JP3811145B2 - How to determine the heat seal width - Google Patents

How to determine the heat seal width Download PDF

Info

Publication number
JP3811145B2
JP3811145B2 JP2003201368A JP2003201368A JP3811145B2 JP 3811145 B2 JP3811145 B2 JP 3811145B2 JP 2003201368 A JP2003201368 A JP 2003201368A JP 2003201368 A JP2003201368 A JP 2003201368A JP 3811145 B2 JP3811145 B2 JP 3811145B2
Authority
JP
Japan
Prior art keywords
heat
seal
temperature
heating
peel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003201368A
Other languages
Japanese (ja)
Other versions
JP2005007844A (en
Inventor
一夫 菱沼
Original Assignee
一夫 菱沼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一夫 菱沼 filed Critical 一夫 菱沼
Priority to JP2003201368A priority Critical patent/JP3811145B2/en
Priority to US10/772,549 priority patent/US6952959B2/en
Publication of JP2005007844A publication Critical patent/JP2005007844A/en
Application granted granted Critical
Publication of JP3811145B2 publication Critical patent/JP3811145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
シート状プラスチックを圧着加熱によって溶着封緘や製袋に際してよく行われているヒートシールに要求される機能は物流中や使用中の衝撃や荷重によって容易に剥がれたり、破れたりしないことである
このためには、確実な溶着が必要であるが過加熱するとプラスチック材料は熱変性を起こしもろくなり、ヒートシール線のエッジで切断したり、ラミネーションフイルムでは張り合わせ面が剥がれたりして破袋を起こし易くなる
このためには熱変性の少ない最も強い剥がれシールの状態を使用した最適なヒートシール巾の決定が必要である
本発明は、溶着面温度の再現性の保証ができる「溶着面温度測定法」(第8回日本包装学会年次大会研究発表会要旨集P.16〜等)を用いて被加熱材を剥がれシールの状態に溶着し、引っ張り試験の引っ張り強さのパターンの解析から、溶着面の巾の適正設定法の提示に関するものである
本明細書中に記載する溶着強さの実現で「ヒートシール強さ」、「引っ張り強さ」の2種を使う
前者はおもに〔JIS Z 0238〕の定義に基づくもの、後者は本発明に関係する実現とした
【0002】
【従来の技術】
従来のヒートシールの適否の判定は[JIS Z 0238]の引っ張り試験法によるヒートシール強さと剥がれ面の状態観察によって行われている
ヒートシール巾の選択はヒートシール操作の機能保証のための格別の決定法に基づいていないのでシール巾は破袋防御性が不足したり、過大になって包装材料の無駄につながっている
【0003】
【発明が解決しようとする課題】
従来、ヒートシールの加熱圧着条件の決定には次のような課題がある
(1)加熱条件の定量的な管理方法がなかった
(2)被加熱材料の加熱条件と適正なヒートシール条件との関連が曖昧だった
(3)破れやピンホールの発生の制御方法が明確でなかった
(4)剥がれシール(Peel Seal)と破れシール(Tear Seal)の識別法がなかった
(5)適正なヒートシール巾の決定方法がなかった
(6)安全を見て多めの材料の使用になりコストアップになっている
従来はこれらの対策のためのヒートシールの適否の判定は[JIS Z 0238]の引っ張り試験法によるヒートシール強さと剥がれ面の状態観察によって行われている
【0004】
【課題を解決する手段】
ヒートシール巾の決定方法を以下の手順で行う
(1) 被加熱材をヒートシーラントを内側にして重ね合わせ、これを巾20mm、長さ60mmの試験片に切断する。
(2) ヒートシールされる溶着面の温度を計測できる加熱試験装置を用い、該試験片を厚みが0.1〜0.15mmのポリ四フッ化エチレンシートで挟んで、0.1〜0.2Mpaの圧着圧で圧着加熱してヒートシールを行う。
(3) 圧着時間は、該加熱試験装置を用いて0.1〜0.2Mpaの圧着圧で圧着加熱して、溶着面の温度が0.1〜0.2℃のばらつきで一定になるまでの時間を予め調べておいて、これを(2)の圧着の時間として用いる。
(4) 圧着加熱後速やかに常温の金属片で圧接(0.05MPa以下)冷却する。
(5) 上記(1)、(2)、(4)はヒートシーラントの溶着開始温度付近から被加熱材の大きな熱変性を起こす加熱上限温度付近まで2〜5℃おきに繰返し行う。
(6) 加熱、冷却後の試験片の両側縁部をカットして巾を15±0.1mmとし、更にその全面ヒートシール部分の長さ(これがヒートシールの巾に相当する。)が15〜20mmになるようにカットする。
(7) 試験片の各非ヒートシール端を引っ張り試験機の両ジョーに装着し、かつ、両ジョーの間隔を20〜30mmとする。
(8) ジョー間隔を毎分100mmの速さで拡げて引っ張り試験を行い、引っ張り強さの経過をデジタル記録する。
(9) (5)において各温度でヒートシールした試験片を同様に引っ張り試験を行う。
(10) 記録データをパーソナルコンピュータに移して、上記引っ張り試験において、破れシールが発生した試験片のデータは破れ発生点まで、剥がれシールのデータは予め設定した剥離距離まで、各剥離距離の引っ張り強さに各剥離距離を乗じてその総和を計算し、これを各剥離距離までの剥離エネルギーとする。
(11) 溶着面の温度を横軸に剥離エネルギーを縦軸にしたデータ表及びグラフを作成し、破れシールの剥離エネルギー(破断エネルギー)を参照して、剥がれシールであって、その剥離エネルギーが破れシールの剥離エネルギー以上となるように、溶着面の温度と剥離距離を選択し、この剥離距離をヒートシール巾とする。
【0005】
【発明の実施の形態】
実験室に用意された溶着面温度を計測できる加熱試験装置(例えば実用新案登録第3056172号のような)を用いた。
【0006】
被加熱材をヒートシーラントを内側にして巾約20mm、長さ約60mmの試験片に切断する
加熱試験装置の加熱体には、加熱速度を減速して、加熱の均一化を図るために0.1〜0.15mmのテフロン(登録商標)シートでカバーし、0.1〜0.2MPaの圧着圧でヒートシールを行う
【0007】
一対の加熱体の調節温度は同一とし、ヒートシーラントの溶着開始温度付近からヒートシーラントと基材が大きな熱変性を起こす上限温度まで2〜5℃刻みに変更して順次加熱操作を行う
加熱後速やかに0.05MPa以下の常温の金属片で圧接して冷却するのが好ましい
【0008】
圧着時間は被加熱材のヒートシーラントを内側にして、10〜40μmの微細な温度センサーを挟んだまま、加熱体を作動させて、被加熱材の基材側から0.1〜0.2MPaで圧着加熱して溶着面温度が上昇して0.1〜0.2℃のばらつきで溶着面温度が一定になるまで記録して、時間を予め取得しておく(加熱温度試験範囲ならどこでもよい)
この操作は一度行えばよい
【0009】
試験片を溶着面温度が上昇して0.1〜0.2℃のばらつきになるまでの時間と同じ時間まで圧着する
この操作によって試験片の溶着面温度は加熱体の表面温度と一致する
【0010】
加熱、冷却後の試験片(9)は中央部分(左右をカット)を15±0.1mmの精度でカットし、全面ヒートシール部分(14)を15〜20mmになるようにカットする(図1(a)参照)
以上の手順でヒートシールされた試験片(9)を図1(b)に示した方法で低温の溶着面温度のヒートシール試験片(9)から順次引っ張り試験を行う
【0011】
試験片(9)をフォースゲージ(12)に連結した固定ジョー(10)と移動ジョー(11)に20〜30mmの間隔で固定した後に、毎分約100mmの速度で引っ張る
ジョー間隔を20〜30mmと狭くしたのは、試験片(9)のヒートシール以外の部位の伸びによる引っ張り強さに及ぼす影響を少なくするためである
【0012】
フォースゲージ(12)の出力はデジタル記録計(15)に接続して引っ張り強さを電子ファイルに記録する
代表的引っ張り試験パターンの剥がれシール(17)、破れシール(18)を図1(c)に示した
【0013】
電子ファイルのデータをパーソナルコンピュータ(16)に移して、各溶着面温度毎の引っ張り強さパターンの作成と指定剥離距離(例えば5mm、10mm等)の各データの(引っ張り強さ)×(剥離距離)と総和計算を行い溶着面温度ベースの剥離エネルギーデータを得る
【0014】
破れシールの発生した試験片(9)の場合、計算領域は破れの発生した剥離距離(L)までとする(図1(c)参照)
【0015】
試験片(9)を実際の袋の一部と見なし、(「JIS Z 0238」参照)制御されたヒートシール巾(14)は、内部圧力によって発生するヒートシール線(13)の単位長さ当たりの応力が溶着面の引っ張り強さより大きければ剥がれが起こり、剥離エネルギーに変換され内部発生エネルギーが消費され内部の発生応力は低下する
ヒートシール巾(14)が剥がれ距離より大きければ、単位長さ当たりの引っ張り強さと内部発生応力が釣り合った時点で剥がれの進行は止まる
【0016】
内部圧力によって発生した15mm当たりの応力が溶着面のヒートシール強さよりも大きくて、剥がれが起こらず試験片(9)のヒートシール線(13)が降伏点に達すれば、一気に破断を起こす
【0017】
剥がれシールの状態に溶着面温度を調節し、かつヒートシール巾(14)を調節することにより破れの発生を防御することができる
【0018】
破れシールの破断エネルギー(19)と剥がれシールの剥離エネルギー中で同一の値を示す条件がそれぞれの溶着面温度に相当する下限のヒートシール巾(14)は図1(c)に示したLpとなる
【0019】
ヒートシールされた実際の包装物に掛かるヒートシール線への応力は15mm巾に均一掛かることは少なく、5mm以下の巾に内部発生応力が集中することもあるのでこのような場合にも有効に作動する
【0020】
【実施例】
被加熱材として、市販の包装用のパウチを使った実施事例を示す
パウチの材料構成は[PET12μm/PE15μm/AL7μm/PE50μm]である
被加熱材を「発明の実施の形態」で示した要領で試験片(9)を作成し、引っ張り測定を行った
【0021】
溶着面温度別の引っ張り試験結果の代表例103℃(20)、120℃(21)を130℃(22)、125℃(23)を図2(a)に示した
溶着面温度が100℃から135℃の11点の引っ張り試験結果の全てに剥離距離を5mm、7.5mm、10mmの3点について剥離エネルギーを計算した
破れ、デ・ラミネーションを起こしたものはその引っ張り点までの剥離距離で計算をした
【0022】
この結果を図2(b)に示した
参考に、JIS法によるヒートシール強さ(28)の測定結果を併記した
破れシール(Tear Seal)を起こした125℃より高温側の剥離エネルギー(破断エネルギー)(27)は7.5mm巾(25)の105〜110℃の剥がれシール(Peel Sael)の剥離エネルギーと同等であり、115〜124℃の剥がれシールでは破れシールの剥離エネルギーを上廻っている。また、10mm巾(26)を選択すれば105℃で既に上廻っており、110℃以上では、破れ発生の1.5倍以上の破袋耐力を達成でき、本発明によるヒートシール巾の決定法の有効性を実現している
ヒートシール強さ(28)の評価では適正ヒートシール巾の設定は困難である
【0023】
【発明の効果】
JISのヒートシール検査法を用いてヒートシール管理を行っていても破袋やピンホールの発生が起こり、包装の基本機能を満足できないことがあった
特に過加熱による破袋やピンホールの発生原因対策が適正なヒートシール巾の選択で防御できるようになった
【0024】
衝撃荷重に対して、剥がれシールの剥離エネルギーによる荷重吸収能力を利用して破袋やピンホールの発生を防御することができるようになった
【図面の簡単な説明】
【図1】 ヒートシール試験片の引っ張り試験法説明である
【図2】 本発明の実施事例の説明である
【符号の説明】
9 試験片
10 固定ジョー
11 移動ジョー
12 フォースゲージ
13 ヒートシール銀
14 ヒートシール巾
15 デジタル記録計
16 パソコン
17 剥がれシールの剥離パターン
18 破れシールの引っ張り試験の破断パターン
19 破れシールの破断エネルギー
20 (事例)剥がれシールの剥離パターン(1)
21 (事例)剥がれシールの剥離パターン(2)
22 (事例)剥がれシールの剥離パターン(1)
23 (事例)剥がれシールの剥離パターン(2)
24 (事例)各溶着面温度の5mmの剥離エネルギーグラフ
25 (事例)各溶着面温度の7.5mmの剥離エネルギーグラフ
26 (事例)各溶着面温度の10mmの剥離エネルギーグラフ
27 (事例)各溶着面温度の破断エネルギーグラフ
28 (事例)各溶着面温度のヒートシール強さグラフ
[0001]
BACKGROUND OF THE INVENTION
For this reason, the function required for heat sealing, which is often used for welding sealing and bag making by crimping and heating sheet-like plastic, is that it is not easily peeled off or broken by impact or load during distribution or use. However, if it is overheated, the plastic material will be subject to thermal denaturation, and it will be easy to cause bag breakage by cutting at the edge of the heat-sealed wire or peeling the laminated surface with a lamination film. In order to achieve this, it is necessary to determine the optimum heat seal width using the state of the strongest peel seal with little heat denaturation. The present invention is a “welding surface temperature measuring method” (No. 1) that can guarantee the reproducibility of the welding surface temperature. The 8th Annual Meeting of the Japan Society of Packaging Research Abstracts P.16 ~ etc.), the material to be heated is peeled off and welded to the seal state, From the analysis of the tensile strength pattern, the realization of the welding strength described in this specification, which is related to the presentation of the appropriate setting method of the width of the welding surface, the "heat seal strength" and "tensile strength" The former using the two types is mainly based on the definition of [JIS Z 0238], and the latter is an implementation related to the present invention.
[Prior art]
The determination of the suitability of the conventional heat seal is based on the heat seal strength and the state of the peeled surface according to the tensile test method of [JIS Z 0238]. Since it is not based on the determination method, the seal width is insufficient for bag-breaking protection or excessively leading to waste of packaging materials.
[Problems to be solved by the invention]
Conventionally, the determination of heat seal thermocompression bonding conditions has the following problems: (1) There has been no quantitative management method of heating conditions (2) The heating conditions of the material to be heated and the appropriate heat sealing conditions The relationship was ambiguous. (3) The control method for the occurrence of tears and pinholes was not clear. (4) There was no method for distinguishing between peel seals and tear seals. (5) Appropriate heat. There was no method for determining the seal width. (6) The use of a larger amount of material due to safety considerations has led to an increase in cost. Conventionally, the determination of the suitability of heat sealing for these measures is the pull of [JIS Z 0238]. It is carried out by observing the heat seal strength and peeled surface state by the test method.
[Means for solving the problems]
The method for determining the heat seal width is performed according to the following procedure. (1) The materials to be heated are overlapped with the heat sealant inside, and this is cut into a test piece having a width of 20 mm and a length of 60 mm.
(2) Using a heating test apparatus capable of measuring the temperature of the welding surface to be heat-sealed, sandwiching the test piece with a polytetrafluoroethylene sheet having a thickness of 0.1 to 0.15 mm, 0.1 to 0. Heat sealing is performed by pressure heating with a pressure of 2 Mpa.
(3) The pressure bonding time is until the temperature of the weld surface becomes constant with a variation of 0.1 to 0.2 ° C. by using the heating test apparatus with pressure bonding pressure of 0.1 to 0.2 Mpa. This time is checked in advance, and this is used as the pressure bonding time of (2).
(4) Immediately after pressure heating, cool with pressure (0.05 MPa or less) with a metal piece at room temperature.
(5) The above (1), (2), and (4) are repeated every 2 to 5 ° C. from the vicinity of the welding start temperature of the heat sealant to the vicinity of the heating upper limit temperature at which the material to be heated undergoes large thermal denaturation.
(6) Both side edges of the test piece after heating and cooling are cut to a width of 15 ± 0.1 mm, and the length of the entire heat seal portion (this corresponds to the width of the heat seal) is 15 to. Cut to 20 mm.
(7) Each non-heat-sealed end of the test piece is attached to both jaws of the tensile tester, and the distance between both jaws is set to 20 to 30 mm.
(8) A tensile test is performed by expanding the jaw interval at a speed of 100 mm per minute, and the progress of the tensile strength is digitally recorded.
(9) A tensile test is similarly performed on the test piece heat-sealed at each temperature in (5).
(10) Transfer the recorded data to a personal computer, and in the above tensile test, the data of the test piece where the tear seal has occurred is up to the point of occurrence of the tear, and the data of the peel seal is up to the preset peel distance. Multiply each peel distance and calculate the total, and this is taken as the peel energy up to each peel distance.
(11) Create a data table and graph with the weld surface temperature on the horizontal axis and the peel energy on the vertical axis, and refer to the peel energy (break energy) of the tear seal. The temperature of the welding surface and the separation distance are selected so as to be equal to or higher than the peel energy of the tear seal, and this separation distance is defined as the heat seal width.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
A heating test apparatus (for example, utility model registration No. 3056172) that can measure the welding surface temperature prepared in the laboratory was used.
[0006]
A heating body of a heating test apparatus that cuts a material to be heated into a test piece having a width of about 20 mm and a length of about 60 mm with a heat sealant inside is used to reduce the heating rate and make the heating uniform. Cover with a Teflon (registered trademark) sheet of 1 to 0.15 mm, and heat-seal with a pressure of 0.1 to 0.2 MPa.
The heating temperature of the pair of heating elements is the same, and the heating operation is carried out sequentially after changing the heating temperature in steps of 2 to 5 ° C. from the vicinity of the welding start temperature of the heat sealant to the upper limit temperature at which the heat sealant and the base material undergo large thermal denaturation. It is preferable to cool by pressing with a metal piece at room temperature of 0.05 MPa or less.
The pressure bonding time is 0.1 to 0.2 MPa from the substrate side of the heated material by operating the heating body with the heat sealant of the heated material inside and sandwiching a fine temperature sensor of 10 to 40 μm. Recording is performed until the welding surface temperature rises by pressure heating and the welding surface temperature becomes constant with a variation of 0.1 to 0.2 ° C., and the time is acquired in advance (any heating temperature test range may be used).
This operation only needs to be performed once.
By pressing the test piece until the weld surface temperature rises to a variation of 0.1 to 0.2 ° C, the weld surface temperature of the test piece matches the surface temperature of the heating element. 0010
The test piece (9) after heating and cooling is cut so that the central portion (left and right cuts) has an accuracy of 15 ± 0.1 mm and the entire heat seal portion (14) is 15 to 20 mm (FIG. 1). (See (a))
The test piece (9) heat-sealed by the above procedure is sequentially subjected to a tensile test from the heat-seal test piece (9) having a low welding surface temperature by the method shown in FIG. 1 (b).
After fixing the test piece (9) to the fixed jaw (10) connected to the force gauge (12) and the moving jaw (11) at an interval of 20 to 30 mm, the jaw interval to be pulled at a speed of about 100 mm per minute is set to 20 to 30 mm. The reason for narrowing was to reduce the influence on the tensile strength due to the elongation of the part other than the heat seal of the test piece (9).
The output of the force gauge (12) is connected to a digital recorder (15) to record the tensile strength in an electronic file, and the peel seal (17) and tear seal (18) of a representative tensile test pattern are shown in FIG. 1 (c). [0013] shown in
Transfer the data of the electronic file to the personal computer (16), create a tensile strength pattern for each welding surface temperature, and (tensile strength) x (peeling distance) of each data of specified peeling distance (for example, 5 mm, 10 mm, etc.) ) And the total calculation to obtain the welding surface temperature-based release energy data [0014]
In the case of the test piece (9) in which the tear seal has occurred, the calculation area is limited to the separation distance (L T ) in which the tear has occurred (see FIG. 1 (c)).
[0015]
Considering the specimen (9) as part of the actual bag (see “JIS Z 0238”), the controlled heat seal width (14) is per unit length of the heat seal line (13) generated by the internal pressure. If the stress is greater than the tensile strength of the welded surface, peeling occurs, and the heat generation width (14), which is converted into peeling energy and consumes internally generated energy to reduce the internally generated stress, is less than the peeling distance. The progress of peeling stops when the tensile strength of the steel and the internally generated stress are balanced. [0016]
If the stress per 15 mm generated by the internal pressure is greater than the heat seal strength of the welded surface and peeling does not occur and the heat seal line (13) of the test piece (9) reaches the yield point, it will break at once. ]
The occurrence of tearing can be prevented by adjusting the weld surface temperature to the peel seal state and adjusting the heat seal width (14).
The lower limit of the heat seal width (14) corresponding to the welding surface temperature under the condition that the same value in the breaking energy (19) of the tear seal and the peel energy of the peel seal corresponds to Lp shown in FIG. 1 (c). [0019]
The stress on the heat-sealed wire applied to the actual heat-sealed package is not uniformly applied to the width of 15 mm, and the internally generated stress may concentrate on the width of 5 mm or less, so it works effectively even in such a case. [0020]
【Example】
The material configuration of the pouch showing an example of implementation using a commercially available packaging pouch as the material to be heated is [PET 12 μm / PE 15 μm / AL 7 μm / PE 50 μm] The material to be heated is as described in the “Embodiments of the Invention”. A test piece (9) was prepared and the tensile measurement was performed.
Typical examples of tensile test results by welding surface temperature 103 ° C. (20), 120 ° C. (21) from 130 ° C. (22), 125 ° C. (23) from FIG. For all 11 tensile test results at 135 ° C, the peel distance calculated for 3 points of 5 mm, 7.5 mm, and 10 mm was calculated as the peel distance up to the pull point. [0022]
With reference to the results shown in FIG. 2 (b), the peel energy (breaking energy) at a temperature higher than 125 ° C. causing a tear seal (Tear Seal) in which the measurement result of the heat seal strength (28) by the JIS method is written together. ) (27) is equivalent to the peel energy of a 105 mm to 110 ° C. peel seal with a width of 25 mm (25), and the peel seal of 115 to 124 ° C. exceeds the peel energy of the tear seal. . Moreover, if 10 mm width (26) is selected, it has already exceeded 105 ° C., and at 110 ° C. or higher, the bag breaking strength can be achieved 1.5 times or more of the occurrence of tearing. It is difficult to set an appropriate heat seal width in the evaluation of the heat seal strength (28) realizing the effectiveness of
【The invention's effect】
Even if heat seal management was performed using the JIS heat seal inspection method, bag breakage and pinholes occurred and the basic functions of the packaging could not be satisfied. Measures can be defended by selecting an appropriate heat seal width. [0024]
With respect to impact load, it has become possible to prevent the occurrence of bag breakage and pinholes by utilizing the load absorption ability by the peel seal peeling energy [Brief description of drawings]
FIG. 1 is an explanation of a tensile test method for a heat seal test piece. FIG. 2 is an explanation of an implementation example of the present invention.
9 Specimen 10 Fixed jaw 11 Moving jaw 12 Force gauge 13 Heat seal silver 14 Heat seal width 15 Digital recorder 16 PC 17 Peel seal peel pattern 18 Break seal tensile test break pattern 19 Break seal break energy 20 (Example) ) Peeling pattern of peel seal (1)
21 (Example) Peeling pattern of peel seal (2)
22 (Example) Peeling pattern of peel seal (1)
23 (Example) Peeling pattern of peeling seal (2)
24 (Case) 5 mm peeling energy graph 25 for each welding surface temperature (Case) 7.5 mm peeling energy graph 26 for each welding surface temperature (Case) 10 mm peeling energy graph 27 for each welding surface temperature (Case) Each welding Fracture energy graph of surface temperature 28 (Example) Heat seal strength graph of each welding surface temperature

Claims (1)

以下の手順よりなるヒートシール巾の決定方法
(1) 被加熱材をヒートシーラントを内側にして重ね合わせ、これを巾20mm、長さ60mmの試験片に切断する
(2) ヒートシールされる溶着面の温度を計測できる加熱試験装置を用い、該試験片を厚みが0.1〜0.15mmのポリ四フッ化エチレンシートで挟んで、0.1〜0.2Mpaの圧着圧で圧着加熱してヒートシールを行う
) 圧着時間は、該加熱試験装置を用いて0.1〜0.2Mpaの圧着圧で圧着加熱して、溶着面の温度が0.1〜0.2℃のばらつきで一定になるまでの時間を予め調べておいて、これを(2)の圧着の時間として用いる。
) 圧着加熱後速やかに常温の金属片で圧接(0.05MPa以下)冷却する
上記(1)、(2)、(4)はヒートシーラントの溶着開始温度付近から被加熱材の大きな熱変性を起こす加熱上限温度付近まで2〜5℃おきに繰返し行う
) 加熱、冷却後の試験片の両側縁部をカットして巾を15±0.1mmとし、更にその全面ヒートシール部分の長さが15〜20mmになるようにカットする
) 試験片の各非ヒートシール端を引っ張り試験機のジョーに装着し、かつ、両ジョーの間隔を20〜30mmとする。
) ジョー間隔を毎分100mmの速さで拡げて引っ張り試験を行い、引っ張り強さの経過をデジタル記録する
(5)において各温度でヒートシールした試験片を同様に引っ張り試験を行う
10) 記録データをパーソナルコンピュータに移して、上記引っ張り試験において、破れシールが発生した試験片のデータは破れ発生点まで、剥がれシールのデータは予め設定した剥離距離まで、各剥離距離の引っ張り強さに各剥離距離を乗じてその総和を計算し、これを各剥離距離までの剥離エネルギーとする。
11) 溶着面温度を横軸に剥離エネルギーを縦軸にしたデータ表及びグラフを作成し、破れシールの剥離エネルギー(破断エネルギー)を参照して、剥がれシールであって、その剥離エネルギーが破れシールの剥離エネルギー以上となるように、溶着面の温度と剥離距離を選択し、この剥離距離をヒートシール巾とする。
Method for Determining Heat Seal Width Comprising the Procedures (1) The materials to be heated are stacked with the heat sealant inside, and this is cut into a test piece having a width of 20 mm and a length of 60 mm .
(2) using a heating test equipment capable of measuring the temperature of the weld surfaces to be heat-sealed, the thickness of the test piece by being sandwiched polytetrafluoroethylene sheets 0.1 to 0.15 mm, from 0.1 to 0 Heat-sealing is performed by pressure heating with a pressure of 2 Mpa .
( 3 ) Crimping time is until the temperature of the welded surface becomes constant with a variation of 0.1 to 0.2 ° C. using the heating test apparatus with a crimping pressure of 0.1 to 0.2 Mpa. This time is checked in advance, and this is used as the pressure bonding time of (2).
( 4 ) Immediately after pressure heating, press contact (0.05 MPa or less) cooling with a metal piece at room temperature .
( 5 ) The above (1), (2), and (4) are repeated every 2 to 5 ° C. from the vicinity of the welding start temperature of the heat sealant to the vicinity of the heating upper limit temperature at which the material to be heated undergoes large thermal denaturation .
( 6 ) Cut both side edges of the test piece after heating and cooling to a width of 15 ± 0.1 mm, and further cut the entire heat-sealed portion to 15 to 20 mm .
( 7 ) Each non-heat-sealed end of the test piece is attached to both jaws of the tensile tester , and the distance between both jaws is set to 20 to 30 mm.
( 8 ) The jaw interval is increased at a speed of 100 mm / min , a tensile test is performed, and the progress of the tensile strength is digitally recorded .
( 9 ) A tensile test is similarly performed on the test piece heat-sealed at each temperature in (5) .
(10) Transfer the recorded data to a personal computer, in the tensile test, data for test piece tear seal occurs to break generation point, to peel distance data set in advance for peel peeling seals, each peel distance multiplied by the respective peeling distance in tensile strength to calculate the sum, which the peeling energy to each peel distance.
(11) the temperature of the weld surfaces to create a data table and graph were the peeling energy to the horizontal axis on the vertical axis, with reference to the tear seal of cleave energy (fracture energy), a peeling seal, its peeling energy The temperature of the welding surface and the separation distance are selected so as to be equal to or higher than the peel energy of the tear seal, and this separation distance is defined as the heat seal width .
JP2003201368A 2003-06-20 2003-06-20 How to determine the heat seal width Expired - Fee Related JP3811145B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003201368A JP3811145B2 (en) 2003-06-20 2003-06-20 How to determine the heat seal width
US10/772,549 US6952959B2 (en) 2003-06-20 2004-02-05 Method of designing a heat seal width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003201368A JP3811145B2 (en) 2003-06-20 2003-06-20 How to determine the heat seal width

Publications (2)

Publication Number Publication Date
JP2005007844A JP2005007844A (en) 2005-01-13
JP3811145B2 true JP3811145B2 (en) 2006-08-16

Family

ID=34100481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201368A Expired - Fee Related JP3811145B2 (en) 2003-06-20 2003-06-20 How to determine the heat seal width

Country Status (1)

Country Link
JP (1) JP3811145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279094B2 (en) 2017-06-09 2022-03-22 Kazuo Hishinuma Heat-sealing apparatus and method for forming composite heat seal structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279094B2 (en) 2017-06-09 2022-03-22 Kazuo Hishinuma Heat-sealing apparatus and method for forming composite heat seal structure

Also Published As

Publication number Publication date
JP2005007844A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
KR101994083B1 (en) Compound heat seal structure capable of being fitted to level difference of stacked area
JP4616287B2 (en) Peel and tear seal hybrid heat sealing method
EP3812287A1 (en) Heat sealer provided with interface temperature sensor
CN110487791B (en) Method for rapidly detecting heat packaging quality of aluminum plastic film
CN107966400A (en) The detection method of aluminum plastic film packaging effect
JP3811145B2 (en) How to determine the heat seal width
US20110120622A1 (en) Apparatus and method for welding a workpiece
US11279094B2 (en) Heat-sealing apparatus and method for forming composite heat seal structure
Ma et al. The effect of ultrasonic energy on joint characterization in ultrasonic spot welding multilayer tabs used in lithium-Ion battery manufacturing
JP3465741B2 (en) How to determine heat sealing conditions for plastics
JP3876990B2 (en) How to identify heat seal peeling and tearing
JP3318866B2 (en) How to measure the thermal welding temperature of plastics
JP2017114018A (en) Method for selection of sealant layer on base material
McGovern et al. Assessment of ultrasonic welds using pulsed infrared thermography
JPH05139417A (en) Heat-sealing device
JP2008207839A (en) Impulse sealer
Sharif et al. Fracture toughness analysis of aluminium foil and its adhesion with LDPE for packaging industry
Riedl Process optimization: Ultrasonic welding of coextruded polymer film
JP7227669B1 (en) A heat sealing device that forms a composite heat seal structure in which a linear peeling seal is added in the longitudinal direction of a belt-shaped peeling seal
JP2005007845A (en) Method for simulating heat sealing condition
Yiangkamolsing et al. Failure analysis and improvement of heat sealing testing method
JP5335450B2 (en) Ultrasonic metal bonding machine
JPH07232715A (en) Heat-sealer
JP2002225929A (en) Pack container, manufacturing method thereof, and battery device
JPH01167946A (en) Manufacture of thin battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150602

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees