JP3820668B2 - Metal base substrate and manufacturing method thereof - Google Patents

Metal base substrate and manufacturing method thereof Download PDF

Info

Publication number
JP3820668B2
JP3820668B2 JP04017997A JP4017997A JP3820668B2 JP 3820668 B2 JP3820668 B2 JP 3820668B2 JP 04017997 A JP04017997 A JP 04017997A JP 4017997 A JP4017997 A JP 4017997A JP 3820668 B2 JP3820668 B2 JP 3820668B2
Authority
JP
Japan
Prior art keywords
adhesive material
insulating adhesive
copper foil
metal base
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04017997A
Other languages
Japanese (ja)
Other versions
JPH10242607A (en
Inventor
禎一 稲田
弘之 栗谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP04017997A priority Critical patent/JP3820668B2/en
Publication of JPH10242607A publication Critical patent/JPH10242607A/en
Application granted granted Critical
Publication of JP3820668B2 publication Critical patent/JP3820668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は誘電率の高い絶縁接着材料をもちいた金属ベース基板及びその製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、高密度化、及び使用周波数の高周波化が図られており、これらに対応して、高周波ノイズの低減や配線板の小型化をはかることを目的として絶縁接着材料を高誘電率化する要求がある。
比誘電率の高い積層基板を得る方法として、例えば、特開昭55−57212号公報、特開昭61−136281号公報、特開平3−221448号公報などのように絶縁層に高誘電体を含有させる方法があった。
【0003】
【発明が解決しようとする課題】
これらは、何れもガラス布に絶縁材料を含浸させる工程が必要であり、積層板とする加熱加圧工程で金属箔との接着性や積層板の板厚精度向上のため絶縁材料に流動性が必要である。しかしながら、高誘電体を多量に含んだ絶縁材料は流動性が低いため、高誘電体を多量に含ませることできず、比誘電率を十分大きくすることは出来なかった。
高誘電率の金属ベース基板を製造することは、プリント回路学会第8回学術講演大会要旨集117頁中に「高誘電率銅ベース基板」と題して記載されているが、比誘電率が26程度であり、配線板の小型化、高周波ノイズの低減に十分なものではなかった。
また周波数が500MHz以上では、誘電正接(tanδ)が大きくなり、500MHz以上での使用には十分でないという問題点があった。
高誘電体として高誘電率の無機フィラーがあり、絶縁材料に高誘電率の無機フィラーを含有せしめ誘電率を高くすることは良く知られていることであるが、絶縁材料に無機フィラーを高充填した場合、絶縁材料の溶融粘度が上昇し、流動性が悪く金属板との接着性の低下、可撓性の低下、絶縁層中にボイドが残るなど、多くの問題点が発生し実用されるに至っていない。
また、従来、高誘電率の無機粉体を焼結した高誘電率のセラミック基板があるが、外形加工等に対する加工性が十分とは言えなかった。
【0004】
【課題を解決するための手段】
本発明はかかる状況に鑑みなされたもので、比誘電率が高く、誘電正接が低く、金属との接着性に優れ、加工性が良好な金属ベース基板を得ることを課題とした。この課題を解決するため、本発明者等は鋭意検討した結果、絶縁接着材料の各層のフィラー含有量、樹脂成分、硬化度を選定することにより、高誘電率の金属ベース基板を得ることができた。本発明は、銅箔上に少なくとも2層に分けて作製した絶縁接着材料層のうち、銅箔に接する絶縁接着材料層には比誘電率が50以上の無機フィラーを50体積%から80体積%含有し、銅箔に接しない最外層の絶縁接着材料層には比誘電率が50以上の無機フィラーを絶縁接着材料中に40体積%から50体積%含有する金属ベース基板であり、少なくとも最外層の絶縁接着材料層に、分子量が500以下のエポキシ樹脂を少なくとも20体積%以上含む金属ベース基板であると好ましいものである。
また、本発明は、比誘電率50以上の無機フィラーが50体積%から80体積%となるように含有する絶縁接着材料ワニスを銅箔に塗布、乾燥した後、さらに、その上に比誘電率50以上の無機フィラーが40体積%から50体積%となるように含有する絶縁接着材料ワニスを銅箔に塗布し、銅箔に接する側の絶縁接着材料層の硬化度がBまたはCステージであり、銅箔に接しない最外層の絶縁接着材料層がAまたはBステージとなるように乾燥した銅箔付き絶縁接着材料を作製し、金属板と積層して成形する金属ベース基板の製造方法であり、銅箔に接しない最外層となる絶縁接着材料ワニスに、分子量が500以下のエポキシ樹脂を少なくとも20体積%となるように含むワニスを用いる金属ベース基板の製造方法である。
【0005】
【発明の実施の形態】
本発明の絶縁接着材料は、主として樹脂成分と無機フィラーとからなる。樹脂成分としてしては、エポキシ樹脂系、ポリイミド樹脂系、フェノール樹脂系などを使用することができ、これには、電気絶縁性の良い高分子物質である可撓性付与成分を配合することが好ましく、例えば、アクリルゴム、NBR、エポキシ変性アクリルゴム、エポキシ化ポリブタジエン、フェノキシ樹脂などがある。また銅箔と絶縁接着材料との接着性を向上させるためカップリング剤を使用することが好ましい。カップリング剤としては、シランカップリング剤が好ましく、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、N−β−アミノエチル−γ−アミノプロピルトリメトキシシラン等が挙げられる。
【0006】
