JP4772172B2 - Method for evaluating synthetic quartz glass - Google Patents

Method for evaluating synthetic quartz glass Download PDF

Info

Publication number
JP4772172B2
JP4772172B2 JP24928699A JP24928699A JP4772172B2 JP 4772172 B2 JP4772172 B2 JP 4772172B2 JP 24928699 A JP24928699 A JP 24928699A JP 24928699 A JP24928699 A JP 24928699A JP 4772172 B2 JP4772172 B2 JP 4772172B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
wavelength
intensity
fluorescence emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24928699A
Other languages
Japanese (ja)
Other versions
JP2001072428A5 (en
JP2001072428A (en
Inventor
順亮 生田
信也 菊川
暁夫 増井
憲昭 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24928699A priority Critical patent/JP4772172B2/en
Publication of JP2001072428A publication Critical patent/JP2001072428A/en
Publication of JP2001072428A5 publication Critical patent/JP2001072428A5/ja
Application granted granted Critical
Publication of JP4772172B2 publication Critical patent/JP4772172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合成石英ガラスの評価方法に関する。特に、150〜400nmまでの波長域にある紫外光を光源とする装置の光学部材として用いられる合成石英ガラスの評価方法に関する。
【0002】
【従来の技術】
合成石英ガラスは、近赤外域から真空紫外域までの広範囲の波長域において透明な材料であること、熱膨張係数がきわめて小さく寸法安定性に優れていること、金属不純物をほとんど含有しておらず高純度であることなどの特徴がある。
そのため、従来のg線(波長436nm)、i線(波長365nm)を光源として用いた光学装置の光学部材には合成石英ガラスが主に用いられてきた。
【0003】
近年、LSIの高集積化に伴い、ウェハ上に集積回路パターンを描画する光リソグラフィ技術において、より線幅の短い微細な描画技術が要求されており、その対応として露光光源の短波長化が進められてきている。たとえばリソグラフィ用ステッパの光源としては、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)が用いられつつあり、さらに将来的にはF2レーザ(波長157nm)が用いられようとしている。
短波長の紫外線を露光光源とする装置の光学部材として用いられる合成石英ガラスには、紫外線照射時の蛍光発光強度が小さいことが要求される。
【0004】
しかし、蛍光発光強度については、蛍光を暗室内で目視で判定する評価方法(特開平1−189654)が提案されているが、この方法では定量性に欠ける問題点があった。またX線を照射して260nmにピークを持つ吸収帯の強度から650nmにピークを持つ赤色蛍光強度を判定する評価方法(特開平7−43249)が提案されているが、この方法では650nmにピークを持つ蛍光の強度しか評価できず、他の波長にピークを持つ蛍光の強度が評価できない問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は、合成石英ガラスに紫外線(特に150〜400nmの波長域にある紫外線)を照射した時に生ずる蛍光発光が充分に抑えられているか否かを、該合成石英ガラスを実際に使用する条件に近い条件で、簡便かつ定量的に判定できる合成石英ガラスの評価方法の提供を目的とする
【0006】
【課題を解決するための手段】
本発明は、紫外域から真空紫外域までの波長域の光に使用される合成石英ガラスの評価方法であって、合成石英ガラスに波長248nmの紫外線を照射し、紫外線照射により合成石英ガラスから生じる散乱光強度に対する最も強い蛍光発光の中心波長における蛍光発光強度の比を求め、その比から蛍光発光強度を評価する合成石英ガラスの評価方法を提供する
【0007】
例えば、合成石英ガラスを半導体露光装置のレンズ用材料として用いた場合、合成石英ガラスに蛍光が発生すると、レジストが感光され、得られる微細パターンの寸法精度(解像度)が低下する問題が生じるが、強度比Rが0.01以下であれば、合成石英ガラスから生じる蛍光発光強度は充分に小さく、当該問題は生じない。特に、強度比Rが0.001以下であることが好ましい。
本発明の評価方法に係る合成石英ガラスは、特に150〜400nmの波長域にある紫外線照射時の蛍光発光が抑えられており、150〜400nmまでの波長域にある紫外光を光源とする装置の光学部材として好適である。
【0008】
150〜400nmまでの波長域にある紫外光としては、エキシマレーザ(XeCl:308nm、KrF:248nm、ArF:193nm)、F2レーザ(157nm)、低圧水銀ランプ(185nm)、エキシマランプ(XeXe:172nm)、重水素ランプなどが挙げられ、用途に応じて選択できる。
また、本発明の評価方法に係る合成石英ガラスが適用される光学部材としては、レンズ、プリズム、窓材、フォトマスクなどが挙げられる。
【0009】
本発明の評価方法に係る合成石英ガラスのOH基濃度は、赤色蛍光発光(650nmを中心とする蛍光発光)を抑える観点から、500ppm以下であることが好ましい。
さらに、緑色蛍光発光および黄色蛍光発光(500〜600nmを中心とする蛍光発光)を抑える観点から、本発明の評価方法に係る合成石英ガラスにおけるアルカリ金属(特にNa)、アルカリ土類金属(特にMg、Ca)および遷移金属(特にFe、Cr、V、Mn、Cu、Ni)の合計濃度(不純物の合計濃度)は5ppb以下であることが好ましい。
【0010】
また、本発明の評価方法に係る合成石英ガラスは、赤色蛍光発光を抑える観点から、酸素過剰型欠陥を実質的に含まないことが好ましく、青色蛍光発光(288nmおよび458nmを中心とする蛍光発光)を抑える観点から、酸素欠乏型欠陥を実質的に含まないことが好ましい。
【0011】
酸素欠乏型欠陥とは、≡Si−Si≡結合を意味し、該欠陥の濃度は163nmにおける吸収強度より求められる(Phys.Rev.,B38,12772(1988))。
酸素過剰型欠陥とは、≡Si−O−O−Si≡結合を意味し、該欠陥の濃度は、合成石英ガラス(10mm厚)を、水素ガス100%、1気圧、900℃、24時間の条件で熱処理し、増加したOH基濃度、すなわち、≡Si−O−O−Si≡+H2→2≡SiOHから求められる。
【0012】
酸素欠乏型欠陥を実質的に含まないとは前記方法による検出限界濃度以下、すなわち、5×1016個/cm3未満、酸素過剰型欠陥を実質的に含まないとは前記方法による検出限界濃度以下、すなわち、2×1017個/cm3未満であることを意味する。
【0013】
【実施例】
以下、例を挙げてより具体的に説明するが、本発明はこれらに限定されない。
【0014】
公知の方法により四塩化ケイ素を酸水素火炎中で加水分解させて合成石英ガラスを製造し、表1に示すOH基濃度、酸素欠乏型欠陥濃度、酸素過剰型欠陥濃度のものを準備した。
【0015】
OH基濃度は、赤外分光光度計による測定を行い、2.7μm波長での吸収ピークからOH基濃度を求めた(Cer.Bull.,55(5),524(1976))。
不純物濃度はICP−Massにより分析した。なお、例1〜9の不純物の合計濃度は全て検出限界以下(3ppb以下)であり、例10〜11の不純物濃度(ppb)は表2のとおりである。
酸素欠乏型欠陥の濃度は、163nmにおける吸収強度より求めた(Phys.Rev.,B38,12772(1988))。
酸素過剰型欠陥の濃度は、合成石英ガラス(10mm厚み)を水素ガス100%、1気圧、900℃、24時間の熱処理を行い、増加したOH基濃度から求めた。
【0016】
得られた合成石英ガラスから30mm×40mm×10mmの評価用試料を切り出し、30mm×40mmの2面および40mm×10mmの2面を鏡面研磨した。この試料に対して、40mm×10mmの面にマルチチャンネルフォトダイオードをセットし、30mm×40mmの面に垂直な方向からKrFエキシマレーザ(エネルギー密度100mJ/cm2/pulse、周波数300Hz)を照射し、試料から生じる最も強い蛍光発光の中心波長(蛍光発光中心波長)、該波長における蛍光発光強度、散乱光強度をそれぞれ測定し、散乱光強度に対する蛍光発光強度の比(強度比R)を求めた。図1に評価方法を示す概略図を示す。また、結果を表3に示す。
【0017】
例7〜9の強度比Rは0.01を超えており、蛍光強度が比較的大きく、レジストの感度特性に依存するが、解像度に悪影響を与える場合がある一方で、例1〜6および例10〜11の強度比は0.01以下であり、蛍光強度が充分に小さく、解像度にはほとんど影響を与えない。特に、例1、2、3、10の強度比は0.001以下でありきわめて良好な結果となっている。
【0018】
【表1】

Figure 0004772172
【0019】
【表2】
Figure 0004772172
【0020】
【表3】
Figure 0004772172
【0021】
【発明の効果】
本発明の評価方法によれば、紫外線(特に248nmの波長域にある紫外線)を照射した時に生ずる蛍光発光が充分に抑えられたているか否かを、該合成石英ガラスを実際に使用する条件に近い条件で、簡便かつ定量的に判定できる。
また、本発明によれば、248nmの波長域にある紫外線を照射した時でも蛍光発光が抑えられた合成石英ガラスを容易に得ることができる。
【図面の簡単な説明】
【図1】蛍光発光強度の評価方法を示す概略図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for the evaluation of the synthetic quartz glass. In particular, method for evaluating the synthetic quartz glass for use ultraviolet light in the wavelength range up 150~400nm as an optical member of the device as a light source.
[0002]
[Prior art]
Synthetic quartz glass is a transparent material in a wide wavelength range from the near infrared region to the vacuum ultraviolet region, has a very small coefficient of thermal expansion and excellent dimensional stability, and contains almost no metal impurities. It has features such as high purity.
Therefore, synthetic quartz glass has been mainly used as an optical member of an optical device using conventional g-line (wavelength 436 nm) and i-line (wavelength 365 nm) as a light source.
[0003]
In recent years, along with the higher integration of LSI, optical lithography technology for drawing an integrated circuit pattern on a wafer demands a finer drawing technology with a shorter line width, and as a response, the wavelength of an exposure light source has been shortened. It has been. For example, KrF excimer laser (wavelength 248 nm) and ArF excimer laser (wavelength 193 nm) are being used as light sources for lithography steppers, and in the future, F 2 laser (wavelength 157 nm) is about to be used.
Synthetic quartz glass used as an optical member of an apparatus using short-wavelength ultraviolet light as an exposure light source is required to have a low fluorescence emission intensity when irradiated with ultraviolet light.
[0004]
However, with respect to the fluorescence emission intensity, an evaluation method (JP-A-1-189654) for visually determining fluorescence in a dark room has been proposed, but this method has a problem in that it lacks quantitativeness. An evaluation method (JP-A-7-43249) for determining the intensity of red fluorescence having a peak at 650 nm from the intensity of an absorption band having a peak at 260 nm by irradiation with X-rays has been proposed. There is a problem that only the intensity of fluorescence having a peak can be evaluated, and the intensity of fluorescence having peaks at other wavelengths cannot be evaluated.
[0005]
[Problems to be solved by the invention]
In the present invention, whether or not the fluorescent light emission generated when the synthetic quartz glass is irradiated with ultraviolet rays (particularly, ultraviolet rays having a wavelength range of 150 to 400 nm) is sufficiently suppressed under the conditions for actually using the synthetic quartz glass. An object is to provide a method for evaluating synthetic quartz glass that can be easily and quantitatively determined under close conditions .
[0006]
[Means for Solving the Problems]
The present invention relates to a method for evaluating synthetic quartz glass used for light in the wavelength region from the ultraviolet region to the vacuum ultraviolet region, and the synthetic quartz glass is irradiated with ultraviolet rays having a wavelength of 248 nm, and is generated from the synthetic quartz glass by ultraviolet irradiation. Provided is a synthetic quartz glass evaluation method for obtaining a ratio of fluorescence emission intensity at the center wavelength of the strongest fluorescence emission to scattered light intensity and evaluating the fluorescence emission intensity from the ratio .
[0007]
For example, when synthetic quartz glass is used as a lens material for a semiconductor exposure apparatus, if fluorescence is generated in the synthetic quartz glass, the resist is exposed to light, and there is a problem that the dimensional accuracy (resolution) of the resulting fine pattern decreases. If the intensity ratio R is 0.01 or less, the fluorescence emission intensity generated from the synthetic quartz glass is sufficiently small, and this problem does not occur. In particular, the intensity ratio R is preferably 0.001 or less.
In the synthetic quartz glass according to the evaluation method of the present invention, the fluorescence emission at the time of ultraviolet irradiation in the wavelength region of 150 to 400 nm is suppressed, and the ultraviolet light in the wavelength region of 150 to 400 nm is used as a light source. It is suitable as an optical member.
[0008]
Examples of ultraviolet light in the wavelength range from 150 to 400 nm include excimer laser (XeCl: 308 nm, KrF: 248 nm, ArF: 193 nm), F 2 laser (157 nm), low-pressure mercury lamp (185 nm), and excimer lamp (XeXe: 172 nm). ), Deuterium lamps and the like, and can be selected according to the application.
Examples of the optical member to which the synthetic quartz glass according to the evaluation method of the present invention is applied include a lens, a prism, a window material, and a photomask.
[0009]
The OH group concentration of the synthetic quartz glass according to the evaluation method of the present invention is preferably 500 ppm or less from the viewpoint of suppressing red fluorescence emission (fluorescence emission centered at 650 nm).
Furthermore, from the viewpoint of suppressing green fluorescence emission and yellow fluorescence emission (fluorescence emission centered on 500 to 600 nm), alkali metals (particularly Na) and alkaline earth metals (particularly Mg) in the synthetic quartz glass according to the evaluation method of the present invention. , Ca) and transition metals (particularly Fe, Cr, V, Mn, Cu, Ni), the total concentration (total concentration of impurities) is preferably 5 ppb or less.
[0010]
In addition, the synthetic quartz glass according to the evaluation method of the present invention preferably contains substantially no oxygen-excess defects from the viewpoint of suppressing red fluorescence, and blue fluorescence (fluorescence around 288 nm and 458 nm). From the viewpoint of suppressing oxygen, it is preferable that oxygen-deficient defects are not substantially included.
[0011]
The oxygen-deficient defect means a ≡Si-Si≡ bond, and the concentration of the defect is obtained from the absorption intensity at 163 nm (Phys. Rev., B38, 12772 (1988)).
The oxygen excess type defect means ≡Si—O—O—Si≡ bond, and the concentration of the defect is that of synthetic quartz glass (10 mm thickness), hydrogen gas 100%, 1 atm, 900 ° C., 24 hours. It is obtained from the heat treatment under conditions and the increased OH group concentration, that is, ≡Si—O—O—Si≡ + H 2 → 2≡SiOH.
[0012]
It is below the detection limit concentration by the above method that it does not substantially contain oxygen-deficient defects, that is, less than 5 × 10 16 / cm 3 , and it does not substantially contain oxygen-excess type defects by the above method. This means below, that is, less than 2 × 10 17 pieces / cm 3 .
[0013]
【Example】
Hereinafter, although an example is given and it demonstrates more concretely, this invention is not limited to these.
[0014]
A synthetic quartz glass was produced by hydrolyzing silicon tetrachloride in an oxyhydrogen flame by a known method, and those having the OH group concentration, oxygen-deficient defect concentration, and oxygen-rich defect concentration shown in Table 1 were prepared.
[0015]
The OH group concentration was measured with an infrared spectrophotometer, and the OH group concentration was determined from the absorption peak at a wavelength of 2.7 μm (Cer. Bull., 55 (5), 524 (1976)).
The impurity concentration was analyzed by ICP-Mass. The total concentration of impurities in Examples 1 to 9 is all below the detection limit (3 ppb or less), and the impurity concentrations (ppb) in Examples 10 to 11 are as shown in Table 2.
The concentration of oxygen-deficient defects was determined from the absorption intensity at 163 nm (Phys. Rev., B38, 12772 (1988)).
The concentration of oxygen-excess defects was determined from the increased OH group concentration after heat treatment of synthetic quartz glass (10 mm thickness) with 100% hydrogen gas, 1 atm, 900 ° C. for 24 hours.
[0016]
A 30 mm × 40 mm × 10 mm sample for evaluation was cut out from the obtained synthetic quartz glass, and two surfaces of 30 mm × 40 mm and two surfaces of 40 mm × 10 mm were mirror-polished. A multi-channel photodiode is set on a 40 mm × 10 mm surface of the sample, and a KrF excimer laser (energy density 100 mJ / cm 2 / pulse, frequency 300 Hz) is irradiated from a direction perpendicular to the 30 mm × 40 mm surface. The center wavelength (fluorescence emission center wavelength) of the strongest fluorescence emitted from the sample, the fluorescence emission intensity at this wavelength, and the scattered light intensity were measured, and the ratio of the fluorescence emission intensity to the scattered light intensity (intensity ratio R) was determined. FIG. 1 is a schematic diagram showing the evaluation method. The results are shown in Table 3.
[0017]
The intensity ratio R of Examples 7 to 9 exceeds 0.01, the fluorescence intensity is relatively large, and depends on the sensitivity characteristics of the resist, but may adversely affect the resolution, while Examples 1 to 6 and Examples The intensity ratio of 10 to 11 is 0.01 or less, the fluorescence intensity is sufficiently small, and the resolution is hardly affected. In particular, the intensity ratio of Examples 1, 2, 3, and 10 is 0.001 or less, which is a very good result.
[0018]
[Table 1]
Figure 0004772172
[0019]
[Table 2]
Figure 0004772172
[0020]
[Table 3]
Figure 0004772172
[0021]
【The invention's effect】
According to the evaluation method of the present invention, whether or not the fluorescence emission generated when irradiated with ultraviolet rays (particularly ultraviolet rays in the wavelength region of 248 nm) is sufficiently suppressed is a condition for actually using the synthetic quartz glass. Simple and quantitative determination is possible under close conditions.
In addition, according to the present invention, it is possible to easily obtain a synthetic quartz glass in which fluorescence emission is suppressed even when irradiated with ultraviolet rays in a wavelength region of 248 nm.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for evaluating fluorescence emission intensity.

Claims (1)

紫外域から真空紫外域までの波長域の光に使用される合成石英ガラスの評価方法であって、合成石英ガラスに波長248nmの紫外線を照射し、紫外線照射により合成石英ガラスから生じる散乱光強度に対する最も強い蛍光発光の中心波長における蛍光発光強度の比を求め、その比から蛍光発光強度を評価する合成石英ガラスの評価方法。  A method for evaluating synthetic quartz glass used for light in a wavelength region from the ultraviolet region to the vacuum ultraviolet region, and irradiating the synthetic quartz glass with ultraviolet light having a wavelength of 248 nm, and against the scattered light intensity generated from the synthetic quartz glass by ultraviolet irradiation. A method for evaluating synthetic quartz glass, in which the ratio of fluorescence emission intensity at the center wavelength of the strongest fluorescence emission is obtained and the fluorescence emission intensity is evaluated from the ratio.
JP24928699A 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass Expired - Fee Related JP4772172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24928699A JP4772172B2 (en) 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24928699A JP4772172B2 (en) 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass

Publications (3)

Publication Number Publication Date
JP2001072428A JP2001072428A (en) 2001-03-21
JP2001072428A5 JP2001072428A5 (en) 2005-05-12
JP4772172B2 true JP4772172B2 (en) 2011-09-14

Family

ID=17190719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24928699A Expired - Fee Related JP4772172B2 (en) 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP4772172B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531870B2 (en) * 2002-03-27 2004-05-31 独立行政法人 科学技術振興機構 Synthetic quartz glass
EP1854769B1 (en) 2005-03-01 2012-01-25 Nikon Corporation Method of molding a synthetic quartz glass molded body
JP2007106663A (en) * 2005-09-15 2007-04-26 Toshiba Ceramics Co Ltd Method for producing silica glass

Also Published As

Publication number Publication date
JP2001072428A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
JPWO2003091175A1 (en) Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method
JP4772172B2 (en) Method for evaluating synthetic quartz glass
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3277719B2 (en) Synthetic quartz glass for transmitting ultraviolet light and method for producing the same
JP3531870B2 (en) Synthetic quartz glass
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4051805B2 (en) Exposure apparatus and photomask
JP4700787B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3834114B2 (en) Test method of optical material for excimer laser
JP2001311801A (en) Synthetic quartz glass
JP2566151B2 (en) Method for manufacturing laser optical system base material
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JPH01197343A (en) Element for producing optical system with laser
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus
JP3245589B2 (en) Laser exposure equipment for lithography
JP4166456B2 (en) Synthetic quartz glass for vacuum ultraviolet light, manufacturing method thereof, and mask substrate for vacuum ultraviolet light using the same
JPH01167258A (en) Element assembly of laser optical system
JP2002080226A (en) Synthetic quarts glass for transmitting light
JP3266691B2 (en) Inspection method for optical materials for excimer laser
JP3158854B2 (en) Quartz glass member and its evaluation method
JPH08104532A (en) Heat treating method of quartz glass
JP2003321230A (en) Synthetic quartz glass for optical member
JPH0743249A (en) Method for evaluating synthetic quartz glass

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees