JP3838691B2 - Silicon nitride grinding aid and its use - Google Patents

Silicon nitride grinding aid and its use Download PDF

Info

Publication number
JP3838691B2
JP3838691B2 JP08518296A JP8518296A JP3838691B2 JP 3838691 B2 JP3838691 B2 JP 3838691B2 JP 08518296 A JP08518296 A JP 08518296A JP 8518296 A JP8518296 A JP 8518296A JP 3838691 B2 JP3838691 B2 JP 3838691B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
grinding aid
silicon
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08518296A
Other languages
Japanese (ja)
Other versions
JPH09278531A (en
Inventor
啓 磯崎
哲美 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP08518296A priority Critical patent/JP3838691B2/en
Publication of JPH09278531A publication Critical patent/JPH09278531A/en
Application granted granted Critical
Publication of JP3838691B2 publication Critical patent/JP3838691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、窒化ケイ素の粉砕助剤及びそれを用いた窒化ケイ素粉末組成物と窒化ケイ素粉末組成物の製造方法に関する。
【0002】
【従来の技術】
近年、省エネルギー、高エネルギー効率の観点から、ガスタービンやターボロータ、バルブ等の自動車部品及び一般産業用機械部品に窒化ケイ素セラミックスが検討されている。そのセラミックスを提供するのための窒化ケイ素粉末に要求される特性としては、高α化率、サブミクロン粒子、高純度、安価であるということである。
【0003】
窒化ケイ素の製造方法は、大別して金属シリコンを窒素やアンモニア等の反応ガスを用いて窒化する直接窒化法、シリカを炭素等の還元剤と反応ガスを用いて窒化する還元窒化法、ハロゲン化ケイ素から生成するシリコンジイミドを熱分解するイミド熱分解法である。
【0004】
これらのうち、工業的に最も普及しているのは直接窒化法である。直接窒化法では、窒化反応で合成された窒化ケイ素インゴットを粉砕して窒化ケイ素粉末とする。窒化ケイ素インゴットとは、粉末状の金属シリコンから合成された窒化ケイ素粒子の集合体である。主原料の金属シリコンは、通常、ハンドリング性向上のため成形体にするか又は粉末のまま窒化するが、金属シリコンの窒化反応は大きな発熱反応であるので生成した窒化ケイ素粒子が比較的強固に結合した集合体となる。
【0005】
窒化ケイ素インゴットの粉砕には湿式法と乾式法がある。湿式法は、乾式法よりも粉砕効率がよいが、粉砕物の精製・濾過・乾燥・解砕等の後処理工程が必要である。また、粉砕し難い窒化ケイ素インゴットでは長時間の粉砕が必要となるため、粉砕メディアの摩耗が激しく、更には混入した不純物や粒子表面の酸化層を取り除く精製工程や、酸処理等が必要となる。これに対し、乾式法では湿式法のような後処理工程は必要でないが、粉砕効率が低くメディアの摩耗粉の混入や表面酸素の大幅な増加等の問題がある。また、数十μm又はそれ以上の粗大粒子が残留し易く焼結体に大きな欠陥を生じ強度や靭性を損なう原因となる。
【0006】
更には、湿式法と乾式法ないしは窒化ケイ素の製造方法には関係なく、微粉の窒化ケイ素は、経時的な安定性やハンドリング性の面で問題が生じ易い。すなわち、窒化ケイ素粒子の表面は、常温でも表面から酸化されたり加水分解を生じ、長期安定性に劣り流動性が悪くなり、その結果、焼結体特性の低下を招く。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記に鑑み、長期安定性に優れた窒化ケイ素粉末を提供することである。また、本発明の別の目的は、直接窒化法で製造された窒化ケイ素インゴットの粉砕性を高める方法を提供することである。
【0008】
本発明の目的は、窒化ケイ素の製造方法には関係なく、微粉の窒化ケイ素粉末に、分子内にシクロヘキシル基とアミノ基を有する有機化合物の塩を添加するか、直接窒化法で製造された窒化ケイ素インゴットの粉砕助剤として、上記有機化合物の塩を使用することによって達成することができる。
【0009】
【課題を解決するための手段】
すなわち、本発明は、以下を要旨とするものである。
(請求項1)シクロヘキシル基とアミノ基を有する有機化合物の塩からなることを特徴とする窒化ケイ素の粉砕助剤
(請求項2)請求項1記載の窒化ケイ素の粉砕助剤を含有してなることを特徴とする窒化ケイ素粉末組成物。
(請求項3)金属シリコン粉末を窒化して得られた窒化ケイ素インゴットに請求項1記載の窒化ケイ素の粉砕助剤を添加し粉砕することを特徴とする窒化ケイ素粉末組成物の製造方法。
【0010】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0011】
一般に、窒化ケイ素の製造方法が同じであれば、その粉末の比表面積(窒素ガスを用いて測定されたBET比表面積。以下、同じ。)が大きくなるほど焼結性は高くなるが、長期安定性が悪くなる。
【0012】
すなわち、窒化ケイ素粉末の比表面積が小さいということは、大きな窒化ケイ素粒子で粉末が構成されているか、又は窒素ガスが入り込めないほど強固に粒子が結合していることを示し、逆に比表面積が大きいということは、粉末の一次粒子が微細であることを表している。微細な窒化ケイ素粒子ほど焼結性がよく、焼結体の微構造制御が可能となるので強度や靭性が向上し易くなる。このようなことから、窒化ケイ素粉末の比表面積は少なくとも8m2 /g以上であることが好ましく、直接窒化法によるものはその粉砕効率を考慮して9m2 /g以上特に10〜20m2 /gであることが好ましい。
【0013】
しかしながら、このような微粉の窒化ケイ素粉末は酸化され易く、高比表面積のものほど空気中の酸素、水分と反応し長期安定性が乏しくなり、焼結性が低下する。
【0014】
本発明は、このような高比表面積の有する長期安定性の問題を、シクロヘキシル基とアミノ基を有する有機化合物の塩の添加によって解決したものである。また、驚くべきことに、このような有機化合物の塩を直接窒化法により製造された窒化ケイ素インゴットの粉砕助剤として使用するとその粉砕効率が高まることをも見いだしたものである。
【0015】
本発明において、分子内にシクロヘキシル基とアミノ基を有する有機化合物の塩とは、例えばジシクロヘキシルアミンの亜硝酸塩(Dicyclohexylamine nitrite(DHA):(C6H11)2NH ・HNO2) 、亜硝酸塩、硝酸塩、硫酸塩などをあげることができる。このような有機化合物の塩は、窒化ケイ素粉末への分散性が良好で窒化ケイ素粒子表面への吸着性に優れ、少量の添加量で長期安定性ないしは窒化ケイ素インゴットの粉砕助剤としての効果がある。
【0016】
本発明における有機化合物の塩の添加量は、窒化ケイ素粉末及び/又は窒化ケイ素インゴット100重量部に対し、0.1〜10重量部程度特に0.5〜5重量部が好ましい。0.1重量部未満では長期安定性ないしは粉砕助剤としての効果が少なく、また10重量部をこえると窒化ケイ素本来の特性が損なわれる。
【0017】
【実施例】
以下、本発明を実施例と比較例をあげて具体的に示す。
【0018】
実施例1〜5 比較例1〜6
市販の金属シリコン粉末100重量部に対して、窒化ケイ素粉末を骨材として30重量部加えボールミルで混合して窒化原料とした。この原料1kgを容器に自然充填した状態で窒化炉に入れ、真空排気してから窒素ガスで置換し、アルゴンガスと水素ガスを導入して窒素30%、アルゴン50%、水素20%のガス組成の雰囲気に調整した後、昇温を開始した。窒化開始後は、平均反応速度2%/hrになるように雰囲気を調整して1420℃まで昇温した。反応速度は、ガスの入り口と出口に取り付けた積算流量計で5分毎にガス量を測定し、その差を消費ガス量として金属シリコン粉末がSi3 4 の理論比で消費されたものとし、窒素ガス1モルの体積を20℃で22.4リットルとして算出した。
【0019】
窒化終了後、窒素ガスを流しながら室温まで放冷して合成した窒化ケイ素インゴットを取り出した。次いで、これを窒化ケイ素製乳鉢で0.2mm以下に粗・中砕した後、窒化ケイ素製ボールを媒体として用い、表1に示す粉砕助剤を添加しボールミルで8時間粉砕して窒化ケイ素粉末を製造した。
【0020】
実施例1〜5は粉砕助剤としてジシクロヘキシルアミンの亜硝酸塩(DHA)を用い、比較例1は無添加、比較例2〜6は従来のトリエタノールアミン(TEA)を用いたものである。なお、表1に示された粉砕助剤の添加量は、窒化ケイ素インゴット100重量部に対する重量部である。
【0021】
得られた窒化ケイ素粉末について、以下に従い、比表面積、平均粒径、粗大粒子の残留分、α化率、長期安定性を測定した。それらの結果を表1に示す。
(1)比表面積:湯浅アイオニクス社製のカンタソーブを用い、ヘリウム−窒素の混合ガスを標準ガスとして流通式の1点法で測定。
(2)平均粒径:Leeds &Northrup社製のマイクロトラック「SPA」を用い、水中に20分間超音波分散させた希薄スラリーで測定。
(3)粗大粒子の残留分:水500mlに試料200gを加えて30分間超音波分散させ、目開き25μmで水篩する操作を3回繰り返し、篩上残差の乾燥重量を求め、元試料に対する割合を算出。
(4)α化率:CuKα線によりX線回折を行い、α相は(102)面の回折線強度Ia102と(210)面の回折線強度Ia210、β相は(101)面と(210)面の回折線強度をそれぞれIb101、Ib210で代表し、次式により算出。
α化率(%)=(Ia102+Ia210)/(Ia102+Ia210+Ib101+Ib210)×100
(5)長期安定性:20℃、湿度60%で300日間粉末を放置して比表面積の変化を測定し、放置前の比表面積に対する相対値を算出。
【0022】
長期安定性試験前の窒化ケイ素粉末及び長期安定性試験後の窒化ケイ素粉末について以下の焼結性を評価した。すなわち、窒化ケイ素粉末91重量部にY2 3 粉末5重量部とAl23 粉末4重量部を混合し、有機バインダー5重量%を加えて混合粉末の50重量%のスラリー水溶液を調合した。それをスプレードライヤーで造粒・乾燥し、金型プレス成形後、2.5トン/cm2 でCIP成形した後、温度1750℃で4時間焼結して窒化ケイ素焼結体を製造した。この焼結体について、JIS R1601に準拠して室温における4点曲げ強度を測定した。それらの結果についても表1に示す。
【0023】
【表1】

Figure 0003838691
【0024】
表1に示したように、実施例1〜5の本発明の窒化ケイ素粉末は、窒化ケイ素インゴットを乾式粉砕して得られた比較的製造の容易なものであるが、比較例1〜6に比較して、粗大粒子の残留は少なく、長期保存後の比表面積の変化も小さく、焼結用原料として十分な比表面積とα化率を持つので、焼結体強度は高い値を示した。
【0025】
実施例6
還元窒化法によって製造された窒化ケイ素粉末100重量部に対しジシクロヘキシルアミンの亜硝酸塩(DHA)を2重量部添加し、実施例1と同様にして長期安定性試験と焼結性の評価試験を行った。その結果を表2に示す。
【0026】
比較例7
ジシクロヘキシルアミンの亜硝酸塩(DHA)を添加しなかったこと以外は、実施例6と同様にして試験した。その結果を表2に示す。
【0027】
【表2】
Figure 0003838691
【0028】
表2から、本発明における有機化合物の塩は、還元窒化法によって製造された窒化ケイ素粉末についても長期安定性の改善効果が示された。
【0029】
【発明の効果】
本発明によれば、長期安定性の改善された窒化ケイ素粉末が提供される。また、本発明によれば、直接窒化法で製造された窒化ケイ素インゴットの粉砕性とその窒化ケイ素粉末の長期安定性を改善することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grinding aid for silicon nitride, a silicon nitride powder composition using the same, and a method for producing the silicon nitride powder composition.
[0002]
[Prior art]
In recent years, silicon nitride ceramics have been studied for automobile parts such as gas turbines, turbo rotors, valves and general industrial machine parts from the viewpoint of energy saving and high energy efficiency. The characteristics required for the silicon nitride powder for providing the ceramic are high alpha conversion rate, submicron particles, high purity, and low cost.
[0003]
Silicon nitride production methods can be broadly divided into a direct nitridation method in which metal silicon is nitrided using a reaction gas such as nitrogen or ammonia, a reduction nitridation method in which silica is nitrided using a reducing agent and a reaction gas such as carbon, and a silicon halide. This is an imide pyrolysis method in which silicon diimide produced from the pyrolysis is pyrolyzed.
[0004]
Among these, the most popular industrially is the direct nitriding method. In the direct nitriding method, a silicon nitride ingot synthesized by a nitriding reaction is pulverized to form a silicon nitride powder. A silicon nitride ingot is an aggregate of silicon nitride particles synthesized from powdered metal silicon. Metallic silicon, the main raw material, is usually formed into a molded body to improve handling or is nitrided in powder form. However, since the nitriding reaction of metallic silicon is a large exothermic reaction, the generated silicon nitride particles bind relatively firmly. It becomes an aggregate.
[0005]
There are a wet method and a dry method for grinding a silicon nitride ingot. The wet method has better pulverization efficiency than the dry method, but requires post-treatment steps such as purification, filtration, drying and pulverization of the pulverized product. In addition, silicon nitride ingots that are difficult to pulverize require long pulverization, so the pulverization media is severely worn, and further, a purification process that removes mixed impurities and oxide layers on the particle surface, and acid treatment are required. . On the other hand, the dry method does not require a post-treatment step as in the wet method, but has problems such as low grinding efficiency and a large increase in surface oxygen. Further, coarse particles of several tens of μm or more are liable to remain, causing a large defect in the sintered body and causing a decrease in strength and toughness.
[0006]
Furthermore, regardless of the wet method, the dry method, or the silicon nitride manufacturing method, fine silicon nitride is likely to cause problems in terms of stability over time and handling properties. That is, the surface of the silicon nitride particles is oxidized or hydrolyzed from the surface even at room temperature, resulting in poor long-term stability and poor fluidity. As a result, the sintered compact properties are deteriorated.
[0007]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a silicon nitride powder having excellent long-term stability. Another object of the present invention is to provide a method for improving the grindability of a silicon nitride ingot produced by a direct nitriding method.
[0008]
The object of the present invention is to add a salt of an organic compound having a cyclohexyl group and an amino group in the molecule to a finely divided silicon nitride powder, or to perform nitridation produced by a direct nitriding method, regardless of the method of producing silicon nitride. This can be achieved by using a salt of the organic compound as a grinding aid for the silicon ingot.
[0009]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(Claim 1) A silicon nitride grinding aid comprising a salt of an organic compound having a cyclohexyl group and an amino group.
(2) A silicon nitride powder composition comprising the grinding aid for silicon nitride according to (1).
(3) A method for producing a silicon nitride powder composition, comprising adding a grinding aid for silicon nitride according to (1) above to a silicon nitride ingot obtained by nitriding metal silicon powder and grinding.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
In general, if the silicon nitride production method is the same, the sinterability increases as the specific surface area of the powder (BET specific surface area measured using nitrogen gas; hereinafter the same) increases, but long-term stability. Becomes worse.
[0012]
That is, the small specific surface area of the silicon nitride powder indicates that the powder is composed of large silicon nitride particles, or that the particles are bonded so tightly that nitrogen gas cannot enter, and conversely the specific surface area. A large value indicates that the primary particles of the powder are fine. Finer silicon nitride particles have better sinterability, and the microstructure of the sintered body can be controlled, so that the strength and toughness are easily improved. For this reason, the specific surface area of the silicon nitride powder is at least 8m 2 / preferably g or more, is by direct nitridation method in consideration of its grinding efficiency 9m 2 / g or more, especially 10 to 20 m 2 / g It is preferable that
[0013]
However, such fine silicon nitride powder is more likely to be oxidized, and the one with a higher specific surface area reacts with oxygen and moisture in the air, resulting in poor long-term stability and lower sinterability.
[0014]
The present invention solves such a problem of long-term stability having a high specific surface area by adding a salt of an organic compound having a cyclohexyl group and an amino group. Surprisingly, it has also been found that when such a salt of an organic compound is used as a grinding aid for a silicon nitride ingot produced by a direct nitriding method, the grinding efficiency is increased.
[0015]
In the present invention, the salt of an organic compound having a cyclohexyl group and an amino group in the molecule is, for example, dicyclohexylamine nitrite (DHA): (C 6 H 11 ) 2 NH · HNO 2 ), nitrite, Examples thereof include nitrates and sulfates. Such a salt of an organic compound has good dispersibility in silicon nitride powder, excellent adsorption to the surface of silicon nitride particles, and has a long-term stability or an effect as a grinding aid for a silicon nitride ingot with a small amount of addition. is there.
[0016]
The addition amount of the salt of the organic compound in the present invention is preferably about 0.1 to 10 parts by weight, particularly 0.5 to 5 parts by weight with respect to 100 parts by weight of the silicon nitride powder and / or silicon nitride ingot. If it is less than 0.1 part by weight, the long-term stability or the effect as a grinding aid is small, and if it exceeds 10 parts by weight, the original characteristics of silicon nitride are impaired.
[0017]
【Example】
Hereinafter, the present invention will be specifically described by way of examples and comparative examples.
[0018]
Examples 1-5 Comparative Examples 1-6
To 100 parts by weight of commercially available metal silicon powder, 30 parts by weight of silicon nitride powder as an aggregate was added and mixed by a ball mill to obtain a nitriding raw material. 1 kg of this raw material is naturally filled in a container, put into a nitriding furnace, evacuated and then replaced with nitrogen gas, introduced with argon gas and hydrogen gas, and a gas composition of 30% nitrogen, 50% argon and 20% hydrogen After adjusting to the atmosphere, the temperature increase was started. After the start of nitriding, the atmosphere was adjusted so that the average reaction rate was 2% / hr, and the temperature was raised to 1420 ° C. The reaction rate was determined by measuring the amount of gas every 5 minutes with an integrating flow meter attached to the gas inlet and outlet, and using the difference as the amount of gas consumed, the metal silicon powder was consumed at the theoretical ratio of Si 3 N 4. The volume of 1 mol of nitrogen gas was calculated as 22.4 liters at 20 ° C.
[0019]
After completion of nitriding, the synthesized silicon nitride ingot was taken out by allowing it to cool to room temperature while flowing nitrogen gas. Next, this was crushed and crushed to a size of 0.2 mm or less with a silicon nitride mortar, and then a silicon nitride ball was used as a medium. Manufactured.
[0020]
In Examples 1 to 5, dicyclohexylamine nitrite (DHA) was used as a grinding aid, Comparative Example 1 was not added, and Comparative Examples 2 to 6 were conventional triethanolamine (TEA). In addition, the addition amount of the grinding aid shown in Table 1 is parts by weight with respect to 100 parts by weight of the silicon nitride ingot.
[0021]
With respect to the obtained silicon nitride powder, the specific surface area, average particle diameter, residual content of coarse particles, pregelatinization rate, and long-term stability were measured according to the following. The results are shown in Table 1.
(1) Specific surface area: Measured by a flow-type one-point method using a Kantasorb manufactured by Yuasa Ionics Co., Ltd. using a mixed gas of helium-nitrogen as a standard gas.
(2) Average particle diameter: Measured with a dilute slurry ultrasonically dispersed in water for 20 minutes using a Microtrac “SPA” manufactured by Leeds & Northrup.
(3) Residue of coarse particles: 200 g of sample was added to 500 ml of water, ultrasonically dispersed for 30 minutes, and water sieving with an opening of 25 μm was repeated three times to obtain the dry weight of the residual on the sieve, Calculate percentage.
(4) α conversion rate: X-ray diffraction is performed with CuKα ray, α phase is (102) plane diffraction line intensity I a102 , (210) plane diffraction line intensity I a210 , β phase is (101) plane ( 210) The diffraction line intensity of the surface is represented by I b101 and I b210 , respectively, and calculated by the following equation.
Alphaation rate (%) = (I a102 + I a210 ) / (I a102 + I a210 + I b101 + I b210 ) × 100
(5) Long-term stability: The powder was allowed to stand for 300 days at 20 ° C. and 60% humidity, the change in specific surface area was measured, and the relative value to the specific surface area before standing was calculated.
[0022]
The following sinterability was evaluated for the silicon nitride powder before the long-term stability test and the silicon nitride powder after the long-term stability test. That is, 91 parts by weight of silicon nitride powder was mixed with 5 parts by weight of Y 2 O 3 powder and 4 parts by weight of Al 2 O 3 powder, and 5% by weight of an organic binder was added to prepare a 50% by weight slurry aqueous solution of the mixed powder. . It was granulated and dried with a spray dryer, and after die press molding and CIP molding at 2.5 tons / cm 2 , sintering was performed at a temperature of 1750 ° C. for 4 hours to produce a silicon nitride sintered body. With respect to this sintered body, the four-point bending strength at room temperature was measured according to JIS R1601. The results are also shown in Table 1.
[0023]
[Table 1]
Figure 0003838691
[0024]
As shown in Table 1, the silicon nitride powders of the present invention of Examples 1 to 5 are relatively easy to produce obtained by dry pulverizing a silicon nitride ingot. In comparison, the residual coarse particles were small, the change in specific surface area after long-term storage was small, and the specific surface area and alpha conversion ratio sufficient as a raw material for sintering were high, so the sintered compact strength showed a high value.
[0025]
Example 6
2 parts by weight of dicyclohexylamine nitrite (DHA) is added to 100 parts by weight of silicon nitride powder produced by the reductive nitriding method, and a long-term stability test and a sinterability evaluation test are conducted in the same manner as in Example 1. It was. The results are shown in Table 2.
[0026]
Comparative Example 7
The test was carried out in the same manner as in Example 6 except that dicyclohexylamine nitrite (DHA) was not added. The results are shown in Table 2.
[0027]
[Table 2]
Figure 0003838691
[0028]
Table 2 shows that the organic compound salt in the present invention has an effect of improving the long-term stability of the silicon nitride powder produced by the reductive nitriding method.
[0029]
【The invention's effect】
According to the present invention, a silicon nitride powder with improved long-term stability is provided. Further, according to the present invention, the grindability of the silicon nitride ingot produced by the direct nitriding method and the long-term stability of the silicon nitride powder can be improved.

Claims (3)

シクロヘキシル基とアミノ基を有する有機化合物の塩からなることを特徴とする窒化ケイ素の粉砕助剤A silicon nitride grinding aid comprising a salt of an organic compound having a cyclohexyl group and an amino group. 請求項1記載の窒化ケイ素の粉砕助剤を含有してなることを特徴とする窒化ケイ素粉末組成物。A silicon nitride powder composition comprising the silicon nitride grinding aid according to claim 1. 金属シリコン粉末を窒化して得られた窒化ケイ素インゴットに請求項1記載の窒化ケイ素の粉砕助剤を添加し粉砕することを特徴とする窒化ケイ素粉末組成物の製造方法。A method for producing a silicon nitride powder composition, comprising adding a grinding aid for silicon nitride according to claim 1 to a silicon nitride ingot obtained by nitriding a metal silicon powder and then grinding.
JP08518296A 1996-04-08 1996-04-08 Silicon nitride grinding aid and its use Expired - Fee Related JP3838691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08518296A JP3838691B2 (en) 1996-04-08 1996-04-08 Silicon nitride grinding aid and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08518296A JP3838691B2 (en) 1996-04-08 1996-04-08 Silicon nitride grinding aid and its use

Publications (2)

Publication Number Publication Date
JPH09278531A JPH09278531A (en) 1997-10-28
JP3838691B2 true JP3838691B2 (en) 2006-10-25

Family

ID=13851526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08518296A Expired - Fee Related JP3838691B2 (en) 1996-04-08 1996-04-08 Silicon nitride grinding aid and its use

Country Status (1)

Country Link
JP (1) JP3838691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960694B2 (en) * 2006-12-21 2012-06-27 株式会社リコー Toner manufacturing method, toner, two-component developer, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JPH09278531A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP3827459B2 (en) Silicon nitride powder and method for producing the same
CN109650896B (en) Synthesis method of LiAlON transparent ceramic powder
JP3838691B2 (en) Silicon nitride grinding aid and its use
JPH0647447B2 (en) Method for producing aluminum nitride powder
JP3698664B2 (en) Method for producing high purity silicon nitride powder
US7314593B2 (en) Process for preparing improved silicon carbide powder
JP3348797B2 (en) Silicon nitride grinding aid and silicon nitride powder
JP3342756B2 (en) Silicon nitride powder and method for producing the same
JPS6117403A (en) Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof
JP3342753B2 (en) Method for producing silicon nitride
JP4082803B2 (en) Method for producing silicon nitride powder
JP3367567B2 (en) Method for producing easily crushable and high α-type silicon nitride
JP3375182B2 (en) Method for producing easily crushable low oxygen silicon nitride
JP3348798B2 (en) Method for producing silicon nitride
JP3801252B2 (en) Method for producing silicon nitride
JP3344663B2 (en) Method for producing high α-type silicon nitride
JP3390059B2 (en) Method for producing silicon nitride
JP3375185B2 (en) Method for producing silicon nitride
JP3827360B2 (en) Manufacturing method of silicon nitride
JP3496795B2 (en) Method for producing silicon nitride powder
JP3801253B2 (en) Method for producing silicon nitride
JPH05279002A (en) Production of al nitride powder
JPH0448752B2 (en)
JPH04295005A (en) Production of silicon nitride
JP4112108B2 (en) Silicon nitride powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees