 52a and the upper surface central portion of the lid member 62, and the outer peripheral end portion 62a of the lid member 62 is placed on the outer periphery of the lower surface of the yoke 52a. The yoke caulking portion 52a is in contact with the lower portion of the yoke 52a and the device case 43. 1 The case lower caulking portion 43b is formed, and the load sensor 64 and the lid member 62 are fixed in the device case 43. Vibration (transmission force) generated on the vibrating body side passes through the plurality of transmission paths of the yoke 52a. Directly input to the load sensor 64.
[0019]
In other words, the transmission path mainly includes the load sensor via the seal ring 72, the spring support ring 74, the gap holding ring 76, and the yoke 52a through the support spring and the expansion spring of the support elastic body 32 without passing through the main fluid chamber 84. 64 (hereinafter referred to as a first transmission path) and a path (through the main fluid chamber 84, the seal ring 72, the spring support ring 74, the gap holding ring 76, and the load sensor 64 via the yoke 52a ( Hereinafter, this is referred to as a second transmission path).
[0020]
If the distance from the gap retaining ring 76 to the load sensor 64 is short, that is, if the height of the yoke 52a is not sufficient, the vertical rigidity of the outer periphery of the yoke 52a becomes smaller than the axial center, and the yoke 52a A path that passes through the shaft center and a path that passes through the outer periphery can be formed, and vibrations that have passed through the first transmission path and the second transmission path are input to the load sensor 64 in a state of being out of phase. Since the vibration that has shifted is detected as the residual vibration, the residual vibration cannot be detected accurately.
[0021]
For this reason, there is a problem that a certain amount of height is required to sufficiently secure the vertical rigidity of the yoke 52a, and the overall height of the vibration isolating support device is increased.
The present invention has been made by paying attention to the unsolved problems of such a prior anti-vibration support device, and at the same time, the load sensor accurately detects the residual vibration while reducing the size of the entire device. An object of the present invention is to provide an anti-vibration support device that can reliably prevent vibration on the support side and a vehicle equipped with the same.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is directed to a support elastic body interposed between the vibrating body and the support, a fluid chamber defined by the support elastic body, and a fluid sealed in the fluid chamber. A movable member that forms a part of the partition wall of the fluid chamber, an actuator that displaces the movable member, a vibration transmission body that receives vibration from the support elastic body, the fluid, and the like, and the support body side. An anti-vibration support device comprising: a load sensor that detects vibration transmitted to the vibration transmission body at a predetermined load value; and a controller that controls the actuator based on a detection result of the load sensor. A first lid member is disposed on the vibration transmitting body side between the body and the support body, a second lid member is disposed on the support body side, and the load is provided at a central portion between the first and second lid members. Pinch sensor The first lid member includes a first lid outer peripheral portion that abuts on an outer periphery of a surface of the vibration transmitting body facing the support body, and a portion other than the first lid outer peripheral portion is configured to transmit the vibration. The second lid member includes a lid central portion in which a single connecting bolt that is screw-fastened to the support body is fixed at a central position, and a first lid member first structure. A second lid outer peripheral portion that comes into contact with the outer peripheral portion of the lid from the support side, and is formed between the second lid outer peripheral portion and the lid central portion, and when the vibration is input, the first lid member is moved to the support side. And a lid peripheral surface portion with small rigidity that allows displacement.
[0023]
According to a second aspect of the present invention, in the anti-vibration support device according to the first aspect, a disc spring is interposed between the first lid member and the load sensor.
According to a third aspect of the present invention, in the anti-vibration support device according to the first aspect, the surface of the first lid member and the second lid member facing the load sensor contacts the central portion of the load sensor. Protrusions were provided.
[0024]
According to a fourth aspect of the present invention, in the vibration isolating support device according to any one of the first to third aspects, a flat plate-shaped backing member is brought into contact with the support, and the support and the backing member are contacted. The connecting bolt is inserted into the formed through hole, and a nut is fastened to the threaded portion of the connecting bolt protruding from the opposite side, thereby connecting the second lid member to the support side.
[0025]
Furthermore, the invention according to claim 5 is a vehicle equipped with the anti-vibration support device according to any one of claims 1 to 4, wherein Second The lid member is formed to have a large thickness extending in the vehicle front-rear direction.
[0026]
【The invention's effect】
According to the first aspect of the present invention, when the residual vibration that has not been damped by the support elastic body is transmitted to the vibration transmission body, only the outer periphery of the first lid of the first lid member is in contact with the vibration transmission body. Therefore, the residual vibration transmitted to the outer periphery of the vibration transmitting body is input to the outer periphery of the first lid. At this time, the second lid outer peripheral portion of the second lid member is in contact with the outer peripheral portion of the first lid from the support side, but the lid peripheral surface portion of the second lid member has low rigidity, so the first lid member supports it. Allow displacement to the body side. Therefore, the residual vibration is transmitted to the central portion of the first lid member via the outer periphery of the first lid, and is input to the load sensor that is in contact with the first lid member with a predetermined load value. Thus, in the present invention, the outer periphery of the vibration transmitting body Just go through Since residual vibration is input to the load sensor, even if the rigidity of the vibration transmission body is reduced , Via multiple paths (path through the axis of the vibration transmission body and path through the outer periphery of the vibration transmission body) Since residual vibrations that are out of phase are not input to the load sensor, the overall size of the vibration isolating support device can be reduced, and the residual vibration can be accurately detected, improving the sensing performance of the load sensor. be able to.
[0027]
Moreover, since the 2nd cover member of this invention has fixed the one connection bolt in the center position of a cover center part, it becomes a structure where the dimension of the radial direction of a cover peripheral surface part is long, and the rigidity of a cover peripheral surface part is easy. Can be changed. Thereby, the displacement amount to the support body side of a 1st cover member can be adjusted, and the load level input into a load sensor can be set freely.
According to the second aspect of the present invention, the residual vibration transmitted to the vibration transmitting body is input to the load sensor via the first lid member and the disc spring. Here, the load input to the disc spring can be divided into a component force toward the load sensor and a component force that elastically deforms the disc spring itself in the radial direction, so that the load input to the load sensor becomes small. Thus, when the load input to the load sensor becomes small, the load resistance of the load sensor becomes small and a small load sensor can be used, so that the cost of the vibration isolating support device can be reduced.
[0028]
According to the third aspect of the present invention, even if residual vibration is transmitted from a direction shifted with respect to the shaft center of the vibration isolating support device, the protrusions of the first and second lid members are located at the center of the load sensor. Since the residual vibration is input, the load sensor accurately detects the residual vibration. Therefore, the sensitivity of the load sensor can be improved.
According to the invention described in claim 4, even if an external force acts in a direction toward the support body or in a direction away from the support body, the backing member is integrally connected to the support body via the connecting bolt and nut. However, since it functions as a reinforcing material for the support that resists the external force, the durability of the support can be improved.
[0029]
Furthermore, according to the invention described in claim 5, since the first lid member of the vibration isolating support device mounted on the vehicle is formed to have a thick wall extending in the vehicle front-rear direction, an impact is applied in the vehicle front-rear direction. However, the first lid member is not easily deformed, and the impact durability of the anti-vibration support device can be improved.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic side view of a vehicle equipped with an anti-vibration support device according to the present invention.
First, the configuration will be described. A vehicle body member (support body) in which an engine (vibrating body) 17 mounted horizontally is constituted by a suspension member or the like via an anti-vibration support device 20 disposed rearward in the longitudinal direction of the vehicle body. 18 is supported. Actually, a plurality of engine mounts that generate passive support force according to relative displacement between the engine 17 and the vehicle body member 18 are also provided between the engine 17 and the vehicle body member 18 in addition to the vibration isolating support device 20. Intervene. As a passive engine mount, for example, a normal engine mount that supports a load with a rubber-like elastic body, or a known fluid-filled mount in which a fluid is sealed inside a rubber-like elastic body so that a damping force can be generated. An insulator or the like can be applied. Here, the idling vibration and the booming noise vibration generated in the engine 17 are mainly caused by the engine vibration of the secondary component of engine rotation being transmitted to the vehicle body member 18 in the case of a reciprocating four-cylinder engine, for example. If the drive signal y is generated and output in synchronization with the secondary component of engine rotation, the vehicle body side vibration can be reduced. Therefore, in the present embodiment, an impulse signal is generated in synchronization with the rotation of the crankshaft of the engine 17 (for example, in the case of a reciprocating four-cylinder engine, one is generated every time the crankshaft rotates 180 degrees), and the reference signal x The reference signal x is supplied to the controller 25.
[0031]
The load sensor 64 built in the vibration isolating support device 20 also detects the vibration state of the vehicle body member 18 in the form of a load and outputs it as a residual vibration signal e. The residual vibration signal e indicates the vibration after the interference. It is supplied to the controller 25 as a signal representing it.
The controller 25 includes a microcomputer, necessary interface circuits, an A / D converter, a D / A converter, an amplifier, a storage medium such as a ROM, a RAM, and the like.
[0032]
Then, the controller 25 executes a synchronous Filtered-XLMS algorithm, which is one of the successive update type adaptive algorithms, based on the supplied residual vibration signal e and the reference signal x, and thereby generates vibrations generated in the engine 17. The drive signal y generated in the image stabilization support device 20 by the active support force that can be reduced is calculated and output to the image stabilization support device 20, and the excitation coil 52b of the electromagnetic actuator 52 has a predetermined electromagnetic wave corresponding to the drive signal y. Is supposed to generate power.
[0033]
Specifically, the controller 25 uses the filter coefficient W i (I = 0, 1, 2,..., I-1: I is the number of taps) A variable adaptive digital filter W is provided, and a predetermined sampling clock interval from when the latest reference signal x is input. The filter coefficient W of the adaptive digital filter W i Are sequentially output as the drive signal y, while the filter coefficient W of the adaptive digital filter W is based on the reference signal x and the residual vibration signal e. i The process which updates suitably is performed.
[0034]
The update formula of the adaptive digital filter W is expressed by the following formula (1) according to the Filtered-X LMS algorithm.
W i (N + 1) = W i (N) -μR T e (n) ...... (1)
Here, terms with (n) and (n + 1) represent values at sampling times n and n + 1, and μ is a convergence coefficient. Also, the update reference signal R T Theoretically, a value obtained by filtering the reference signal x with a transfer function filter C ^ obtained by modeling the transfer function C between the electromagnetic actuator 52 and the load sensor 64 of the anti-vibration support device 1 with a finite impulse response type filter. However, since the magnitude of the reference signal x is “1”, the sum of the impulse response waveforms at the sampling time n when the impulse responses of the transfer function filter C ^ are generated one after another in synchronization with the reference signal x. Matches. Theoretically, the reference signal x is filtered by the adaptive digital filter W to generate the drive signal y. Since the magnitude of the reference signal x is “1”, the filter coefficient W i Are sequentially output as the drive signal y, the result is the same as when the filter processing result is the drive signal y.
[0035]
And if it vibrates by the drive of an engine, the vibration of this engine will be transmitted to the anti-vibration support apparatus 20 via the connection bolt 30a. In the vibration isolating support device 20, the vibration is damped by the support elastic body 32 or the like, but the vibration transmission force that has not been damped is a vibration transmission body via the seal ring 72, the spring support ring 74, and the gap holding ring 76. When transmitted to a certain yoke 52, the load sensor 64 detects a residual vibration signal e which is to be transmitted to the vehicle body member 18 side.
[0036]
The controller 25 to which the residual vibration signal e is input generates a control vibration in the vibration isolating support device 20 in the same cycle as the vibration to be transmitted to the vehicle body member 18 side and in the opposite phase, and the vibration to the vehicle body member 18 is reduced. The transmission force is “0” (more specifically, the excitation force input to the vibration isolation support device 20 due to vibration on the engine 17 side is canceled by the control force obtained from the electromagnetic force of the electromagnetic actuator 52. Drive signal y is generated and supplied to the exciting coil 52b. The electromagnetic actuator 52 generates a magnetic force corresponding to the energization of the exciting coil 52 c, and the hydraulic pressure changes due to a change in the capacity of the main liquid chamber 84 due to this magnetic force. A canceling force for canceling the transmission force is generated by the change in the hydraulic pressure, and the transmission force is canceled by the cancellation force, so that the force transmitted to the vehicle body is zero or reduced.
[0037]
Next, FIG. 2 is a cross-sectional view of the main part showing the vibration isolating support device of the first embodiment according to the present invention. In addition, in order to avoid duplication description, the same code | symbol is attached | subjected to drawing and the description is abbreviate | omitted in order to avoid duplication description.
The yoke (vibration transmission body) 52a of the present embodiment is composed of an upper yoke member 53a and a lower yoke member 53b, but the lower portion of the lower yoke member 53b is deepest at the center and toward the outer periphery. Concave portion 53b that becomes gradually shallower 1 The upper lid member (first lid member) 88 and the lower lid member (second lid member) 90 are disposed in and below the recess 52.
[0038]
The upper lid member 88 has a thin disk shape with a central portion recessed upward, and an outer peripheral end portion (first lid outer peripheral portion: hereinafter referred to as an upper lid outer peripheral end portion) 88a contacts the lower yoke member 53b. It touches. The upper lid member 88 is disposed with a predetermined gap S without contacting the lower surface of the lower yoke member 53b at locations other than the upper lid outer peripheral end portion 88a.
Further, the lower lid member 90 has a bolt through hole 90a at the axial center position. 1 A thick-walled lid central portion 90a, an outer peripheral end portion (second lid outer peripheral portion: hereinafter referred to as a lower lid outer peripheral portion) 90b that contacts the outer peripheral end portion 88b of the upper lid member 88, and a lid central portion 90a Is a substantially disc-shaped member having a bowl-shaped lid peripheral surface portion 90c that is gradually thinned toward the outer peripheral end portion 90b of the lower lid from the bolt through hole 90a. 1 A single connecting bolt 92 is inserted into the connecting bolt 92.
[0039]
Here, FIG. 3 shows the lower lid member 90 in a plan view, and the lid peripheral surface portion 90c passes through the axis and extends in the left-right direction in FIG. 1 Is a thick part with a large thickness, and this thick part 90c 1 The upper and lower areas except for the thin-walled portion 90c with a small thickness 2 It is said.
The load sensor 64 is disposed between the upper lid member 88 and the lower lid member 90, and the yoke caulking portion 52a is provided so as to cover the lower lid outer peripheral end portion 90b of the lower lid member 90 from the lower side. 1 The load sensor 64 sandwiched between the upper lid member 88 and the lower lid member 90 is disposed in the device case 43 by forming the case lower caulking portion 43b.
[0040]
Here, the lower lid member 90 is a thick portion 90c of the above-described lid peripheral surface portion 90c. 1 Are arranged so as to extend in the longitudinal direction of the vehicle.
The lower lid member 90 is inserted through the connecting bolt 92 into the through hole 18a of the vehicle body member 18 and the through hole 94a of the backing member 94 disposed in the lower part of the vehicle body member 18, and protrudes from below the backing member 94. It is fixed by screwing a nut 96 into the threaded portion and tightening.
[0041]
In the above configuration, when the engine 17 is driven, the vibration of the engine 17 is transmitted to the anti-vibration support device 20 via the upper connecting bolt 30a, and most of the vibration is attenuated by the support elastic body 32, but not attenuated. Residual vibration is transmitted to the yoke 52a.
Here, since only the upper lid outer peripheral end 88a of the upper lid member 88 is in contact with the yoke 52a (lower yoke member 53b), the residual vibration transmitted to the outer circumference of the yoke 52a is the outer circumference of the upper lid and the lower lid. To the unit 90b. At that time, the lid peripheral surface portion 90c continuing to the lower lid outer peripheral portion 90b is thin-walled and has low rigidity, and thus allows the upper lid member 88 to be displaced downward. Accordingly, the residual vibration is transmitted to the central portion of the upper lid member 88 via the upper lid outer peripheral portion 88 a and is input at a predetermined load value to the load sensor 32 that is in contact with the lower surface of the upper lid member 88.
[0042]
Thus, in this embodiment, even if the height of the yoke 52a is reduced and the rigidity in the vertical direction is reduced, Residual vibrations whose phases are shifted via a plurality of paths (a path passing through the axis of the yoke 52a and a path passing through the outer periphery of the yoke 52a) are not input to the load sensor 64, The outer periphery of the yoke 52a Just go through Since the residual vibration is input to the load sensor 64, it is possible to accurately detect the residual vibration without increasing it in the vertical direction in order to ensure the vertical rigidity as in the conventional device, and to prevent it. The sensing performance of the load sensor 64 can be improved by reducing the overall size of the vibration supporting device.
[0043]
Further, since the lower lid member 90 of the present embodiment has one connecting bolt 92 fixed to the axial center position of the lid center portion 90a, the radial dimension of the lid peripheral surface portion 90c (reference numeral D in FIG. 2). 1 And the rigidity can be easily changed by changing the thickness of the lid peripheral surface portion 90c. Thereby, the amount of downward displacement of the upper lid member 88 can be adjusted, and the load level input to the load sensor 64 can be set freely.
[0044]
Further, the lower lid member 90 has a thick wall portion 90c of the lid circumferential surface portion 90c. 1 Are arranged so as to extend in the front-rear direction of the vehicle, the lower lid member 90 is not easily deformed even when an impact is applied in the front-rear direction of the vehicle, and the shock durability of the vibration-proof support device 20 is improved. Can be improved.
Further, even when a large external force in the vertical direction acts on the vehicle body member 18 via the vibration isolating support device 20, the back is integrally connected to the vehicle body member 18 via the connection bolt 92 and the nut 96 at the lower portion of the vehicle body member 18. Since the contact member 94 functions as a reinforcing member for the vehicle body member 18 that resists the external force, the durability of the vehicle body member 18 can be improved.
[0045]
Next, what is shown in FIG. 4 shows the principal part of the image stabilization support apparatus 20 of 2nd Embodiment. The same components as those of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
In the present embodiment, the load sensor 64 and the disc spring 100 are sandwiched between the upper lid member (first lid member) 98 and the lower lid member 90.
[0046]
The upper lid member 98 has a disk shape with a thickened portion recessed above the central portion, and an outer peripheral end (first lid outer peripheral portion: hereinafter referred to as an upper lid outer peripheral end) 98a is a lower yoke. It is in contact with the member 53b. Similar to the first embodiment, the upper lid member 98 is also arranged with a predetermined gap S without contacting the lower surface of the lower yoke member 53b except for the upper lid outer peripheral end portion 98a.
[0047]
The disc spring 100 is an annular spring having a truncated cone shape. An axial end portion having a small outer diameter is in contact with the center of the upper surface of the load sensor 64, and an axial end portion having a large outer diameter is the upper cover member 98. It is in contact with the center of the lower surface.
In the above configuration, when the residual vibration transmitted to the outer periphery of the yoke 52a is input to the upper cover outer peripheral part 98a and the lower cover outer peripheral part 90b, the cover peripheral surface part 90c having a small rigidity allows the upper cover member 88 to be displaced downward. Residual vibration is transmitted to the central portion of the upper lid member 88 via the upper lid outer peripheral portion 88a, and a predetermined load is input to the load sensor 64 via the disc spring 100. Here, the load input to the disc spring 100 can be divided into a downward component force toward the load sensor 64 and a component force that elastically deforms the disc spring 100 itself radially outward. The load becomes smaller.
[0048]
When the load input to the load sensor 64 is reduced in this way, the load resistance of the load sensor 64 is reduced, and the smaller load sensor 64 can be used. Therefore, the cost of the vibration isolating support device 20 can be reduced. .
Further, since the central portion of the upper lid member 98 that is in contact with the disc spring 100 is thick and difficult to be deformed, it is possible to input an unbalanced load when the load is input from the upper lid member 88 to the disc spring 100 (disc spring). Since the load is uniformly input from the disc spring 100 to the entire upper surface of the load sensor 64, the sensitivity of the load sensor 64 can be improved.
[0049]
Next, what is shown in FIG. 5 shows the principal part of the vibration isolating support apparatus 20 of 3rd Embodiment.
In the present embodiment, the load sensor 64 and the sensor contact member 104 are sandwiched between the upper lid member (first lid member) 102 and the lower lid member 90.
The upper lid member 102 has a disk shape in which a protruding portion 102b is formed downward from a portion recessed upward from the central portion, and an outer peripheral end (first lid outer peripheral portion: hereinafter referred to as an upper lid outer peripheral end) 102a. Is in contact with the lower yoke member 53b. Similarly to the first embodiment, the upper lid member 102 is also arranged with a predetermined gap S without contacting the lower surface of the lower yoke member 53b at a place other than the upper lid outer peripheral end portion 98a.
[0050]
The sensor contact member 104 is a substantially disk-shaped member placed on the upper portion of the lid central portion 90a of the lower lid member 90, and has a protrusion 104a formed upward from the central portion.
When the load sensor 64 and the sensor abutting member 104 are arranged between the upper lid member 102 and the lower lid member 90, the protrusions 102b and 104a abut on the upper and lower surfaces of the load sensor 64.
[0051]
In the above configuration, when the residual vibration transmitted from the yoke 52a is input to the upper lid outer peripheral portion 102a and the lower lid outer peripheral portion 90b, the lid peripheral surface portion 90c having a small rigidity allows the upper lid member 88 to be displaced downward, The vibration is transmitted to the central portion of the upper lid member 88 via the upper lid outer peripheral portion 88 a, and a predetermined load is input to the load sensor 64.
Here, the axis P of the device 20 1 Even if residual vibration is transmitted from a direction shifted with respect to the load sensor 64, the residual vibration (load) is input to the central portion of the load sensor 64 via the protrusions 102 b and 104 a of the upper lid member 102 and the lower lid member 90. Since the residual vibration 64 is accurately detected, the sensitivity of the load sensor 64 can be improved as in the second embodiment.
[0052]
Note that the application target of the present invention is not limited to the vehicle, and the present invention can be applied even to an anti-vibration support device for reducing vibrations other than the engine 17, regardless of the application target. The same effects as those in the above embodiments can be obtained. For example, the present invention can be applied even to an anti-vibration support device that reduces vibration transmitted from a machine tool to a floor or a room.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a vehicle.
FIG. 2 is a cross-sectional view showing the configuration of the vibration isolating support device according to the first embodiment of the present invention.
FIG. 3 is a plan view showing a thick shape of a second lid member according to the present invention.
FIG. 4 is a cross-sectional view showing a configuration of a vibration isolating support device according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a configuration of a vibration isolating support device according to a third embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a configuration of a preceding vibration-proof support device.
[Explanation of symbols]
17 Engine (vibrating body)
18 Body member (support)
20 Anti-vibration support device
25 controller
32 Support elastic body
52 Electromagnetic actuator (actuator)
52a Yoke (vibration transmission body)
78 Movable members
84 Fluid chamber
64 Load sensor
88, 98, 102 Upper lid member (first lid member)
88a, 98a, 102a Outer peripheral end (first lid outer peripheral portion)
90 Lower lid member (second lid member)
90a lid center
90b Outer peripheral edge (second lid outer periphery)
90c Lid peripheral surface
92 Connecting bolt
94 Backing member
96 nuts
100 disc spring
102b, 104a Projection
104 Sensor contact member
S gap

Claims (5)

振動体及び支持体間に介在する支持弾性体と、この支持弾性体によって画成された流体室と、この流体室内に封入された流体と、前記流体室の隔壁の一部を形成する可動部材と、この可動部材を変位させるアクチュエータと、前記支持弾性体及び前記流体等から振動を受ける振動伝達体と、前記支持体側に配設され、前記振動伝達体に伝達してきた振動を所定の荷重値で検出する荷重センサと、この荷重センサの検出結果に基づいて前記アクチュエータを制御するコントローラとを備えた防振支持装置において、
前記振動伝達体と前記支持体との間の前記振動伝達体側に第1蓋部材を配置し、前記支持体側に第2蓋部材を配置し、これら第1及び第2蓋部材の間の中央部に前記荷重センサを挟み込んで支持するとともに、
前記第1蓋部材は、前記振動伝達体の前記支持体側を向く面の外周に当接する第1蓋外周部を備え、当該第1蓋外周部以外の部分は前記振動伝達体との間に間隙を設けた構造とし、
前記第2蓋部材は、前記支持体とねじ締結する一本の連結ボルトを中心位置に固定した蓋中央部と、前記第1蓋部材の第1蓋外周部に前記支持体側から当接する第2蓋外周部と、この第2蓋外周部及び前記蓋中央部の間に形成され、前記振動が入力したときに前記第1蓋部材が支持体側に変位するのを許容する剛性の小さな蓋周面部とを備えていることを特徴とする防振支持装置。
A support elastic body interposed between the vibrating body and the support, a fluid chamber defined by the support elastic body, a fluid sealed in the fluid chamber, and a movable member forming a part of a partition wall of the fluid chamber An actuator for displacing the movable member, a vibration transmission body that receives vibration from the support elastic body, the fluid, and the like, and a vibration that is disposed on the support body side and transmitted to the vibration transmission body is a predetermined load value. In the anti-vibration support device comprising the load sensor detected in step (b) and the controller for controlling the actuator based on the detection result of the load sensor,
A first lid member is disposed on the vibration transmission body side between the vibration transmission body and the support body, a second lid member is disposed on the support body side, and a central portion between the first and second lid members. And sandwiching and supporting the load sensor,
The first lid member includes a first lid outer peripheral portion that abuts on an outer periphery of a surface of the vibration transmitting body facing the support, and a portion other than the first lid outer peripheral portion is a gap between the vibration transmitting body and the vibration transmitting body. And a structure with
The second lid member includes a lid central portion in which a single connecting bolt that is screw-fastened to the support body is fixed at a center position, and a second lid member that abuts on the first lid outer peripheral portion of the first lid member from the support body side. A lid outer peripheral portion formed between the outer peripheral portion of the lid and the outer peripheral portion of the second lid and the central portion of the lid, and which allows the first lid member to be displaced toward the support when the vibration is input. And an anti-vibration support device.
前記第1蓋部材と前記荷重センサとの間に、皿ばねを介在したことを特徴とする請求項1記載の防振支持装置。The anti-vibration support device according to claim 1, wherein a disc spring is interposed between the first lid member and the load sensor. 前記第1蓋部材及び前記第2蓋部材の前記荷重センサを向く面に、当該荷重センサの中央部に当接する突起部を設けたことを特徴とする請求項1記載の防振支持装置。The anti-vibration support device according to claim 1, wherein a protrusion that contacts a central portion of the load sensor is provided on a surface of the first lid member and the second lid member facing the load sensor. 前記支持体に、平板形状の裏当て部材を当接し、これら支持体及び裏当て部材に形成した貫通孔に前記連結ボルトを挿通し、逆側から突出した前記連結ボルトのねじ部にナットを締め付けることにより、前記第2蓋部材を支持体側に連結することを特徴とする請求項1乃至3の何れかに記載の防振支持装置。A flat plate-shaped backing member is brought into contact with the support body, the connection bolt is inserted into through holes formed in the support body and the support member, and a nut is tightened on a thread portion of the connection bolt protruding from the opposite side. The anti-vibration support device according to any one of claims 1 to 3, wherein the second lid member is coupled to the support side. 請求項1乃至4の何れかに記載の防振支持装置を搭載した車両において、前記第2蓋部材の車両前後方向に延在する肉厚を厚く形成したことを特徴とする防振支持装置を搭載した車両。5. A vibration-proof support device, comprising: the vehicle mounted with the vibration-proof support device according to claim 1, wherein the second lid member is formed to have a thick wall extending in the vehicle front-rear direction. Installed vehicle.
JP1576699A 1999-01-25 1999-01-25 Anti-vibration support device and vehicle equipped with the same Expired - Fee Related JP3846086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1576699A JP3846086B2 (en) 1999-01-25 1999-01-25 Anti-vibration support device and vehicle equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1576699A JP3846086B2 (en) 1999-01-25 1999-01-25 Anti-vibration support device and vehicle equipped with the same

Publications (2)

Publication Number Publication Date
JP2000213587A JP2000213587A (en) 2000-08-02
JP3846086B2 true JP3846086B2 (en) 2006-11-15

Family

ID=11897931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1576699A Expired - Fee Related JP3846086B2 (en) 1999-01-25 1999-01-25 Anti-vibration support device and vehicle equipped with the same

Country Status (1)

Country Link
JP (1) JP3846086B2 (en)

Also Published As

Publication number Publication date
JP2000213587A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
US5792948A (en) Active vibration control apparatus for vehicle
JPH11223238A (en) Active vibration control device
JP3978908B2 (en) Anti-vibration support device
JP3846086B2 (en) Anti-vibration support device and vehicle equipped with the same
JP3336941B2 (en) Anti-vibration support device
JP3409682B2 (en) Anti-vibration support device
JP3965794B2 (en) Vibration isolator
JP3849335B2 (en) Anti-vibration support device
JP3409567B2 (en) Anti-vibration support device
JP4399873B2 (en) Vibration isolator and diaphragm fixing structure
JP3438510B2 (en) Anti-vibration support device
JP4003304B2 (en) Vibration isolator
JP3921851B2 (en) Anti-vibration support device
JP3409684B2 (en) Anti-vibration support device
JP3959857B2 (en) Vibration isolator
JP3409685B2 (en) Anti-vibration support device
JPH10252817A (en) Vibration control supporting device
JPH07228159A (en) Engine mount control device, engine supporting device using this control device, and engine mount control method
JPH04302729A (en) Mount for power unit
JP3409570B2 (en) Anti-vibration support device
JP3438507B2 (en) Anti-vibration support device
JP3336946B2 (en) Anti-vibration support device
JP3289520B2 (en) Anti-vibration support device
JP3336945B2 (en) Anti-vibration support device and vehicle equipped with this device
JP3412500B2 (en) Anti-vibration support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Effective date: 20060421

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120901

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130901

LAPS Cancellation because of no payment of annual fees