最外層の絶縁接着材料層には、成形時の流動性を向上させるために、分子量500以下の低分子量エポキシ樹脂を20体積%以上含有することが好ましい。このようなエポキシ樹脂としては、一分子中にエポキシ基を2個以上有したビスフェノールA型またはビスフェノールF型液状樹脂が挙げられ、油化シェルエポキシ株式会社から、エピコート807、エピコート827、エピコート828という商品名で市販されている。また、ダウケミカル日本株式会社からは、D.E.R.330、D.E.R.331、D.E.R.361という商品名で市販されている。さらに、東都化成株式会社から、YD128、YDF170という商品名で市販されている。
エポキシ樹脂の硬化剤としては特に制限するものではないが、ワニスライフの長い潜在性の高いものが望ましい。この例としては、3級アミン、酸無水物、イミダゾール化合物、ポリフェノール樹脂、マスクイソシアネートなどの1種以上を使用することができる。
また、不純物イオンが原因となる、吸湿時の絶縁抵抗の低下を防止するために、イオン吸着無機物質を添加することが好ましい。
【0007】
比誘電率が50以上の無機フィラーとしては以下にあげるものがあり、これらのうち1種または2種以上を組み合わせて用いることができる。すなわち、二酸化チタン、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸鉛、ジルコン酸バリウム、ジルコン酸カルシウム、スズ酸バリウム、スズ酸カルシウム等の粉末がある。また無機フィラーとしてセラミックコンデンサー用原料を焼成し粉砕した粉末で、その比誘電率が300以上であるものを用いることで、更に高誘電率の基板を得ることができる。
無機フィラーの形状、粒径については特に制限するものではないが、球状のフィラーを用いると成形時の絶縁接着材料の流動性が向上し、破砕状、繊維状のものを用いると、機械的強度が向上する。このような無機フィラーの配合量は絶縁接着材料の内の40体積%から80体積%であることが必要である。この理由としては、配合量40体積%未満では誘電率を高くする効果が少なく、80体積%を超えると絶縁接着材料の流動性が低下し、ボイドの発生により耐電圧が低下するためである。
【0008】
次に銅箔付き絶縁接着材料の層構成について、銅箔上に絶縁接着材料ワニスを第1層として塗工し、これを硬化度がBまたはCステージに加熱硬化することにより、流動性を小さくする。さらに絶縁接着材料の上に第2層を塗工し、これを硬化度がAまたはBステージに加熱する。
このような2層構成にすることにより絶縁接着材料のボイド、クレータ、異物混入などの塗膜欠陥による絶縁信頼性の低下の防止する。2層構成について説明したが、同様の操作を繰り返し3層構成以上にしてもさしつかえない。この場合、銅箔に接しない最外層の絶縁接着材料は、硬化度がAまたはBステージにする。
硬化度が、A,B,Cステージとは、接着剤の硬化の程度を示し、Aステージはほぼ未硬化でゲル化していない状態であり、全硬化発熱量の0から20%の発熱を終えた状態である。Bステージは若干硬化、ゲル化が進んだ状態であり全硬化発熱量の20から60%の発熱を終えた状態である。Cステージはかなり硬化が進み、ゲル化した状態であり、全硬化発熱量の60から100%の発熱を終えた状態である。
2層構成の絶縁接着材料の場合、銅箔上に設ける第1層目の絶縁接着材料ワニスには、比誘電率が50以上の無機フィラーを50体積%から80体積%となるように含有させ、塗布、乾燥させた場合の無機フィラーが50体積%から80体積%となるようにする。第1層目の絶縁接着材料は、第2層目の絶縁接着材料がその上に塗布、乾燥されるので、それを見越した塗工、乾燥条件とする。そして、さらに、この上に比誘電率が50以上の無機フィラーを40体積%から50体積%となるように含有させた絶縁接着材料ワニスを塗布、乾燥し、硬化度がBまたはCステージとなるようにさせる。3層構成以上の場合は、銅箔と接しない最外層の絶縁接着層には、無機フィラーを40体積%から50体積%となるようにする。
【0009】
絶縁接着材料ワニスを銅箔に塗工する方法としてはバーコータ、リップコータ、ロールコータなどがあり、クレータ、ボイドなどの欠陥が少なく、塗工の際の厚みを均一に塗工できるものであれば制限されない。
本発明の金属ベース基板は、それを用いて多層配線板とすることもできる。多層配線板の製造方法は、以下のようにして行うことができる。
銅箔付き絶縁接着材料と金属板を加圧加熱一体化することにより金属ベース基板を得る。これには、プレス、真空プレス、ホットロールラミネータ、真空ラミネータなどを用いることが出来る。得られた金属ベース基板は、常法により回路加工、外形加工等を行い、金属ベース配線基板とする。この金属配線基板の銅箔配線層の上にさらに、銅箔付き絶縁接着材料を積層し加圧加熱一体化して、多層配線板とする。この場合、金属ベース基板の上に積層する銅箔付き絶縁接着材料としては、無機フィラーを含まない銅箔付き絶縁接着材料を積層してもよいし、ガラス基材のプリプレグや接着フィルムを介して積層しても良い。
以下本発明を実施例に基づいて具体的に説明する。
【0010】
【実施例】
(実験例1)
(1) 厚み35μmの銅箔を用い、この上に絶縁接着材料の第1層として乾燥後の厚みが35μmになるように表1に示す絶縁接着材料ワニスAを塗工し、150℃で10分間乾燥し、さらに、この上に絶縁接着材料の第2層として乾燥後の厚みが第1層、第2層合わせて70μmになるように表1の絶縁接着材料ワニスBを塗工し、110℃で10分間乾燥して銅箔付き絶縁接着材料を作製した。
(2)上記の銅箔付き絶縁接着材料と表面を研磨処理した板厚2mmのアルミ板を積層し、170℃,30kgf/cm2、60分間加熱加圧成形して、金属ベース基板を作製した。
(3)金属ベース基板の銅箔を常法によりエッチング処理し、金属ベース配線基板を得た。
【0011】
(実験例2)
厚み35μmの銅箔を用い、この上に絶縁接着材料の第1層として乾燥後の厚みが18μmになるように表1に示す絶縁接着材料ワニスCを塗工し、150℃で10分間乾燥し、さらに、この上に絶縁接着材料の第2層として乾燥後の厚みが第1層、第2層合わせて35μmになるように表1の絶縁接着材料ワニスAを塗工し、150℃で10分間乾燥して銅箔付き絶縁接着材料を作製した。そして、さらに、この上に絶縁接着層の第3層として乾燥後の厚みが第1層から第3層合わせて70μmになるように表1の絶縁接着材料ワニスBを塗工し、110℃で10分間乾燥して銅箔付き絶縁接着材料を作製した。この銅箔付き絶縁接着材料を使用すること以外は、実施例1と同様にして、金属ベース基板そして、金属ベース配線基板を得た。
【0012】
(実験例3)
厚み35μmの銅箔を使用し、銅箔の上に乾燥後の厚みが70μmになるように表1の絶縁接着材料ワニスAを塗工し、110℃で10分間乾燥し、銅箔付き絶縁接着材料を作製するした。この銅箔付き絶縁接着材料を使用すること以外は、実施例1と同様にして、金属ベース基板そして、金属ベース配線基板を得た。
【0013】
(実験例4)
厚み35μmの銅箔を使用し、銅箔の上に乾燥後の厚みが70μmになるように表1の絶縁接着材料ワニスBを塗工し、110℃で10分間乾燥し、銅箔付き絶縁接着材料を作製した。この銅箔付き絶縁接着材料を使用すること以外は、実施例1と同様にして、金属ベース基板そして、金属ベース配線基板を得た。
【0014】
(実験例5)
厚み35μmの銅箔を使用し、絶縁接着材料の第1層として銅箔の上に、乾燥後の厚みが35μmになるように表1の絶縁接着材料ワニスAを塗工し、150℃で10分間乾燥し、さらに、この上に絶縁接着材料の第2層として、乾燥後の厚みが第1層、第2層合わせて70μmになるように表1の絶縁接着材料ワニスAを塗工し、150℃で10分間乾燥し、第1層、第2層ともに硬化度をCステージとした銅箔付き絶縁接着材料を作製した。この銅箔付き絶縁接着材料を使用すること以外は、実施例1と同様にして、金属ベース基板そして、金属ベース配線基板を得た。
【0015】
比誘電率と誘電正接の測定は、JIS C 6481に準拠し、LCRメータ(モデル4274A、ヒューレットパッカード製)及びトリプレート構造直線線路共振器法により室温(25℃)で行った。
耐電圧は、絶縁接着材料をはさむ銅箔とアルミニウム板の間の耐電圧を測定した。金属ベース基板の銅箔を直径20mmの銅箔が残るようにエッチングで除去し、耐電圧計を用いて測定した。そして、耐電圧不良率は、2KV未満の耐電圧を示した試験数/評価した試験片の数とした。
絶縁接着材料とアルミニウム板の密着性は、260℃のはんだ浴中に3分間浸漬した際に、剥離が見られたものを不良、剥離がないものを良好とした。
【0016】
実験例1〜5で作製した金属ベース基板の試験結果を表2に示した。
実験例1及び2は比誘電率が大きくまた耐電圧、絶縁接着材料とアルミニウム板との密着性も良好である。実験例3は比誘電率は大きいが、絶縁接着材料とアルミニウム板の密着性が不良であり、実験例4は、絶縁接着材料とアルミニウム板との密着性を向上させるため、無機フィラーの配合量を低くした結果、比誘電率が低い。実験例5は絶縁接着材料の硬化度が好ましい範囲からはずれた場合であり、耐電圧、絶縁接着材料とアルミニウム板との密着性も不良である。
【0017】
【表1】

Figure 0003820668
【0018】
【表2】
Figure 0003820668
【0019】
【発明の効果】
本発明の金属ベース基板を使用し、金属ベース配線基板を形成した場合、絶縁接着材料が高誘電率で基板自体が大きな静電容量を有しているため、配線形成によりバイパスコンデンサー機能を付与することができ、新たにコンデンサを設けなくてもデジタル回路において電源ラインに混入する高周波ノイズを除去することができ、小型化や高密度化に寄与する。また本発明では、また熱伝導率の大きい金属板を必須の構成として使用しており、金属板のため放熱性に優れ、局所的な温度上昇が少なく、基板全域にわたり温度の均一化が図れる。このため、特性の温度依存性の大きい部品を使用した場合でも、温度上昇による特性の不安定化を解消できる。比誘電率は、温度による変化がおおきく、特に比誘電率の高いものでは顕著であったが、金属板の熱伝導による温度均一性により、温度による比誘電率の変化が少なくなり、電子機器を安定して作動させることができる。
比誘電率の大きい金属ベース基板は、ADコンバータ、ハイブリッドIC等に使用すると、電源ラインに混入する高周波ノイズを除去でき、また、ICの温度上昇を抑制することもできる。
また、無線送受信機等に使用される高周波回路用途に使用すると、インピーダンスをマッチングさせるための回路パターンの幅を狭くする作用があり、回路全体の小型化を図ることができる。そして、基板全域にわたり温度の均一化が図れるため、特性が安定する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal base substrate using an insulating adhesive material having a high dielectric constant and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, electronic devices have been reduced in size, increased in density, and used in higher frequencies. In response to these demands, insulating adhesive materials have been used for the purpose of reducing high-frequency noise and reducing the size of wiring boards. There is a demand for higher dielectric constant.
As a method for obtaining a laminated substrate having a high relative dielectric constant, for example, a high dielectric is used for the insulating layer as disclosed in JP-A-55-57212, JP-A-61-136281, JP-A-3-221448, etc. There was a method of inclusion.
[0003]
[Problems to be solved by the invention]
All of these require a step of impregnating an insulating material into a glass cloth, and the insulating material has fluidity in order to improve the adhesion to the metal foil and the thickness accuracy of the laminated plate in the heating and pressurizing step to make the laminated plate. is necessary. However, since an insulating material containing a large amount of high dielectric material has low fluidity, it cannot contain a large amount of high dielectric material and the relative dielectric constant cannot be sufficiently increased.
Manufacturing a metal base substrate having a high dielectric constant is described as “High dielectric constant copper base substrate” on page 117 of the Abstract of the 8th Annual Conference of the Printed Circuit Society of Japan. However, it was not sufficient for reducing the size of the wiring board and reducing high-frequency noise.
Further, when the frequency is 500 MHz or more, the dielectric loss tangent (tan δ) becomes large, and there is a problem that it is not sufficient for use at 500 MHz or more.
As a high dielectric material, there is an inorganic filler with a high dielectric constant. It is well known to increase the dielectric constant by including an inorganic filler with a high dielectric constant in the insulating material, but the insulating material is highly filled with an inorganic filler. In this case, the melt viscosity of the insulating material is increased, the fluidity is poor, the adhesiveness with the metal plate is decreased, the flexibility is decreased, and voids remain in the insulating layer. It has not reached.
Conventionally, there is a ceramic substrate with a high dielectric constant obtained by sintering an inorganic powder with a high dielectric constant, but it cannot be said that the workability for outer shape processing or the like is sufficient.
[0004]
[Means for Solving the Problems]
The present invention has been made in view of such a situation, and an object of the present invention is to obtain a metal base substrate having a high relative dielectric constant, a low dielectric loss tangent, excellent adhesion to a metal, and good workability. In order to solve this problem, the present inventors have intensively studied. As a result, by selecting the filler content, the resin component, and the degree of cure of each layer of the insulating adhesive material, a metal base substrate having a high dielectric constant can be obtained. It was. In the present invention , among the insulating adhesive material layers prepared on the copper foil in at least two layers, the insulating adhesive material layer in contact with the copper foil contains 50% by volume to 80% by volume of an inorganic filler having a relative dielectric constant of 50 or more. The outermost insulating adhesive material layer that does not come into contact with the copper foil is a metal base substrate that contains 40% to 50% by volume of an inorganic filler having a relative dielectric constant of 50 or more in the insulating adhesive material, and at least the outermost layer. It is preferable that the insulating base material layer is a metal base substrate containing at least 20% by volume of an epoxy resin having a molecular weight of 500 or less.
Further, in the present invention , an insulating adhesive material varnish containing an inorganic filler having a relative dielectric constant of 50 or more is applied to a copper foil so as to be 50% by volume to 80% by volume and dried, and then the relative dielectric constant is further formed thereon. An insulating adhesive material varnish containing 50 or more 50% by volume of inorganic filler is applied to copper foil, and the degree of cure of the insulating adhesive material layer on the side in contact with the copper foil is B or C stage This is a method for producing a metal base substrate in which an insulating adhesive material with a dried copper foil is prepared so that the outermost insulating adhesive material layer not in contact with the copper foil becomes an A or B stage, and laminated with a metal plate and molded. A method for producing a metal base substrate using a varnish containing an epoxy resin having a molecular weight of 500 or less in an insulating adhesive material varnish that is an outermost layer not in contact with a copper foil so as to be at least 20% by volume.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The insulating adhesive material of the present invention mainly comprises a resin component and an inorganic filler. As a resin component, an epoxy resin system, a polyimide resin system, a phenol resin system, or the like can be used, and a flexibility-imparting component that is a polymer material having good electrical insulation can be added to this. Preferable examples include acrylic rubber, NBR, epoxy-modified acrylic rubber, epoxidized polybutadiene, and phenoxy resin. Moreover, it is preferable to use a coupling agent in order to improve the adhesiveness between the copper foil and the insulating adhesive material. As the coupling agent, a silane coupling agent is preferable, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, N-β. -Aminoethyl-γ-aminopropyltrimethoxysilane and the like.
[0006]
The outermost insulating adhesive material layer preferably contains 20% by volume or more of a low molecular weight epoxy resin having a molecular weight of 500 or less in order to improve fluidity during molding. Examples of such epoxy resins include bisphenol A-type or bisphenol F-type liquid resins having two or more epoxy groups in one molecule, and are referred to as Epicoat 807, Epicoat 827, and Epicoat 828 from Yuka Shell Epoxy Co., Ltd. It is commercially available under the trade name. In addition, from Dow Chemical Japan, D.C. E. R. 330, D.E. E. R. 331, D.D. E. R. It is marketed under the trade name 361. Further, they are commercially available from Toto Kasei Co., Ltd. under the trade names YD128 and YDF170.
Although it does not restrict | limit especially as a hardening | curing agent of an epoxy resin, The thing with a long potential with a long varnish life is desirable. As this example, 1 or more types, such as tertiary amine, an acid anhydride, an imidazole compound, a polyphenol resin, and a mask isocyanate, can be used.
Further, it is preferable to add an ion-adsorbing inorganic substance in order to prevent a decrease in insulation resistance during moisture absorption caused by impurity ions.
[0007]
Examples of the inorganic filler having a relative dielectric constant of 50 or more include the following, and one or more of these can be used in combination. That is, there are powders of titanium dioxide, barium titanate, calcium titanate, strontium titanate, lead titanate, barium zirconate, calcium zirconate, barium stannate, calcium stannate and the like. Moreover, a substrate having a higher dielectric constant can be obtained by using a powder obtained by firing and pulverizing a ceramic capacitor raw material as an inorganic filler and having a relative dielectric constant of 300 or more.
The shape and particle size of the inorganic filler are not particularly limited, but if a spherical filler is used, the fluidity of the insulating adhesive material at the time of molding is improved, and if a crushed or fibrous material is used, the mechanical strength Will improve. The blending amount of such an inorganic filler needs to be 40% to 80% by volume of the insulating adhesive material. The reason for this is that when the blending amount is less than 40% by volume, the effect of increasing the dielectric constant is small, and when it exceeds 80% by volume, the fluidity of the insulating adhesive material is lowered and the withstand voltage is lowered due to the generation of voids.
[0008]
Next, with regard to the layer structure of the insulating adhesive material with copper foil, the insulating adhesive material varnish is applied as a first layer on the copper foil, and the degree of curing is heated and cured to the B or C stage, thereby reducing the fluidity. To do. Further, a second layer is applied on the insulating adhesive material, and this is heated to a stage where the degree of cure is A or B.
By adopting such a two-layer structure, it is possible to prevent a decrease in insulation reliability due to coating film defects such as voids, craters, and foreign matters mixed in the insulating adhesive material. Although the two-layer configuration has been described, the same operation may be repeated to increase the three-layer configuration or more. In this case, the outermost insulating adhesive material that is not in contact with the copper foil has a curing degree of A or B stage.
Curing degrees A, B, and C stages indicate the degree of curing of the adhesive, and the A stage is almost uncured and not gelled, and finishes heat generation of 0 to 20% of the total calorific value. It is in the state. The B stage is a state in which the curing and gelation have progressed slightly, and the heat generation of 20 to 60% of the total curing heat generation amount is finished. The C stage is in a state of being hardened and gelled, and is in a state in which heat generation of 60 to 100% of the total heat generation amount of heat is finished.
In the case of a two-layer insulating adhesive material, the first layer of the insulating adhesive material varnish provided on the copper foil contains an inorganic filler having a relative dielectric constant of 50 or more so as to be 50% by volume to 80% by volume. The inorganic filler is 50% by volume to 80% by volume when coated and dried. The first layer of insulating adhesive material is coated and dried in anticipation of the second layer of insulating adhesive material applied and dried thereon. Further, an insulating adhesive material varnish containing an inorganic filler having a relative dielectric constant of 50 or more so as to be 40% by volume to 50% by volume is applied and dried thereon, and the curing degree becomes B or C stage. Let me do that. In the case of a three-layer structure or more, the outermost insulating adhesive layer not in contact with the copper foil is made to contain 40% to 50% by volume of inorganic filler.
[0009]
Bar coater, lip coater, roll coater, etc. can be used to apply insulating adhesive material varnish to copper foil, and there are few defects such as craters, voids, etc., so long as the thickness can be applied uniformly. Not.
The metal base substrate of the present invention can be used as a multilayer wiring board. The manufacturing method of a multilayer wiring board can be performed as follows.
A metal base substrate is obtained by pressurizing and heating and integrating an insulating adhesive material with copper foil and a metal plate. For this, a press, a vacuum press, a hot roll laminator, a vacuum laminator, or the like can be used. The obtained metal base substrate is subjected to circuit processing, outer shape processing, and the like by a conventional method to obtain a metal base wiring substrate. An insulating adhesive material with a copper foil is further laminated on the copper foil wiring layer of the metal wiring board and integrated by pressure and heating to obtain a multilayer wiring board. In this case, as the insulating adhesive material with copper foil to be laminated on the metal base substrate, an insulating adhesive material with copper foil not containing an inorganic filler may be laminated, or through a prepreg or an adhesive film of a glass substrate. You may laminate.
Hereinafter, the present invention will be specifically described based on examples.
[0010]
【Example】
(Experimental example 1)
(1) A copper foil having a thickness of 35 μm was used, and the insulating adhesive material varnish A shown in Table 1 was applied thereon as a first layer of the insulating adhesive material so that the thickness after drying was 35 μm. Furthermore, the insulating adhesive material varnish B shown in Table 1 is applied as a second layer of the insulating adhesive material so that the thickness after drying is 70 μm in total for the first layer and the second layer. An insulating adhesive material with a copper foil was produced by drying at 10 ° C. for 10 minutes.
(2) The above-mentioned insulating adhesive material with copper foil and an aluminum plate having a surface thickness of 2 mm were laminated and heat-pressed at 170 ° C. and 30 kgf / cm 2 for 60 minutes to produce a metal base substrate. .
(3) The copper foil of the metal base substrate was etched by a conventional method to obtain a metal base wiring substrate.
[0011]
(Experimental example 2)
Using a copper foil having a thickness of 35 μm, the insulating adhesive material varnish C shown in Table 1 was applied as a first layer of the insulating adhesive material on the copper foil so that the thickness after drying was 18 μm, and dried at 150 ° C. for 10 minutes. Further, the insulating adhesive material varnish A shown in Table 1 was applied to the insulating adhesive material as a second layer of the insulating adhesive material so that the thickness after drying was 35 μm in total for the first layer and the second layer. An insulating adhesive material with a copper foil was produced by drying for a minute. Further, the insulating adhesive material varnish B shown in Table 1 was applied onto the insulating adhesive layer as a third layer of the insulating adhesive layer so that the thickness after drying was 70 μm in total from the first layer to the third layer, and at 110 ° C. The insulating adhesive material with copper foil was produced by drying for 10 minutes. A metal base substrate and a metal base wiring substrate were obtained in the same manner as in Example 1 except that this insulating adhesive material with copper foil was used.
[0012]
(Experimental example 3)
Using a copper foil with a thickness of 35 μm, coating the insulating adhesive material varnish A shown in Table 1 on the copper foil so that the thickness after drying becomes 70 μm, drying at 110 ° C. for 10 minutes, and insulating adhesion with copper foil Made the material. A metal base substrate and a metal base wiring substrate were obtained in the same manner as in Example 1 except that this insulating adhesive material with copper foil was used.
[0013]
(Experimental example 4)
Using a copper foil with a thickness of 35 μm, coating the insulating adhesive material varnish B shown in Table 1 on the copper foil so that the thickness after drying becomes 70 μm, drying at 110 ° C. for 10 minutes, and insulating adhesion with copper foil The material was made. A metal base substrate and a metal base wiring substrate were obtained in the same manner as in Example 1 except that this insulating adhesive material with copper foil was used.
[0014]
(Experimental example 5)
Using a copper foil having a thickness of 35 μm, coating the insulating adhesive material varnish A shown in Table 1 on the copper foil as the first layer of the insulating adhesive material so that the thickness after drying becomes 35 μm. Furthermore, the insulating adhesive material varnish A shown in Table 1 is applied as a second layer of the insulating adhesive material on this so that the thickness after drying is 70 μm in total for the first layer and the second layer, It dried at 150 degreeC for 10 minute (s), and the 1st layer and the 2nd layer produced the insulating adhesive material with a copper foil which made the hardening degree C stage. A metal base substrate and a metal base wiring substrate were obtained in the same manner as in Example 1 except that this insulating adhesive material with copper foil was used.
[0015]
The relative dielectric constant and dielectric loss tangent were measured at room temperature (25 ° C.) using an LCR meter (model 4274A, manufactured by Hewlett Packard) and a triplate structure linear line resonator method in accordance with JIS C 6481.
With respect to the withstand voltage, the withstand voltage between the copper foil sandwiching the insulating adhesive material and the aluminum plate was measured. The copper foil of the metal base substrate was removed by etching so that a copper foil having a diameter of 20 mm remained, and measurement was performed using a voltmeter. The withstand voltage failure rate was defined as the number of tests showing a withstand voltage of less than 2 KV / the number of evaluated test pieces.
As for the adhesion between the insulating adhesive material and the aluminum plate, when it was immersed in a solder bath at 260 ° C. for 3 minutes, the case where peeling was observed was poor and the case where peeling was not good.
[0016]
Table 2 shows the test results of the metal base substrates prepared in Experimental Examples 1 to 5.
Experimental Examples 1 and 2 have a large relative dielectric constant and a good withstand voltage and good adhesion between the insulating adhesive material and the aluminum plate. Although Experimental Example 3 has a large relative dielectric constant, the adhesion between the insulating adhesive material and the aluminum plate is poor. In Experimental Example 4, the amount of the inorganic filler is increased in order to improve the adhesion between the insulating adhesive material and the aluminum plate. As a result, the relative dielectric constant is low. Experimental Example 5 is a case where the degree of cure of the insulating adhesive material deviates from the preferred range, and the withstand voltage and the adhesion between the insulating adhesive material and the aluminum plate are also poor.
[0017]
[Table 1]
Figure 0003820668
[0018]
[Table 2]
Figure 0003820668
[0019]
【The invention's effect】
When the metal base substrate of the present invention is used and the metal base wiring substrate is formed, since the insulating adhesive material has a high dielectric constant and the substrate itself has a large capacitance, a bypass capacitor function is provided by forming the wiring. Therefore, high frequency noise mixed in the power supply line in the digital circuit can be removed without newly providing a capacitor, which contributes to miniaturization and high density. Further, in the present invention, a metal plate having a high thermal conductivity is used as an essential component, and since the metal plate is excellent in heat dissipation, there is little local temperature rise, and the temperature can be made uniform over the entire substrate. For this reason, even when a component having a large temperature dependency of characteristics is used, the instability of characteristics due to temperature rise can be eliminated. The relative permittivity varies greatly with temperature, especially when the relative permittivity is high. However, due to the temperature uniformity due to the heat conduction of the metal plate, the change in relative permittivity due to temperature is reduced, and electronic devices are It can be operated stably.
When a metal base substrate having a large relative dielectric constant is used for an AD converter, a hybrid IC, etc., high frequency noise mixed in a power supply line can be removed, and an increase in temperature of the IC can be suppressed.
Further, when used for a high frequency circuit used in a radio transceiver or the like, there is an effect of narrowing the width of a circuit pattern for matching impedance, and the entire circuit can be reduced in size. And since the temperature can be made uniform over the entire substrate, the characteristics are stabilized.

Claims (4)

銅箔上に少なくとも2層に分けて作製した絶縁接着材料層のうち、銅箔に接する絶縁接着材料層には比誘電率が50以上の無機フィラーを50体積%から80体積%含有し、銅箔に接しない最外層の絶縁接着材料層には比誘電率が50以上の無機フィラーを絶縁接着材料中に40体積%から50体積%含有することを特徴とする金属ベース基板。  Among the insulating adhesive material layers produced on the copper foil in at least two layers, the insulating adhesive material layer in contact with the copper foil contains 50 to 80 volume% of an inorganic filler having a relative dielectric constant of 50 or more, A metal base substrate characterized in that the outermost insulating adhesive material layer not in contact with the foil contains 40% to 50% by volume of an inorganic filler having a relative dielectric constant of 50 or more in the insulating adhesive material. 少なくとも最外層の絶縁接着材料層に、分子量が500以下のエポキシ樹脂を少なくとも20体積%以上含むことを特徴とする請求項1記載の金属ベース基板。At least the outermost layer of the insulating adhesive material layer, the metal base substrate according to claim 1 Symbol placement molecular weight, characterized in that it comprises at least 20% by volume or more to 500 or less of the epoxy resin. 比誘電率50以上の無機フィラーが50体積%から80体積%となるように含有する絶縁接着材料ワニスを銅箔に塗布、乾燥した後、さらに、その上に比誘電率50以上の無機フィラーが40体積%から50体積%となるように含有する絶縁接着材料ワニスを塗布し、銅箔に接する側の絶縁接着材料層の硬化度がBまたはCステージであり、銅箔に接しない最外層の絶縁接着材料層がAまたはBステージとなるように乾燥した銅箔付き絶縁接着材料シートを作製し、金属板と積層して成形することを特徴とする金属ベース基板の製造方法。  An insulating adhesive material varnish containing an inorganic filler having a relative dielectric constant of 50 or more is applied to the copper foil so that the volume of the inorganic filler is 50% to 80% by volume and dried. An insulating adhesive material varnish containing 40% by volume to 50% by volume is applied, the degree of cure of the insulating adhesive material layer on the side in contact with the copper foil is B or C stage, and the outermost layer not in contact with the copper foil A method for producing a metal base substrate, comprising: producing a dried insulating adhesive material sheet with copper foil so that the insulating adhesive material layer is in an A or B stage, and laminating the sheet with a metal plate. 請求項に記載の金属ベース基板の製造方法において、銅箔に接しない最外層となる絶縁接着材料ワニスに、分子量が500以下のエポキシ樹脂を少なくとも20体積%となるように含むワニスを用いることを特徴とする金属ベース基板の製造方法。4. The method of manufacturing a metal base substrate according to claim 3 , wherein a varnish containing an epoxy resin having a molecular weight of 500 or less so as to be at least 20% by volume is used as an insulating adhesive material varnish that is an outermost layer not in contact with a copper foil. A method for manufacturing a metal base substrate.
JP04017997A 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof Expired - Fee Related JP3820668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04017997A JP3820668B2 (en) 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04017997A JP3820668B2 (en) 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10242607A JPH10242607A (en) 1998-09-11
JP3820668B2 true JP3820668B2 (en) 2006-09-13

Family

ID=12573564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04017997A Expired - Fee Related JP3820668B2 (en) 1997-02-25 1997-02-25 Metal base substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3820668B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570099B1 (en) 1999-11-09 2003-05-27 Matsushita Electric Industrial Co., Ltd. Thermal conductive substrate and the method for manufacturing the same
JP2006045388A (en) * 2004-08-05 2006-02-16 Kaneka Corp Insulating adhesive sheet and its application
CA2605209C (en) * 2005-04-19 2013-10-22 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board, light-emitting diode and led light source unit
CN110655875A (en) * 2018-06-28 2020-01-07 昆山雅森电子材料科技有限公司 High-frequency high-speed bonding sheet with high Dk and low Df characteristics and preparation method thereof
WO2021112134A1 (en) * 2019-12-04 2021-06-10 東洋紡株式会社 Low-dielectric layered product

Also Published As

Publication number Publication date
JPH10242607A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
TW557463B (en) Formation of an embedded capacitor plane using a thin polyimide dielectric
US6939738B2 (en) Component built-in module and method for producing the same
JP5016005B2 (en) Capacitor having an epoxy derivative layer cured with aminophenylfluorene
KR100685273B1 (en) Insulating material, film, circuit board and method for manufacture thereof
JP3646890B2 (en) Metal body with insulating adhesive material and manufacturing method thereof
JPH0621593A (en) Manufacture of printed circuit board
JP2001203313A (en) Thermal conduction substrate and manufacturing method therefor
JP3820668B2 (en) Metal base substrate and manufacturing method thereof
JP3553351B2 (en) Prepreg and substrate
JP2004349672A (en) Filler material, multilayer wiring substrate using the same, and method of manufacturing multilayer wiring substrate
WO2004081952A1 (en) Polymer composite high-dielectric-constant material, multilayer printed circuit board and module board
JPH07224252A (en) Bonded insulating material sheet, copper-clad bonded insulating material sheet, their production, and production of multilayer circuit board from them
JPH0823165A (en) Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JP3876679B2 (en) Resin composition and use thereof
JPH03239390A (en) Metal cored board and manufacture thereof
JPH07154068A (en) Adhesive sheet and production thereof, metal based wiring board employing adhesive sheet and production thereof
JP2000277922A (en) Multilayer printed interconnection board and manufacture thereof
JPH06120657A (en) Production of metal base board
JP2004315653A (en) Resin composition and its use
JP3335707B2 (en) Method for manufacturing multilayer substrate
JP3832406B2 (en) Multilayer wiring board, semiconductor device, and wireless electronic device
JP3614844B2 (en) Thermal conductive substrate
JPH07297509A (en) Metallic base substrate and its manufacture
JPH07133359A (en) High-permittivity prepreg
JP3056666B2 (en) Manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees