JP3834114B2 - Test method of optical material for excimer laser - Google Patents

Test method of optical material for excimer laser Download PDF

Info

Publication number
JP3834114B2
JP3834114B2 JP32477396A JP32477396A JP3834114B2 JP 3834114 B2 JP3834114 B2 JP 3834114B2 JP 32477396 A JP32477396 A JP 32477396A JP 32477396 A JP32477396 A JP 32477396A JP 3834114 B2 JP3834114 B2 JP 3834114B2
Authority
JP
Japan
Prior art keywords
excimer laser
quartz glass
absorption
synthetic quartz
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32477396A
Other languages
Japanese (ja)
Other versions
JPH10152330A (en
Inventor
直良 神杉
義尚 伊原
伸 葛生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP32477396A priority Critical patent/JP3834114B2/en
Publication of JPH10152330A publication Critical patent/JPH10152330A/en
Application granted granted Critical
Publication of JP3834114B2 publication Critical patent/JP3834114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学材料、特に、紫外領域、例えば、エキシマレーザーなどに使用される光学部品、超LSI用フォトマスク基板、超LSIステッパー用光学材料、誘電体バリア放電エキシマランプ管材等などに使用され、長時間連続的に(エキシマレーザーの場合、106ショット以上、誘電体バリア放電エキシマランプの場合、連続数百時間)照射した場合、吸収帯が生成されるかを判別する試験法に関する。
【0002】
【従来の技術】
エキシマレーザーを用いた超LSI製造プロセスやCVDプロセスなどが発展し、さらに最近はエキシマレーザーステッパの実用化に伴い、エキシマレーザー用光学材料に対する要求が特に高まっている。また近年、誘電体バリア放電エキシマランプが開発され、エキシマレーザーに比べ安価であることもあり、手頃な遠紫外線光源として注目されている。
【0003】
エキシマレーザーは、希ガスとハロゲン、あるいは希ガス、ハロゲン単体を用いたガスレーザーで、ガスの種類によりXeFエキシマレーザー(350nm)、XeClエキシマレーザー(308nm)、KrFエキシマレーザー(248nm)、KrClエキシマレーザー(220nm)、ArFエキシマレーザー(193nm)、F2エキシマレーザー(157nm)などがある。
【0004】
また、誘電体バリア放電エキシマランプは、エキシマレーザー用と同様のガスを封じ込んだ石英ガラス管を挟んで高電圧を印加することにより発光を得るランプで、Xe2(172nm)、KrCl(220nm)、XeCl(308nm)などが市販されている。
エキシマレーザーのうち、発振効率とガス寿命の点からXeClエキシマレーザー、KrFエキシマレーザー、ArFエキシマレーザーが有利である。さらに、半導体素子の製造工程で用いられる光源としては、XeClエキシマレーザーはi線に較べ優位性があまりないので、KrFエキシマレーザー及び、ArFエキシマレーザーが注目されている。ArFエキシマレーザーや、KrFエキシマレーザーは、従来の水銀ランプなどの輝線を用いた光源と比較すると、波長が短く、エネルギー密度がはるかに高いため、ステッパーなどの石英ガラス製の光学部品に対して損傷を与える可能性が大きい。
【0005】
事実、合成石英ガラスにエキシマレーザーを照射したり、合成石英ガラス製フォトマスク基板にプラズマエッチングやスパッタリングを実施すると、吸収帯が形成され、その結果として発光が生じたりするという問題があった。
また、誘電体バリア放電エキシマランプにおいても、そのパワーは低いものの、連続的に長時間使用するため、そのランプ管や窓材に石英ガラスを使用した場合、吸収帯が形成され、その結果として発光が生じるという同様の問題が生じていた。
【0006】
このような合成石英ガラスフォトマスク基板がプラズマエッチングやスパッタリングを受けて吸収帯を形成するような石英ガラスを予め判別する方法として、合成石英ガラスにエキシマレーザーを照射し、赤色の発光が生じるか否かによって、有害な吸収帯が形成されるか否かを判別する方法(特開平1−189654号公報:合成石英ガラスの検査方法)がある。
また、特開平1−201664号公報(合成石英ガラスの改質方法)には、四塩化珪素を化学量論的比率の酸水素火炎中で加水分解して得られた合成石英ガラスを水素ガス雰囲気中で熱処理することによって赤色発光の無い合成石英ガラスに改質することが開示されている。
さらに、特開平2−64645号公報(紫外域用有水合成石英ガラス及びその製法)には、四塩化珪素を酸水素火炎で加水分解する際、バーナーに供給する酸水素火炎の水素ガスと酸素ガスの比(H2/O2)を化学量論的必要量比よりも大きくすること、すなわち、水素の量を化学量論的必要量より過剰の還元雰囲気にすることにより、260nmの吸収帯の生成およびそれに伴う合成石英ガラスの650nmの赤色発光を防止できることが示されており、同時に、この製法によって得られた合成石英ガラスは、200nmでの透過率が低下するので、これを防止するため、四塩化珪素に同伴ガスとして、不活性ガスを使用することが開示されている。
【0007】
このように、還元雰囲気下で合成した合成石英ガラスは、260nmの吸収帯の生成及びそれに伴う650nmの赤色発光を防止でき、KrFエキシマレーザーに対しては耐久性を有するが、より短波長のエキシマレーザーであるArFエキシマレーザーを照射すると220nm付近にピークを有する吸収帯が生じ、エキシマレーザービームの透過率の低下をもたらすという欠点があった。
合成石英ガラスの発光、吸収の理論的説明は末だ十分にはなされていないが、合成石英ガラスの欠陥構造に起因し、荷電粒子線、電子線、X線、γ線、そして、高い光子エネルギーを有する紫外線などによる一光子吸収あるいは多光子吸収によって、色中心(カラーセンター)が生成するためと考えられている。
石英ガラスの吸収、発光という分光学的性質は、現在のところ、次のように説明される。
a)酸素過剰
合成石英ガラスの製造において、酸水素火炎の酸素が過剰な場合、すなわち、H2/O2<2となるようなときは、エキシマレーザーなどの照射によって260nmの吸収帯が生じ、それに伴って650nmの赤色発光帯が生成する。
b)水素過剰
逆に酸水素火炎が水素過剰の場合(H2/O2>2)、合成石英ガラス中に過剰の水素が残存し、220nmの吸収帯の生成及びそれに伴う280nmの発光帯が見られる。
【0008】
260nmの吸収帯の生成及びそれに伴う650nmの赤色発光の原因として考えられることは、酸素過剰の条件下で石英ガラスを合成したことによるパーオキシリンケージの存在と石英ガラス中に溶存する酸素分子の存在である。
パーオキシリンケージの存在の場合は、石英ガラスに照射したX線や紫外線などの高い光子エネルギーを有する電磁波によってパーオキシリンケージが色中心(カラーセンター)の前駆体となり、
【化1】

Figure 0003834114
の反応によりパーオキシラジカルが色中心(カラーセンター)となる。
一方、酸素分子が前駆体の場合は、酸素分子がオゾンに変換され、色中心(カラーセンター)になると考えられている。すなわち、以下の反応がおこなわれている。
【化2】
Figure 0003834114
この合成石英ガラスに水素熱処理を施すと、
≡Si−O−O−Si≡+H2 ――→≡Si−OH HO−Si≡
となり、あるいは、石英ガラス中の過剰の溶存酸素は水素と結合して水となり色中心が減少して発光は抑制される。
2 +2H2 ――→2H2
しかし、この方法は、改質効果が継続せず、種々の影響因子によって改質効果が消滅することがある。
例えば、水素熱処理を施した合成石英ガラスを再び大気中で熱処理すると、石英ガラス中に取り込まれた水素分子の脱ガス化などにより改質効果が消滅し、エキシマレーザーの照射や、スパッタリング、プラズマエッチングなどをおこなうと、再び650nmの発光が発生するようになってしまう。
また、特開平2−64645号公報に開示された方法によって製造された合成石英ガラスでは、再熱処理を行っても、エキシマレーザー照射時の260nmの吸収帯の生成及び650nmの赤色発光帯は観測されない。しかし、さらに詳細に検討すると、この方法によって製造した合成石英ガラスにArFエキシマレーザーを照射すると、280nmに強い発光帯が生じ、220nmに吸収帯が生成されることが判明した。また、ArFエキシマレーザー自身の透過率も低下する。一方、KrFエキシマレーザーを照射した場合は、280nmの発光帯は見られず、220nmの吸収帯のピークは215nm付近に見られるがKrFエキシマレーザー自身の透過率低下はほとんど見られない。
本発明者らは、特開平6−199531号公報(光学用合成石英ガラス)に開示されるように、OH基の含有量を1000ppmにすることにより、ArFエキシマレーザー照射及びKrFエキシマレーザーの長時間照射による吸収帯の生成を防止することを見いだした。
【0009】
この吸収帯防止機構は次のように説明される。
石英ガラス中には、Si−O−Siに結合角が平衡値(約143度)から大きくずれた結合が多く存在しているため、合成時の酸水素火炎の水素の量を化学量論的必要量よりも過剰にすると、水素分子が石英ガラス網目中を拡散しうるため、これらの歪んだ結合と水素が下記の式で示す反応が進行し、≡Si−H H−O−Si≡の構造が生成される。
≡Si−O−Si≡+H2 −−→≡Si−H H−O−Si≡
この構造を有する合成石英ガラスにエキシマレーザーを照射すると、前記の式
【化3】
Figure 0003834114
の反応で、E’センター(≡Si・)が生成される。この前駆体である≡Si−H H−O−Si≡構造を除去するためには、特開平4−21540号、特開平4−130031号に示すごとく、適当な雰囲気中で熱処理することにより前駆体の除去が可能となる。
ところが、もともとの石英ガラスの結合構造が歪んでいるため、熱処理による前駆体の除去は不完全であり、又、歪んだSi−O−Si結合も次式に示すようにE’センターの前駆体となる。
【化4】
Figure 0003834114
【0010】
このように、酸水素火炎を水素過剰としても石英ガラス中に≡Si−H H−O−Si≡構造を生成させないためには、歪んだ結合を少なくすることが有効で、この場合、合成時にH2と歪んだ結合の反応が生じにくい。たとえ、前駆体が生成したとしても、石英ガラス中のSi−OHの濃度を高くすると、石英ガラスをある温度に保ったとき準平衡に近づく時間を短縮できるので、石英ガラス中のSi−O−Si結合角の緩和が促進され、結果として歪んだ結合の分布割合を少なくすることができ、熱処理においても周辺の構造の緩和も容易になり、前駆体が除去されるためである。
【0011】
すなわち、石英ガラス中のOH基の濃度を上げ、Si−OHの濃度を高くすることによって石英ガラス中のこの歪んだ結合の濃度が減少し、歪んだ構造に基づくE’センターの生成が防止されるので、エキシマレーザーに対する透過率の低下が生じない光学用合成石英ガラス材料を得ることができるのである。
以上述べてきたように、合成石英ガラスがArFエキシマレーザーなど高エネルギー線の照射に対する優れた耐久性を得るためには、水素過剰雰囲気中で合成する直接堆積気相合成法で石英ガラスを製造することが有効であり、さらに、この石英ガラス中のSi−OH濃度を高くするためにOH基含有量を1000ppm以上とすることにより、吸収の無いエキシマレーザー用光学材料を得ることができる。
【0012】
【発明が解決しようとする課題】
しかし、このようにして得た合成石英ガラスを次のようなさらに過酷な条件で再度評価すると問題のあることが判明した。
KrFエキシマレーザー400mJ/cm2 、100Hz、106ショット以上の照射、及び、ArFエキシマレーザー100mJ/cm2、100Hz、106ショット以上の照射においては、OH基量が多くても吸収が生じるものがあることがわかった。
本発明は、高パルス数(106ショット)のエキシマレーザー照射や、誘電体バリア放電エキシマランプを連続数百時間という長時間にわたり照射しても吸収帯の生成のない安定したエキシマレーザー用合成石英ガラス光学材料であるかを判別することを目的とする。
【0013】
【課題を解決するための手段】
酸水素火炎の水素と酸素の比が化学量論的必要量より過剰の水素の存在下で四塩化珪素を加水分解して得た合成石英ガラスの試験法であって、200nmにおける初期透過率とOH基含有量によってエキシマレーザー用光学部材として適切かを判別するものである。
【0014】
【作用】
OH基が多くても比較的大きな吸収の生じるものを詳細に調べると、必ず200nmにおける初期透過率が低いことが判った。透過率が89%以上のものを選別して誘起吸収強度のOH含有量依存性を調べると、一つの曲線上に載ることが判った。
【0015】
OH基含有量が高くても透過率低下をもたらす原因として不純物が考えられる。アルカリ、アルカリ土類などの不純物が存在すると、ボンドを切断し、結果としてエキシマレーザー照射により、吸収が生じるようになる。同時に200nm付近の透過率も低下する。
【0016】
アルカリ金属不純物はこのため50ppb以下とする必要があるが、製造工程において、管理上、不純物を評価するのは大がかりな測定装置が必要であり、面倒であるが、透過率測定は比較的容易なので管理基準として採用できる。
また、OH基含有量を1000ppm以上としたものについて、エキシマレーザー誘起吸収強度の初期透過率依存性を調べると一つの直線上に載ることが判り、必要とされる吸収強度に応じた材料を初期透過率から判別することができる。
ArFエキシマレーザーを照射したときは、220nmにピークをもつ吸収スペクトルが観測され、280nmにピークをもつ発光帯が観測される。一方、KrFエキシマレーザーを照射すると215nmにピークをもつ吸収スペクトルが観測され、280nmにピークをもつ吸収帯は観測されない。
【0017】
エキシマレーザー自身の透過率を観測すると、ArFエキシマレーザーでは低下するのに、KrFエキシマレーザーではほとんど低下が見られない。このことは夫々の吸収スペクトルを波形分離することにより、明らかになる。
ArFエキシマレーザーを照射すると6.5eV(190nm)、5.8eV(215nm)、5.4eV(230nm)、5.0eV(248nm)、4.8eV(260nm)にピークをもつ吸収帯が生じる。
【0018】
一方、KrFエキシマレーザー照射の場合は215nmのみにピークを有する吸収帯が生成する。このうち6.5eVの原因は不明だが、5.8eVはE’中心(≡Si・)、5.4eVはEβ’中心といって水素に関連するE’中心(≡Si・ H−Si≡)、5.0eV帯は酸素空孔(≡Si・・・Sl≡)、4.8eV帯は酸素に関連する欠陥である。
【0019】
このうち5.0eVはエキシマレーザーを照射すると280nmの発光を生じ、強い光子を吸収すると次のような過程を経て
【化5】
Figure 0003834114
によりE’中心に変わる。
【0020】
この吸収帯は、KrFエキシマレーザーの波長(5.0eV)に吸収ピークがあるので、KrFエキシマレーザーを照射すると最も効果的にこの反応が進行する。その結果KrFエキシマレーザー照射時には5.0eV帯は現われない。
また、5.4eV帯は、≡Si・ H−Si≡構造だと考えられ、このSi−Hは、エキシマレーザーなどのエネルギー線(hν)の照射により次式のように
【化6】
Figure 0003834114
となるのでやはりこれも5.8eV吸収帯に変化する。
4.8eV帯についてはその原因は判らないが、仮にオゾン(O3)が原因とするとオゾン(O3)の吸収ピークは4.8eVにあり、その裾は5.0eVを十分カバーしているので、オゾン(O3)が生成しても常に分解されるので260nmの吸収は生成されない。この場合オゾン(O3)の分解に際して赤色発光が生じる。
このようにして、KrFエキシマレーザー照射により、5.8eVの吸収帯のみが生成する。5.8eV帯のピーク位置は略5.8eV、半値幅は0.7eVなので、5.0eVにおける吸収強度はピーク強度の3%程度となる。したがって仮にピークの吸収が0.01cm-1であるとすると、3×10-4cm-1となる。したがってKrFエキシマレーザー自身の透過率は関係なくなる。
【0021】
また、合成石英ガラス中のSiOHなどの末端構造の存在によりエキシマレーザーによる構造変化に起因する吸収帯の生成が抑制され、OH基の含有量を1000ppm以上とすることによって脆性が緩和され、合成石英ガラスの網目構造の柔軟性が増すものと考えられる。
通常、合成石英ガラスのヤング率は、略741,300Kg/cm2程度であり、OH基含有量の少ない溶融石英ガラスのヤング率744,000Kg/cm2よりも低い値となっている。
合成石英ガラスにおいてもOH基含有量に応じてヤング率の値に違いが認められることからも、末端構造( SiOH )がシリカ骨格の柔軟性を増し、照射耐性の向上に寄与するものと考えられる。
【0022】
【発明の実施の形態】
実施例1
直接堆積気相合成法において、不活性ガスを同伴ガスとした四塩化珪素を、水素と酸素の割合を表1に示す化学量論的必要量より過剰水素のモル比の酸水素火炎で加水分解し、かつ、石英ガラスの合成時に不活性ガスを含むバーナーの反応条件及び排ガスの排気条件を調整することによって、OH基濃度を調整し、石英ガラスA〜Mを合成した。
得られた合成石英ガラスの試料A〜Mから略10×10×30(mm)の試料片を切り出した。
試料片A〜Mの10mm厚さ研磨面での200nmにおける透過率を測定した。この結果をOH基濃度とともにそれぞれ表1に示す。
【0023】
次いで、このそれぞれの試料にArFエキシマレーザー100mJ/cm2、100Hzを照射し、照射前及び104、105、106ショット照射後の吸収を測定し、220nmにおける内部吸収係数を求めたものを同じく表1に示す。
また、これとは別に試料A〜Mから別に切り出した試料片A〜Mに、KrFエキシマレーザー25Hzを1.5分間照射したときの赤色発光が認められる最低のエネルギー密度を測定した。その結果を同様に表1に示す。
【表1】
Figure 0003834114
【0024】
図1に、ArFエキシマレーザー照射により生じた吸収スペクトルから、合成石英ガラスの吸収ピーク強度とOH基含有量の関係について示す。
ArFエキシマレーザー誘起吸収帯のピーク強度はOH基含有量に強く依存し、OH基濃度とともに吸収のピーク強度は弱くなっていることが判る。また、水素と酸素の比をモル比で2.2以上に設定し、合成石英ガラス中のOH基含有量を1000ppm以上にするとともに、200nmにおける初期透過率を厚さ10mmで89%以上とするものが、ArFエキシマレーザー照射による220nmにおける吸収も無く、かつ、赤色発光が生ずる最低エネルギー密度も200mJ/cm2以上であり、260nmの吸収も生成しないことから、高いエネルギー線に用いることができることが判る。
【0025】
実施例2
実施例1と同様に、四塩化珪素の酸水素火炎による加水分解により直接堆積ガラス化する直接法気相合成(タイプIII)により各種の合成石英ガラス試料を製造した。
実施例1に準じて切り出し、試料片1〜14を作製した。この試料片にKrFエキシマレーザー400mJ/cm2、100Hz、106ショットを照射し、照射前後の吸収スペクトルの差から内部吸収を求めた。この結果を、試料1〜14の200nmにおける初期透過率、OH基含有量とともに表2に示す。
【表2】
Figure 0003834114
【0026】
また、合成石英ガラスのKrFエキシマレーザー誘起吸収のピーク強度とOH基含有量の関係を図2、及び、図3に、さらに、得られた吸収スペクトルをガウス型の吸収スペクトルに波形分離によリ解析した結果を図4及び図5に示す。
【0027】
図4のKrFエキシマレーザーの場合、図5に示すArFエキシマレーザーの場合と異なり、5.8eVの成分のみであり、このため吸収ピークは215nmである。
図2は、KrFエキシマレーザー誘起吸収強度(○、●)の200nmにおける初期透過率(試料厚さ10mm;▲、△)、及びOH基含有量依存性を示した図であり、透過率が低い(89%末満)試料に対するデータを白抜きで示したもので、同じOH基量のものが対応するデータとなっている。
【0028】
図2より判る通り、黒ぬり(▲)の初期透過率が89%以上の試料に対応する●印については、KrFエキシマレーザー照射による誘起吸収帯のピーク強度は、ArFエキシマレーザー照射時と同様OH基含有量の増加とともに吸収強度は弱くなり、OH基含有量依存性がはっきりと認められる。
【0029】
以上のことから、220nmにおける吸収が無いものは、OH基濃度1000ppm以上で、200nmにおける初期透過率が厚さ10mmで89%以上のものであると判断される。
【0030】
図からは、OH基含有量が高くても、215nm付近の内部吸収は0.003cm-1程度あるが、先に述べたようにKrFエキシマレーザーの波長での内部吸収は、ピーク強度に比べて極めて小さく3%程度なので内部吸収は、約1×10-4cm-1(厚さ10mmの試料で透過率低下約0.01%)程度にとどまる。
したがって実質的に220nmの吸収の無い材料であると言える。
【0031】
図3は、OH基含有濃度を1000ppm以上としたもののKrFエキシマレーザー誘起吸収強度の200nmにおける初期透過率依存性が一つの直線式として描かれることを示したもので、この式から初期透過率からの吸収強度を算出し、エキシマレーザー用光学特性に応じた材料を判別することができる。
【0032】
実施例3
実施例1に準じて水素と酸素の割合をH2/O2=2.3で合成し、OH基を1300ppm含有する試料Xと、水素と酸素の割合をH2/O2=2.1で合成し、OH基を900ppm含有する試料Yを得て、これを25×50×1(mm)の形状に加工し、表面を光学研磨したのち、エキシマレーザーの光路にビームと45度の角度をなすようにセットし、エキシマレーザーのパワーをモニターするビームスプリッタとして使用した。
【0033】
通常の検査のように、ArFエキシマレーザー100mJ/cm2、100Hzでの発振と、KrFエキシマレーザー100mJ/cm2、25Hzでの発振とほぼ同パルス発振するような条件下で運転し、レーザーのパルスカウンターが108ショットとなった時点で取り外し、エキシマレーザービームが照射された部分と未照射部分との差スペクトルを測定した。
この結果、ArFエキシマレーザー100mJ/cm2、100Hzでビームスプリッタ(厚さ1mm)を104、105、106、107ショット照射時には、試料X、Yとも透過率の低下は測定限界以下であったが、108ショットでは、試料Yでは220nmをピークとする吸収帯が生成し、220nmにおいて透過率が10%低下していた。また、エキシマレーザー照射時に発光の有無を観察したところ赤色発光が認められた。
これに対して、試料Xは、透過率低下が1%程度以下で、はっきりした発光は認められなかった。
【0034】
【発明の効果】
合成石英ガラスのOH基含有量が1000ppm以上、200nmにおける透過率が厚さ10mmで89%以上の基準に基づいて試験することによって、吸収帯の生成の無い安定したエキシマレーザー用光学材料を容易に選別することができる。
【図面の簡単な説明】
【図1】誘起吸収ピーク強度とOH基含有量の関係図(ArF)
【図2】誘起吸収ピーク強度とOH基含有量の関係図(KrF)
【図3】誘起吸収ピーク強度と初期透過率の関係図(KrF)
【図4】吸収スペクトルを波形分離した解析図(KrF)
【図5】吸収スペクトルを波形分離した解析図(ArF)[0001]
BACKGROUND OF THE INVENTION
The present invention is used in optical materials, particularly in the ultraviolet region, for example, optical parts used for excimer lasers, photomask substrates for VLSI, optical materials for VLSI steppers, dielectric barrier discharge excimer lamp tubes, etc. The present invention relates to a test method for discriminating whether an absorption band is generated when irradiated continuously for a long time (in the case of an excimer laser, 10 6 shots or more, and in the case of a dielectric barrier discharge excimer lamp, several hundred hours).
[0002]
[Prior art]
With the development of VLSI manufacturing processes and CVD processes using excimer lasers, and the recent development of excimer laser steppers, the demand for optical materials for excimer lasers has increased. In recent years, dielectric barrier discharge excimer lamps have been developed and are attracting attention as an affordable far ultraviolet light source because they are cheaper than excimer lasers.
[0003]
The excimer laser is a gas laser using a rare gas and a halogen, or a rare gas or a halogen simple substance. Depending on the type of gas, an XeF excimer laser (350 nm), an XeCl excimer laser (308 nm), a KrF excimer laser (248 nm), a KrCl excimer laser is used. (220 nm), ArF excimer laser (193 nm), F 2 excimer laser (157 nm), and the like.
[0004]
A dielectric barrier discharge excimer lamp is a lamp that obtains light emission by applying a high voltage across a quartz glass tube containing a gas similar to that used for excimer lasers. Xe 2 (172 nm), KrCl (220 nm) XeCl (308 nm) and the like are commercially available.
Among excimer lasers, XeCl excimer laser, KrF excimer laser, and ArF excimer laser are advantageous in terms of oscillation efficiency and gas life. Further, as a light source used in the manufacturing process of a semiconductor device, a KrF excimer laser and an ArF excimer laser are attracting attention because the XeCl excimer laser does not have much superiority to the i-line. ArF excimer laser and KrF excimer laser have a shorter wavelength and a much higher energy density than conventional light sources using bright lines such as mercury lamps, which can damage optical components made of quartz glass such as steppers. Is likely to give.
[0005]
In fact, when synthetic quartz glass is irradiated with an excimer laser or plasma etching or sputtering is performed on a synthetic quartz glass photomask substrate, an absorption band is formed, resulting in emission of light.
In addition, although the dielectric barrier discharge excimer lamp is low in power, it is used continuously for a long time. Therefore, when quartz glass is used for the lamp tube and window material, an absorption band is formed, resulting in light emission. A similar problem occurred.
[0006]
As a method for discriminating in advance such a quartz glass that the synthetic quartz glass photomask substrate is subjected to plasma etching or sputtering to form an absorption band, whether or not the synthetic quartz glass is irradiated with an excimer laser and red light emission is generated. Therefore, there is a method for determining whether or not a harmful absorption band is formed (JP-A-1-189654: method for inspecting synthetic quartz glass).
JP-A-1-201664 (Synthetic Quartz Glass Modification Method) discloses a synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in a stoichiometric oxyhydrogen flame with a hydrogen gas atmosphere. It is disclosed to modify the synthetic quartz glass without red light emission by heat treatment therein.
Further, Japanese Patent Laid-Open No. 2-64645 (hydraulic synthetic quartz glass for ultraviolet region and its production method) discloses hydrogen gas and oxygen of an oxyhydrogen flame supplied to a burner when hydrolyzing silicon tetrachloride with an oxyhydrogen flame. By making the gas ratio (H 2 / O 2 ) greater than the stoichiometric requirement, ie, by making the amount of hydrogen in a reducing atmosphere in excess of the stoichiometric requirement, an absorption band of 260 nm In order to prevent this, the synthetic quartz glass obtained by this production method has a reduced transmittance at 200 nm. The use of an inert gas as an entrained gas in silicon tetrachloride is disclosed.
[0007]
Thus, the synthetic quartz glass synthesized under a reducing atmosphere can prevent the generation of an absorption band of 260 nm and the accompanying red emission of 650 nm, and has durability against KrF excimer laser, but excimer having a shorter wavelength. When irradiated with an ArF excimer laser, which is a laser, an absorption band having a peak in the vicinity of 220 nm is generated, resulting in a decrease in the transmittance of the excimer laser beam.
Theoretical explanation of light emission and absorption of synthetic quartz glass has not been fully made, but due to the defect structure of synthetic quartz glass, charged particle beam, electron beam, X-ray, γ-ray and high photon energy It is considered that a color center is generated by one-photon absorption or multi-photon absorption due to ultraviolet rays or the like having a colorant.
At present, the spectroscopic properties of absorption and emission of quartz glass are explained as follows.
a) Oxygen excess In the production of synthetic quartz glass, when oxygen in the oxyhydrogen flame is excessive, that is, when H 2 / O 2 <2, an absorption band of 260 nm is generated by irradiation with an excimer laser or the like, Along with this, a red emission band of 650 nm is generated.
b) Excessive hydrogen Conversely, when the oxyhydrogen flame is excessive in hydrogen (H 2 / O 2 > 2), excess hydrogen remains in the synthetic quartz glass, and the generation of the 220 nm absorption band and the accompanying emission band of 280 nm It can be seen.
[0008]
The generation of 260 nm absorption band and the accompanying red emission at 650 nm are considered to be due to the presence of peroxy linkage due to the synthesis of quartz glass under oxygen-excess conditions and the presence of oxygen molecules dissolved in quartz glass. It is.
In the case of the presence of peroxy linkage, the peroxy linkage becomes a color center precursor by electromagnetic waves having high photon energy such as X-rays and ultraviolet rays irradiated on quartz glass.
[Chemical 1]
Figure 0003834114
As a result of this reaction, the peroxy radical becomes the color center (color center).
On the other hand, when the oxygen molecule is a precursor, it is considered that the oxygen molecule is converted into ozone and becomes a color center. That is, the following reaction is performed.
[Chemical 2]
Figure 0003834114
When this synthetic quartz glass is subjected to hydrogen heat treatment,
≡Si—O—O—Si≡ + H 2 ―― → ≡Si—OH HO—Si≡
Alternatively, excessive dissolved oxygen in the quartz glass is combined with hydrogen to form water, and the color center is reduced to suppress light emission.
O 2 + 2H 2 ―― → 2H 2 O
However, this method does not continue the modification effect, and the modification effect may disappear due to various influencing factors.
For example, if synthetic quartz glass that has been subjected to hydrogen heat treatment is again heat-treated in the atmosphere, the modification effect disappears due to degassing of hydrogen molecules incorporated into the quartz glass, excimer laser irradiation, sputtering, plasma etching, etc. For example, 650 nm light emission is generated again.
In addition, in the synthetic quartz glass manufactured by the method disclosed in Japanese Patent Laid-Open No. 2-64645, even when re-heat treatment is performed, the generation of the 260 nm absorption band and the 650 nm red emission band during the excimer laser irradiation are not observed. . However, when examined in more detail, it was found that when a synthetic quartz glass produced by this method was irradiated with an ArF excimer laser, a strong emission band was generated at 280 nm and an absorption band was generated at 220 nm. In addition, the transmittance of the ArF excimer laser itself is also reduced. On the other hand, when irradiated with a KrF excimer laser, an emission band of 280 nm is not seen and a peak of an absorption band of 220 nm is seen near 215 nm, but almost no decrease in transmittance of the KrF excimer laser itself is seen.
As disclosed in JP-A-6-199531 (Synthetic quartz glass for optics), the present inventors have made ArF excimer laser irradiation and KrF excimer laser irradiation for a long time by setting the OH group content to 1000 ppm. It was found that absorption band formation by irradiation was prevented.
[0009]
This absorption band prevention mechanism will be described as follows.
In quartz glass, there are many bonds in Si—O—Si whose bond angle is greatly deviated from the equilibrium value (about 143 degrees), so the amount of hydrogen in the oxyhydrogen flame at the time of synthesis is stoichiometric. If the amount exceeds the required amount, hydrogen molecules can diffuse in the quartz glass network, so that these distorted bonds and hydrogen undergo a reaction represented by the following formula, and ≡Si—H H—O—Si≡ A structure is generated.
≡Si—O—Si≡ + H 2 −− → ≡Si—H H—O—Si≡
When the excimer laser is irradiated to the synthetic quartz glass having this structure, the above formula
Figure 0003834114
In this reaction, E ′ center (≡Si ·) is generated. In order to remove this precursor ≡Si—HH—O—Si≡ structure, as shown in JP-A-4-21540 and JP-A-4-130031, the precursor is prepared by heat treatment in an appropriate atmosphere. The body can be removed.
However, since the bond structure of the original quartz glass is distorted, the removal of the precursor by heat treatment is incomplete, and the distorted Si—O—Si bond is also a precursor of the E ′ center as shown in the following equation. It becomes.
[Formula 4]
Figure 0003834114
[0010]
Thus, in order to prevent the formation of ≡Si—H H—O—Si≡ structure in quartz glass even if the oxyhydrogen flame is excessive, it is effective to reduce the distorted bonds. Reaction of H 2 and distorted bond hardly occurs. Even if the precursor is generated, if the concentration of Si—OH in the quartz glass is increased, the time for approaching quasi-equilibrium can be shortened when the quartz glass is kept at a certain temperature. This is because the relaxation of the Si bond angle is promoted, and as a result, the distribution ratio of the distorted bond can be reduced, the surrounding structure is easily relaxed even in the heat treatment, and the precursor is removed.
[0011]
That is, by increasing the concentration of OH groups in the quartz glass and increasing the concentration of Si—OH, the concentration of this distorted bond in the quartz glass is reduced, and the generation of E ′ centers based on the distorted structure is prevented. Therefore, it is possible to obtain an optical synthetic quartz glass material that does not cause a decrease in transmittance with respect to the excimer laser.
As described above, in order for synthetic quartz glass to obtain excellent durability against irradiation with high energy rays such as ArF excimer laser, quartz glass is manufactured by a direct deposition vapor phase synthesis method in which hydrogen is synthesized in an excess atmosphere. In addition, in order to increase the Si—OH concentration in the quartz glass, the optical material for excimer laser having no absorption can be obtained by setting the OH group content to 1000 ppm or more.
[0012]
[Problems to be solved by the invention]
However, it was found that there was a problem when the synthetic quartz glass thus obtained was evaluated again under the more severe conditions as follows.
In KrF excimer laser 400 mJ / cm 2 , 100 Hz, irradiation with 10 6 shots or more, and ArF excimer laser 100 mJ / cm 2 , 100 Hz, irradiation with 10 6 shots or more, absorption occurs even if the amount of OH groups is large. I found out.
The present invention provides a stable synthetic quartz for excimer laser that does not generate an absorption band even when irradiated with an excimer laser with a high pulse number (10 6 shots) or with a dielectric barrier discharge excimer lamp for several hundred hours continuously. The purpose is to determine whether it is a glass optical material.
[0013]
[Means for Solving the Problems]
A test method for synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in the presence of hydrogen in which the ratio of hydrogen to oxygen in the oxyhydrogen flame exceeds the stoichiometrically required amount, and the initial transmittance at 200 nm Whether or not it is suitable as an optical member for excimer laser is discriminated based on the OH group content.
[0014]
[Action]
Examining in detail what causes relatively large absorption even with many OH groups, it was found that the initial transmittance at 200 nm was always low. When the transmittance of 89% or more was selected and the dependency of the induced absorption intensity on the OH content was examined, it was found that it was on one curve.
[0015]
Even if the OH group content is high, impurities can be considered as a cause of a decrease in transmittance. When impurities such as alkali and alkaline earth are present, the bond is cut, and as a result, absorption is caused by excimer laser irradiation. At the same time, the transmittance near 200 nm also decreases.
[0016]
For this reason, alkali metal impurities need to be 50 ppb or less. However, in the production process, it is necessary to measure impurities in terms of management, and it is troublesome, but the transmittance measurement is relatively easy. It can be adopted as a management standard.
Moreover, when the initial transmittance dependency of the excimer laser-induced absorption intensity is examined for those having an OH group content of 1000 ppm or more, it can be seen that it is placed on one straight line, and the material corresponding to the required absorption intensity is initially It can be determined from the transmittance.
When the ArF excimer laser is irradiated, an absorption spectrum having a peak at 220 nm is observed, and an emission band having a peak at 280 nm is observed. On the other hand, when irradiated with a KrF excimer laser, an absorption spectrum having a peak at 215 nm is observed, and an absorption band having a peak at 280 nm is not observed.
[0017]
When the transmittance of the excimer laser itself is observed, it decreases with the ArF excimer laser, but hardly decreases with the KrF excimer laser. This becomes clear by waveform separation of the respective absorption spectra.
When irradiated with an ArF excimer laser, absorption bands having peaks at 6.5 eV (190 nm), 5.8 eV (215 nm), 5.4 eV (230 nm), 5.0 eV (248 nm), and 4.8 eV (260 nm) are generated.
[0018]
On the other hand, in the case of KrF excimer laser irradiation, an absorption band having a peak only at 215 nm is generated. Of these, the cause of 6.5 eV is unknown, but 5.8 eV is E ′ center (≡Si ·), 5.4 eV is Eβ ′ center and E ′ center related to hydrogen (≡Si · H—Si≡) The 5.0 eV band is an oxygen vacancy (≡Si... Sl≡), and the 4.8 eV band is a defect related to oxygen.
[0019]
Of these, 5.0 eV emits light at 280 nm when irradiated with an excimer laser, and when strong photons are absorbed, it undergoes the following process:
Figure 0003834114
Changes to E 'center.
[0020]
Since this absorption band has an absorption peak at the wavelength (5.0 eV) of the KrF excimer laser, this reaction proceeds most effectively when the KrF excimer laser is irradiated. As a result, the 5.0 eV band does not appear at the time of KrF excimer laser irradiation.
The 5.4 eV band is considered to have a ≡Si · H—Si≡ structure, and this Si—H can be represented by the following formula by irradiation with an energy ray (hν) such as an excimer laser.
Figure 0003834114
Therefore, this also changes to a 5.8 eV absorption band.
The cause of the 4.8 eV band is not known, but if ozone (O 3 ) is the cause, the absorption peak of ozone (O 3 ) is at 4.8 eV, and the foot sufficiently covers 5.0 eV. Therefore, even if ozone (O 3 ) is generated, it is always decomposed, so that absorption at 260 nm is not generated. In this case, red light emission is generated upon decomposition of ozone (O 3 ).
In this way, only an absorption band of 5.8 eV is generated by KrF excimer laser irradiation. Since the peak position of the 5.8 eV band is approximately 5.8 eV and the half width is 0.7 eV, the absorption intensity at 5.0 eV is about 3% of the peak intensity. Therefore Supposing absorption peak is assumed to be 0.01 cm -1, the 3 × 10 -4 cm -1. Therefore, the transmittance of the KrF excimer laser itself is irrelevant.
[0021]
In addition, the presence of terminal structures such as SiOH in the synthetic quartz glass suppresses the generation of absorption bands due to structural changes caused by excimer laser, and the brittleness is reduced by setting the OH group content to 1000 ppm or more. It is considered that the flexibility of the glass network structure is increased.
Usually, the Young's modulus of the synthetic quartz glass is substantially 741,300Kg / cm 2 or so, has a value lower than the Young's modulus 744,000Kg / cm 2 less fused silica glass having an OH group content.
In the synthetic quartz glass, the difference in Young's modulus value is recognized depending on the OH group content. Therefore, it is considered that the terminal structure (SiOH) increases the flexibility of the silica skeleton and contributes to the improvement of irradiation resistance. .
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
In the direct deposition gas phase synthesis method, silicon tetrachloride with an inert gas as an entrained gas is hydrolyzed with an oxyhydrogen flame in which the ratio of hydrogen to oxygen is in excess of the stoichiometric amount shown in Table 1 in excess hydrogen molar ratio In addition, the quartz glass A to M were synthesized by adjusting the reaction conditions of the burner containing an inert gas and the exhaust gas exhaust conditions during synthesis of the quartz glass to adjust the OH group concentration.
Approximately 10 × 10 × 30 (mm) sample pieces were cut out from the obtained synthetic quartz glass samples A to M.
The transmittance | permeability in 200 nm in the 10 mm thickness polishing surface of sample piece AM was measured. The results are shown in Table 1 together with the OH group concentration.
[0023]
Next, each sample was irradiated with ArF excimer laser 100 mJ / cm 2 , 100 Hz, the absorption before irradiation and after 10 4 , 10 5 , 10 6 shot irradiation was measured, and the internal absorption coefficient at 220 nm was obtained. Also shown in Table 1.
Separately from this, the lowest energy density at which red light emission was observed when the sample pieces A to M cut separately from the samples A to M were irradiated with KrF excimer laser 25 Hz for 1.5 minutes was measured. The results are also shown in Table 1.
[Table 1]
Figure 0003834114
[0024]
FIG. 1 shows the relationship between the absorption peak intensity and the OH group content of synthetic quartz glass from the absorption spectrum generated by ArF excimer laser irradiation.
It can be seen that the peak intensity of the ArF excimer laser-induced absorption band strongly depends on the OH group content, and the peak intensity of absorption decreases with the OH group concentration. Further, the molar ratio of hydrogen and oxygen is set to 2.2 or more, the OH group content in the synthetic quartz glass is set to 1000 ppm or more, and the initial transmittance at 200 nm is 89% or more at a thickness of 10 mm. Since there is no absorption at 220 nm by ArF excimer laser irradiation, the lowest energy density at which red light emission occurs is 200 mJ / cm 2 or more, and no absorption at 260 nm is generated, it can be used for high energy rays. I understand.
[0025]
Example 2
In the same manner as in Example 1, various synthetic quartz glass samples were prepared by direct method vapor phase synthesis (type III) in which silicon tetrachloride was directly deposited and vitrified by hydrolysis with an oxyhydrogen flame.
According to Example 1, it cut out and produced the sample pieces 1-14. This sample piece was irradiated with KrF excimer laser 400 mJ / cm 2 , 100 Hz, 10 6 shots, and the internal absorption was determined from the difference in absorption spectrum before and after irradiation. The results are shown in Table 2 together with the initial transmittance at 200 nm and the OH group content of Samples 1 to 14.
[Table 2]
Figure 0003834114
[0026]
The relationship between the peak intensity of KrF excimer laser-induced absorption and the OH group content of synthetic quartz glass is shown in FIGS. 2 and 3, and the obtained absorption spectrum is converted into a Gaussian absorption spectrum by waveform separation. The analysis results are shown in FIGS.
[0027]
In the case of the KrF excimer laser of FIG. 4, unlike the ArF excimer laser shown in FIG. 5, there is only a component of 5.8 eV, and therefore the absorption peak is 215 nm.
FIG. 2 is a graph showing the initial transmittance (sample thickness 10 mm; ▲, Δ) at 200 nm of the KrF excimer laser-induced absorption intensity (◯, ●) and the OH group content dependency, and the transmittance is low. (89% end-of-life) The data for the sample is shown in white, and the data with the same OH group amount corresponds to the data.
[0028]
As can be seen from FIG. 2, the peak intensity in the absorption band induced by KrF excimer laser irradiation is the same as that in ArF excimer laser irradiation for the ● mark corresponding to the sample with an initial transmittance of blackening (▲) of 89% or more. As the group content increases, the absorption intensity decreases, and the OH group content dependency is clearly recognized.
[0029]
From the above, it is determined that those having no absorption at 220 nm have an OH group concentration of 1000 ppm or more and an initial transmittance at 200 nm of 89% or more at a thickness of 10 mm.
[0030]
From the figure, even if the OH group content is high, the internal absorption near 215 nm is about 0.003 cm −1 , but as described above, the internal absorption at the wavelength of the KrF excimer laser is larger than the peak intensity. Since it is extremely small and about 3%, the internal absorption is only about 1 × 10 −4 cm −1 (a transmittance decrease is about 0.01% with a sample having a thickness of 10 mm).
Therefore, it can be said that the material has substantially no absorption of 220 nm.
[0031]
FIG. 3 shows that the dependence of the KrF excimer laser-induced absorption intensity at 200 nm on the initial transmittance at 200 nm is drawn as a single linear equation for the OH group-containing concentration of 1000 ppm or more. The material can be discriminated according to the optical characteristics for excimer laser.
[0032]
Example 3
According to Example 1, the ratio of hydrogen and oxygen was synthesized with H 2 / O 2 = 2.3, sample X containing 1300 ppm of OH groups, and the ratio of hydrogen to oxygen was H 2 / O 2 = 2.1. The sample Y containing 900 ppm of OH groups was obtained, processed into a shape of 25 × 50 × 1 (mm), the surface was optically polished, and an angle of 45 degrees with the beam in the optical path of the excimer laser The beam splitter was used to monitor the power of the excimer laser.
[0033]
As in normal inspection, the laser pulse is operated under the conditions that the oscillation at 100 mJ / cm 2 and 100 Hz of ArF excimer laser and the oscillation at 100 mJ / cm 2 and 25 Hz of KrF excimer laser are almost the same pulse oscillation. The counter was removed when 10 8 shots were taken, and the difference spectrum between the portion irradiated with the excimer laser beam and the unirradiated portion was measured.
As a result, when the beam splitter (thickness: 1 mm) is irradiated with 10 4 , 10 5 , 10 6 , 10 7 shots at an ArF excimer laser of 100 mJ / cm 2 and 100 Hz, the decrease in transmittance is below the measurement limit for both samples X and Y. However, in the 10 8 shot, an absorption band having a peak at 220 nm was generated in the sample Y, and the transmittance was reduced by 10% at 220 nm. Moreover, when the presence or absence of light emission was observed during excimer laser irradiation, red light emission was observed.
On the other hand, Sample X had a transmittance decrease of about 1% or less, and no clear light emission was observed.
[0034]
【The invention's effect】
By testing based on the standard of synthetic quartz glass with OH group content of 1000 ppm or more and transmittance at 200 nm of 10 mm thickness and 89% or more, a stable optical material for excimer laser with no generation of absorption band can be easily obtained. Can be sorted.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between induced absorption peak intensity and OH group content (ArF).
FIG. 2 is a relationship diagram of induced absorption peak intensity and OH group content (KrF).
FIG. 3 is a relationship diagram of induced absorption peak intensity and initial transmittance (KrF).
FIG. 4 is an analysis diagram (KrF) obtained by separating the absorption spectrum into waveforms.
FIG. 5 is an analysis diagram (ArF) obtained by separating the absorption spectrum into waveforms.

Claims (2)

酸水素火炎の水素と酸素の比が化学量論的必要量より過剰の水素の存在下で四塩化珪素を加水分解して得た合成石英ガラスの試験法であって、200nmにおける透過率とOH基含有量によってエキシマレーザー用光学部材として適切かを判別する合成石英ガラスの試験方法。A test method for synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in the presence of hydrogen in which the ratio of hydrogen to oxygen in the oxyhydrogen flame exceeds the stoichiometrically required amount. A test method for synthetic quartz glass, which determines whether it is suitable as an optical member for excimer laser based on the group content. 請求項1において、200nmにおける透過率が厚さ10mmで89%以上、かつ、OH基含有量が1000ppm以上であることを基準とする合成石英ガラスの試験方法。The test method for synthetic quartz glass according to claim 1, wherein the transmittance at 200 nm is 89% or more at a thickness of 10 mm and the OH group content is 1000 ppm or more.
JP32477396A 1996-11-20 1996-11-20 Test method of optical material for excimer laser Expired - Fee Related JP3834114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32477396A JP3834114B2 (en) 1996-11-20 1996-11-20 Test method of optical material for excimer laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32477396A JP3834114B2 (en) 1996-11-20 1996-11-20 Test method of optical material for excimer laser

Publications (2)

Publication Number Publication Date
JPH10152330A JPH10152330A (en) 1998-06-09
JP3834114B2 true JP3834114B2 (en) 2006-10-18

Family

ID=18169521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32477396A Expired - Fee Related JP3834114B2 (en) 1996-11-20 1996-11-20 Test method of optical material for excimer laser

Country Status (1)

Country Link
JP (1) JP3834114B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394127A4 (en) * 2001-04-19 2008-04-30 Nikon Corp Quartz glass member and projection aligner
DE50312961D1 (en) * 2002-03-01 2010-09-23 Schott Ag Method for producing quartz glass and a quartz glass preform
JP2005239474A (en) * 2004-02-25 2005-09-08 Tosoh Corp Synthetic quartz glass having radiation resistance and ultraviolet ray resistance, its manufacturing method, and its use

Also Published As

Publication number Publication date
JPH10152330A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2005067913A (en) Synthetic quartz glass and manufacturing method therefor
JP3834114B2 (en) Test method of optical material for excimer laser
JPWO2003091175A1 (en) Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH0867530A (en) Optical glass for ultraviolet light
JP3531870B2 (en) Synthetic quartz glass
JP3875287B2 (en) Synthetic quartz glass for optics and manufacturing method
JP4051805B2 (en) Exposure apparatus and photomask
JP4228493B2 (en) Synthetic quartz glass
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JP3303919B2 (en) Synthetic quartz glass and its manufacturing method
JPH11322352A (en) Synthetic quartz glass optical member and its production
JP4772172B2 (en) Method for evaluating synthetic quartz glass
JP3519426B2 (en) Stabilization method of synthetic quartz glass for optics
JPH0624997B2 (en) Optical components for laser light
JP3919831B2 (en) Synthetic quartz glass for optics
JP4166456B2 (en) Synthetic quartz glass for vacuum ultraviolet light, manufacturing method thereof, and mask substrate for vacuum ultraviolet light using the same
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2001089182A (en) Quartz glass and measurement of its co gas concentration
JPH01197343A (en) Element for producing optical system with laser
JP3287919B2 (en) Evaluation method of synthetic quartz glass
JP4093393B2 (en) Highly homogeneous synthetic quartz glass for vacuum ultraviolet light, method for producing the same, and mask substrate for vacuum ultraviolet light using the same
JP3408574B2 (en) Measurement method of absorption coefficient of synthetic quartz glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees