JP3815872B2 - Storage method and apparatus for large unvulcanized tires - Google Patents

Storage method and apparatus for large unvulcanized tires Download PDF

Info

Publication number
JP3815872B2
JP3815872B2 JP30649497A JP30649497A JP3815872B2 JP 3815872 B2 JP3815872 B2 JP 3815872B2 JP 30649497 A JP30649497 A JP 30649497A JP 30649497 A JP30649497 A JP 30649497A JP 3815872 B2 JP3815872 B2 JP 3815872B2
Authority
JP
Japan
Prior art keywords
unvulcanized tire
tire
holding
unvulcanized
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30649497A
Other languages
Japanese (ja)
Other versions
JPH11123773A (en
Inventor
一芳 涌井
善男 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP30649497A priority Critical patent/JP3815872B2/en
Publication of JPH11123773A publication Critical patent/JPH11123773A/en
Application granted granted Critical
Publication of JP3815872B2 publication Critical patent/JP3815872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0016Handling tyres or parts thereof, e.g. supplying, storing, conveying
    • B29D2030/0022Handling green tyres, e.g. transferring or storing between tyre manufacturing steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/0016Handling tyres or parts thereof, e.g. supplying, storing, conveying
    • B29D2030/0033Rotating tyres or their components, e.g. carcasses, belt-tread packages, beads and the like, around their axis, i.e. for preventing deformation

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Tyre Moulding (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、建設車両等に用いられる大型未加硫タイヤを一時保管する保管方法および装置に関する。
【0002】
【従来の技術】
一般に、建設車両等に装着される大型空気入りタイヤは、タイヤ成形ドラムを用いて未加硫タイヤを成形した後、該未加硫タイヤを加硫装置を用いて加硫することにより製造しているが、このような加硫装置は一時に複数個の未加硫タイヤを加硫することができるため、加硫作業中に該加硫装置の周囲に成形が終了した未加硫タイヤを予め搬入するとともに、これら未加硫タイヤを加硫に備えて一時保管するようにしている。
【0003】
ここで、このような大型の未加硫タイヤは一時保管時に自重により変形することがあるため、従来においては、ハンモック状の支持装置によって縦置きの未加硫タイヤのトレッド部を下方から支持したり、あるいは、横置きの未加硫タイヤのサイドウォール部をクッション材を介装した状態で支持台により下方から支持することで前述の変形を抑制するようにしていた。
【0004】
【発明が解決しようとする課題】
しかしながら、近年、建設車両等のさらなる大型化に伴い該建設車両等に装着される空気入りタイヤもさらに大型化してきた、例えばタイヤ外径が3m以上となってきたため、従来のような保管方法では一時保管時における未加硫タイヤの自重による変形を充分に抑制することができず、この結果、加硫済みタイヤにトレッドゲージの不均一、トレッドへのエア入り、ベア等が発生してタイヤ品質が低下してしまうことがあるという問題点がある。
【0005】
この発明は、一時保管時における未加硫タイヤの自重による変形を効果的に抑制することでタイヤ品質を向上させることができる大型未加硫タイヤの保管方法および装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このような目的は、第1に、内部に圧力が 0.2 1.0 kgf/cm 2 エアが充填された大型未加硫タイヤを該未加硫タイヤの水平な中心軸回りに 0.2 10 rpm の回転速度で回転させながら一時保管を行うようにした大型未加硫タイヤの保管方法により、第2に、大型未加硫タイヤを密封しながら保持することができるとともに、該未加硫タイヤの中心軸と同軸である保持体と、未加硫タイヤ内に圧力が 0.2 1.0 kgf/cm 2 のエアを供給するエア通路と、前記保持体を水平状態で回転可能に支持する支持台と、前記保持体を軸線回りに 0.2 10 rpm の回転速度で回転させる回転手段とを備え、前記保持体に保持されている未加硫タイヤ内にエア通路を通じて前記圧力のエアを供給充填した後、該保持体を回転手段によって水平な軸線回りに前記回転速度で回転させながら未加硫タイヤの一時保管を行うようにした大型未加硫タイヤの保管装置により達成することができる。
【0007】
未加硫タイヤの成形が終了すると、加硫開始までの間、該未加硫タイヤを一時保管するが、この場合には、保持体に該未加硫タイヤを装着して該保持体により未加硫タイヤを保持した後、保持体を水平状態にして支持台に支持させるとともに、該未加硫タイヤ内にエア通路を通じて圧力が 0.2 1.0 kgf/cm 2 のエアを供給充填する。これにより、未加硫タイヤは自立して略トロイダル形状を維持するが、この未加硫タイヤがさらに大型化したタイヤであると、このままの状態では時間の経過と共に自重による変形が拡大するおそれがある。このため、保持体を未加硫タイヤと共に回転手段によって軸線(未加硫タイヤの中心軸と同軸)回りに 0.2 10 rpm の回転速度で回転させ、前記自重による変形を未加硫タイヤの全周に分散させ、未加硫タイヤの変形を効果的に抑制するようにしている。これにより、加硫済みタイヤにおけるトレッドゲージの不均一、トレッドへのエア入り、ベア等を防止することができ、タイヤ品質が向上する。ここで、未加硫タイヤに充填されるエアの圧力を前述の範囲内とすれば、自重によって若干変形してしまう事態を防止することができるとともに、ゴムゲージが変化する事態を抑制することができる。さらに、未加硫タイヤの回転速度を前述の範囲内とすれば、自重による変形を充分に分散させることができなくなる事態を防止することができるとともに、タイヤ品質に影響を与える変形が発生するような事態を抑制することができる。
【0008】
また、請求項に記載のように構成すれば、保持体への未加硫タイヤの装着が容易になるとともに、未加硫タイヤ内の密封が確実となる。
【0009】
【発明の実施の形態】
以下、この発明の一実施形態を図面に基づいて説明する。
図1、2、3において、11は大型建設車両等に用いられる大型未加硫ラジアルタイヤTを保持する保持体であり、この保持体11は略円筒状の中央軸12を有している。この中央軸12の軸方向一側部および他側部にはそれぞれ略円筒状をした一側スライダ13および他側スライダ14が軸方向に摺動可能に嵌合され、これらの一側、他側スライダ13、14は図示していない締結手段により中央軸12に対し任意の軸方向位置において締結することができる。これら一側、他側スライダ13、14には一側、他側固定リング15、16がそれぞれ固定され、これらの一側、他側固定リング15、16には半径方向に延び半径方向外端において開口するガイド穴17、18が周方向に等距離離れて複数個形成されている。前記一側、他側固定リング15、16のガイド穴17、18には一側、他側リムセグメント19、20がそれぞれ半径方向に移動可能に挿入され、これらの一側、他側リムセグメント19、20はガイド穴17、18内に設けられたガイドレール21、22をガイドとして半径方向に移動することができる。前記一側、他側リムセグメント19、20は半径方向外端に前記未加硫タイヤTのビード部Bが着座するシート部19a、20aと、該ビード部Bの外側面が接触するリング板状のフランジ部19b、20bとを有する。そして、前記一側リムセグメント19の半径方向移動距離は前記フランジ部19bの高さより大である。その理由は、前記未加硫タイヤTを保持体11に装着するときには、未加硫タイヤTを保持体11に一側から他側に向かって嵌合していくが、このとき、一側リムセグメント19のフランジ部19bを図3に実線で示すように、未加硫タイヤTのビード部Bより半径方向内側まで退避させてこれらの間での干渉を防止し、未加硫タイヤTの装着作業を簡単、容易とするためである。なお、他側リムセグメント20に関しては前述のような干渉防止の必要がないため、半径方向移動距離を零としてもよいが、この実施形態では未加硫タイヤTの装着の容易化および未加硫タイヤTのサイズ変更に対応するため、半径方向移動距離を若干の値としている。ここで、前記中央軸12、一側、他側スライダ13、14、一側、他側固定リング15、16は全体として主軸23を構成し、また、前述の周方向に離れて配置されそれぞれが半径方向に移動可能な複数の一側、他側リムセグメント19、20は全体として、主軸23の両端部にそれぞれ支持され未加硫タイヤTのビード部Bを半径方向内側から保持する一側、他側保持リム24、25を構成する。
【0010】
28、29は一側、他側固定リング15、16に中央部が挿入されるとともに回転可能に支持された軸方向に延びる回転軸であり、これらの回転軸28、29の軸方向内端部にはピニオン30、31がそれぞれ固定されている。32、33は前記一側、他側固定リング15、16の軸方向内面に回転可能に支持され中央軸12と同軸の内歯リングであり、これらの内歯リング32、33の内歯とピニオン30、31の外歯とは互いに噛み合っている。一方、回転軸28、29の軸方向外端部にもピニオン34、35がそれぞれ固定され、これらのピニオン34、35の外歯は前記一側、他側固定リング15、16の軸方向外面に回転可能に支持された内歯リング36、37の内歯に噛み合っている。38、39は外端が前記一側、他側リムセグメント19、20に連結され半径方向に対して傾斜している複数の伝達リンクであり、これらの伝達リンク38、39の内端は前記内歯リング36、37に連結されている。40、41は一側、他側スライダ13、14にブラケット42、43を介してヘッド側が連結されたシリンダであり、これらのシリンダ40、41のピストンロッド(図示していない)の先端は前記内歯リング32、33に連結されている。そして、前記シリンダ40、41が作動してピストンロッドが突出したり引っ込んだりすると、内歯リング32、33が回転するが、これら内歯リング32、33の回転はピニオン30、31、回転軸28、29、ピニオン34、35を介して内歯リング36、37に伝達された後、伝達リンク38、39を揺動させて一側、他側リムセグメント19、20を半径方向に同期して移動させ、一側、他側保持リム24、25を拡縮させる。前述した回転軸28、29、ピニオン30、31、34、35、内歯リング32、33、36、37、伝達リンク38、39、シリンダ40、41は全体として、少なくともいずれか一方の保持リム、ここでは一側、他側保持リム24、25の双方をそれぞれ拡縮させる拡縮機構44、45を構成する。そして、前述のように未加硫タイヤTを一側から保持体11に嵌合した後、シリンダ40、41を作動して一側、他側保持リム24、25を拡径すると、未加硫タイヤTのビード部Bは一側、他側保持リム24、25を構成する一側、他側リムセグメント19、20のシート部19a、20aに着座する。このような状態のとき、前記未加硫タイヤTの内部には他側固定リング16に形成されたエア通路46を通じて低圧のエアが供給充填される。ここで、前述のように供給充填されるエアの圧力は 0.2〜1.0kgf/cm2の範囲が好ましい。その理由は、充填エア圧力が0.2kgf/cm2未満であると、未加硫タイヤTを後述のように回転させても自重によって若干変形してしまうからであり、一方、充填エア圧力が1.0kgf/cm2を超えると、未加硫タイヤTを構成する未加硫ゴムが内圧によって若干流動しゴムゲージが変化してしまうからである。
【0011】
前記一側、他側保持リム24、25より軸方向内側の中央軸23、詳しくは一側、他側固定リング15、16には膨張収縮可能な一側、他側ブラダ48、49が取り付けられ、これらの一側、他側ブラダ48、49内には一側、他側固定リング15、16に形成されたエア通路50、51を通じてエアが供給される。そして、前記エア通路50、51を通じて一側、他側ブラダ48、49内にエアが供給されると、これら一側、他側ブラダ48、49は膨張して保持体11に装着された未加硫タイヤTのビード部Bの内面に圧接し、これにより、未加硫タイヤTと一側、他側固定リング15、16との間をシールし、該未加硫タイヤT内を確実に密封する。これは、未加硫タイヤTのビード部Bが着座する一側、他側保持リム24、25が周方向に離れた複数の一側、他側リムセグメント19、20から構成されているため、隣接する一側リムセグメント19間および他側リムセグメント20間には間隙が存在し、この結果、前述のように未加硫タイヤT内にエアを充填すると、該エアが前記間隙を通じて外部に漏洩してしまうが、このようなエアの漏洩を確実に阻止して未加硫タイヤT内の充填圧を一定値に保持するためである。前述した主軸23、一側、他側保持リム24、25、拡縮機構44、45および一側、他側ブラダ48、49は全体として、大型未加硫タイヤTを密封しながら保持することができるとともに、該未加硫タイヤTの中心軸と同軸である前記保持体11を構成する。
【0012】
52は床面53上に設置された水平なベースであり、このベース52の左右端部には垂直に延びる垂直フレーム54、55が固定され、これら垂直フレーム54、55の上端にはそれぞれ前後方向に離れた一対の軸受56、57が取り付けられている。これら軸受56、57には左右方向に延びる水平な回転軸58、59が回転可能に支持され、各回転軸58、59には駆動ディスク60、61が固定されている。そして、前記未加硫タイヤTが装着された保持体11は、未加硫タイヤTを一時保管する際、その中央軸12の両端部が対をなす駆動ディスク60、61にそれぞれ接触するようにして垂直フレーム54、55上に水平に載置される。前述したベース52、垂直フレーム54、55、軸受56、57、回転軸58、59、駆動ディスク60、61は全体として、保持体11を水平状態で回転可能に支持する支持台62を構成する。
【0013】
前記垂直フレーム54、55の下部にはそれぞれ前後方向に離れた一対のシリンダ65、66のヘッド側が連結され、これらのシリンダ65、66のピストンロッド67、68の先端には伝達レバー69、70の先端が連結されている。これら伝達レバー69、70の基端はラチェット機構を内蔵し、前記回転軸58、59に連結されている。この結果、前記シリンダ65、66が作動してピストンロッド67、68が突出したり引っ込んだりすると、伝達レバー69、70が回転軸58、59を中心に揺動するが、この際、ラチェット機構によって一方向、例えば図2において反時計回りの揺動だけが回転軸58、59に伝達され、他方向、例えば時計回りの揺動は回転軸58、59に伝達されないため、回転軸58、59および駆動ディスク60、61は一方向だけに回転する。このとき、前側の伝達レバー69、70の一方向への揺動と後側の伝達レバー69、70の他方向への揺動とは同時に行われ、また、前側の伝達レバー69、70の他方向への揺動と後側の伝達レバー69、70の一方向への揺動とは同時に行われ、これにより、回転軸58、59、駆動ディスク60、61には一方向の回転が繰り返し与えられ、連続的に一方向に回転する。そして、このような駆動ディスク60、61の回転はこれら駆動ディスク60、61から保持体11に伝達され、保持体11および未加硫タイヤTを低速で他方向に連続回転させる。ここで、前記未加硫タイヤTの回転速度は 0.2〜10 rpmの範囲が好ましい。その理由は、0.2rpm未満であると、未加硫タイヤTの自重による変形を充分に分散させることができないからであり、一方、10 rpmを超えると、遠心力によってタイヤ品質に影響を与える変形が未加硫タイヤTに発生することがあるからである。前述したシリンダ65、66、伝達レバー69、70は全体として、保持体11および未加硫タイヤTを軸線回りに低速回転させる回転手段71を構成する。
【0014】
次に、この発明の一実施形態の作用について説明する。
成形ドラムにより成形された未加硫タイヤTは、次に加硫装置により加硫して製品タイヤとするが、このような加硫装置は一時に複数個の未加硫タイヤTを加硫することができるため、加硫作業中に前述のような未加硫タイヤTを加硫装置の周囲に次々と搬入し、これら未加硫タイヤTを加硫開始までの間一時保管する。この場合には、まず、未加硫タイヤTを保持体11の外側に一側から他側に向かって嵌合するが、このとき、一側リムセグメント19のフランジ部19bを図3に実線で示すように、未加硫タイヤTのビード部Bより半径方向内側まで退避させておき、これらの間の干渉を防止する。そして、一側、他側保持リム24、25の半径方向外側に未加硫タイヤTのビード部Bがそれぞれ到達すると、シリンダ40、41のピストンロッドを、例えば突出させて内歯リング32、33を回転させる。この内歯リング32、33の回転は、ピニオン30、31、回転軸28、29、ピニオン34、35、内歯リング36、37を介して伝達リンク38、39に伝達され、該伝達リンク38、39を揺動させて一側、他側リムセグメント19、20を半径方向外側に移動させる。これにより、一側保持リム24は図3に仮想線で示す位置まで、他側保持リム25は図3に実線で示す位置まで拡径する。この結果、未加硫タイヤTのビード部Bは一側、他側保持リム24、25を構成する一側、他側リムセグメント19、20のシート部19a、20aにそれぞれ着座し、保持体11によって半径方向内側から保持される。
【0015】
次に、未加硫タイヤTが装着されている保持体11を支持台62まで搬送した後、保持体11をその中央軸12の両端部が対をなす駆動ディスク60、61にそれぞれ2点で接触するようにして支持台62上に載置する。これにより、保持体11はその軸線が水平となった状態で支持台62に支持される。次に、エア通路46、エア通路50、51にエアホースを接続し、前記エア通路46を通じて未加硫タイヤTの内部に低圧のエアを充填するとともに、エア通路50、51を通じて一側、他側ブラダ48、49内にエアを供給する。このとき、一側、他側ブラダ48、49は供給されたエアにより膨張して未加硫タイヤTのビード部Bの内面に圧接し、未加硫タイヤTと一側、他側固定リング15、16との間をシールする。この結果、前述のように隣接する一側リムセグメント19間および他側リムセグメント20間に間隙が存在していても、これら間隙から未加硫タイヤT内のエアが外部に漏洩することはなく、未加硫タイヤT内の充填圧は一定値に保持される。このようにして未加硫タイヤT内に低圧エアが充填されると、前記エアホースを取り外す。
【0016】
次に、前側および後側のシリンダ65、66を同時に作動して前側および後側のシリンダ65、66のピストンロッド67、68を共に引っ込ませ、前側および後側の伝達レバー69、70をそれぞれ図2に実線で示す位置から仮想線で示す位置まで一方向および他方向に揺動させる。このとき、伝達レバー69、70の揺動はラチェット機構によって一方向の揺動だけが回転軸58、59に伝達されるため、前側の伝達レバー69、70の揺動のみが回転軸58、59に伝達される。これにより、回転軸58、59は駆動ディスク60、61とともに一方向に回転するが、この回転は駆動ディスク60、61に圧接している主軸23に伝達され、保持体11を未加硫タイヤTとともに低速で他方向に回転させる。次に、前述とは逆に前、後側のシリンダ65、66のピストンロッド67、68を同時に突出させて後側の伝達レバー69、70を図2に仮想線で示す位置から実線で示す位置まで他方向および一方向にそれぞれ揺動させる。このとき、後側の伝達レバー69、70の一方向への揺動のみがラチェット機構を介して回転軸58、59に伝達され、保持体11、未加硫タイヤTを低速で他方向に継続して回転させる。そして、このような作動を加硫開始まで繰り返し行い、未加硫タイヤTを低速で連続的に回転させながら一時保管を行う。このように一時保管時に未加硫タイヤT内に低圧のエアを充填するだけでなく、保持体11を未加硫タイヤTと共に水平な軸線回りに低速回転させるのは、未加硫タイヤT内への低圧エアの充填だけでは、未加硫タイヤTが近年開発されたさらに大型化したタイヤである場合、時間の経過と共に自重による変形が拡大するおそれがあるが、前述のように低圧エアの充填および低速回転の双方を行えば、前記自重による変形が未加硫タイヤTの全周に分散され、これにより、未加硫タイヤTの変形を効果的に抑制することができるからである。これにより、加硫済みタイヤにおけるトレッドゲージの不均一、トレッドへのエア入り、ベア等が防止され、タイヤ品質が向上する。
【0017】
また、未加硫タイヤTのサイズに変更があった場合には、一側、他側スライダ13、14をビード部Bの足幅に合わせて軸方向に移動させ、中央軸12に対する締結位置を調節する。なお、このとき、一側、他側保持リム24、25は共に拡縮可能であるため、特に調整の必要はない。
【0018】
なお、前述の実施形態においては、一側保持リム24の半径方向移動距離を大きくして、未加硫タイヤTのビード部Bの半径方向内側に退避することができるようにしたが、この発明においては、他側保持リム25も一側保持リム24と同様に半径方向移動距離を大きくしてもよい。このようにすれば未加硫タイヤTの保持体11への装着が一側および他側のいずれからでも行えるようになる。また、前述の実施形態においては、回転手段71をシリンダ65、66、伝達レバー69、70から構成したが、この発明においては、モータ、歯車列、ベルト等から構成するようにしてもよい。
【0019】
【発明の効果】
以上説明したように、この発明によれば、一時保管時における未加硫タイヤの自重による変形を効果的に抑制することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態を示す一部破断正面図である。
【図2】図1のIーI矢視図である。
【図3】保持体の部分正面断面図である。
【符号の説明】
11…保持体 19、20…セグメント
23…主軸 24、25…保持リム
44、45…拡縮機構 46…エア通路
48、49…ブラダ 62…支持台
71…回転手段 T…未加硫タイヤ
B…ビード部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a storage method and apparatus for temporarily storing large unvulcanized tires used in construction vehicles and the like.
[0002]
[Prior art]
In general, large pneumatic tires mounted on construction vehicles and the like are manufactured by molding an unvulcanized tire using a tire molding drum and then vulcanizing the unvulcanized tire using a vulcanizer. However, since such a vulcanizer can vulcanize a plurality of unvulcanized tires at a time, an unvulcanized tire that has been molded around the vulcanizer during the vulcanization operation is preliminarily used. While being carried in, these unvulcanized tires are temporarily stored in preparation for vulcanization.
[0003]
Here, since such a large unvulcanized tire may be deformed by its own weight during temporary storage, conventionally, a tread portion of a vertically placed unvulcanized tire is supported from below by a hammock-like support device. Alternatively, the above-described deformation is suppressed by supporting the side wall portion of the horizontally unvulcanized tire from below with a support base with a cushioning material interposed.
[0004]
[Problems to be solved by the invention]
However, in recent years, with the further increase in size of construction vehicles and the like, pneumatic tires attached to the construction vehicles and the like have further increased in size. For example, the outer diameter of the tire has become 3 m or more. Deformation due to the weight of the unvulcanized tire during temporary storage could not be sufficiently suppressed. As a result, the tread gauge is uneven in the vulcanized tire, the tread is inflated, bears, etc., resulting in tire quality. There is a problem that may decrease.
[0005]
An object of the present invention is to provide a storage method and apparatus for a large unvulcanized tire capable of improving tire quality by effectively suppressing deformation due to the weight of the unvulcanized tire during temporary storage. .
[0006]
[Means for Solving the Problems]
Such objects, in a first, internal pressure is 0.2 ~ 1.0 kgf / cm 0.2 ~ 2 large unvulcanized tire air filled in the horizontal center axis of the unvulcanized tire 10 rpm Secondly, the large unvulcanized tire is stored while being rotated at a rotational speed, and secondly, the large unvulcanized tire can be sealed and held, and the center of the unvulcanized tire A holding body that is coaxial with the shaft, an air passage that supplies air with a pressure of 0.2 to 1.0 kgf / cm 2 into the unvulcanized tire, a support base that rotatably supports the holding body in a horizontal state, Rotation means for rotating the holding body around the axis at a rotational speed of 0.2 to 10 rpm , and supplying and filling the air of the pressure through the air passage into the unvulcanized tire held by the holding body, It is rotated at the rotational speed horizontal axis around the holding member by rotation means The storage device of a large unvulcanized tire to perform a temporary storage of reluctant unvulcanized tire can be achieved.
[0007]
When the formation of the unvulcanized tire is completed, the unvulcanized tire is temporarily stored until the start of vulcanization. In this case, the unvulcanized tire is attached to the holding body and is not yet removed by the holding body. After holding the vulcanized tire, the holding body is placed in a horizontal state and supported by a support, and air with a pressure of 0.2 to 1.0 kgf / cm 2 is supplied and filled into the unvulcanized tire through an air passage. As a result, the unvulcanized tire is self-supporting and maintains a substantially toroidal shape. However, if the unvulcanized tire is a further enlarged tire, there is a risk that deformation due to its own weight will increase over time in this state. is there. For this reason, the holding body is rotated together with the unvulcanized tire by the rotating means around the axis (coaxial with the central axis of the unvulcanized tire) at a rotational speed of 0.2 to 10 rpm , and the deformation due to the self-weight is all of the unvulcanized tire. It is dispersed around the circumference so that the deformation of the unvulcanized tire is effectively suppressed. As a result, unevenness of the tread gauge in the vulcanized tire, entry of air into the tread, bear and the like can be prevented, and tire quality is improved. Here, if the pressure of the air filled in the unvulcanized tire is within the above-described range, it is possible to prevent a situation in which the rubber gauge changes due to its own weight and to suppress a situation in which the rubber gauge changes. . Furthermore, if the rotational speed of the unvulcanized tire is within the above-mentioned range, it is possible to prevent a situation in which deformation due to its own weight cannot be sufficiently dispersed, and deformation that affects tire quality occurs. Can be suppressed.
[0008]
According to the third aspect of the present invention, the unvulcanized tire can be easily attached to the holding body, and the uncured tire is securely sealed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1, 2, and 3, reference numeral 11 denotes a holding body for holding a large unvulcanized radial tire T used for a large construction vehicle or the like. The holding body 11 has a substantially cylindrical central shaft 12. The one side slider 13 and the other side slider 14 each having a substantially cylindrical shape are fitted to the one side portion and the other side portion of the central shaft 12 so as to be slidable in the axial direction. The sliders 13 and 14 can be fastened to the central shaft 12 at any axial position by fastening means (not shown). One side and other side fixing rings 15 and 16 are fixed to the one side and other side sliders 13 and 14, respectively, and one side and the other side fixing rings 15 and 16 extend in the radial direction at the radially outer end. A plurality of opening guide holes 17 and 18 are formed at equal distances in the circumferential direction. The one side and other side rim segments 19 and 20 are respectively inserted in the guide holes 17 and 18 of the one side and other side fixing rings 15 and 16 so as to be movable in the radial direction. , 20 can move in the radial direction using guide rails 21 and 22 provided in the guide holes 17 and 18 as guides. The one-side and other-side rim segments 19 and 20 are in the form of ring plates in which the outer side surfaces of the bead portions B come into contact with the seat portions 19a and 20a on which the bead portions B of the unvulcanized tire T are seated at the radially outer ends. Flange portions 19b and 20b. The radial movement distance of the one-side rim segment 19 is greater than the height of the flange portion 19b. The reason is that when the unvulcanized tire T is mounted on the holding body 11, the unvulcanized tire T is fitted to the holding body 11 from one side to the other side. As shown by the solid line in FIG. 3, the flange portion 19b of the segment 19 is retracted radially inward from the bead portion B of the unvulcanized tire T to prevent interference between them, and the unvulcanized tire T is mounted. This is to make the work simple and easy. Since the other side rim segment 20 does not need to prevent interference as described above, the radial movement distance may be zero. In this embodiment, the unvulcanized tire T can be easily attached and the unvulcanized tire can be uncured. In order to cope with the size change of the tire T, the radial movement distance is set to a slight value. Here, the central shaft 12, the one side, the other side sliders 13, 14, the one side, the other side fixing rings 15, 16 constitute the main shaft 23 as a whole, and are arranged apart from each other in the aforementioned circumferential direction. A plurality of one side that can move in the radial direction, the other side rim segments 19, 20 as a whole are supported on both ends of the main shaft 23, respectively, and hold the bead portion B of the unvulcanized tire T from the inside in the radial direction, The other side holding rims 24 and 25 are configured.
[0010]
Reference numerals 28 and 29 denote axially extending rotary shafts that are rotatably inserted and supported at the center portion on one side and the other side fixing rings 15 and 16, and axially inner ends of the rotary shafts 28 and 29. Pinions 30 and 31 are respectively fixed to the. 32 and 33 are internal tooth rings rotatably supported on the inner surfaces in the axial direction of the one-side and other-side fixing rings 15 and 16 and coaxial with the central shaft 12, and the internal teeth and pinions of these internal tooth rings 32 and 33 The outer teeth of 30 and 31 mesh with each other. On the other hand, pinions 34 and 35 are also fixed to the axially outer ends of the rotary shafts 28 and 29, respectively, and the external teeth of these pinions 34 and 35 are on the axially outer surfaces of the one side and other side fixing rings 15 and 16, respectively. It meshes with the internal teeth of the internal teeth rings 36 and 37 that are rotatably supported. 38 and 39 are a plurality of transmission links whose outer ends are connected to the one-side and other-side rim segments 19 and 20 and are inclined with respect to the radial direction. The inner ends of these transmission links 38 and 39 It is connected to the tooth rings 36 and 37. 40 and 41 are cylinders on one side and the head side connected to the other sliders 13 and 14 via brackets 42 and 43, and the tip ends of piston rods (not shown) of these cylinders 40 and 41 It is connected to the tooth rings 32 and 33. When the cylinders 40 and 41 are operated and the piston rod protrudes or retracts, the internal teeth rings 32 and 33 rotate.The rotation of the internal teeth rings 32 and 33 is caused by the pinions 30 and 31, the rotary shaft 28, 29, after being transmitted to the internal gear rings 36 and 37 via the pinions 34 and 35, the transmission links 38 and 39 are swung to move the one side and the other side rim segments 19 and 20 synchronously in the radial direction. The one side and the other side holding rims 24 and 25 are expanded and contracted. The rotary shafts 28, 29, the pinions 30, 31, 34, 35, the internal gear rings 32, 33, 36, 37, the transmission links 38, 39, and the cylinders 40, 41 as a whole are at least one of the holding rims, Here, expansion / contraction mechanisms 44 and 45 are configured to expand and contract both the one-side and other-side holding rims 24 and 25, respectively. Then, after fitting the unvulcanized tire T to the holding body 11 from one side as described above, the cylinders 40 and 41 are operated to increase the diameter of the one side and the other side holding rims 24 and 25. The bead portion B of the tire T is seated on the seat portion 19a, 20a of one side, the other side rim segment 19, 20 constituting the other side holding rim 24, 25. In such a state, low pressure air is supplied and filled into the inside of the unvulcanized tire T through an air passage 46 formed in the other side fixing ring 16. Here, the pressure of the air supplied and filled as described above is preferably in the range of 0.2 to 1.0 kgf / cm 2 . The reason is that if the filling air pressure is less than 0.2 kgf / cm 2 , the unvulcanized tire T is slightly deformed by its own weight even if it is rotated as described later, while the filling air pressure is 1.0 This is because if it exceeds kgf / cm 2 , the unvulcanized rubber constituting the unvulcanized tire T will flow slightly due to the internal pressure and the rubber gauge will change.
[0011]
The one side and other side holding rims 24 and 25 are attached to the central shaft 23 in the axial direction inner side, more specifically, one side and the other side fixing rings 15 and 16 are attached to one side and other side bladders 48 and 49 which can be expanded and contracted. In the one side and other side bladders 48 and 49, air is supplied through air passages 50 and 51 formed in the one side and other side fixing rings 15 and 16. When air is supplied into the one-side and other-side bladders 48 and 49 through the air passages 50 and 51, the one-side and other-side bladders 48 and 49 are inflated and are not attached to the holding body 11. Press contact with the inner surface of the bead portion B of the vulcanized tire T, thereby sealing between the unvulcanized tire T and the one side, other side fixing rings 15 and 16, and securely sealing the inside of the unvulcanized tire T To do. This is because one side where the bead portion B of the unvulcanized tire T is seated, the other side holding rims 24, 25 are composed of a plurality of one side separated in the circumferential direction, and the other side rim segments 19, 20. There is a gap between the adjacent one rim segment 19 and the other rim segment 20, and as a result, when air is filled in the unvulcanized tire T as described above, the air leaks outside through the gap. However, this is because such a leakage of air is surely prevented and the filling pressure in the unvulcanized tire T is maintained at a constant value. The main shaft 23, the one-side and other-side holding rims 24 and 25, the expansion / contraction mechanisms 44 and 45, and the one-side and other-side bladders 48 and 49 can hold the large unvulcanized tire T while being sealed as a whole. At the same time, the holding body 11 that is coaxial with the central axis of the unvulcanized tire T is formed.
[0012]
Reference numeral 52 denotes a horizontal base installed on the floor surface 53, and vertical frames 54 and 55 extending vertically are fixed to the left and right ends of the base 52, and the upper ends of these vertical frames 54 and 55 are respectively in the front-rear direction. A pair of bearings 56 and 57 separated from each other are attached. Horizontal rotation shafts 58 and 59 extending in the left-right direction are rotatably supported by the bearings 56 and 57, and drive disks 60 and 61 are fixed to the rotation shafts 58 and 59, respectively. Then, the holding body 11 to which the unvulcanized tire T is mounted is configured so that, when temporarily storing the unvulcanized tire T, both ends of the central shaft 12 are in contact with the paired drive disks 60 and 61, respectively. And placed horizontally on the vertical frames 54 and 55. The base 52, the vertical frames 54 and 55, the bearings 56 and 57, the rotary shafts 58 and 59, and the drive disks 60 and 61 described above constitute a support base 62 that rotatably supports the holding body 11 in a horizontal state.
[0013]
The heads of a pair of cylinders 65 and 66 that are separated in the front-rear direction are connected to the lower parts of the vertical frames 54 and 55, respectively, and transmission rods 69 and 70 are connected to the ends of piston rods 67 and 68 of these cylinders 65 and 66, respectively. The tip is connected. The base ends of these transmission levers 69 and 70 incorporate a ratchet mechanism and are connected to the rotary shafts 58 and 59. As a result, when the cylinders 65 and 66 are operated and the piston rods 67 and 68 protrude or retract, the transmission levers 69 and 70 swing around the rotating shafts 58 and 59. At this time, the ratchet mechanism Only the direction, for example, the counterclockwise swing in FIG. 2, is transmitted to the rotating shafts 58, 59, and the other direction, for example, the clockwise swing is not transmitted to the rotating shafts 58, 59. The disks 60 and 61 rotate in only one direction. At this time, the swinging of the front transmission levers 69, 70 in one direction and the swinging of the rear transmission levers 69, 70 in the other direction are performed simultaneously. Oscillating in one direction and oscillating in one direction on the rear transmission levers 69 and 70 are performed simultaneously, whereby rotation in one direction is repeatedly applied to the rotary shafts 58 and 59 and the drive disks 60 and 61. And continuously rotate in one direction. The rotation of the drive disks 60 and 61 is transmitted from the drive disks 60 and 61 to the holding body 11, and the holding body 11 and the unvulcanized tire T are continuously rotated in the other direction at a low speed. Here, the rotational speed of the unvulcanized tire T is preferably in the range of 0.2 to 10 rpm. The reason is that if it is less than 0.2 rpm, deformation due to its own weight of the unvulcanized tire T cannot be sufficiently dispersed, while if it exceeds 10 rpm, deformation that affects tire quality due to centrifugal force. This is because may occur in the unvulcanized tire T. The cylinders 65 and 66 and the transmission levers 69 and 70 described above constitute a rotating means 71 that rotates the holding body 11 and the unvulcanized tire T at low speed around the axis.
[0014]
Next, the operation of one embodiment of the present invention will be described.
The unvulcanized tire T molded by the molding drum is then vulcanized by a vulcanizer to produce a product tire. Such a vulcanizer vulcanizes a plurality of unvulcanized tires T at a time. Therefore, during the vulcanization operation, the unvulcanized tires T as described above are successively carried around the vulcanizer, and the unvulcanized tires T are temporarily stored until the vulcanization is started. In this case, first, the unvulcanized tire T is fitted to the outside of the holding body 11 from one side to the other side. At this time, the flange portion 19b of the one-side rim segment 19 is shown by a solid line in FIG. As shown, it is retracted from the bead portion B of the unvulcanized tire T to the inside in the radial direction to prevent interference therebetween. When the bead portions B of the unvulcanized tires T reach the outer sides in the radial direction of the one-side and other-side holding rims 24 and 25, respectively, the piston rods of the cylinders 40 and 41 are protruded, for example, and the internal teeth rings 32 and 33 Rotate. The rotation of the internal teeth rings 32 and 33 is transmitted to the transmission links 38 and 39 via the pinions 30 and 31, the rotation shafts 28 and 29, the pinions 34 and 35, and the internal teeth rings 36 and 37. 39 is swung to move the one-side and other-side rim segments 19 and 20 radially outward. Thereby, the diameter of the one side holding rim 24 is expanded to the position indicated by the phantom line in FIG. 3, and the diameter of the other side holding rim 25 is increased to the position indicated by the solid line in FIG. As a result, the bead portion B of the unvulcanized tire T is seated on the seat portions 19a and 20a of the one-side and other-side rim segments 19 and 20 constituting the one-side and other-side holding rims 24 and 25, respectively. Is held from the inside in the radial direction.
[0015]
Next, after the holding body 11 on which the unvulcanized tire T is mounted is transported to the support base 62, the holding body 11 is attached to the drive disks 60 and 61 whose both ends of the central shaft 12 are paired at two points. It is placed on the support base 62 so as to come into contact. Accordingly, the holding body 11 is supported by the support base 62 in a state where the axis thereof is horizontal. Next, an air hose is connected to the air passage 46 and the air passages 50 and 51, and low pressure air is filled into the inside of the unvulcanized tire T through the air passage 46, and one side and the other side are passed through the air passages 50 and 51. Air is supplied into the bladders 48 and 49. At this time, the one-side and other-side bladders 48 and 49 are inflated by the supplied air and are brought into pressure contact with the inner surface of the bead portion B of the unvulcanized tire T. , Seal between 16. As a result, even if there is a gap between the adjacent one rim segment 19 and the other rim segment 20 as described above, the air in the unvulcanized tire T does not leak to the outside from these gaps. The filling pressure in the unvulcanized tire T is maintained at a constant value. When the low-pressure air is filled in the unvulcanized tire T in this way, the air hose is removed.
[0016]
Next, the front and rear cylinders 65 and 66 are simultaneously operated to retract the piston rods 67 and 68 of the front and rear cylinders 65 and 66 together, and the front and rear transmission levers 69 and 70 are respectively illustrated. 2 is swung in one direction and the other direction from the position indicated by the solid line to the position indicated by the phantom line. At this time, since the swinging of the transmission levers 69 and 70 is transmitted only to the rotating shafts 58 and 59 by the ratchet mechanism, only the swinging of the transmission levers 69 and 70 on the front side is rotated to the rotating shafts 58 and 59. Is transmitted to. As a result, the rotary shafts 58 and 59 rotate in one direction together with the drive disks 60 and 61. This rotation is transmitted to the main shaft 23 that is in pressure contact with the drive disks 60 and 61, and the holding body 11 is moved to the unvulcanized tire T. At the same time, rotate in the other direction at low speed. Next, contrary to the above, the piston rods 67 and 68 of the front and rear cylinders 65 and 66 are projected at the same time, and the rear transmission levers 69 and 70 are moved from the positions indicated by phantom lines to the positions indicated by solid lines in FIG. Rock in the other direction and one direction. At this time, only the swing in one direction of the rear transmission levers 69 and 70 is transmitted to the rotating shafts 58 and 59 via the ratchet mechanism, and the holding body 11 and the unvulcanized tire T are continued in the other direction at a low speed. And rotate. Such operation is repeated until vulcanization is started, and temporary storage is performed while continuously rotating the unvulcanized tire T at a low speed. In this way, not only filling the unvulcanized tire T with low-pressure air during temporary storage but also rotating the holding body 11 together with the unvulcanized tire T at a low speed around a horizontal axis If the unvulcanized tire T is a larger tire that has been developed in recent years, the deformation due to its own weight may increase with the passage of time. This is because if both filling and low-speed rotation are performed, the deformation due to its own weight is dispersed over the entire circumference of the unvulcanized tire T, whereby the deformation of the unvulcanized tire T can be effectively suppressed. As a result, unevenness of the tread gauge in the vulcanized tire, entry of air into the tread, bear and the like are prevented, and tire quality is improved.
[0017]
Further, when the size of the unvulcanized tire T is changed, the one side and the other side sliders 13 and 14 are moved in the axial direction according to the foot width of the bead portion B, and the fastening position with respect to the central shaft 12 is changed. Adjust. At this time, both the one-side and other-side holding rims 24, 25 can be enlarged / reduced, and thus no particular adjustment is required.
[0018]
In the above-described embodiment, the radial movement distance of the one-side holding rim 24 is increased so that it can be retracted radially inward of the bead portion B of the unvulcanized tire T. In this case, the other-side holding rim 25 may have a larger radial movement distance in the same manner as the one-side holding rim 24. In this way, the unvulcanized tire T can be attached to the holding body 11 from either one side or the other side. In the above-described embodiment, the rotating means 71 is composed of the cylinders 65 and 66 and the transmission levers 69 and 70. However, in the present invention, it may be composed of a motor, a gear train, a belt, and the like.
[0019]
【The invention's effect】
As described above, according to the present invention, it is possible to effectively suppress deformation due to the weight of the unvulcanized tire during temporary storage.
[Brief description of the drawings]
FIG. 1 is a partially broken front view showing an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrows II in FIG.
FIG. 3 is a partial front sectional view of a holding body.
[Explanation of symbols]
11 ... Holder 19, 20 ... Segment
23 ... Spindle 24, 25 ... Retaining rim
44, 45 ... Expansion / contraction mechanism 46 ... Air passage
48, 49 ... Blada 62 ... Support stand
71 ... Rotating means T ... Unvulcanized tire B ... Bead part

Claims (3)

内部に圧力が 0.2 1.0 kgf/cm 2 エアが充填された大型未加硫タイヤを該未加硫タイヤの水平な中心軸回りに 0.2 10 rpm の回転速度で回転させながら一時保管を行うようにしたことを特徴とする大型未加硫タイヤの保管方法。Performing temporary storage while rotating at a rotational speed of the pressure 0.2 ~ 1.0 kgf / cm 0.2 ~ 2 large unvulcanized tire air filled in the horizontal center axis of the unvulcanized tire 10 rpm inside A method for storing a large unvulcanized tire, characterized in that 大型未加硫タイヤを密封しながら保持することができるとともに、該未加硫タイヤの中心軸と同軸である保持体と、未加硫タイヤ内に圧力が 0.2 1.0 kgf/cm 2 のエアを供給するエア通路と、前記保持体を水平状態で回転可能に支持する支持台と、前記保持体を軸線回りに 0.2 10 rpm の回転速度転させる回転手段とを備え、前記保持体に保持されている未加硫タイヤ内にエア通路を通じて前記圧力のエアを供給充填した後、該保持体を回転手段によって水平な軸線回りに前記回転速度で回転させながら未加硫タイヤの一時保管を行うようにしたことを特徴とする大型未加硫タイヤの保管装置。A large unvulcanized tire can be held while being sealed, and a holding body that is coaxial with the central axis of the unvulcanized tire and air having a pressure of 0.2 to 1.0 kgf / cm 2 are introduced into the unvulcanized tire. an air passage for supplying, a support base for rotatably supporting the holder in a horizontal state, and a rotating means for rotating at a rotational speed of 0.2 ~ 10 rpm the holding member about the axis, the holding member After supplying and filling the pressurized air through the air passage into the retained unvulcanized tire, temporarily store the unvulcanized tire while rotating the retainer around the horizontal axis by the rotating means at the rotational speed. A storage device for large unvulcanized tires, characterized in that it is provided. 前記保持体を、主軸と、主軸の両端部にそれぞれ支持され未加硫タイヤのビード部を保持する保持リムと、該保持リムより軸方向内側の主軸に取り付けられ、膨張したとき未加硫タイヤのビード部内面に圧接することで未加硫タイヤ内を密封するブラダと、少なくともいずれか一方の保持リムを拡縮させる拡縮機構とから構成し、かつ、該拡縮する保持リムを、周方向に離れて配置され半径方向に同期して移動することができる複数のセグメントから構成した請求項記載の大型未加硫タイヤの保管装置。The holding body is attached to the main shaft, a holding rim that is supported on both ends of the main shaft and holds the bead portion of the unvulcanized tire, and is attached to the main shaft on the inner side in the axial direction from the holding rim. A bladder that seals the inside of the unvulcanized tire by being pressed against the inner surface of the bead portion, and an expansion / contraction mechanism that expands / contracts at least one of the holding rims, and the expansion / contraction holding rim is separated in the circumferential direction. The large unvulcanized tire storage device according to claim 2 , wherein the storage device is composed of a plurality of segments that are arranged in a row and can move in synchronization with the radial direction.
JP30649497A 1997-10-21 1997-10-21 Storage method and apparatus for large unvulcanized tires Expired - Fee Related JP3815872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30649497A JP3815872B2 (en) 1997-10-21 1997-10-21 Storage method and apparatus for large unvulcanized tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30649497A JP3815872B2 (en) 1997-10-21 1997-10-21 Storage method and apparatus for large unvulcanized tires

Publications (2)

Publication Number Publication Date
JPH11123773A JPH11123773A (en) 1999-05-11
JP3815872B2 true JP3815872B2 (en) 2006-08-30

Family

ID=17957705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30649497A Expired - Fee Related JP3815872B2 (en) 1997-10-21 1997-10-21 Storage method and apparatus for large unvulcanized tires

Country Status (1)

Country Link
JP (1) JP3815872B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946048B2 (en) * 2002-01-21 2007-07-18 横浜ゴム株式会社 Pneumatic tire manufacturing method and pneumatic tire
JP4753551B2 (en) * 2004-07-09 2011-08-24 株式会社ブリヂストン Temporary storage device for unvulcanized tires
JP4763499B2 (en) * 2006-03-31 2011-08-31 株式会社神戸製鋼所 Tire conveyor
JP4837423B2 (en) * 2006-03-31 2011-12-14 株式会社神戸製鋼所 Raw tire internal pressure device
JP5171455B2 (en) * 2008-07-23 2013-03-27 株式会社ブリヂストン Temporary storage device for unvulcanized tire assemblies
ITTO20090397A1 (en) 2009-05-26 2010-11-27 Marangoni Meccanica SUPPORT SYSTEM FOR TIRES
JP5724722B2 (en) * 2011-07-27 2015-05-27 横浜ゴム株式会社 Green tire holding device
WO2016053315A1 (en) * 2014-09-30 2016-04-07 Compagnie Generale Des Etablissements Michelin A method and a support system for an uncured tire carcass
CN117842576B (en) * 2024-03-07 2024-05-03 雄鹰轮胎(青州)有限公司 Three-dimensional storage equipment for tire embryo

Also Published As

Publication number Publication date
JPH11123773A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
US2814330A (en) Machine for building pneumatic tires
US2614951A (en) Pneumatic tire building drum
US3475254A (en) Tire building machine
EP0997263B1 (en) Manufacturing method and apparatus for pneumatic tyres
US4738738A (en) Manufacture of vehicle tires
US8876508B2 (en) Apparatus for producing pneumatic tyres
JP3815872B2 (en) Storage method and apparatus for large unvulcanized tires
EP0069047A2 (en) Apparatus for manufacturing a radial tire
US20100000662A1 (en) Method for manufacturing green tire and apparatus for building green tire
JP2001524891A (en) Method and apparatus for manufacturing a pneumatic tire in an improved tire mold
EP0493073B1 (en) Method and apparatus for assembling tire and rim and filling inner pressure
US3402090A (en) Tire shaping apparatus
US5339880A (en) Apparatus for assembling tire and rim and filling inner pressure
US5116449A (en) Grooved drum for tire building machine
US3923572A (en) Method and apparatus for building tires
WO2021227927A1 (en) Tire building drum
JP2002116109A (en) Correcting method and correcting device for radial force variation of tire
GB2133357A (en) Manufacture of vehicle tyres
US3018518A (en) Apparatus for expanding one end of a cylindrical air spring into flared form
JP4904666B2 (en) Pneumatic tire reversing device
JP5748968B2 (en) Tire manufacturing apparatus and tire manufacturing method
US7513282B1 (en) Air bladder for tire liners with vee shaped air chambers
JP2007098935A (en) Method and mechanism for supporting tire
KR20100025231A (en) Method and apparatus for uniformity improvement of tire
JP6772044B2 (en) Tire post-cure inflation method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees