JP3698664B2 - Method for producing high purity silicon nitride powder - Google Patents

Method for producing high purity silicon nitride powder Download PDF

Info

Publication number
JP3698664B2
JP3698664B2 JP2001307169A JP2001307169A JP3698664B2 JP 3698664 B2 JP3698664 B2 JP 3698664B2 JP 2001307169 A JP2001307169 A JP 2001307169A JP 2001307169 A JP2001307169 A JP 2001307169A JP 3698664 B2 JP3698664 B2 JP 3698664B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitrogen
nitriding
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001307169A
Other languages
Japanese (ja)
Other versions
JP2003112977A (en
Inventor
哲美 大塚
雄二 廣島
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001307169A priority Critical patent/JP3698664B2/en
Publication of JP2003112977A publication Critical patent/JP2003112977A/en
Application granted granted Critical
Publication of JP3698664B2 publication Critical patent/JP3698664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属シリコン粉末原料の直接窒化法による高純度窒化ケイ素粉末の製造方法に関する。
【0002】
【従来の技術】
窒化ケイ素は、高強度、高クリープ性等の優れた特性を有し、切削工具、自動車部品、産業用部品等の用途に使用されている。近年、半導体用冶具、回路基板等の電子部品の用途が拡大しつつあり、それに伴い更なる高純度化が要求されるようになってきた。
【0003】
窒化ケイ素粉末の製造方法の1つに、金属シリコン粉末原料を窒素やアンモニア等の窒化ガスで窒化させて窒化ケイ素インゴット製造しそれを粉砕する直接窒化法がある。この方法は量産化プロセスとして最も普及している。
【0004】
窒化ケイ素インゴットは、金属シリコン粉末原料から合成された窒化ケイ素粒子の集合体であり、その特性ひいては窒化ケイ素粉末の特性は、金属シリコン粉末原料の特性と窒化条件に大きく左右される。金属シリコン粉末原料の窒化反応は大きな発熱反応であるので、インゴットは比較的強固な凝集体となり、窒化ケイ素粉末とするには粉砕が必要となる。粉砕条件が過酷となるほど、不純物が混入する機会が多くなるので、粉砕性の善し悪しが窒化ケイ素粉末特性に影響を与える。
【0005】
窒化ケイ素インゴットの粉砕には、湿式法と乾式法がある。湿式法では、微粉砕が可能である反面、粉砕メディアの磨耗による不純物混入や酸素量増加が起こり、酸洗浄等による純化処理が必要となる。これに対して、乾式法では湿式法の問題はないが、比表面積はあまり増加せず、微粉末の歩留まりが湿式法よりも悪くなる。
【0006】
以上のように、直接窒化法窒化ケイ素においては、金属シリコン粉末原料の窒化条件を適正化して粉砕の容易な窒化ケイ素インゴットを製造することが、窒化ケイ素を高純度化するうえで重要なことであるが、その他にも金属シリコン粉末原料を高純度なものを用いることの配慮が必要である。
【0007】
直接窒化法窒化ケイ素の高純度化技術として、特開2000−335907号公報には、金属不純物の合計含有量が1.3重量%以下、Fe含有量が0.3重量%以下、平均粒子径100μm以下の金属ケイ素粉末を用いることが記載されている。また、特開平5−32405公報には、純度99.999質量%以上の高純度金属シリコン粉末を窒化することが記載されている。しかしながら、このような高純度金属シリコン粉末原料を慣用手段で窒化したのでは、理由は不明であるが、恐らくは、例えば鉄、アルミニウム、マンガン、チタン等の金属シリコン粉末原料の不純物成分が、低温で窒化を促進する触媒となるが、それがなくなることによると考えているが、反応が進み難くなり、未反応シリコンが残留し易くなるので、それを回避するのに長時間の窒化が必要となり、高純度窒化ケイ素の生産性が悪化するという新たな問題に直面した。また、7B族元素が多い窒化ケイ素粉末であると、半導体用冶具や回路基板等の電子部品用途への適用は困難である。
【0008】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、その目的は、半導体用冶具や回路基板等の電子部品用途に適用できる高純度窒化ケイ素粉末を量産性に優れる直接窒化法によって製造することである。
【0009】
【課題を解決するための手段】
すなわち、本発明は、3B、5B(窒素を含まず)族元素の合計が100μg/g以下、7B族元素の合計が50μg/g以下、平均粒子径が10〜20μmである金属シリコン粉末原料を、窒素又は窒素とアンモニアを含む窒素分圧30KPa以上の雰囲気下、温度を漸次高め、平均反応速度2.0%/hr以下で、しかも温度1300℃迄における累積反応率を85%以上にして窒化させ、得られた窒化ケイ素インゴットを粉砕することを特徴とする窒化ケイ素粉末の製造方法である。
【0010】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
【0011】
本発明に用いられる金属シリコン粉末原料は、3B、5B(窒素を除く)族元素の合計が100μg/g以下、7B族元素の合計が50μg/g以下、平均粒子径が10〜20μmであることが必要である。このような高純度金属シリコン粉末としては、半導体用単結晶シリコン又は多結晶シリコンの粉砕品がある。
【0012】
金属シリコン粉末原料の3B、5B(窒素を含まず)族元素の合計が100μg/g超であったり、7B族元素の合計が50μg/g超であると、窒化ケイ素粉末中にそれらの元素の殆どが残留してしまうので電子部品用途には適さなくなる。さらには、平均粒子径が10μm未満であると、微粉が多く反応性が高いので反応速度が急減に上昇し、平均反応速度が2.0%/hrを超える結果、溶解・残留するシリコンが多くなる。一方、平均粒子径が20μm超であると、窒化反応条件を後記のように高度に制御しても未反応シリコンが残留してしまう。
【0013】
金属シリコン粉末原料は、そのまま窒化に供してもよいが、反応熱を緩和するために、本発明で製造されたような純度・粒子径を有する高純度窒化ケイ素粉末と混合することが好ましい。その割合は、金属シリコン粉末原料100部(質量部、以下同じ)に対し高純度窒化ケイ素粉末50部以下である。
【0014】
金属シリコン粉末原料、又は金属シリコン粉末原料と高純度窒化ケイ素粉末との混合原料(以下、両者を単に「原料」ともいう。)は、アルミナ、窒化ケイ素等のセラミックス製容器に充填するか、又は金型成形、乾式CIP成形等によって成形してから窒化に供される。窒化炉としては、箱型反応炉、回転炉、プッシャー式連続炉、流動層炉等の反応炉が用いられる。
【0015】
本発明においては、窒素、又は窒素とアンモニアを含む窒素分圧30KPa以上の雰囲気下、温度を漸次高めながら原料を窒化させ、その平均反応速度2.0%/hr以下で、しかも温度1300℃における累積反応率を85%以上にして窒化することが肝要となる。
【0016】
窒化雰囲気の窒素分圧が30KPa未満であると、反応速度を2.0%/hr以下に制御しても、生成した窒化ケイ素はファイバー状の粒子形態が多くなり、嵩密度が高くなって成形時の充填密度が上がらないなどの不都合が生じる。窒化雰囲気が窒素ガス100%よりも窒素分圧30KPa以上の窒素及びアンモニアを含む混合雰囲気とすることによって、窒素分圧を迅速に変更することができ、これにより反応速度の制御をきめ細やかに行うことができる利点がある。
【0017】
平均反応速度が2.0%/hrを超えると、反応熱が過剰となるので金属シリコンが融解・析出し、窒化が不完全になる恐れがある。さらには、温度1300℃迄における累積窒化率が80%未満では、高温で反応するシリコン量が多くなり、反応時の発熱によって融解・析出し、生成した窒化ケイ素粉末にシリコンが残留してしまう。
【0018】
本発明において、平均反応速度及び温度1300℃迄における累積窒化率の調節は、窒化雰囲気下の窒素分圧と、1300℃に至る迄の昇温速度の制御とによって行われる。
【0019】
平均反応速度及び温度1300℃における累積窒化率は、窒化炉に供給された窒素及びアンモニア量と、窒化炉から排出した窒素及びアンモニア量を測定し、両者の差が金属シリコン粉末の窒化に消費された、すなわち窒化ケイ素が生成したとみなして算出される。
【0020】
得られた窒化ケイ素インゴットは、上記湿式法又は乾式法によって所望粒度に粉砕されて高純度窒化ケイ素粉末となる。粉砕機は、その内部が、粉砕メディアからの不純物混入を極力阻止できるように、窒化ケイ素を主体としたライニング材で内張りされていることが好ましい。粉砕メディアとしては、本発明で製造されたと同等以上の高純度窒化ケイ素粉末を用いて製造されたものが好ましい。
【0021】
本発明で製造される高純度窒化ケイ素粉末の平均粒子径は3μm以下であることが好ましく、3μm超となると、粗大粒子の存在比率が高くなり、それを用いて製造された窒化ケイ素焼結体はそれが破壊起点となって強度低下する。また、本発明の高純度窒化ケイ素粉末の用途が離形材である場合には、被離形物を傷つける恐れがある。
【0022】
また、不純物については、3B、5B(窒素を含まず)族元素の合計が100μg/g以下及び7B族の合計が50μg/g以下であることが好ましい。3B、5B(窒素を含まず)族の合計が100μg/g超及び7B族元素の合計が50μg/g超であると、電子部品用途には適さなくなる。
【0023】
【実施例】
以下、実施例、比較例をあげて更に具体的に本発明を説明する。
【0024】
実施例1
単結晶シリコン塊をアルミナ製ジョークラッシャーで粗砕して得られた1mm下の粉末3リットルと、窒化ケイ素製ボール1.8リットルとをポリエチレン製ポットに入れ、蓋をして80rpmで10時間粉砕した。得られた金属シリコン粉末原料の不純物量と平均粒子径を測定した。その結果を表1に示す。
【0025】
上記金属シリコン粉末原料5キログラムを窒化ケイ素製容器に充填し、それをバッチ式窒化炉に入れ、炉内酸素濃度が100μg/g以下になるまで窒素ガスを流しながら置換した後、窒素雰囲気下、100℃/hrで昇温した。1000℃に達した時点で、炉内の窒化雰囲気ガスの一部をアルゴンで置換して窒素ガス分圧を40kPaとし、更に昇温して反応速度を0.5%/hrとした。その後、窒素流量と昇温速度を制御して徐々に反応速度を高めて1.5%/hrとし、その状態を保持しながら1300℃での累積窒化率が87%になるまで窒化を行った。続いて、反応速度を1.0%/hrにして1450℃まで昇温し窒化を行った。
【0026】
温度1450℃に保持し、炉内の窒化雰囲気を全て窒素に置換しても、反応速度が0.1%/hr以下になるまでこの状態を保持した。そして、反応速度が0.1%/hr未満になってから窒素雰囲気下で冷却を開始した。室温まで冷却してから、窒化ケイ素インゴットを取り出し、窒化ケイ素ライニングの施こされたジョークラッシャーで粗砕、振動ミルで微粉砕を行って高純度窒化ケイ素粉末を製造した。
【0027】
なお、反応速度及び累積反応率は、窒化炉に供給された窒素量と、窒化炉から排出された窒素量を測定し、両者の差が反応に使用されたみなして算出した。また、振動ミル粉砕は、窒化ケイ素ボールを充填した窒化ケイ素製容器中、5分間行った。
【0028】
比較例1〜5
不純物量が表1である金属シリコン粉末原料を用いたこと(比較例1、2)、平均粒子径が32μmである金属シリコン粉末原料を用いたこと(比較例3)、平均反応速度を2.8%/hrとしたこと(比較例4)、温度1300℃における累積反応率を80%にしたこと(比較例5)、以外は実施例1と同様にして窒化ケイ素粉末を製造した。
【0029】
実施例2
実施例1で調製された金属シリコン粉末原料100部と実施例1で製造された高純度窒化ケイ素粉末20部との混合粉末からなる原料を用いたこと以外は、実施例1と同様にして窒化ケイ素粉末を製造した。その結果、実施例1よりも低温で反応が促進され、より微細な粒子が得られた。この窒化ケイ素粉末は焼結体強度が高くなる長所があった。
【0030】
上記で得られた窒化ケイ素粉末について、不純物量、酸素量、平均粒子径を測定した。また、窒化ケイ素焼結体を製造して、4点曲げ抗折強度と体積抵抗率を測定した。それらの結果を表1に示す。
【0031】
(1)不純物量:化学発光分析を用いて3B、5B(窒素を含まず)族元素の合計を測定した。また、イオンクロマトグラム法により7B族の元素の合計を測定した。
(2)酸素量:LECO社製酸素/窒素同時分析計により、スズカプセルを用いて測定した。
(3)平均粒子径:日機装社製商品名「マイクロトラック」によるレーザー回折光散乱法により測定した。
(4)4点曲げ抗折強度:JIS R1601に準じて常温で測定した。
(5)体積抵抗率:窒化ケイ素粉末92g、酸化アルミニウム粉末4g、酸化イットリウム粉末4gをボールミルにて10時間混合し、80×80×3mmに成形した後、200MPaのCIP成形を行った。これを窒素雰囲気中、1900℃で5時間保持して窒化ケイ素焼結体を製造し、両面を研磨して平滑にしてから、体積抵抗率をヒューレットパッカード社製商品名「ハイレジスタンスメーター4339A」を用いて測定した。
【0032】
【表1】

Figure 0003698664
【0033】
表1から、実施例は、比較例に比べて得られた窒化ケイ素粉末のシリコンが少なく、強度に優れた窒化ケイ素焼結体が得られることがわかる。
【0034】
【発明の効果】
本発明によれば、半導体用冶具や回路基板等の電子部品用途として適用できる高純度窒化ケイ素粉末を、量産性に優れる直接窒化法によって製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-purity silicon nitride powder by a direct nitridation method of a metal silicon powder raw material.
[0002]
[Prior art]
Silicon nitride has excellent properties such as high strength and high creep properties, and is used in applications such as cutting tools, automobile parts, and industrial parts. In recent years, the use of electronic parts such as semiconductor jigs and circuit boards has been expanding, and accordingly, higher purity has been required.
[0003]
One method for producing silicon nitride powder is a direct nitriding method in which a metal silicon powder raw material is nitrided with a nitriding gas such as nitrogen or ammonia to produce a silicon nitride ingot and pulverize it. This method is most popular as a mass production process.
[0004]
A silicon nitride ingot is an aggregate of silicon nitride particles synthesized from a metal silicon powder raw material, and the characteristics of the silicon nitride powder and thus the characteristics of the silicon nitride powder greatly depend on the characteristics of the metal silicon powder raw material and the nitriding conditions. Since the nitriding reaction of the metal silicon powder raw material is a large exothermic reaction, the ingot becomes a relatively strong aggregate, and pulverization is required to obtain the silicon nitride powder. The more severe the pulverization conditions, the more opportunities for impurities to be mixed in. Therefore, the quality of the pulverization affects the silicon nitride powder characteristics.
[0005]
There are a wet method and a dry method for grinding a silicon nitride ingot. In the wet method, fine pulverization is possible, but impurities are mixed and the amount of oxygen increases due to wear of the pulverization media, and a purification process such as acid cleaning is required. On the other hand, there is no problem with the wet method in the dry method, but the specific surface area does not increase so much and the yield of fine powder is worse than that in the wet method.
[0006]
As described above, in direct nitridation silicon nitride, it is important to optimize the nitriding conditions of the metal silicon powder raw material to produce a silicon nitride ingot that can be easily pulverized in order to increase the purity of silicon nitride. However, there are other considerations for using high-purity metal silicon powder raw materials.
[0007]
As a technique for purifying silicon nitride by direct nitriding method, Japanese Patent Application Laid-Open No. 2000-335907 discloses that the total content of metal impurities is 1.3% by weight or less, the Fe content is 0.3% by weight or less, and the average particle size It describes that metal silicon powder of 100 μm or less is used. Japanese Patent Laid-Open No. 5-32405 describes nitriding high-purity metal silicon powder having a purity of 99.999% by mass or more. However, when such a high-purity metal silicon powder raw material is nitrided by conventional means, the reason is unknown, but the impurity component of the metal silicon powder raw material such as iron, aluminum, manganese, titanium, etc. It becomes a catalyst that promotes nitriding, but it is thought that it disappears, but the reaction becomes difficult to proceed and unreacted silicon tends to remain, so nitriding for a long time is necessary to avoid it, We faced a new problem that the productivity of high purity silicon nitride deteriorated. In addition, when the silicon nitride powder is rich in 7B group elements, it is difficult to apply it to electronic parts such as semiconductor jigs and circuit boards.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and its purpose is to produce a high-purity silicon nitride powder that can be applied to electronic components such as semiconductor jigs and circuit boards by a direct nitriding method that is excellent in mass productivity. is there.
[0009]
[Means for Solving the Problems]
That is, the present invention provides a metal silicon powder raw material in which the total of 3B and 5B (excluding nitrogen) group elements is 100 μg / g or less, the total of 7B group elements is 50 μg / g or less, and the average particle size is 10 to 20 μm. In an atmosphere containing nitrogen or nitrogen and ammonia containing nitrogen and a partial pressure of 30 KPa or higher, the temperature is gradually increased, the average reaction rate is 2.0% / hr or less, and the cumulative reaction rate up to 1300 ° C is 85% or more. And the silicon nitride ingot thus obtained is pulverized.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
The metal silicon powder raw material used in the present invention has a total of 3B and 5B (excluding nitrogen) group elements of 100 μg / g or less, a total of 7B group elements of 50 μg / g or less, and an average particle size of 10 to 20 μm. is necessary. Examples of such high-purity metallic silicon powder include pulverized products of single crystal silicon or polycrystalline silicon for semiconductors.
[0012]
When the total of 3B and 5B (not including nitrogen) group elements of the metal silicon powder raw material exceeds 100 μg / g, or the total of 7B group elements exceeds 50 μg / g, these elements are contained in the silicon nitride powder. Most of them remain, making them unsuitable for electronic component applications. Furthermore, if the average particle size is less than 10 μm, the reaction rate rapidly increases because there are many fine powders and the reactivity is high. As a result of the average reaction rate exceeding 2.0% / hr, there is a large amount of dissolved / residual silicon. Become. On the other hand, when the average particle diameter is more than 20 μm, unreacted silicon remains even if the nitriding reaction conditions are controlled as described later.
[0013]
Although the metal silicon powder raw material may be directly subjected to nitriding, it is preferably mixed with a high-purity silicon nitride powder having the purity and particle diameter as produced in the present invention in order to reduce reaction heat. The ratio is 50 parts or less of high-purity silicon nitride powder with respect to 100 parts (parts by mass, the same applies hereinafter) of the metal silicon powder raw material.
[0014]
Metal silicon powder raw material, or mixed raw material of metal silicon powder raw material and high-purity silicon nitride powder (hereinafter, both are also simply referred to as “raw material”) are filled in a ceramic container such as alumina or silicon nitride, or It is subjected to nitriding after being molded by die molding, dry CIP molding or the like. As the nitriding furnace, a reaction furnace such as a box reactor, a rotary furnace, a pusher type continuous furnace, a fluidized bed furnace or the like is used.
[0015]
In the present invention, the raw material is nitrided while gradually increasing the temperature in an atmosphere of nitrogen or a nitrogen partial pressure of 30 KPa or more containing nitrogen and ammonia, the average reaction rate is 2.0% / hr or less, and the temperature is 1300 ° C. It is important to perform nitriding with a cumulative reaction rate of 85% or more.
[0016]
When the nitrogen partial pressure in the nitriding atmosphere is less than 30 KPa, even if the reaction rate is controlled to 2.0% / hr or less, the produced silicon nitride has many fiber-like particle forms, and the bulk density is increased to form. Inconveniences such as no increase in packing density at the time occur. By making the nitriding atmosphere a mixed atmosphere containing nitrogen and ammonia having a nitrogen partial pressure of 30 KPa or more than 100% nitrogen gas, the nitrogen partial pressure can be quickly changed, thereby finely controlling the reaction rate. There are advantages that can be made.
[0017]
If the average reaction rate exceeds 2.0% / hr, the heat of reaction becomes excessive, so that metal silicon melts and precipitates and nitriding may be incomplete. Furthermore, when the cumulative nitriding rate up to 1300 ° C. is less than 80%, the amount of silicon that reacts at a high temperature increases and melts and precipitates due to heat generated during the reaction, and silicon remains in the generated silicon nitride powder.
[0018]
In the present invention, the average reaction rate and the adjustment of the cumulative nitriding rate up to a temperature of 1300 ° C. are performed by controlling the nitrogen partial pressure in the nitriding atmosphere and the temperature rising rate up to 1300 ° C.
[0019]
The average reaction rate and the cumulative nitriding rate at a temperature of 1300 ° C were measured by measuring the amount of nitrogen and ammonia supplied to the nitriding furnace and the amount of nitrogen and ammonia discharged from the nitriding furnace, and the difference between them was consumed for nitriding the metal silicon powder. That is, it is calculated on the assumption that silicon nitride is formed.
[0020]
The obtained silicon nitride ingot is pulverized to a desired particle size by the above-described wet method or dry method to obtain a high-purity silicon nitride powder. The inside of the pulverizer is preferably lined with a lining material mainly composed of silicon nitride so that impurities can be prevented from being mixed as much as possible. As the grinding media, those produced using high-purity silicon nitride powder equivalent to or higher than those produced in the present invention are preferable.
[0021]
The average particle diameter of the high-purity silicon nitride powder produced in the present invention is preferably 3 μm or less, and if it exceeds 3 μm, the abundance ratio of coarse particles increases, and a silicon nitride sintered body produced using the same Decreases strength as a starting point of fracture. Moreover, when the use of the high purity silicon nitride powder of the present invention is a mold release material, there is a risk of damaging the article to be released.
[0022]
As for impurities, the total of 3B and 5B (not including nitrogen) group elements is preferably 100 μg / g or less, and the total of 7B group is preferably 50 μg / g or less. If the total of 3B and 5B (excluding nitrogen) group exceeds 100 μg / g and the total of 7B group elements exceeds 50 μg / g, it is not suitable for electronic parts.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0024]
Example 1
Put 3 liters of powder under 1 mm obtained by crushing single crystal silicon lump with alumina jaw crusher and 1.8 liter of silicon nitride balls into a polyethylene pot, capped and crush at 80 rpm for 10 hours did. The amount of impurities and average particle diameter of the obtained metal silicon powder raw material were measured. The results are shown in Table 1.
[0025]
After filling 5 kg of the above metal silicon powder raw material into a silicon nitride container, putting it in a batch type nitriding furnace and replacing it with flowing nitrogen gas until the oxygen concentration in the furnace becomes 100 μg / g or less, under a nitrogen atmosphere, The temperature was raised at 100 ° C./hr. When the temperature reached 1000 ° C., a portion of the nitriding atmosphere gas in the furnace was replaced with argon to make the nitrogen gas partial pressure 40 kPa, and the temperature was further raised to a reaction rate of 0.5% / hr. Thereafter, the nitrogen flow rate and the heating rate were controlled to gradually increase the reaction rate to 1.5% / hr, and nitriding was performed until the cumulative nitriding rate at 1300 ° C. reached 87% while maintaining this state. . Subsequently, nitriding was performed by raising the reaction rate to 1.0% / hr and raising the temperature to 1450 ° C.
[0026]
Even if the temperature was maintained at 1450 ° C. and the nitriding atmosphere in the furnace was completely replaced with nitrogen, this state was maintained until the reaction rate became 0.1% / hr or less. Then, after the reaction rate became less than 0.1% / hr, cooling was started under a nitrogen atmosphere. After cooling to room temperature, the silicon nitride ingot was taken out, coarsely crushed with a jaw crusher with silicon nitride lining, and finely pulverized with a vibration mill to produce a high purity silicon nitride powder.
[0027]
The reaction rate and cumulative reaction rate were calculated by measuring the amount of nitrogen supplied to the nitriding furnace and the amount of nitrogen discharged from the nitriding furnace, and regarding the difference between the two as being used in the reaction. The vibration mill pulverization was performed for 5 minutes in a silicon nitride container filled with silicon nitride balls.
[0028]
Comparative Examples 1-5
The metal silicon powder raw material having an impurity amount of Table 1 was used (Comparative Examples 1 and 2), the metal silicon powder raw material having an average particle diameter of 32 μm was used (Comparative Example 3), and the average reaction rate was 2. A silicon nitride powder was produced in the same manner as in Example 1 except that the rate was 8% / hr (Comparative Example 4) and the cumulative reaction rate at a temperature of 1300 ° C. was 80% (Comparative Example 5).
[0029]
Example 2
Nitriding was carried out in the same manner as in Example 1 except that a raw material composed of a mixed powder of 100 parts of the metal silicon powder raw material prepared in Example 1 and 20 parts of the high-purity silicon nitride powder produced in Example 1 was used. Silicon powder was produced. As a result, the reaction was promoted at a lower temperature than in Example 1, and finer particles were obtained. This silicon nitride powder has the advantage of increasing the strength of the sintered body.
[0030]
About the silicon nitride powder obtained above, the amount of impurities, the amount of oxygen, and the average particle diameter were measured. Moreover, the silicon nitride sintered compact was manufactured, and the 4-point bending strength and volume resistivity were measured. The results are shown in Table 1.
[0031]
(1) Impurity amount: The total of 3B and 5B (excluding nitrogen) group elements was measured using chemiluminescence analysis. Moreover, the sum total of the 7B group element was measured by the ion chromatogram method.
(2) Oxygen amount: Measured using a tin capsule with a LECO oxygen / nitrogen simultaneous analyzer.
(3) Average particle diameter: It was measured by a laser diffraction light scattering method using a trade name “Microtrack” manufactured by Nikkiso Co., Ltd.
(4) 4-point bending strength: measured at room temperature according to JIS R1601.
(5) Volume resistivity: 92 g of silicon nitride powder, 4 g of aluminum oxide powder, and 4 g of yttrium oxide powder were mixed in a ball mill for 10 hours and molded to 80 × 80 × 3 mm, and then CIP molding of 200 MPa was performed. This was held at 1900 ° C. for 5 hours in a nitrogen atmosphere to produce a silicon nitride sintered body, both surfaces were polished and smoothed, and the volume resistivity was changed to Hewlett-Packard product name “High Resistance Meter 4339A”. And measured.
[0032]
[Table 1]
Figure 0003698664
[0033]
From Table 1, it can be seen that the silicon nitride powder obtained in the example is less in silicon nitride powder than the comparative example, and a silicon nitride sintered body excellent in strength can be obtained.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the high purity silicon nitride powder which can be applied as electronic components uses, such as a semiconductor jig and a circuit board, can be manufactured by the direct nitriding method excellent in mass-productivity.

Claims (1)

3B、5B(窒素を含まず)族元素の合計が100μg/g以下、7B族元素の合計が50μg/g以下、平均粒子径が10〜20μmである金属シリコン粉末原料を、窒素又は窒素とアンモニアを含む窒素分圧30KPa以上の雰囲気下、温度を漸次高め、平均反応速度2.0%/hr以下で、しかも温度1300℃迄における累積反応率を85%以上にして窒化させ、得られた窒化ケイ素インゴットを粉砕することを特徴とする窒化ケイ素粉末の製造方法。A metal silicon powder raw material having a total of 3B and 5B (excluding nitrogen) group elements of 100 μg / g or less, a total of 7B group elements of 50 μg / g or less, and an average particle diameter of 10 to 20 μm, is nitrogen or nitrogen and ammonia. Nitrogen obtained by gradually increasing the temperature under an atmosphere containing nitrogen partial pressure of 30 KPa or more, nitriding with an average reaction rate of 2.0% / hr or less and a cumulative reaction rate up to a temperature of 1300 ° C. of 85% or more. A method for producing a silicon nitride powder, comprising grinding a silicon ingot.
JP2001307169A 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder Expired - Fee Related JP3698664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001307169A JP3698664B2 (en) 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001307169A JP3698664B2 (en) 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder

Publications (2)

Publication Number Publication Date
JP2003112977A JP2003112977A (en) 2003-04-18
JP3698664B2 true JP3698664B2 (en) 2005-09-21

Family

ID=19126681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001307169A Expired - Fee Related JP3698664B2 (en) 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3698664B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572382B2 (en) * 2004-12-06 2010-11-04 独立行政法人 日本原子力研究開発機構 Single crystal silicon nitride nanosheet and manufacturing method thereof
KR20130098322A (en) * 2010-08-04 2013-09-04 우베 고산 가부시키가이샤 Silicon nitride powder for siliconitride phosphor, caalsin3 phosphor using same, sr2si5n8 phosphor using same, (sr, ca)alsin3 phosphor using same, la3si6n11 phosphor using same, and methods for producing the phosphors
EP2615060A4 (en) 2010-08-19 2016-02-24 Ube Industries Silicon nitride powder for siliconitride fluorescent material, sr3al3si13o2n21 fluorescent material and beta-sialon fluorescent material both obtained using same, and processes for producing these
TWI555824B (en) 2011-10-12 2016-11-01 Ube Industries Nitroxide phosphor powder, nitroxide phosphor powder, and nitrogen oxide phosphor powder for manufacturing the same
CN104528672A (en) * 2014-12-17 2015-04-22 青岛桥海陶瓷新材料科技有限公司 Preparation method of alpha-silicon nitride
CN104876196A (en) * 2015-05-08 2015-09-02 青岛桥海陶瓷新材料科技有限公司 Preparation method for producing high purity beta-phase silicon nitride by combustion synthesis method
JP2020023406A (en) * 2016-12-12 2020-02-13 宇部興産株式会社 Method of producing high purity silicon nitride powder

Also Published As

Publication number Publication date
JP2003112977A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
WO2019167879A1 (en) Method for manufacturing silicon nitride powder
JP5440977B2 (en) Method for producing high-purity silicon nitride fine powder
JP3698664B2 (en) Method for producing high purity silicon nitride powder
TW202225089A (en) Boron nitride powder, and method for producing boron nitride powder
JP3827459B2 (en) Silicon nitride powder and method for producing the same
JPH0254733A (en) Manufacture of ti sintered material
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
JPH04223808A (en) Silicon nitride sintered body tool
JPH04304359A (en) Direct nitriding treating method of low melting point metal
JPS6117403A (en) Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof
JP4106586B2 (en) Boride sintered body and manufacturing method thereof
JP4082803B2 (en) Method for producing silicon nitride powder
JPH10259054A (en) Tungsten oxide sintered product, its production and powdery composition for sintering
JP3827360B2 (en) Manufacturing method of silicon nitride
JP3348798B2 (en) Method for producing silicon nitride
JP2014141359A (en) Sialon-base sintered compact
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP7364449B2 (en) Production method of yttrium nitride
WO2021200868A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
JPH0829923B2 (en) Silicon nitride powder
JP3375182B2 (en) Method for producing easily crushable low oxygen silicon nitride
JPH05279002A (en) Production of al nitride powder
WO2021200814A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
WO2021200830A1 (en) Silicon nitride powder, and method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Ref document number: 3698664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees