JP3875287B2 - Synthetic quartz glass for optics and manufacturing method - Google Patents

Synthetic quartz glass for optics and manufacturing method Download PDF

Info

Publication number
JP3875287B2
JP3875287B2 JP12308695A JP12308695A JP3875287B2 JP 3875287 B2 JP3875287 B2 JP 3875287B2 JP 12308695 A JP12308695 A JP 12308695A JP 12308695 A JP12308695 A JP 12308695A JP 3875287 B2 JP3875287 B2 JP 3875287B2
Authority
JP
Japan
Prior art keywords
quartz glass
hydrogen
excimer laser
synthetic quartz
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12308695A
Other languages
Japanese (ja)
Other versions
JPH08295521A (en
Inventor
生 伸 葛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP12308695A priority Critical patent/JP3875287B2/en
Publication of JPH08295521A publication Critical patent/JPH08295521A/en
Application granted granted Critical
Publication of JP3875287B2 publication Critical patent/JP3875287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、合成石英ガラス、特に紫外線領域、例えば、エキシマレーザーなどに使用される光学部品、超LSI用フォトマスク基板、超LSI用ステッパー用光学材料、誘電体バリア放電エキシマランプ管材等に使用される特に連続的に長時間にわたり照射しても、吸収帯の生成や発光のない安定した光学用合成石英ガラス及び吸収帯生成防止方法に関する。
【0002】
【従来の技術】
エキシマレーザーを用いた超LSI製造プロセスやCVDプロセスなどが発展し、エキシマレーザー用光学材料に対する要求が特に高まっているが、近年、誘電体バリア放電エキシマランプが開発され、エキシマレーザーと比較して手頃な遠紫外線光源として注目されている。
【0003】
エキシマレーザーは、希ガスとハロゲン、あるいは希ガス、ハロゲン単体を用いたガスレーザーで、ガスの種類によりXeFエキシマレーザー(350nm)、XeClエキシマレーザー(308nm)、KrFエキシマレーザー(248nm)、KrClエキシマレーザー(220nm)、ArFエキシマレーザー(193nm)及びF2エキシマレーザー(157nm)などがある。
【0004】
また、誘電体バリア放電エキシマランプは、エキシマレーザー用と同様のガスを封じ込んだ石英ガラス管を挟んで高電圧を印加することにより発光を得るランプで、Xe2(172nm),KrCl(220nm),XeCl(308nm)などが市販されている。
【0005】
エキシマレーザーのうち、発振効率とガス寿命の点からXeClエキシマレーザー、KrFエキシマレーザー、ArFエキシマレーザーが有利である。さらに、半導体素子の製造工程で用いられる光源としては、KrFエキシマレーザーおよび、ArFエキシマレーザーが注目されている。
【0006】
ArFエキシマレーザーやKrFエキシマレーザーは、従来の水銀ランプなどの輝線を用いた光源と比較すると、波長が短く、エネルギー密度がはるかに高いため、ステッパーなどの石英ガラス製の光学部品に対して損傷を与える可能性が大きい。事実、合成石英ガラスにエキシマレーザーを照射したり、合成石英ガラス製フォトマスク基板にプラズマエッチングやスパッタリングを実施すると、吸収帯が形成され、その結果として、発光が発生したりするという欠点を有していた。
【0007】
また、誘電体バリア放電エキシマランプにおいてもそのパワーは低いものの連続的に長時間使用するため、そのランプ管や窓材に使用した場合、吸収帯が形成され、その結果として、発光が発生するという同様の問題が生ずる。
【0008】
このような合成石英ガラスフォトマスク基板がプラズマエッチングやスパッタリングを受けて吸収帯を形成するような石英ガラスを予め判別する方法として、合成石英ガラスにエキシマレーザーを照射し、赤色の発光が生じるか否かによって、有害な吸収帯が形成されるか否かを判別する方法(特開平1−189654号公報:合成石英ガラスの検査方法)が開示されている。
【0009】
また、特開平1−201664号公報(合成石英ガラスの改質方法)には、四塩化珪素を化学量論的比率の酸水素火炎中で加水分解して得られた合成石英ガラスを水素ガス雰囲気中で熱処理することによっても赤色発光のない合成石英ガラスに改質できることが開示されている。
【0010】
さらに、特開平2−64645号公報(紫外域用有水合成石英ガラス及びその製法)には、四塩化珪素を酸水素火炎で加水分解する際、バーナーに供給する酸水素火炎の水素ガスと酸素ガスの比(H2/O2)を化学量論的必要量比よりも大きくする、すなわち、水素の量を化学量論的必要量より過剰の還元雰囲気にすることにより、260nmの吸収帯の生成およびそれに伴う合成石英ガラスの650nmの赤色発光を防止できることが示されており、同時に、この製法によって得られた合成石英ガラスは、200nmでの透過率が低下するので、これを防止するため、四塩化珪素に同伴ガスとして、不活性ガスを使用することが開示されている。
【0011】
このように、還元雰囲気下で合成した合成石英ガラスは、KrFエキシマレーザーに対しては、耐久性を有するが、より短波長のエキシマレーザーであるArFエキシマレーザーを照射すると220nm付近にピークを有する吸収帯が生じ、エキシマレーザービームの透過率の低下をもたらすという欠点があった。
【0012】
そこで、特開平4−21540号公報及び特開平4−130031号公報に開示されるように、水素過剰の酸水素火炎で合成した石英ガラスをさらに非酸化性の雰囲気で熱処理することにより、吸収帯の生成を防止することが開発された。
【0013】
しかしながら、以上述べたような方法によってもロット間のばらつきがあり、非還元性の雰囲気下での熱処理でも改質が不完全なこともあることがわかった。
【0014】
一方、合成石英ガラスの発光、吸収の理論的説明は未だ十分にはなされていないが、合成石英ガラスの欠陥構造に起因し、荷電粒子線、電子線、X線、γ線、そして、高い光子エネルギーを有する紫外線などによる一光子吸収あるいは多光子吸収によって、色中心が生成されるためと考えられている。
【0015】
石英ガラスの吸収、発光という分光学的性質は、現在のところ、次のように説明される。
a)酸素過剰
合成石英ガラスの製造において、酸水素火炎の酸素が過剰な場合、すなわち、H2/O2<2となるような時は、エキシマレーザーなどの照射によって、260nmの吸収帯が生じ、それに伴って650nmの赤色発光帯が生成する。
b)水素過剰
逆に酸水素火炎が水素過剰の場合(H2/O2>2)、合成石英ガラス中に過剰の水素が残存し、220nmの吸収帯の生成およびそれに伴う280nmの発光帯が見られる。
【0016】
260nmの吸収帯の生成およびそれに伴う650nmの赤色発光の原因として考えられることは、酸素過剰の条件下で石英ガラスを合成したことによるパーオキシリンケージの存在と石英ガラス中に溶存する酸素分子の存在である。
【0017】
パーオキシリンケージの存在の場合は、石英ガラスに照射したX線や紫外線などの高い光子エネルギーを有する電磁波によってパーオキシリンケージが発光中心の前駆体となり、
【化1】

Figure 0003875287
の反応によりパーオキシラジカルが発光中心となる。
【0018】
一方、酸素分子が前駆体の場合は酸素分子がオゾンに変換され、発光中心(カラーセンター)になると考えられている。すなわち、以下の反応がおこなわれている。
【化2】
Figure 0003875287
【0019】
この合成石英ガラスに水素熱処理を施すと、
≡Si−O−O−Si≡+H2 −−→ ≡Si−OH HO−Si≡ (1)となり、あるいは、石英ガラス中の過剰の溶存酸素は水素と結合して水となり発光中心が減少して発光は抑制される。この反応を(2)式で示す。
2+2H2→2H2O (2)
【0020】
しかし、この方法は、改質効果が継続的に発揮できず、種々の影響因子によって改質効果が消滅することがある。例えば、前記の方法で合成石英ガラスを大気中で熱処理すると、改質効果が消滅し、エキシマレーザーの照射や、スパッタリング、プラズマエッチングなどを行うと、再び650nmの発光が発生するようになってしまう。
【0021】
また、特開平2−64645号公報に開示された方法によって製造された合成石英ガラスでは、再熱処理をおこなっても、エキシマレーザー照射時の260nmの吸収帯の生成および650nmの赤色発光帯は観測されない。しかし、さらに詳細に検討すると、この方法によって製造した合成石英ガラスにArFエキシマレーザーを照射すると、280nmに強い発光帯が生じ、220nmに吸収帯が生成されることが判明した。また、ArFエキシマレーザーを照射し220nm吸収帯が生成するに伴ってArFエキシマレーザー自身の透過率も低下する。
【0022】
また、KrFエキシマレーザー照射した場合は、短時間の照射(略103ショット)では280nmの発光帯、および220nmの吸収帯は生ぜず、KrFエキシマレーザー自身の透過率低下もみられないが、これを長時間にわたり照射(106ショット以上)すると、ArFエキシマレーザーを照射時に同様に280nmの発光帯、及び220nmの吸収帯が生じるようになる。
【0023】
このため、化学量論的必要量より水素過剰で製造すると260nmの吸収帯の生成、及びこれに伴う650nmの赤色発光防止のためには有効であるが、ArFエキシマレーザーの照射およびKrFエキシマレーザーの長時間照射には適さないことになる。
【0024】
220nmの吸収帯は ≡Si・構造を持ったE’センターと呼ばれている欠陥構造が原因であることが知られている(D.L.Griscom,セラミック協会学術論文誌、99巻923ページ参照。)。
【0025】
E’センターの前駆体としては、 ≡Si−H が考えられ、還元雰囲気下で合成した石英ガラス中では、式3のような機構でE’センターが生成され、さらに、熱処理によるE’センターの生成防止のメカニズムとして式4のようなメカニズム(式(4)参照)が提示される(N.Kuzuu, Y.Komatsuand M.Murahara, Physical Review Vol.B44 pp.9265−9270参照)。
【化3】
Figure 0003875287
【化4】
Figure 0003875287
【0026】
以上の機構により、≡Si−H H−O−Si≡ の構造が合成石英ガラスから除去され、E’センターの生成が抑止されると考えられ、このことは、合成石英ガラスのArFエキシマレーザーの照射による650nmおよび280nmにおける発光帯の生成および260nmと220nmの吸収帯の生成を抑止した光学特性を示す合成石英ガラスとして、特開平4−21540号公報及び特開平4−130031号でその技術的効果が明確にされた。
【0027】
これは、石英ガラスの合成方法において、溶存する酸素分子(O2)が1×1017個/cm3以下となるようにこの合成石英ガラスを非還元性の雰囲気中、または、真空中において、200〜1200℃で熱処理するものである。
【0028】
しかしながら、以上述べたような方法によってもロット間のばらつきがあり、非還元性の雰囲気下での熱処理でも改質が不完全なこともあることがわかった。そこで、本出願人は、特開平6−199531号公報に開示されるように、OH基の含有量を1000ppmにすることにより、ArFエキシマレーザー照射による吸収帯の生成を防止することを見いだした。
【0029】
また、さらにOH含有量が高くなると、KrFエキシマレーザー照射時に赤色発光が生ずることが見出され、これを防止するため、OH基の含有量が1000ppm以上の直接法合成石英ガラスを800℃以上の温度で熱処理することにより、ArFエキシマレーザー照射時による吸収帯の生成を防止するとともに、KrFエキシマレーザー照射時の赤色発光を防止する方法を開発した(特開平6−287022号公報)。
【0030】
つまり、石英ガラス中にはSi−O−Siの結合角が平衡値(約143度)から大きくずれた結合が多く存在しているため、合成時の酸水素火炎の水素の量を化学量論的必要量よりも過剰にすると、水素分子が石英ガラス網目中を拡散しうるため、これらの歪んだ結合と水素が下記の式(5)で示す反応が進行し、
≡Si−H H−O−Si≡構造が生成される。
≡Si−O−Si≡ + H2 −−→ ≡Si−H H−O−Si≡ (5)
【0031】
この構造を有する合成石英ガラスにエキシマレーザーを照射すると、前記の式(3)の反応で、E’センター(≡Si・)が生成される。この前駆体である≡Si−H H−O−Si≡構造を除去するためには、特開平4−21540号、特開平4−130031号に示すごとく、適当な雰囲気中で熱処理することにより前駆体の除去が可能となる。ところが、もともとの石英ガラスの結合構造が歪んでいるため、熱処理による前駆体の除去は不完全であり、また、歪んだSi−O−Si結合も式(6)に示すようにE’センターの前駆体となる。
【化5】
Figure 0003875287
【0032】
このように、酸水素火炎を水素過剰としても石英ガラス中に ≡Si−H H−O−Si≡ 構造を生成させないためには、歪んだ結合を少なくすることが有効で、これは、石英ガラス中のSi−OHの濃度を高くすることによって達成できる。このように、Si−OHの濃度を高くすると、石英ガラスをある温度に保ったとき準平衡に近づく時間を短縮でき、このため、石英ガラス中のSi−O−Si結合角の緩和が促進され、結果として歪んだ結合の分布割合を少なくすることにより、熱処理においても周辺の構造の緩和も容易になり、前駆体が除去される。
【0033】
すなわち、石英ガラス中のOH基の濃度を上げ、Si−OHの濃度を高くすることによって石英ガラス中のこの歪んだ結合の濃度が減少し、歪んだ構造に基づくE’センターの生成が防止されるので、エキシマレーザーに対する透過率の低下が生じない安定した光学用合成石英ガラスを得ることができるのである。
【0034】
【発明が解決しようとする課題】
しかし、OH含有量を高くすると、酸素が過剰の雰囲気で合成した場合ほど赤色発光は強くないが、高いエネルギー密度のエキシマレーザーを照射すると赤色発光が生じ、安定してエキシマレーザー用光学部材を得ることができない場合がある。このことは、以下のように説明できる。
【0035】
KrFおよびArFエキシマレーザーを照射したときに生じる220nm吸収帯の強度のOH基濃度依存性を調べたところ、OH基濃度が1000ppmのものに対して吸収帯が生成しないことがわかった。しかしながらOH基濃度が高くなると赤色発光が生じやすくなる。赤色発光の発生のメカニズムについては、前述したとおり諸説がある(D.L.Griscom,セラミックス協会学術論文誌、99巻,p.923参照)。すなわち、非架橋酸素欠陥(≡Si−O・)によるもの、ガラス中に溶損した酸素によるものなどの説があるが、何れの説においても、ガラス中に存在する化学量論的に過剰な酸素が関係している。
【0036】
また、OH濃度と赤色発光強度の関係は、次のようなメカニズムによるものと考えることにより説明される。OH基濃度が高くなると≡Si−O−H H−O−Si≡のようにSi−OH構造が対になる確率が高くなる。そこで、ガラス製造時には、かなりの時間高温にさらされているため、式7のような反応が進行するものと考えられる。
≡Si−O−H H−O−Si≡−−→≡Si−O−O−Si≡+H2 (7)
【0037】
ここでSi−O−O−Si構造はパーオキシリンケージとよばれ、非架橋酸素説に基づくならば、これから、エキシマレーザーの照射により式(8)のような非架橋酸素が生じ赤色発光する。
【化6】
Figure 0003875287
【0038】
また、パーオキシリンケージからガラス生成後冷却時に次のようなメカニズムにより溶存酸素が生成し、それが式9のように赤色発光の原因となることも、考えられる。
≡Si−O−O−Si≡−−→ ≡Si−O−Si≡+(1/2)O2 (9)
【0039】
このほかに、Si−OH対から水素がとれ、式(10)のように脱水縮合が生じることも考えられる。
≡Si−O−H H−O−Si≡−−→ ≡Si−O−Si≡+H2O (10)
【0040】
このとき、右辺のH2O分子は、ガラス網目中を拡散しにくいため、その大部分はガラス網目構造中に閉じこめられる。このようにして生成したH2O分子も以下のようなメカニズムにより、赤色発光の前駆体となりうる(N.Kuzuu, Y.Komatsu and M.Murahara, PhysicalReview,vol.B45,pp.2050−2054(1992))。
【0041】
(10)式の反応によって生成したH2Oの近傍にたまたまSi−OH基が存在すると、たがいに水素結合によってくっつき、この水素結合した構造は電子の非局在化によって、下記式(11)の構造の組み替えが起こる。
【化7】
Figure 0003875287
ここで、…は水素結合をあらわす。H2はガラス網目中を拡散できるが、O2は拡散しにくいため取り残される。この残存O2分子が赤色発光の前駆体となる。
【0042】
ここで、水素拡散後、O2分子とともに≡Si−H構造が残存する。これは、(3)式に示すように、E’中心の前駆体となりうる。しかしながら、エキシマレーザー照射時には、O2分子も光分解するため、次の式12のような非架橋酸素欠陥ができ、このため、220nmの吸収帯は生成しなくなる。
≡Si・+O −−→ ≡Si−O・ (12)
【0043】
しかし、酸素過剰の雰囲気で合成し赤色発光がきわめて強い石英ガラスにおいては、溶存オゾン分子により260nmに吸収帯が生成し、同時に≡Si−O・によるきわめて弱い吸収帯が625nm付近に観測される(N.Kuzuu, Y.Komatsu and M.Murahara, Physical Review,vol.B45,pp.2050−2054(1992))。
【0044】
これに対して、これを水素過剰の雰囲気下で合成した場合、赤色発光が観測されても、比較的弱く、260nmおよび625nmの吸収帯は観測されない。OH基濃度と赤色発光の関係はいずれにしても、赤色発光が生じるためには、ガラス生成過程でSi−OH対からの水素の脱離が関係しており、このため、赤色発光を防止するために、水素中で熱処理することにより再び生成した前駆体を安定化することが有効となる。
【0045】
本出願人は、四塩化珪素を化学量論的比率の酸水素火炎中で加水分解して得られた合成石英ガラスを水素ガス雰囲気中で熱処理することによっても赤色発光の無い合成石英ガラスに改質することを特開平1−201664号ですでに開示した。しかし、水素熱処理したガラスを大気中でアニールすると再び赤色発光が生じる。これは、これらの対象とする石英ガラスがもともと酸素過剰の雰囲気下で合成され、大過剰の酸素分子が溶損していると考えられるからである。そこで、水素熱処理を行うとガラス中に多量のH2O分子が生成し、これをアニールすると再び酸素が生成するものと考えられる。
【0046】
さらに、石英ガラスを水素過剰の条件下で合成したものを用いれば、赤色発光強度は酸素過剰の条件下で合成した石英ガラスに較べて格段に弱くなり、260nmの吸収帯も観測されなくなる。それをさらに水素ガス雰囲気中で熱処理すれば、赤色発光は発生しなくなる(特開平6−287022号公報)が、このとき、水素処理により(4)式の逆反応が生じることが懸念されるが、ガラス網目構造中に存在している水素は、Si−O−Siの結合角が平衡値(143°)から大きくずれたものとのみ反応し、熱効果によりも逆に(4)式の反応が進行し、220nmの吸収帯の生成を防止するとともに赤色発光が抑止される。このとき、水素処理の条件は、800℃以上が好ましいが、900℃以上になると短時間処理も可能になる。
【0047】
この特開平6−287022号のように、OH基を多くすると赤色発光が生成し、これを水素中で800℃以上の温度で熱処理すると一旦赤色発光は防止できるが、その後さらに長時間の照射を繰り返すと、220nmの吸収や再び赤色発光が生じ、長時間照射を受ける光学材料としての使用した場合の耐久性に問題があることがわかった。
【0048】
本発明は、先の特開平6−287022号を改良し、誘電体バリア放電エキシマランプのように連続的に長時間(数百時間以上)にわたり照射しても、吸収帯の生成のない安定した光学用合成石英ガラス及び220nm及び260nmの吸収帯の生成を同時に防止する方法を提供することを目的とする。
【0049】
【課題を解決するための手段】
そこで、本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、四塩化珪素を酸水素火炎中で加水分解することにより、直接堆積ガラス化してなる石英ガラスの合成方法において、合成時の酸水素火炎の水素と酸素の比をモル比で2.2以上に設定し、かつ、OH含有量を800ppm以上含有したものを熱処理すれば、赤色発光の前駆体の生成を防止するとともに、熱処理によってE’センターの前駆体を除去し上記課題を解決することができるとの知見を得て、本発明を完成したものである。
【0050】
【作用】
四塩化珪素を酸水素火炎中で加水分解する石英ガラスの合成方法において、水素と酸素の比をモル比で>2とし、かつOH含有量を1000ppm以上にすると、ボンドの解裂による220nm吸収帯の生成が少なくなることを見出した。
【0051】
しかしながら、OH基を多くすることにより、赤色発光が生成し、これを水素中で800℃以上の温度で熱処理することにより、赤色発光は防止できるが、長時間の照射を繰り返すと、220nmの吸収が生じるばかりでなく、赤色発光も再び生じることが知見された。これは、長時間の照射に伴い、(6)式の反応が進行し、≡Si・により、220nmの吸収帯が生成し、≡Si・により260nmの吸収帯に起因する赤色発光が生じるためと考えられる。また、水素処理によって、H2Oとなって安定化した溶存酸素が長時間照射の熱および光化学的変化によって(11)の反応が除々に進行し、溶存O2および(11)式の右辺の≡Si−Hが前駆体となってE’センターが生成するものと考えられる。
【0052】
赤色発光を防止するためには、OH含有量を減らし、且つ合成時の雰囲気の水素含有量を増やしてやればよいのであるが、OH含有量を減らし、合成時の雰囲気の水素の割合を増すと、≡Si−H H−O−Si≡ 構造が多くでき、それに伴ってE’中心の生成が生じる。これを除くためには雰囲気中で熱処理を行なうのであるが、ガラス中のOH量が略800ppmより少なくなると、歪んだボンドの割合が多く、≡Si−H H−O−Si≡構造が安定となるため、除去効果は弱くなる。このことから、酸水素火炎の水素過剰雰囲気下の条件を水素と酸素の比がモル比で2.2以上という特定した条件下で合成し、かつOH基を800ppm以上含有したものを熱処理すれば、長時間の照射に対しても220nm及び260nmの吸収帯の生成がなく安定した材料が得られることが判明した。
【0053】
熱処理雰囲気は、ヘリウム等の不活性ガス、還元雰囲気、非還元性雰囲気を利用できる。水素雰囲気中での熱処理でも、220nm吸収帯の生成防止効果は認められるが、吸収帯が防止できるのは、OH含有量が特開平6−287022号公報に示すように1000ppm以上のものに限定される。これをさらに検討した結果、He中で熱処理すると220nm吸収帯生成の下限を800ppmに低減できることが明らかになった。しかしながら、He処理では、若干の赤色発光が生じるので、これを防止するために水素と酸素の比がモル比で2.2以上に設定すれば良いことが判明した。
【0054】
【効果】
合成時の水素/酸素比をモル比で2.2以上に設定し、さらにOH含有量が800ppm以上のものを熱処理することにより、KrF及びArFエキシマレーザーを長時間照射しても、石英ガラスに吸収帯の生成がなく安定した光学用合成石英ガラスが得られ、連続的に長時間にわたり照射を受ける誘電体バリア放電エキシマランプ等に有効に利用することができる。
【0055】
また、石英ガラス中のOH基濃度を800ppm以上とし、かつ、酸・水素火炎の水素と酸素の比がモル比で2.2よりも過剰の水素の存在下で合成したものを熱処理することによって、電磁波、ArF、KrFエキシマレーザーまたはKrCl、Xe2等のエキシマランプの紫外線等のエネルギー線の長時間照射で、E’センターによる220nm付近にピークをもつ吸収帯及び260nm付近にピークを持つ吸収帯の生成を防止する方法としても用いることができる。
【0056】
【実施例】
実施例1
直接堆積ガラス化法において、四塩化珪素を水素と酸素の割合を表1に示す化学量論的必要量より過剰水素のモル比の酸水素火炎で加水分解し、かつ石英ガラスの合成時に不活性ガスを含むバーナーの反応条件および排ガスの排気条件を調整することによってOH濃度を調整し、石英ガラスA〜Mを合成した。
【0057】
得られた合成石英ガラスの試料A〜Mからそれぞれ略10mm×10mm×30mmの試験片を2個切り出し、1個についてHeガス中で900℃×5時間熱処理を行い、各サンプルを得た。各サンプルにArFエキシマレーザー、100mJ/cm2、100Hzを照射し、照射前および105ショット照射後の吸収を測定し、熱処理前後における220nmにおける内部吸収係数を求めた。また、試料から切り出した他の1個について、KrF,25Hz,1.5分間照射したときの赤色発光が認められる最低のエネルギー密度を測定した。その結果を表1に示す。
【0058】
【表1】
Figure 0003875287
【0059】
この結果、水素と酸素の割合をH2/O2=2.1で合成したものは、OH基800ppm以上で熱処理した場合、ArFエキシマレーザー照射による吸収は認められなかったものの、赤色発光が生じる最低エネルギー密度は200mJ/cm2未満であったが、H2/O2=2.3で合成したものは、ArFエキシマレーザー照射による吸収が生成しないと同時に、KrFエキシマレーザー照射による赤色発光が生じる最低エネルギー密度も200mJ/cm2以上と高品質特性を満足するものであった。
【0060】
実施例2
実施例1に準じて、水素と酸素の割合をH2/O2=2.3で合成し、OH基を800ppm含有するガラスをHe中で900℃,1時間熱処理したサンプルXと、水素と酸素の割合をH2/O2=2.1で合成し、OH基を1020ppm含有するサンプルYを得て、これを25mm×50mm×1tの形状に加工し、表面を光学研磨したのち、エキシマレーザーの光路にビームと45°の角度をなすようにセットし、エキシマレーザーのパワーをモニターするビームスプリッタとして使用した。通常の検査に、ArF,100mJ/cm2,100Hzでの発振と、KrF100mJ/cm2,25Hzでの発振とほぼ同パルス発振するような条件下で運転し、レーザーのパルスカウンターが108ショットとなった時点で取り外し、エキシマレーザービームが照射された部分と照射の差スペクトルを測定した。
【0061】
この結果、サンプルYでは220nmをピークとする吸収帯が生成し、220nmにおいて透過率が10%低下し、また、エキシマレーザー照射時に発光を観察したところ赤色発光がみとめられた。これに対して、サンプルXでは、透過率低下が3%程度で、はっきりした発光は認められなかった。[0001]
[Industrial application fields]
The present invention is used for synthetic quartz glass, particularly in the ultraviolet region, for example, optical parts used in excimer lasers, photomask substrates for VLSI, optical materials for steppers for VLSI, dielectric barrier discharge excimer lamp tubes, etc. In particular, the present invention relates to a stable synthetic quartz glass for optics that does not generate an absorption band or emit light even when continuously irradiated for a long time, and a method for preventing absorption band generation.
[0002]
[Prior art]
With the development of VLSI manufacturing processes and CVD processes using excimer lasers, the demand for optical materials for excimer lasers has increased, but in recent years dielectric barrier discharge excimer lamps have been developed and are more affordable than excimer lasers. It is attracting attention as a deep ultraviolet light source.
[0003]
The excimer laser is a gas laser using a rare gas and a halogen, or a rare gas or a halogen simple substance. Depending on the type of gas, an XeF excimer laser (350 nm), an XeCl excimer laser (308 nm), a KrF excimer laser (248 nm), a KrCl excimer laser is used. (220 nm), ArF excimer laser (193 nm) and F 2 There is an excimer laser (157 nm).
[0004]
A dielectric barrier discharge excimer lamp is a lamp that emits light by applying a high voltage across a quartz glass tube containing a gas similar to that used for excimer laser. 2 (172 nm), KrCl (220 nm), XeCl (308 nm) and the like are commercially available.
[0005]
Among excimer lasers, XeCl excimer laser, KrF excimer laser, and ArF excimer laser are advantageous in terms of oscillation efficiency and gas life. Further, KrF excimer laser and ArF excimer laser are attracting attention as light sources used in the manufacturing process of semiconductor elements.
[0006]
ArF excimer lasers and KrF excimer lasers have shorter wavelengths and much higher energy density than conventional light sources using bright lines such as mercury lamps, which can damage optical components made of quartz glass such as steppers. The possibility of giving is great. In fact, if synthetic quartz glass is irradiated with an excimer laser, or if plasma etching or sputtering is performed on a synthetic quartz glass photomask substrate, an absorption band is formed, resulting in emission of light. It was.
[0007]
In addition, the dielectric barrier discharge excimer lamp is used continuously for a long time although its power is low, so when used for the lamp tube and window material, an absorption band is formed, and as a result, light emission occurs. Similar problems arise.
[0008]
As a method for discriminating in advance such a quartz glass that the synthetic quartz glass photomask substrate is subjected to plasma etching or sputtering to form an absorption band, whether or not the synthetic quartz glass is irradiated with an excimer laser and red light emission is generated. Therefore, a method for discriminating whether or not a harmful absorption band is formed (JP-A-1-189654: method for inspecting synthetic quartz glass) is disclosed.
[0009]
JP-A-1-201664 (Synthetic Quartz Glass Modification Method) discloses a synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in a stoichiometric oxyhydrogen flame with a hydrogen gas atmosphere. It is disclosed that it can be modified to synthetic quartz glass without red light emission even by heat treatment in the medium.
[0010]
Further, Japanese Patent Laid-Open No. 2-64645 (hydraulic synthetic quartz glass for ultraviolet region and its production method) discloses hydrogen gas and oxygen of an oxyhydrogen flame supplied to a burner when hydrolyzing silicon tetrachloride with an oxyhydrogen flame. Gas ratio (H 2 / O 2 ) Greater than the stoichiometric requirement, i.e., the amount of hydrogen is reduced to an excess of the stoichiometric requirement to produce a 260 nm absorption band and the resultant synthetic quartz glass at 650 nm. At the same time, the synthetic quartz glass obtained by this manufacturing method has a reduced transmittance at 200 nm. The use of an active gas is disclosed.
[0011]
Thus, synthetic quartz glass synthesized under a reducing atmosphere has durability against a KrF excimer laser, but has an absorption peak at around 220 nm when irradiated with an ArF excimer laser, which is a shorter wavelength excimer laser. There was a drawback that a band was formed, resulting in a decrease in the transmittance of the excimer laser beam.
[0012]
Therefore, as disclosed in JP-A-4-21540 and JP-A-4-130031, an absorption band is obtained by further heat-treating quartz glass synthesized with a hydrogen-excess oxyhydrogen flame in a non-oxidizing atmosphere. It was developed to prevent the generation of.
[0013]
However, it has been found that even with the method described above, there is variation between lots, and even the heat treatment in a non-reducing atmosphere may result in incomplete modification.
[0014]
On the other hand, although the theoretical explanation of light emission and absorption of synthetic quartz glass has not been made sufficiently yet, due to the defect structure of synthetic quartz glass, charged particle beam, electron beam, X-ray, γ ray, and high photon It is considered that color centers are generated by one-photon absorption or multi-photon absorption by ultraviolet rays having energy.
[0015]
At present, the spectroscopic properties of absorption and emission of quartz glass are explained as follows.
a) Excess oxygen
In the production of synthetic quartz glass, if the oxygen in the oxyhydrogen flame is excessive, that is, H 2 / O 2 When <2, the absorption band of 260 nm is generated by irradiation with an excimer laser or the like, and a red emission band of 650 nm is generated accordingly.
b) Hydrogen excess
Conversely, if the oxyhydrogen flame is excessive in hydrogen (H 2 / O 2 > 2) Excess hydrogen remains in the synthetic quartz glass, and the generation of a 220 nm absorption band and the accompanying 280 nm emission band are observed.
[0016]
The generation of 260 nm absorption band and the accompanying red emission at 650 nm are considered to be due to the presence of peroxy linkage due to the synthesis of quartz glass under oxygen-excess conditions and the presence of oxygen molecules dissolved in quartz glass. It is.
[0017]
In the presence of peroxy linkage, the peroxy linkage becomes a precursor of the emission center by electromagnetic waves having high photon energy such as X-rays and ultraviolet rays irradiated on quartz glass,
[Chemical 1]
Figure 0003875287
As a result of this reaction, the peroxy radical becomes the emission center.
[0018]
On the other hand, when the oxygen molecule is a precursor, it is considered that the oxygen molecule is converted into ozone and becomes a light emission center (color center). That is, the following reaction is performed.
[Chemical 2]
Figure 0003875287
[0019]
When this synthetic quartz glass is subjected to hydrogen heat treatment,
≡Si-O-O-Si≡ + H 2 ---> ≡Si—OH HO—Si≡ (1), or excessive dissolved oxygen in the quartz glass is combined with hydrogen to become water, and the emission center is reduced to suppress light emission. This reaction is shown by the formula (2).
O 2 + 2H 2 → 2H 2 O (2)
[0020]
However, in this method, the modification effect cannot be exhibited continuously, and the modification effect may disappear due to various influencing factors. For example, if the synthetic quartz glass is heat-treated in the air by the above-described method, the modification effect disappears, and if excimer laser irradiation, sputtering, plasma etching, or the like is performed, light emission of 650 nm is generated again. .
[0021]
In addition, in the synthetic quartz glass manufactured by the method disclosed in Japanese Patent Laid-Open No. 2-64645, even when re-heat treatment is performed, the generation of the 260 nm absorption band and the 650 nm red emission band during the excimer laser irradiation are not observed. . However, when examined in more detail, it was found that when a synthetic quartz glass produced by this method was irradiated with an ArF excimer laser, a strong emission band was generated at 280 nm and an absorption band was generated at 220 nm. Further, as the ArF excimer laser is irradiated and a 220 nm absorption band is generated, the transmittance of the ArF excimer laser itself also decreases.
[0022]
In addition, when KrF excimer laser irradiation is performed, irradiation for a short time (approximately 10 Three In the shot, no emission band of 280 nm and no absorption band of 220 nm are produced, and no decrease in the transmittance of the KrF excimer laser itself is observed. 6 When shot with an ArF excimer laser, an emission band of 280 nm and an absorption band of 220 nm are generated.
[0023]
For this reason, if hydrogen is produced in excess of the stoichiometric amount, it is effective for the generation of an absorption band of 260 nm and the accompanying prevention of red emission of 650 nm, but the irradiation of ArF excimer laser and KrF excimer laser It will not be suitable for long-term irradiation.
[0024]
It is known that the 220 nm absorption band is caused by a defect structure called the E 'center having a ≡Si structure (see DL Griscom, Ceramic Society Journal, Vol. 99, p. 923). .)
[0025]
≡Si—H is considered as a precursor of the E ′ center. In the quartz glass synthesized under a reducing atmosphere, the E ′ center is generated by the mechanism as shown in Equation 3, and further, the E ′ center by the heat treatment is generated. As a mechanism for preventing generation, a mechanism like Formula 4 (see Formula (4)) is presented (see N. Kuzuu, Y. Komatsusu M. Murahara, Physical Review Vol. B44 pp. 9265-9270).
[Chemical 3]
Figure 0003875287
[Formula 4]
Figure 0003875287
[0026]
By the above mechanism, it is considered that the structure of ≡Si—H H—O—Si≡ is removed from the synthetic quartz glass, and the generation of the E ′ center is suppressed, which means that the ArF excimer laser of the synthetic quartz glass is suppressed. JP-A-4-21540 and JP-A-4-130031 show the technical effect as synthetic quartz glass showing optical characteristics that suppress the generation of emission bands at 650 nm and 280 nm and the generation of absorption bands of 260 nm and 220 nm by irradiation. Was clarified.
[0027]
This is because, in the method for synthesizing quartz glass, dissolved oxygen molecules (O 2 ) Is 1 × 10 17 Piece / cm Three This synthetic quartz glass is heat-treated at 200 to 1200 ° C. in a non-reducing atmosphere or in a vacuum so as to satisfy the following conditions.
[0028]
However, it has been found that even with the method described above, there is variation between lots, and even the heat treatment in a non-reducing atmosphere may result in incomplete modification. Accordingly, the present applicant has found that the generation of an absorption band due to ArF excimer laser irradiation can be prevented by setting the OH group content to 1000 ppm as disclosed in JP-A-6-199531.
[0029]
Further, when the OH content is further increased, red light emission is found to be generated upon irradiation with KrF excimer laser, and in order to prevent this, a direct method synthetic quartz glass having an OH group content of 1000 ppm or more is used at 800 ° C. A method has been developed in which heat treatment is performed at a temperature to prevent the generation of an absorption band when irradiated with an ArF excimer laser and to prevent red light emission when irradiated with a KrF excimer laser (Japanese Patent Laid-Open No. 6-287022).
[0030]
That is, in quartz glass, there are many bonds in which the Si—O—Si bond angle is greatly deviated from the equilibrium value (about 143 degrees), so the amount of hydrogen in the oxyhydrogen flame at the time of synthesis is stoichiometric. If the amount is more than the necessary amount, hydrogen molecules can diffuse in the quartz glass network, so that these distorted bonds and hydrogen undergo a reaction represented by the following formula (5),
≡Si—H H—O—Si≡ structure is generated.
≡Si-O-Si≡ + H 2 ---> ≡Si—H H—O—Si≡ (5)
[0031]
When a synthetic quartz glass having this structure is irradiated with an excimer laser, an E ′ center (≡Si ·) is generated by the reaction of the above formula (3). In order to remove this precursor ≡Si—HH—O—Si≡ structure, as shown in JP-A-4-21540 and JP-A-4-130031, the precursor is prepared by heat treatment in an appropriate atmosphere. The body can be removed. However, since the bond structure of the original quartz glass is distorted, the removal of the precursor by heat treatment is incomplete, and the distorted Si—O—Si bond is also the E ′ center as shown in the equation (6). It becomes a precursor.
[Chemical formula 5]
Figure 0003875287
[0032]
Thus, in order not to produce the ≡Si—H H—O—Si≡ structure in the quartz glass even if the oxyhydrogen flame is excessive in hydrogen, it is effective to reduce the distorted bonds. This can be achieved by increasing the concentration of Si-OH therein. Thus, when the concentration of Si—OH is increased, the time for approaching quasi-equilibrium can be shortened when the quartz glass is kept at a certain temperature, and therefore relaxation of the Si—O—Si bond angle in the quartz glass is promoted. As a result, by reducing the distribution ratio of the distorted bonds, the surrounding structure can be easily relaxed even in the heat treatment, and the precursor is removed.
[0033]
That is, by increasing the concentration of OH groups in the quartz glass and increasing the concentration of Si—OH, the concentration of this distorted bond in the quartz glass is reduced, and the generation of E ′ centers based on the distorted structure is prevented. Therefore, it is possible to obtain a stable synthetic quartz glass for optics that does not cause a decrease in transmittance with respect to the excimer laser.
[0034]
[Problems to be solved by the invention]
However, when the OH content is increased, red light emission is not as strong as when oxygen is synthesized in an excess atmosphere. However, when an excimer laser with a high energy density is irradiated, red light emission is generated, and an optical member for excimer laser is stably obtained. It may not be possible. This can be explained as follows.
[0035]
When the dependence of the intensity of the 220 nm absorption band generated when irradiated with KrF and ArF excimer lasers on the OH group concentration was examined, it was found that no absorption band was generated for an OH group concentration of 1000 ppm. However, when the OH group concentration increases, red light emission tends to occur. As described above, there are various theories regarding the mechanism of the occurrence of red light emission (see DL Griscom, Journal of Ceramic Society, Vol. 99, p. 923). That is, there are theories such as those due to non-bridging oxygen defects (≡Si—O.) And those due to oxygen melted in the glass, but in any theory, there is a stoichiometric excess in the glass. Oxygen is involved.
[0036]
Further, the relationship between the OH concentration and the red emission intensity is explained by considering that it is due to the following mechanism. As the OH group concentration increases, the probability that the Si—OH structure is paired, such as ≡Si—O—HH—O—Si≡, increases. Therefore, since the glass is exposed to a high temperature for a considerable period of time, it is considered that the reaction of Formula 7 proceeds.
≡Si-O-H H-O-Si≡-- → ≡Si-O-O-Si≡ + H 2 (7)
[0037]
Here, the Si—O—O—Si structure is called a peroxy linkage, and if based on the non-bridging oxygen theory, non-bridging oxygen as shown by the formula (8) is generated by excimer laser irradiation and emits red light.
[Chemical 6]
Figure 0003875287
[0038]
It is also conceivable that dissolved oxygen is generated by the following mechanism during cooling after glass formation from the peroxy linkage, which causes red light emission as shown in Equation 9.
≡Si-O-O-Si≡-- → ≡Si-O-Si≡ + (1/2) O 2 (9)
[0039]
In addition, it is conceivable that hydrogen is removed from the Si—OH pair and dehydration condensation occurs as shown in Formula (10).
≡Si-O-H H-O-Si≡-- → ≡Si-O-Si≡ + H 2 O (10)
[0040]
At this time, H on the right side 2 Since O molecules hardly diffuse in the glass network, most of them are confined in the glass network structure. H generated in this way 2 O molecules can also be precursors of red light emission by the following mechanism (N. Kuzuu, Y. Komatsu and M. Murahara, Physical Review, vol. B45, pp. 2050-2054 (1992)).
[0041]
(10) H produced by the reaction of the formula 2 If a Si—OH group happens to be present in the vicinity of O, it will adhere to each other by hydrogen bonding, and this hydrogen-bonded structure undergoes rearrangement of the structure of the following formula (11) due to delocalization of electrons.
[Chemical 7]
Figure 0003875287
Here, ... represents a hydrogen bond. H 2 Can diffuse through the glass mesh, 2 Is left behind because it is difficult to diffuse. This remaining O 2 The molecule becomes a precursor of red light emission.
[0042]
Here, after hydrogen diffusion, O 2 The ≡Si-H structure remains with the molecule. This can be a precursor of E ′ center, as shown in equation (3). However, during excimer laser irradiation, O 2 Since the molecule is also photolyzed, a non-bridging oxygen defect such as the following formula 12 is formed, and therefore, an absorption band of 220 nm is not generated.
≡Si · + O −− → ≡Si—O · (12)
[0043]
However, in quartz glass synthesized in an oxygen-excess atmosphere and having a very strong red emission, an absorption band is generated at 260 nm due to dissolved ozone molecules, and at the same time, a very weak absorption band due to ≡Si—O. N. Kuzuu, Y. Komatsu and M. Murahara, Physical Review, vol. B45, pp. 2050-2054 (1992)).
[0044]
On the other hand, when this is synthesized in an atmosphere containing excess hydrogen, even if red light emission is observed, it is relatively weak and the 260 nm and 625 nm absorption bands are not observed. Regardless of the relationship between the OH group concentration and red light emission, in order for red light emission to occur, the elimination of hydrogen from the Si—OH pair is involved in the glass formation process, thus preventing red light emission. Therefore, it is effective to stabilize the precursor produced again by heat treatment in hydrogen.
[0045]
The present applicant changed the synthetic quartz glass obtained by hydrolyzing silicon tetrachloride in a stoichiometric oxyhydrogen flame to a synthetic quartz glass that does not emit red light by heat-treating it in a hydrogen gas atmosphere. JP-A-1-201664 has already disclosed it. However, when the glass subjected to hydrogen heat treatment is annealed in the atmosphere, red light emission is generated again. This is because these target quartz glasses are originally synthesized in an oxygen-excess atmosphere, and it is considered that a large excess of oxygen molecules are melted. Therefore, when hydrogen heat treatment is performed, a large amount of H is contained in the glass. 2 It is considered that oxygen is generated again when O molecules are generated and annealed.
[0046]
Furthermore, if quartz glass synthesized under hydrogen-excess conditions is used, the red emission intensity becomes much weaker than quartz glass synthesized under oxygen-excess conditions, and the 260 nm absorption band is not observed. If it is further heat-treated in a hydrogen gas atmosphere, red light emission will not occur (Japanese Patent Laid-Open No. 6-287022), but at this time, there is a concern that the reverse reaction of formula (4) occurs due to the hydrogen treatment. Hydrogen present in the glass network structure reacts only with the Si—O—Si bond angle greatly deviating from the equilibrium value (143 °), and conversely due to the thermal effect, the reaction of formula (4) Progresses, preventing the generation of an absorption band of 220 nm and suppressing red light emission. At this time, the condition of the hydrogen treatment is preferably 800 ° C. or higher, but if it is 900 ° C. or higher, the treatment can be performed for a short time.
[0047]
As disclosed in Japanese Patent Laid-Open No. 6-287022, red emission is generated when the number of OH groups is increased, and once this is heat-treated in hydrogen at a temperature of 800 ° C. or higher, red emission can be prevented once. Repeatedly, it was found that absorption at 220 nm and red light emission occurred again, and there was a problem in durability when used as an optical material that was irradiated for a long time.
[0048]
The present invention improves the above-mentioned Japanese Patent Application Laid-Open No. 6-287022, and even when continuously irradiated for a long time (several hundred hours or more) like a dielectric barrier discharge excimer lamp, it is stable without generating an absorption band. It is an object of the present invention to provide a method for simultaneously preventing generation of optical synthetic quartz glass and absorption bands of 220 nm and 260 nm.
[0049]
[Means for Solving the Problems]
Therefore, in order to solve the above problems, the present inventors have conducted extensive research, and as a result of hydrolyzing silicon tetrachloride in an oxyhydrogen flame, in a method for synthesizing quartz glass formed directly into deposited glass, If the hydrogen / oxygen ratio of the oxyhydrogen flame at the time of synthesis is set to 2.2 or more in terms of a molar ratio and an OH content of 800 ppm or more is heat-treated, generation of a red light-emitting precursor is prevented. At the same time, the inventors have obtained the knowledge that the precursor of the E ′ center can be removed by heat treatment to solve the above problem, and the present invention has been completed.
[0050]
[Action]
In a method for synthesizing quartz glass in which silicon tetrachloride is hydrolyzed in an oxyhydrogen flame, if the ratio of hydrogen to oxygen is> 2 in terms of molar ratio and the OH content is 1000 ppm or more, the 220 nm absorption band due to bond cleavage We found that the production of
[0051]
However, by increasing the number of OH groups, red light emission is generated, and heat treatment at a temperature of 800 ° C. or higher in hydrogen can prevent red light emission. It has been found that not only the red light emission but also the red light emission occurs again. This is because the reaction of the formula (6) proceeds with long-time irradiation, an absorption band of 220 nm is generated by ≡Si ·, and red emission due to the absorption band of 260 nm is generated by ≡Si ·. Conceivable. In addition, by hydrogen treatment, H 2 The dissolved oxygen stabilized as O undergoes the reaction of (11) gradually due to the heat and photochemical change of long-term irradiation, and dissolved O 2 It is considered that E ′ center is generated by ≡Si—H on the right side of the formula (11) as a precursor.
[0052]
In order to prevent red light emission, it is only necessary to reduce the OH content and increase the hydrogen content of the atmosphere at the time of synthesis, but reduce the OH content and increase the proportion of hydrogen in the atmosphere at the time of synthesis. Then, ≡Si—H H—O—Si≡ structure can be increased, and generation of E ′ center occurs accordingly. In order to eliminate this, heat treatment is performed in an atmosphere. However, when the amount of OH in the glass is less than about 800 ppm, the proportion of distorted bonds is large, and the ≡Si—H H—O—Si≡ structure is stable. Therefore, the removal effect is weakened. From this, if the conditions under the hydrogen-rich atmosphere of the oxyhydrogen flame are synthesized under the specified condition that the ratio of hydrogen to oxygen is 2.2 or more in terms of molar ratio, and those containing OH groups of 800 ppm or more are heat treated It was found that a stable material can be obtained without generation of absorption bands of 220 nm and 260 nm even for long-time irradiation.
[0053]
As the heat treatment atmosphere, an inert gas such as helium, a reducing atmosphere, or a non-reducing atmosphere can be used. Even in heat treatment in a hydrogen atmosphere, the effect of preventing the formation of a 220 nm absorption band is recognized, but the absorption band can be prevented only when the OH content is 1000 ppm or more as shown in JP-A-6-287022. The As a result of further examination, it was found that the lower limit of the 220 nm absorption band generation can be reduced to 800 ppm by heat treatment in He. However, since a slight amount of red light is emitted in the He treatment, it has been found that the hydrogen to oxygen ratio should be set to 2.2 or more in terms of molar ratio in order to prevent this.
[0054]
【effect】
Even if KrF and ArF excimer lasers are irradiated for a long time by setting the hydrogen / oxygen ratio at the time of synthesis to 2.2 or more by molar ratio and further heat-treating those having an OH content of 800 ppm or more, the quartz glass A stable synthetic quartz glass for optical use without generation of an absorption band can be obtained, and can be effectively used for a dielectric barrier discharge excimer lamp or the like that is continuously irradiated for a long time.
[0055]
Also, by heat-treating the synthesized OH group concentration in the quartz glass to 800 ppm or more and the ratio of hydrogen to oxygen in the acid / hydrogen flame in the presence of hydrogen in excess of 2.2 by molar ratio. , Electromagnetic wave, ArF, KrF excimer laser or KrCl, Xe 2 It can also be used as a method for preventing the generation of an absorption band having a peak near 220 nm and an absorption band having a peak near 260 nm by the E ′ center by long-time irradiation of an energy ray such as ultraviolet rays from an excimer lamp.
[0056]
【Example】
Example 1
In the direct deposition vitrification method, silicon tetrachloride is hydrolyzed with an oxyhydrogen flame in which the ratio of hydrogen to oxygen is in excess of the stoichiometric amount shown in Table 1 and is inactive during the synthesis of quartz glass. The OH concentration was adjusted by adjusting the reaction conditions of the burner containing the gas and the exhaust conditions of the exhaust gas, and quartz glasses A to M were synthesized.
[0057]
Two test pieces each having a size of about 10 mm × 10 mm × 30 mm were cut out from the obtained synthetic quartz glass samples A to M, and one sample was heat-treated in He gas at 900 ° C. for 5 hours to obtain each sample. ArF excimer laser, 100mJ / cm for each sample 2 , 100 Hz, before irradiation and 10 Five Absorption after shot irradiation was measured, and an internal absorption coefficient at 220 nm before and after heat treatment was determined. Further, the other one cut out from the sample was measured for the lowest energy density at which red light emission was observed when irradiated with KrF, 25 Hz for 1.5 minutes. The results are shown in Table 1.
[0058]
[Table 1]
Figure 0003875287
[0059]
As a result, the ratio of hydrogen to oxygen is changed to H. 2 / O 2 When the heat treatment was performed with 800 ppm or more of OH groups, the compound synthesized with = 2.1 had no absorption due to ArF excimer laser irradiation, but the minimum energy density at which red light emission was generated was 200 mJ / cm. 2 Less than H 2 / O 2 In the case of the composition synthesized by = 2.3, absorption due to ArF excimer laser irradiation is not generated, and at the same time, the minimum energy density at which red light emission is caused by KrF excimer laser irradiation is 200 mJ / cm. 2 The above-mentioned high quality characteristics were satisfied.
[0060]
Example 2
According to Example 1, the ratio of hydrogen to oxygen is set to H. 2 / O 2 = Sample S synthesized by 2.3 and heat-treated glass containing 800 ppm of OH groups in He at 900 ° C for 1 hour, and the ratio of hydrogen and oxygen to H 2 / O 2 = 2.1, sample Y containing 1020 ppm of OH groups was obtained, processed into a shape of 25 mm × 50 mm × 1 t, and the surface was optically polished, and then the beam and 45 ° in the optical path of the excimer laser It was set at an angle and used as a beam splitter to monitor the power of the excimer laser. For normal inspection, ArF, 100 mJ / cm 2 , Oscillation at 100 Hz and KrF 100 mJ / cm 2 , Operating under conditions that generate almost the same pulse as 25 Hz, and a laser pulse counter of 10 8 When the shot was taken, it was removed and the difference spectrum between the irradiated part and the excimer laser beam was measured.
[0061]
As a result, an absorption band having a peak at 220 nm was generated in Sample Y, the transmittance was reduced by 10% at 220 nm, and red light emission was observed when light emission was observed during excimer laser irradiation. On the other hand, in sample X, the transmittance decrease was about 3%, and no clear light emission was observed.

Claims (2)

四塩化珪素を酸水素火炎中で加水分解し、直接堆積ガラス化する直接法石英ガラスにおいて、酸水素火炎の水素と酸素の比がモル比で2.2以上の条件下で合成し、かつOH基を800ppm以上含有したものを不活性ガスもしくは非還元性ガス雰囲気において800℃以上で熱処理してなる光学用合成石英ガラス。In a direct method quartz glass in which silicon tetrachloride is hydrolyzed in an oxyhydrogen flame and directly deposited vitrified, it is synthesized under a condition where the ratio of hydrogen to oxygen in the oxyhydrogen flame is 2.2 or more in terms of molar ratio, and OH Synthetic quartz glass for optics obtained by heat-treating a group containing 800 ppm or more in an inert gas or non-reducing gas atmosphere at 800 ° C. or higher. 四塩化珪素を酸水素火炎中で加水分解し、直接堆積ガラス化する石英ガラスの製造方法において、酸水素火炎の水素と酸素の比がモル比で2.2以上の条件下で合成し、かつ、OH基を800ppm以上含有したものを不活性ガスもしくは非還元性ガス雰囲気において800℃以上で熱処理する光学用合成石英ガラスの製造方法。In a method for producing quartz glass in which silicon tetrachloride is hydrolyzed in an oxyhydrogen flame and directly deposited and vitrified, the hydrogen and oxygen in the oxyhydrogen flame are synthesized under a molar ratio of 2.2 or more, and A method for producing synthetic quartz glass for optics, comprising heat treatment at 800 ° C. or higher in an inert gas or non-reducing gas atmosphere containing 800 ppm or more of OH groups.
JP12308695A 1995-04-24 1995-04-24 Synthetic quartz glass for optics and manufacturing method Expired - Fee Related JP3875287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12308695A JP3875287B2 (en) 1995-04-24 1995-04-24 Synthetic quartz glass for optics and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12308695A JP3875287B2 (en) 1995-04-24 1995-04-24 Synthetic quartz glass for optics and manufacturing method

Publications (2)

Publication Number Publication Date
JPH08295521A JPH08295521A (en) 1996-11-12
JP3875287B2 true JP3875287B2 (en) 2007-01-31

Family

ID=14851866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12308695A Expired - Fee Related JP3875287B2 (en) 1995-04-24 1995-04-24 Synthetic quartz glass for optics and manufacturing method

Country Status (1)

Country Link
JP (1) JP3875287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394127A4 (en) * 2001-04-19 2008-04-30 Nikon Corp Quartz glass member and projection aligner
EP2347192B1 (en) * 2008-11-13 2013-01-09 Koninklijke Philips Electronics N.V. A solar receiver for use in a solar energy concentrator

Also Published As

Publication number Publication date
JPH08295521A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
US6451719B1 (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JPH07215731A (en) High purity quartz glass for ultraviolet lamp and its production
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
JPH0791084B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JP2003081654A (en) Synthetic quartz glass, and production method therefor
JP2764207B2 (en) Water-soluble synthetic quartz glass for ultraviolet region and method for producing the same
JP3875287B2 (en) Synthetic quartz glass for optics and manufacturing method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3303918B2 (en) Synthetic quartz glass and its manufacturing method
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP3519426B2 (en) Stabilization method of synthetic quartz glass for optics
JPH0867530A (en) Optical glass for ultraviolet light
JP3303919B2 (en) Synthetic quartz glass and its manufacturing method
US8635886B2 (en) Copper-containing silica glass, method for producing the same, and xenon flash lamp using the same
JP3834114B2 (en) Test method of optical material for excimer laser
JPH07277744A (en) Production of synthetic silica glass
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JPH08295520A (en) Synthetic quartz glass for optical use and preventing method of formation of absorption zone
JP3919831B2 (en) Synthetic quartz glass for optics
JP4228493B2 (en) Synthetic quartz glass
TW200404047A (en) Fused silica containing aluminum
JPH11322352A (en) Synthetic quartz glass optical member and its production
JPH06227827A (en) Transparent silica glass and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees