JP3799463B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP3799463B2
JP3799463B2 JP37375498A JP37375498A JP3799463B2 JP 3799463 B2 JP3799463 B2 JP 3799463B2 JP 37375498 A JP37375498 A JP 37375498A JP 37375498 A JP37375498 A JP 37375498A JP 3799463 B2 JP3799463 B2 JP 3799463B2
Authority
JP
Japan
Prior art keywords
battery
thickness
unit cell
battery module
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37375498A
Other languages
Japanese (ja)
Other versions
JP2000195480A (en
Inventor
治夫 菊田
彰人 早野
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP37375498A priority Critical patent/JP3799463B2/en
Publication of JP2000195480A publication Critical patent/JP2000195480A/en
Application granted granted Critical
Publication of JP3799463B2 publication Critical patent/JP3799463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、電池モジュールに関し、特に、複数の蓄電システム用非水系二次電池を直列及び/又は並列に電気的に接続した電池モジュールに関するものである。
【0002】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特開平6−86463号公報には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、電圧が例えば50〜400Vの組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0003】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べ優れることから、その市場を飛躍的に延ばしている。
【0004】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、リチウムイオン電池をターゲットとし、リチウム電池電力貯蔵技術研究組合(LIBES)等で精力的に開発が進められている。
【0005】
これら大型リチウムイオン電池のエネルギー容量は、100Whから400Wh程度であり、体積エネルギー密度は、200〜300Wh/lと携帯機器用小型二次電池並のレベルに達している。その形状は、直径50mm〜70mm、長さ250mm〜450mmの円筒型、厚さ35mm〜50mmの角形又は長円角形等の扁平角柱形が代表的なものである。
【0006】
上述の大型電池を蓄電システムに用いる場合、一般に4〜10個の大型電池(単電池)を直列に接続し、15〜50Vの電池モジュールとし、さらに、これら電池モジュールを直列、並列に接続し、所定の電圧、容量を有する蓄電システムとして用いられることが多い。
【0007】
また、薄型のリチウム二次電池については、薄型の外装に、例えば、金属とプラスチックをラミネートした厚さ1mm以下のフィルムを収納したフィルム電池(特開平5−159757号公報、特開平7−57788号公報等)、厚さ2mm〜15mm程度の小型角型電池(特開平8−195204号公報、特開平8−138727号公報、特開平9−213286号公報等)が知られている。これらのリチウム二次電池は、いずれも、その目的が携帯機器の小型化及び薄型化に対応するものであり、例えば携帯用パソコンの底面に収納できる厚さ数mmでJIS A4サイズ程度の面積を有する薄型電池も開示されているが(特開平5−283105号公報)、エネルギー容量が10Wh以下であるため、蓄電システム用二次電池としては容量が小さ過ぎる。さらには、これら薄型電池を直列、並列に接続して電池モジュールとする場合、容量が小さいことから、放熱等を考慮しておらず、単純に積み重ねる等、特に工夫はなされていない。
【0008】
【発明が解決しようとする課題】
蓄電システム用の大型リチウム二次電池(エネルギー容量30Wh以上)においては、高エネルギー密度が得られるものの、その電池設計が携帯機器用小型電池の延長にあることから、直径又は厚さが携帯機器用小型電池の3倍以上の円筒型、角型等の電池形状とされる。この場合には、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りによって活物質のエントロピーが変化することによる電池の内部発熱により、電池内部に熱が蓄積されやすい。このため、電池内部の温度と電池表面付近の温度差が大きく、これに伴って内部抵抗が異なる。その結果、充電量、電圧のバラツキを生じ易い。また、この種の電池は複数個を組電池にして用いるため、システム内での電池の設置位置によっても蓄熱されやすさが異なって各電池間のバラツキが生じ、組電池全体の正確な制御が困難になる。更には、高率充放電時等に放熱が不十分な為、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解等よる寿命の低下、更には電池の熱暴走の誘起など信頼性、特に、安全性に問題が残されていた。
【0009】
この問題を解決するため、電気自動車用の蓄電システムでは、冷却ファンを用いた空冷、ペルチェ素子を用いた冷却法(特開平8−148189号公報)、電池内部に潜熱蓄熱材を充填する方法(特開平9−219213号公報)が開示されているが、いずれも外部からの冷却であり、本質的な解決法であるとは言えない。
【0010】
上記の問題を解決する手段としては、電池の表面積が大きくなる扁平型の電池が考えられるが、扁平形状の電池の場合、電池の厚みを薄くするに従い、電池表裏面積は大きくなり、電池内に収納される電極を押さえ込む力が弱くなる。特に、蓄電システムに用いられる大型リチウム二次電池(エネルギー容量30Wh以上)においては、その傾向が強く、例えば、100Wh級の厚さ6mmのリチウムイオン電池を考えた場合、電池表裏面の大きさは600cm2(片面)と非常に大きい。
【0011】
また、上記の蓄電システムにおいては、複数の単電池を直列、並列に接続して用いる電池モジュールが基本単位になるが、扁平型電池を電池モジュールにする技術は少なく、特に、電極を押さえ込む力が弱い大型の扁平形状の電池の場合、高率放電における容量低下及び充放電の繰り返しによるサイクル劣化が大きいという問題がある。このような問題を単電池の構造のみの工夫で解決することは難しく、これら電池を組み合わせた電池モジュールにおける解決が必要となる。
【0012】
本発明の目的は、30Wh以上の大容量且つ180Wh/l以上の体積エネルギー密度を有する蓄電システム用有機電解質電池を単電池として用いたサイクル特性及びレート特性の良好な電池モジュールを提供することにある。
【0013】
【課題を解決するための手段】
本発明は上記目的を達成するため、直列及び/又は並列に電気的に接続され、電池の厚み方向に1mm以上の隙間をもって配置された複数の単電池と、前記単電池間の隙間に配置され、両側の単電池を押圧するための少なくとも1つ以上の押圧部材と、前記複数の単電池を収容して固定するための外装部材とを備え、前記単電池は、正極、負極及びリチウム塩を含む非水系電解質を備え、厚さ12mm未満の扁平形状であり、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上である非水系二次電池であり、前記押圧部材は、前記単電池の中央部付近に少なくとも1つ配置され、電池の厚み方向における外装部材の内側の長さは、前記複数の単電池の合計の厚さと、前記単電池間の隙間に配置された前記押圧部材の合計の厚さとを加えた長さであり、前記外装部材の少なくとも一部が、前記電池の厚み方向の両端に配置された前記単電池の表裏面側の中央付近に配置されていることを特徴とする電池モジュールを提供するものである。
【0014】
【発明の実施の形態】
以下、本発明に係る一実施形態の電池モジュールについて図面を参照しながら説明する。図1は、本発明に係る一実施形態の電池モジュールの構成を示す斜視図である。
【0015】
図1に示すように、電池モジュールは、外装部材500、複数の単電池401を備える。外装部材500の中には、以下に説明する押圧部材を介して積層された複数の単電池401が収容されて固定されている。複数の単電池401は、直列及び/又は並列に電気的に接続され、電池の厚み方向に1mm以上の隙間をもって並べられており、各単電池間の隙間には両側の単電池に接触する押圧部材が少なくとも1つ以上配置されており、該押圧部材により各単電池に圧力が加えられるような外装構造によりモジュール化されている。
【0016】
次に、図1に示す外装部材についてさらに詳細に説明する。図2は、図1に示す外装部材の構成を示す斜視図である。
【0017】
図2に示すように、外装部材500は、6本の電池表裏面側のはり部材501、6本の電池の厚み方向側のはり部材502、4本の縦方向のはり部材503を備え、図示のように各々が連結されている。図2に示す外装部材の構成は、一例であり、特にこの例に限定されるものではないが、以下に説明する押圧部材により各単電池に圧力が加え得るような構造であればよく、単電池の膨れに充分耐えうる強度を有する必要がある。
【0018】
また、単電池の表裏面側のはり部材501の断面形状は、図3の(a)に示すようにコ字形状の両端部をさらに折り曲げて延出させた形状を有しているが、この例に特に限定されず、図3の(b)に示す四角形、図3の(c)に示すW字形状、図3の(d)に示す円形、図3の(e)に示すL字形状等が用いることができ、特に平板を折り曲げ加工したもの(図3の(a)、(c))、L字形状のもの(図3の(e))が軽量で強度が高いことから好ましい。また、電池厚み方向側のはり部材502も、上記と同様の種々の形状をとることが可能である。
【0019】
また、外装部材500は、単電池の表裏面側の全面に厚板、パンチング板等を用いたり、電池の厚み方向側の全面に厚板、パンチング板等を用いたり、電池モジュールの上部又は下部にはり部材、厚板材、パンチング板等を用いたり、これらを複合させたり、又は、はり部材の本数を増加又は減少させる等、種々の変更が可能であるが、電池の放熱を考えた場合、図2に示すように、単電池が外気になるべく触れることができるよう設計することが好ましい。また、先に述べたように、単電池中央部付近により高い圧力が必要になることから、例えば、図2に示すように単電池の表裏面側のはり部材501及び電池の厚み方向側のはり部材502は、単電池中央付近に少なくとも1本は配置されるように設計することが好ましい。
【0020】
外装部材500の組立は、特に限定されないが、ボルトによる固定、溶接等が実用的であり、特に、電池モジュールの組立の容易さ及びメンテナンスを考慮すると、少なくとも一部は、ボルトにより固定し、取り外し可能にすることが好ましい。
【0021】
次に、押圧部材についてさらに詳細に説明する。図4は、押圧部材と単電池との位置関係を説明するための斜視図である。なお、図4では、説明を容易にするため、3枚の単電池の間に押圧部材を配置する場合について説明するが、他の枚数の単電池の場合でも、各単電池間に押圧部材が同様に配置される。
【0022】
図4に示すように、単電池401aと単電池401bとの隙間、及び単電池401bと単電池401cとの隙間に、それぞれ3本の角柱の押圧部材402が、両側の各単電池に接触するように配置されている。
【0023】
本発明の電池モジュールに用いる単電池は、扁平形状を有していることから、電池の厚み方向の押さえが弱く、電池組立時又は電池充電時に、厚み(単電池の扁平形状の中央部C付近の厚み)が増加する傾向がある。ここで、押圧部材402の厚さをu、単電池401a、401b、401cの厚さをtとすると、3枚の単電池の両端の距離は、3t+2uになる。従って、外装部材500を3t+2uに合わせて設計すれば、各単電池401a、401b、401cが厚みtより膨れようとするとき、押圧部材402により各単電池401a、401b、401cに圧力がかかる。
【0024】
押圧部材402は、上記の角柱に特に限定されず、円柱、中空の角柱、又は中空の円柱等を用いることができ、その断面形状も、四角形に特に限定されず、円形、円盤形、L字形状、W字形状等の種々の形状を用いることができる。また、押圧部材402の取り付け方法も、特に限定されず、単電池に溶接等で接続されていてもよく、外装部材との組み合わせによる押さえだけで固定することも可能である。
【0025】
また、押圧部材402としては、弾性のある材料(例えばゴム)からなる部材、又は、弾性構造(例えばバネ)を有する部材を用いることもできる。例えば、図5の(a)、(b)に示すように、矢印方向に弾性を有するバネ板411、412を押圧部材として用いることも可能である。この場合、上述の角柱等の形状の押圧部材と異なり、単電池を押さえ込む力を、単電池間の隙間の大きさに応じて可変することができる。また、バネ板411、412は可撓性があるため、単電池間の種々の隙間の大きさに適用することができ、バネ板411、412が少なくとも両側の単電池に接触する範囲で、自由に外装部材を設計することができる。
【0026】
上記単電池間の隙間は、1mm以上であり、好ましくは2mm以上12mm以下であり、更に好ましくは2mm以上8mm以下である。この隙間は単電池の厚み、容量、蓄電システムの使用環境、用途等により適宜決定されるが、この隙間が小さすぎると、単電池の発熱を充分に放熱することが難しくなり、大きすぎると電池モジュールの体積が大きくなり好ましくない。なお、この隙間は電池モジュールに冷却ファン、放熱板等の冷却構造がある場合、更に小さくすることができる。また、押圧部材に放熱板としての機能も兼ね備えるよう、アルミニウム又はアルミニウム合金等の熱伝導率の高い金属を用いる場合も、単電池間の隙間を小さくすることができる。
【0027】
単電池に対する押圧部材の配置位置は、特に限定されないが、電池を均一に押さえられる様配置すべきである。特に電池中央部が、単電池において内部の電極を押さえ込む力が弱いことから、単電池中央部付近には少なくとも1つ押圧部材を配置することが好ましい。また、上述の弾性を有する押圧部材を用いて、電池中央部を周辺部に比べ強く押さえ込むことにより、単電池を均一におさえることも可能である。
【0028】
押圧部材と単電池が接触する面積は、単電池の扁平形状部分(表面又は裏面)の50%以下であり、30%以下であることがより好ましい。押圧部材が接触する面積が50%を超えると、単電池の発熱を充分に放熱することが難しくなり好ましくない。
【0029】
なお、図4では、3枚の単電池が並べられているが、本発明の電池モジュールにおいては、2枚以上の複数枚の単電池を用いることができる。望ましい単電池の枚数は、目的とする蓄電池システムの電圧、容量、大きさ、形状、単電池の電圧、容量、形状、重量等により適宜決定されるものであるが、一般には、4枚以上10枚以下である。また、これら単電池の電池の接続については、直列又は並列に接続されるのが一般的であるが、1つの電池モジュール内で直列接続と並列接続とが混在してもよい。
【0030】
次に、単電池である非水系二次電池についてさらに詳細に説明する。図6は、本発明の電池モジュールに用いられる扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図を示す図であり、図7は、図6に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【0031】
図6及び図7に示すように、単電池である非水系二次電池は、上蓋1及び底容器2からなる電池ケース(電池容器)と、該電池ケースの中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図7に示すように、セパレータ104を介して交互に配置されて積層されるが、単電池の構成は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。
【0032】
各正極101aの正極集電体は、正極タブ103aを介して正極端子3に電気的に接続され、同様に、各負極101b、101cの負極集電体は、負極タブ103bを介して負極端子4に電気的に接続されている。正極端子3及び負極端子4は、電池ケースすなわち上蓋1と絶縁された状態で取り付けられている。上蓋1及び底容器2は、図6中の拡大図に示したA点で全周を溶接されている。上蓋1には、電池内部の内圧が上昇したときに解放するための安全弁5が設けられている。図6及び図7に示す非水系二次電池の形状は、例えば縦300mm×横210mm×厚さ6mmであり、正極101aに正極にリチウム複合酸化物、負極に炭素材料を用いるリチウム二次電池の場合、80〜100Wh程度のエネルギー容量を
有し、本電池モジュールに用いることができる。
【0033】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、高電圧、高容量の電池が得られることから、好ましい。また、安全性を重視する場合、熱分解温度が高いマンガン酸化物が好ましい。このマンガン酸化物としてはLiMn24に代表されるリチウム複合マンガン酸化物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系、さらにはリチウム、酸素等を量論比よりも過剰にしたLiMn24が挙げられる。
【0034】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物、或いはポリアセン系有機半導体に代表される導電性高分子等が挙げられる。特に、安全性の観点から、150℃前後の発熱が小さいポリアセン系物質又はこれを含んだ材料が望ましい。
【0035】
上記の非水系二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF6、LiBF4、LiClO4等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γーブチルラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、該電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0036】
セパレータ104の材質は、特に限定されるものではないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス等が挙げられるが、ポリエチレン、ポリプロピレンが、コスト、含水などの観点から望ましい。また、セパレータは 上記の一種又は複数種を用いることも可能であり、また、複数のセパレータがラミネート(接着)されていてもよい。
【0037】
上記のように構成された非水系二次電池を用いた電池モジュールは、家庭用蓄電システム(夜間電力貯蔵、コージェネレション、太陽光発電等)、電気自動車等の蓄電システム等に用いることができ、大容量且つ高エネルギー密度を有することができる。この場合、単電池のエネルギー容量は、好ましくは30Wh以上、より好ましくは50Wh以上であり、且つエネルギー密度は、好ましくは180Wh/l以上、より好ましくは200Wh/lである。エネルギー容量が30Wh未満の場合、或いは、体積エネルギー密度が180Wh/l未満の場合は、該電池を組み合わせた電池モジュールを蓄電システムに用いるには容量が小さく、充分なシステム容量を得るために1つの電池モジュールの単電池の直並列数又は電池モジュールの数を増やす必要があること、また、コンパクトな設計が困難となることから蓄電システム用としては好ましくない。
【0038】
また、上記の扁平形状の非水系二次電池の厚さは、好ましくは12mm未満、より好ましくは10mm未満、さらに好ましくは8mm未満である。厚さの下限については電極の充填率、電池サイズ(薄くなれば同容量を得るためには面積が大きくなる)を考慮した場合、2mm以上が実用的である。電池の厚さが12mm以上になると、電池内部の発熱を充分に外部に放熱することが難しくなること、或いは電池内部と電池表面付近での温度差が大きくなり、内部抵抗が異なる結果、電池内での充電量、電圧のバラツキが大きくなる。なお、具体的な厚さは、電池容量、エネルギー密度に応じて適宜決定されるが、期待する放熱特性が得られる最大厚さで設計するのが、好ましい。
【0039】
また、上記の非水系二次電池の形状としては、例えば、扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点から、電池の扁平形状の表裏面が矩形であり、図6に示すようなノート型の形状が好ましい。
【0040】
次に、上記の上蓋1及び底容器2からなる電池ケースの製造方法の一例として、ノート型形状の電池ケースの製造方法について説明する。一般に角形の電池は、民生用小型電池では、50mm角、厚さ6mm程度のものであり、図8に示すように、厚板の深絞りで製造される底容器21(負極端子を兼ねる)と、安全弁、正極端子を設置した上蓋22をレーザー溶接することにより製造されている。
【0041】
しかしながら、図6に示すようなノート型電池の場合、小型二次電池と同様の方法で製造することは難しく、電池ケースの底容器2は、図9に示す形状の薄板を破線L1に沿って内側に曲げ、さらに一点鎖線L2に沿って外側に曲げ、その後Aで示される角部を溶接したり、又は、薄板の絞り加工(非常に浅い絞り加工)で製造し、端子及び安全弁が設置された上蓋1を図6の様に溶接することにより得られる。また、薄板を図10の様に折曲げ、A部を溶接した構造体13に横蓋11、12を溶接することでも製造できる。
【0042】
上記薄板等の電池ケースに用いられる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、鉄、ステンレス鋼、アルミニウム等が一般的であり、実用的である。また、電池ケースの厚さも電池の用途、形状或いは電池ケースの材質により適宜決定され、特に限定されるものではない。好ましくは、その電池表面積の80%以上の部分の厚さ(電池ケースを構成する一番面積が広い部分の厚さ)が0.2mm以上である。上記厚さが0.2mm未満では、電池の製造に必要な強度が得られないことから望ましくなく、この観点から、より好ましくは0.3mm以上である。また、同部分の厚さは、1mm以下であることが望ましい。この厚さが1mmを超えると、電池の内容積が減少し充分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0043】
上記のように、非水系二次電池の厚さを12mm未満に設計することにより、例えば、該電池が30Wh以上の大容量且つ180Wh/lの高エネルギー密度を有する場合、高率充放電時等においても、電池温度の上昇が小さく、優れた放熱特性を有することができる。従って、内部発熱による電池の蓄熱が低減され、結果として電池の熱暴走も抑止することが可能となり信頼性、安全性に優れた非水系二次電池を提供することができ、電池モジュールの設計において、放熱対策等が容易であり、電池モジュールの信頼性、安全性を向上させることができる。
【0044】
また、本実施形態の電池モジュールは、各単電池に充分な圧力を加えることが可能であり、単電池自身を均一な厚みに保つことができることから、サイクル特性及びレート特性に優れた電池モジュールを得ることができ、単電池の放熱特性の良さを十分に発揮することができる。なお、上記の電池モジュールは、単独で、若しくは更に複数個直列又は並列に接続されて、蓄電システムに用いられるが、実用においては、必要に応じて、該電池モジュールを制御するシステムをモジュールの側面又は上面等に設置することも可能である。
【0045】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。
(実施例)
(1)LiCo24100重量部、アセチレンブラック8重量部、ポリビニリデンフルオライド(PVDF)3重量部をN−メチルピロリドン(NMP)100重量部と混合し正極合材スラリーを得た。該スラリーを集電体となる厚さ20μmのアルミ箔の両面に塗布、乾燥した後、プレスを行い、正極を得た。図11は電極の説明図である。本実施例において電極101の塗布面積(W1×W2)は、268×178mm2であり、20μmの集電体102の両面に95μmの厚さで塗布されている。その結果、電極厚さtは210μmとなっている。また、集電体102の一方の短辺の端部部分1cmは、電極が塗布されておらず、タブ103(厚さ0.1mm、幅6mmのアルミ)が溶接されている。
【0046】
(2)メソカーボンマイクロビーズ(MCMB、大阪ガスケミカル製、品番6−28)100重量部、PVDF10重量部をNMP90重量部と混合し、負極合材スラリーを得た。該スラリーを集電体となる厚さ14μmの銅箔の両面に塗布、乾燥した後、プレスを行い、負極を得た。形状は前述の正極と同様であるので、図11を用いて説明する。本実施例において電極101の塗布面積(W1×W2)は、270×180mm2であり、14μmの集電体102の両面に105μmの厚さで塗布されている。その結果、電極厚さtは224μmとなっている。また、集電体102の一方の短辺の端部部分1cmは、電極が塗布されておらず、タブ103(厚さ0.1mm、巾6mmのニッケル)が溶接されている。
【0047】
更に、同様の手法で片面だけに塗布し、それ以外は同様の方法で厚さ119μmの片面電極を作成した。片面電極は(3)項の電極積層体において外側に配置される(図7中101c)。
【0048】
(3)上記(1)項で得られた正極8枚、負極9枚(内片面2枚)を図7に示すようにセパレータ104(ポリエチレン−ポリプロピレン不織布とポリプロピレン製微孔膜の重ね合わせ)を介して、交互に積層し電極積層体を作成した。
【0049】
(4)電池の底容器2(図6参照)は、0.5mmのSUS304製薄板を深さ5mmに絞り作成した。また、電池の上蓋1も厚さ0.5mmのSUS304製薄板で作成した。該上蓋には、SUS304製の正極及び負極端子3、4(6mmφ)を取り付けると共に安全弁用穴(8mmφ)を設け、正極及び負極端子3、4は、ポリプロピレン製パッキンで上蓋1と絶縁されている。
【0050】
(5)上記(3)項で作成した電極積層体の各正極タブ103aを正極端子3に、各負極タブ103bを負極端子4に接続線を介して溶接したのち、電極積層体を底容器2に配置し、絶縁テープで固定し、図6の角部Aを全周に亘りレーザー溶接した。その後、安全弁用穴から電解液としてエチレンカーボネートとジエチルカーボネートを1:1重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液し、厚さ0.1mmのアルミ箔を用いて蓋を閉めた。
【0051】
(6)得られた電池を5Aの電流で4.1Vまで充電し、その後4.1Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、10Aの定電流で2.5Vまで放電した。放電容量は21.1Ahであった。放電時の電池の温度上昇は、同容量の箱形電池(厚み12mm以上の電池)の場合に比べ少なかった。
【0052】
(7)上記の電池を用いて上記と同一条件で充放電を10サイクル繰り返した時の容量は19.8Ahであった。さらに、11サイクル目に5Aの電流で4.1Vまで充電し、その後4.1Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、20Aの定電流で2.5Vまで放電したところ、単電池での容量は11.8Ahとレート特性が不十分であった。
【0053】
(8)上記単電池を8枚用い、図12の様に並べ、図2に示す外装部材500に入れ、電池モジュールを作製した。各電池間には厚さ3mmで幅20mmの押圧部材402を3枚、図4に示すような位置に挿入した。押圧部材402の位置は単電池の中央部と単電池の外側から20mmとした。また、単電池の表裏面側のはり部材501には、厚さ2mmのSUS304製平板を、図3の(a)に示す断面形状を有するように折り曲げて作成した部材(深さ4mm、幅30mm)を用いた。電池の厚み方向側のはり部材502は、厚み5mmで幅30mmのアルミ板を用いた。また、縦方向のはり部材503には、厚さ2mmで幅5mmのSUS304製L字形状部材を使用した。各はり部材はボルトで締めて固定した。得られた電池モジュールの電池の厚み方向の長さが81mmであり、外装部材500の内側の長さが69mmであり、単電池両端の間隔が69mmになるように設計されている。
【0054】
(9)(8)で得られた電池モジュールにおいて、各単電池を直列に接続し、5Aの定電流で32.8Vまで充電し、その後32.8Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、10Aの定電流で20Vまで放電した。放電容量は20.7Ahであった。
【0055】
(10)該電池モジュールの単電池を用いて同一条件で充放電を10サイクル繰り返した時の容量は20.1Ahであった。さらに、11サイクル目に5Aの電流で32.8Vまで充電し、その後32.8Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、20Aの定電流で20Vまで放電したところ、容量は15.8Ahとレート特性が単電池に比べ向上した。
(比較例)
押圧部材を用いない点以外は上記の実施例と同様にして電池モジュールを作製した。各単電池を直列に接続し、5Aの電流で32.8Vまで充電し、その後32.8Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、10Aの定電流で20Vまで放電した。放電容量は20.4Ahであった。
【0056】
次に、該電池モジュールの単電池を用いて同一条件で充放電を10サイクル繰り返した時の容量は19.5Ahであった。さらに、11サイクル目に5Aの電流で32.8Vまで充電し、その後32.8Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、20Aの定電流で20Vまで放電したところ、容量は10.9Ahとレート特性が悪かった。
【0057】
【発明の効果】
以上から明らかな通り、本発明によれば、30Wh以上の大容量且つ180Wh/l以上の体積エネルギー密度を有し、放熱特性の優れた安全性の高い蓄電システム用有機電解質電池を単電池として用い、該単電池を複数接続する電池モジュールにおいて、両側の単電池を押圧するための少なくとも1つ以上の押圧部材を単電池間の隙間に配置することにより、良好なサイクル特性及びレート特性を達成することができる。
【図面の簡単な説明】
【図1】本発明に係る一実施形態の電池モジュールの構成を示す斜視図である。
【図2】図1に示す外装部材の構成を示す斜視図である。
【図3】図2に示す外装部材のはり部材の断面形状の例を示す図である。
【図4】押圧部材と単電池との位置関係を説明するための斜視図である。
【図5】他の押圧部材の例を示す斜視図である。
【図6】図1に示す単電池の一例である蓄電システム用非水系二次電池の平面図及び側面図を示す図である。
【図7】図6に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【図8】従来の小型角型電池の製造方法の説明図である。
【図9】図1に示す底容器の製造方法の一例の説明図である。
【図10】本発明の非水系二次電池の電池ケースの製造方法の他の一例の説明図である。
【図11】本発明の電池モジュールの実施例に用いた単電池の電極の説明図である。
【図12】本発明の電池モジュールの実施例に用いた単電池の配置の説明図である。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 安全弁
101 電極
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
102 集電体
103 タブ
103a 正極タブ
103b 負極タブ
104 セパレータ
111a 正極ユニット
111b 負極ユニット
111c 片面負極ユニット
401、401a、402b、402c 単電池
402 押圧部材
500 外装部材
501、502、503 はり部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery module, and more particularly to a battery module in which a plurality of non-aqueous secondary batteries for a power storage system are electrically connected in series and / or in parallel.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Japanese Patent Laid-Open No. 6-86463 proposes a total system that combines electricity, gas cogeneration, fuel cells, storage batteries, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. ing. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of 50 to 400 V, for example, and in most cases, lead batteries are used.
[0003]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. , Has dramatically expanded its market.
[0004]
In response, in the field of large-scale batteries for power storage systems, lithium-ion batteries are targeted as candidates for high-energy density batteries, and development is actively underway by the Lithium Battery Power Storage Technology Research Association (LIBES) and others. .
[0005]
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, the same level as a small secondary battery for portable devices. The shape is typically a cylindrical shape having a diameter of 50 mm to 70 mm, a length of 250 mm to 450 mm, and a flat prismatic shape such as a square or oblong square having a thickness of 35 mm to 50 mm.
[0006]
When using the above-mentioned large battery for a power storage system, generally 4 to 10 large batteries (single cells) are connected in series to form a battery module of 15 to 50 V, and these battery modules are connected in series and in parallel. It is often used as a power storage system having a predetermined voltage and capacity.
[0007]
As for a thin lithium secondary battery, for example, a film battery in which a film having a thickness of 1 mm or less obtained by laminating metal and plastic is accommodated in a thin exterior (Japanese Patent Laid-Open Nos. 5-159757 and 7-57788). And a small prismatic battery having a thickness of about 2 mm to 15 mm (Japanese Patent Laid-Open Nos. 8-195204, 8-138727, 9-213286, etc.) are known. Each of these lithium secondary batteries has a purpose corresponding to the miniaturization and thinning of portable devices. For example, the lithium secondary battery has a thickness of several millimeters that can be stored on the bottom of a portable personal computer and has an area of about JIS A4 size. Although the thin battery which has is also disclosed (Unexamined-Japanese-Patent No. 5-283105), since an energy capacity is 10 Wh or less, a capacity | capacitance is too small as a secondary battery for electrical storage systems. Furthermore, when these thin batteries are connected in series and in parallel to form a battery module, since the capacity is small, heat dissipation is not taken into consideration, and no particular contrivance is made such as simple stacking.
[0008]
[Problems to be solved by the invention]
A large lithium secondary battery (with an energy capacity of 30 Wh or more) for a power storage system can obtain a high energy density, but its battery design is an extension of a small battery for portable devices, so the diameter or thickness is for portable devices. The shape of the battery is a cylindrical shape or a rectangular shape that is three times or more that of a small battery. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to the internal resistance of the battery during charging and discharging, or internal heat generation of the battery due to change in entropy of the active material due to the entry and exit of lithium ions. For this reason, the temperature difference between the temperature inside the battery and the vicinity of the battery surface is large, and the internal resistance differs accordingly. As a result, variations in charge amount and voltage are likely to occur. In addition, since this type of battery is used as a plurality of assembled batteries, the ease of heat storage differs depending on the installation position of the batteries in the system, resulting in variations among the batteries, and accurate control of the entire assembled battery is possible. It becomes difficult. In addition, because of insufficient heat dissipation during high-rate charging / discharging, etc., the battery temperature rises, leaving the battery unfavorable, resulting in a decrease in life due to decomposition of the electrolyte, and thermal runaway of the battery. Problems such as induction of reliability, particularly safety, remained.
[0009]
In order to solve this problem, in an electricity storage system for an electric vehicle, an air cooling using a cooling fan, a cooling method using a Peltier device (Japanese Patent Laid-Open No. 8-148189), a method of filling a latent heat storage material inside a battery ( Japanese Patent Laid-Open No. 9-219213) is disclosed, but any of them is cooling from the outside, and cannot be said to be an essential solution.
[0010]
As a means for solving the above problem, a flat battery with a large surface area of the battery can be considered, but in the case of a flat battery, as the thickness of the battery is reduced, the front and back areas of the battery increase, The force for pressing the electrode to be stored is weakened. In particular, a large lithium secondary battery (energy capacity of 30 Wh or more) used in a power storage system has a strong tendency. For example, when considering a 100 Wh-class lithium ion battery having a thickness of 6 mm, the size of the front and back surfaces of the battery is 600cm 2 Very large (one side).
[0011]
Further, in the above power storage system, a battery module that uses a plurality of single cells connected in series or in parallel is a basic unit, but there are few techniques for converting a flat battery into a battery module, and in particular, the force to hold down an electrode is low. In the case of a weak large-sized flat battery, there is a problem that the cycle deterioration due to the capacity reduction in high-rate discharge and repeated charge / discharge is large. It is difficult to solve such a problem only with a device structure of a single battery, and a solution in a battery module combining these batteries is required.
[0012]
An object of the present invention is to provide a battery module having good cycle characteristics and rate characteristics using an organic electrolyte battery for a power storage system having a large capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more as a unit cell. .
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is arranged in a gap between a plurality of single cells that are electrically connected in series and / or in parallel and arranged with a gap of 1 mm or more in the thickness direction of the battery. At least one pressing member for pressing the unit cells on both sides, and the plurality of unit cells. Contain The unit cell includes a non-aqueous electrolyte including a positive electrode, a negative electrode, and a lithium salt, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more, and a volume energy density of 180 Wh. / Non-aqueous secondary battery The at least one pressing member is arranged near the center of the unit cell, and the inner length of the exterior member in the thickness direction of the cell is the total thickness of the plurality of unit cells and the interval between the unit cells. The total thickness of the pressing members disposed in the gap is added, and at least a part of the exterior member is on the front and back sides of the unit cell disposed at both ends in the thickness direction of the battery. Located near the center The battery module characterized by the above is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a battery module according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a battery module according to an embodiment of the present invention.
[0015]
As shown in FIG. 1, the battery module includes an exterior member 500 and a plurality of single cells 401. In the exterior member 500, a plurality of unit cells 401 stacked via pressing members described below are accommodated and fixed. The plurality of unit cells 401 are electrically connected in series and / or in parallel, and are arranged with a gap of 1 mm or more in the thickness direction of the cells, and the gap between each unit cell is in contact with the unit cells on both sides. At least one or more members are arranged, and a module is formed by an exterior structure in which pressure is applied to each unit cell by the pressing member.
[0016]
Next, the exterior member shown in FIG. 1 will be described in more detail. FIG. 2 is a perspective view illustrating a configuration of the exterior member illustrated in FIG. 1.
[0017]
As shown in FIG. 2, the exterior member 500 includes six battery front and back beam members 501, six battery thickness direction beam members 502, and four vertical beam members 503. As shown in FIG. The structure of the exterior member shown in FIG. 2 is an example, and is not particularly limited to this example. However, any structure may be used as long as pressure can be applied to each single cell by a pressing member described below. It must be strong enough to withstand battery swelling.
[0018]
Further, the cross-sectional shape of the beam member 501 on the front and back surfaces of the unit cell has a shape in which both ends of the U-shape are further bent and extended as shown in FIG. There is no particular limitation on the example, and the quadrangle shown in FIG. 3B, the W shape shown in FIG. 3C, the circle shown in FIG. 3D, and the L shape shown in FIG. In particular, those obtained by bending a flat plate ((a) and (c) in FIG. 3) and L-shaped ((e) in FIG. 3) are preferable because they are lightweight and have high strength. Further, the beam member 502 on the battery thickness direction side can take various shapes similar to the above.
[0019]
In addition, the exterior member 500 uses a thick plate, a punching plate, or the like on the entire front and back sides of the unit cell, or uses a thick plate, a punching plate, or the like on the entire surface in the thickness direction of the battery. Various changes are possible, such as using a beam member, thick plate material, punching plate, etc., combining these, or increasing or decreasing the number of beam members, but when considering heat dissipation of the battery, As shown in FIG. 2, it is preferable to design so that the unit cell can be exposed to the outside air as much as possible. Further, as described above, since a higher pressure is required near the center of the unit cell, for example, as shown in FIG. 2, the beam member 501 on the front and back sides of the unit cell and the beam in the thickness direction side of the cell. It is preferable that at least one member 502 is designed in the vicinity of the center of the unit cell.
[0020]
The assembly of the exterior member 500 is not particularly limited, but fixing with bolts, welding, and the like are practical. Particularly, considering the ease of assembly and maintenance of the battery module, at least a part is fixed with bolts and removed. Preferably it is possible.
[0021]
Next, the pressing member will be described in more detail. FIG. 4 is a perspective view for explaining the positional relationship between the pressing member and the unit cell. In FIG. 4, for ease of explanation, a case where a pressing member is arranged between three unit cells will be described. However, even in the case of other number of unit cells, there is a pressing member between each unit cell. Arranged similarly.
[0022]
As shown in FIG. 4, three prismatic pressing members 402 are in contact with the unit cells on both sides in the gap between the unit cells 401a and 401b and the unit cell 401b and the unit cell 401c. Are arranged as follows.
[0023]
Since the unit cell used in the battery module of the present invention has a flat shape, the thickness of the cell is weakly pressed, and the thickness (near the central part C of the unit cell flat shape) during battery assembly or battery charging is weak. The thickness) tends to increase. Here, if the thickness of the pressing member 402 is u and the thickness of the unit cells 401a, 401b, and 401c is t, the distance between both ends of the three unit cells is 3t + 2u. Therefore, if the exterior member 500 is designed to be 3t + 2u, when the unit cells 401a, 401b, 401c are about to swell from the thickness t, the pressure member 402 applies pressure to the unit cells 401a, 401b, 401c.
[0024]
The pressing member 402 is not particularly limited to the above-described prism, and a cylinder, a hollow prism, a hollow cylinder, or the like can be used, and the cross-sectional shape is not particularly limited to a quadrangle, and is circular, disk-shaped, L-shaped. Various shapes such as a shape and a W shape can be used. A method for attaching the pressing member 402 is not particularly limited, and may be connected to the single cell by welding or the like, and can be fixed only by pressing with a combination with the exterior member.
[0025]
Further, as the pressing member 402, a member made of an elastic material (for example, rubber) or a member having an elastic structure (for example, a spring) can be used. For example, as shown in FIGS. 5A and 5B, spring plates 411 and 412 having elasticity in the arrow direction can be used as the pressing member. In this case, unlike the above-described pressing member having a shape such as a prism, the force for pressing the unit cells can be varied according to the size of the gap between the unit cells. In addition, since the spring plates 411 and 412 are flexible, they can be applied to various gap sizes between the single cells, and the spring plates 411 and 412 are free as long as the spring plates 411 and 412 contact at least the single cells on both sides. The exterior member can be designed.
[0026]
The gap between the single cells is 1 mm or more, preferably 2 mm or more and 12 mm or less, more preferably 2 mm or more and 8 mm or less. This gap is appropriately determined depending on the thickness, capacity, usage environment, usage, etc. of the unit cell. If this gap is too small, it will be difficult to sufficiently dissipate the heat generated by the unit cell. The volume of the module becomes large, which is not preferable. The gap can be further reduced when the battery module has a cooling structure such as a cooling fan or a heat sink. Moreover, also when using metals with high heat conductivity, such as aluminum or aluminum alloy, so that the pressing member also has a function as a heat sink, the gap between the single cells can be reduced.
[0027]
Although the arrangement position of the pressing member with respect to the unit cell is not particularly limited, it should be arranged so that the battery can be pressed uniformly. In particular, it is preferable that at least one pressing member is disposed in the vicinity of the central portion of the single cell because the central portion of the battery has a weak force for pressing the internal electrode in the single cell. In addition, by using the pressing member having elasticity as described above, the cell center can be pressed down more strongly than the periphery, so that the cells can be kept uniform.
[0028]
The area where the pressing member and the single cell come into contact is 50% or less, more preferably 30% or less, of the flat portion (front surface or back surface) of the single cell. When the area where the pressing member comes into contact exceeds 50%, it is difficult to sufficiently dissipate the heat generated by the unit cell, which is not preferable.
[0029]
In FIG. 4, three unit cells are arranged, but in the battery module of the present invention, two or more unit cells can be used. The desired number of cells is appropriately determined depending on the voltage, capacity, size, shape, voltage, capacity, shape, weight, etc. of the target storage battery system. Less than In addition, the cells of these single cells are generally connected in series or in parallel, but series connection and parallel connection may be mixed in one battery module.
[0030]
Next, the non-aqueous secondary battery that is a single battery will be described in more detail. FIG. 6 is a diagram showing a plan view and a side view of a flat rectangular (note type) non-aqueous secondary battery for power storage system used in the battery module of the present invention, and FIG. 7 is a diagram of the battery shown in FIG. It is a side view which shows the structure of the electrode laminated body accommodated in an inside.
[0031]
As shown in FIGS. 6 and 7, the non-aqueous secondary battery, which is a single battery, includes a battery case (battery container) including an upper lid 1 and a bottom container 2, and a plurality of positive electrodes housed in the battery case. 101a, negative electrodes 101b and 101c, and an electrode laminate including the separator 104. In the case of a flat type non-aqueous secondary battery, the positive electrodes 101a and the negative electrodes 101b (or the negative electrodes 101c arranged on both outer sides of the laminate) are alternately arranged via separators 104 as shown in FIG. However, the configuration of the unit cells is not particularly limited to this arrangement, and the number of stacks and the like can be variously changed according to the required capacity and the like.
[0032]
The positive electrode current collector of each positive electrode 101a is electrically connected to the positive electrode terminal 3 via the positive electrode tab 103a. Similarly, the negative electrode current collector of each negative electrode 101b, 101c is connected to the negative electrode terminal 4 via the negative electrode tab 103b. Is electrically connected. The positive terminal 3 and the negative terminal 4 are attached in a state insulated from the battery case, that is, the upper lid 1. The upper lid 1 and the bottom container 2 are welded all around the point A shown in the enlarged view of FIG. The upper lid 1 is provided with a safety valve 5 for releasing when the internal pressure inside the battery rises. The shape of the non-aqueous secondary battery shown in FIGS. 6 and 7 is, for example, 300 mm long × 210 mm wide × 6 mm thick. The lithium secondary battery uses a lithium composite oxide for the positive electrode 101a and a carbon material for the negative electrode. The energy capacity of about 80-100Wh
And can be used for the battery module.
[0033]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used, and a high voltage and high capacity battery can be obtained, which is preferable. Further, when safety is important, manganese oxide having a high thermal decomposition temperature is preferable. As this manganese oxide, LiMn 2 O Four Lithium composite manganese oxide, a system in which one or more different metal elements are added to these composite oxides, and LiMn in which lithium, oxygen, etc. are made in excess of the stoichiometric ratio 2 O Four Is mentioned.
[0034]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene, which are used as negative electrode materials for known lithium ion batteries. Examples thereof include conductive polymers represented by organic organic semiconductors. In particular, from the viewpoint of safety, a polyacene-based substance that generates a small amount of heat at around 150 ° C. or a material containing the same is desirable.
[0035]
As the electrolyte of the non-aqueous secondary battery described above, a non-aqueous electrolyte containing a known lithium salt can be used, and is appropriately determined depending on the use conditions such as the positive electrode material, the negative electrode material, the charging voltage, and more specifically. LiPF 6 , LiBF Four LiClO Four A lithium salt such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone, methyl acetate, methyl formate, or a mixture of two or more of these solvents. Etc. are exemplified. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and naturally the electrolytic solution has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0036]
The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamide, kraft paper, glass, and the like, and polyethylene and polypropylene are preferable from the viewpoints of cost, water content, and the like. Moreover, said separator can also use 1 type or multiple types of above, and the some separator may be laminated (adhered).
[0037]
The battery module using the non-aqueous secondary battery configured as described above can be used for a household power storage system (night power storage, cogeneration, solar power generation, etc.), a power storage system such as an electric vehicle, and the like. , Can have large capacity and high energy density. In this case, the energy capacity of the unit cell is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh, or when the volume energy density is less than 180 Wh / l, the battery module combined with the battery has a small capacity for use in an electricity storage system, and one capacity is required to obtain a sufficient system capacity. Since it is necessary to increase the number of battery modules in series / parallel or the number of battery modules, and it is difficult to achieve a compact design, it is not preferable for a power storage system.
[0038]
Moreover, the thickness of the flat non-aqueous secondary battery is preferably less than 12 mm, more preferably less than 10 mm, and even more preferably less than 8 mm. As for the lower limit of the thickness, 2 mm or more is practical in consideration of the filling factor of the electrode and the battery size (the area becomes larger in order to obtain the same capacity as the thickness is reduced). When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases, resulting in different internal resistances. The variation in the amount of charge and voltage in the battery increases. The specific thickness is appropriately determined according to the battery capacity and the energy density, but it is preferable to design with the maximum thickness that provides the expected heat dissipation characteristics.
[0039]
In addition, as the shape of the non-aqueous secondary battery, for example, the front and back surfaces of the flat shape can be various shapes such as a square shape, a circular shape, an oval shape, etc. It can also be a polygon such as a triangle or a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of manufacturing, the flat front and back surfaces of the battery are rectangular, and a notebook shape as shown in FIG. 6 is preferable.
[0040]
Next, as an example of a method for manufacturing a battery case including the upper lid 1 and the bottom container 2, a method for manufacturing a notebook battery case will be described. In general, a rectangular battery is a small consumer battery having a size of about 50 mm square and a thickness of about 6 mm. As shown in FIG. 8, a bottom container 21 (also serving as a negative electrode terminal) manufactured by deep drawing of a thick plate is used. It is manufactured by laser welding the upper lid 22 provided with a safety valve and a positive electrode terminal.
[0041]
However, in the case of the notebook type battery as shown in FIG. 6, it is difficult to manufacture by the same method as the small secondary battery, and the bottom container 2 of the battery case is a thin plate having the shape shown in FIG. Bending inward and then bending outward along the alternate long and short dash line L2, then welding the corner indicated by A, or manufacturing by thin plate drawing (very shallow drawing), terminals and safety valves are installed Further, the upper lid 1 is obtained by welding as shown in FIG. Moreover, it can also be manufactured by bending a thin plate as shown in FIG. 10 and welding the horizontal lids 11 and 12 to the structure 13 where the portion A is welded.
[0042]
The material used for the battery case such as the thin plate is appropriately selected depending on the use and shape of the battery, and is not particularly limited, and iron, stainless steel, aluminum and the like are common and practical. Further, the thickness of the battery case is appropriately determined depending on the use and shape of the battery or the material of the battery case, and is not particularly limited. Preferably, the thickness of the portion of 80% or more of the battery surface area (the thickness of the portion having the largest area constituting the battery case) is 0.2 mm or more. If the thickness is less than 0.2 mm, it is not desirable because the strength required for manufacturing the battery cannot be obtained. From this viewpoint, it is more preferably 0.3 mm or more. The thickness of the same part is desirably 1 mm or less. If the thickness exceeds 1 mm, the internal volume of the battery is reduced and a sufficient capacity cannot be obtained, or the weight increases, which is not desirable. From this viewpoint, the thickness is preferably 0.7 mm or less.
[0043]
As described above, by designing the thickness of the non-aqueous secondary battery to be less than 12 mm, for example, when the battery has a large capacity of 30 Wh or more and a high energy density of 180 Wh / l, a high rate charge / discharge, etc. However, the rise in battery temperature is small, and it can have excellent heat dissipation characteristics. Therefore, the heat storage of the battery due to internal heat generation is reduced, and as a result, it is possible to suppress the thermal runaway of the battery, and it is possible to provide a non-aqueous secondary battery excellent in reliability and safety. Measures for heat dissipation are easy, and the reliability and safety of the battery module can be improved.
[0044]
In addition, since the battery module of this embodiment can apply sufficient pressure to each unit cell and can maintain the unit cell in a uniform thickness, a battery module having excellent cycle characteristics and rate characteristics can be obtained. It is possible to obtain the good heat dissipation characteristics of the unit cell. The above battery module is used alone or in a plurality or more connected in series or in parallel to be used in a power storage system. In practice, a system for controlling the battery module is used as a side surface of the module as necessary. Alternatively, it can be installed on the upper surface or the like.
[0045]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example)
(1) LiCo 2 O Four 100 parts by weight, 8 parts by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. FIG. 11 is an explanatory diagram of electrodes. In this embodiment, the application area (W1 × W2) of the electrode 101 is 268 × 178 mm. 2 It is applied to both sides of a 20 μm current collector 102 with a thickness of 95 μm. As a result, the electrode thickness t is 210 μm. In addition, an electrode is not applied to the end portion 1 cm of one short side of the current collector 102, and a tab 103 (aluminum having a thickness of 0.1 mm and a width of 6 mm) is welded.
[0046]
(2) 100 parts by weight of mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., No. 6-28) and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied to both sides of a 14 μm thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. Since the shape is the same as that of the above-described positive electrode, it will be described with reference to FIG. In this embodiment, the application area (W1 × W2) of the electrode 101 is 270 × 180 mm. 2 It is applied to both surfaces of a 14 μm current collector 102 with a thickness of 105 μm. As a result, the electrode thickness t is 224 μm. In addition, an electrode is not applied to an end portion 1 cm of one short side of the current collector 102, and a tab 103 (nickel having a thickness of 0.1 mm and a width of 6 mm) is welded.
[0047]
Further, a single-sided electrode having a thickness of 119 μm was prepared by the same method except that the coating was applied to only one side. The single-sided electrode is disposed on the outside in the electrode laminate of item (3) (101c in FIG. 7).
[0048]
(3) The separator 104 (superposition of polyethylene-polypropylene nonwoven fabric and polypropylene microporous membrane) is applied to the eight positive electrodes and nine negative electrodes (two inner surfaces) obtained in the above item (1) as shown in FIG. Thus, an electrode laminate was prepared by alternately laminating.
[0049]
(4) The bottom container 2 of the battery (see FIG. 6) was made by drawing a 0.5 mm SUS304 thin plate to a depth of 5 mm. Further, the upper lid 1 of the battery was made of a thin plate made of SUS304 having a thickness of 0.5 mm. The upper lid is attached with positive electrode and negative electrode terminals 3, 4 (6mmφ) made of SUS304 and is provided with a safety valve hole (8mmφ). The positive electrode and negative electrode terminals 3, 4 are insulated from the upper lid 1 by a polypropylene packing. .
[0050]
(5) After welding each positive electrode tab 103a of the electrode laminate prepared in the above item (3) to the positive electrode terminal 3 and each negative electrode tab 103b to the negative electrode terminal 4 via a connecting wire, the electrode laminate is attached to the bottom container 2 Was fixed with an insulating tape, and the corner A in FIG. 6 was laser welded over the entire circumference. After that, LiPF was added to the concentration of 1 mol / l in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a 1: 1 weight ratio as an electrolytic solution from the safety valve hole. 6 The solution in which was dissolved was poured, and the lid was closed using an aluminum foil having a thickness of 0.1 mm.
[0051]
(6) The obtained battery was charged to 4.1 V with a current of 5 A, and then constant current and constant voltage charging in which a constant voltage of 4.1 V was applied was performed for 8 hours. Subsequently, the battery was discharged to 2.5 V with a constant current of 10A. The discharge capacity was 21.1 Ah. The temperature rise of the battery at the time of discharging was less than that of a box battery having the same capacity (battery having a thickness of 12 mm or more).
[0052]
(7) The capacity when charging and discharging were repeated 10 cycles under the same conditions as described above using the above battery was 19.8 Ah. Furthermore, in the 11th cycle, the battery was charged to 4.1 V with a current of 5 A, and then a constant current and constant voltage charge for applying a constant voltage of 4.1 V was performed for 8 hours. Subsequently, when the battery was discharged at a constant current of 20 A to 2.5 V, the capacity of the single cell was 11.8 Ah and the rate characteristics were insufficient.
[0053]
(8) Eight unit cells were used, arranged as shown in FIG. 12, and placed in the exterior member 500 shown in FIG. 2 to produce a battery module. Three pressing members 402 having a thickness of 3 mm and a width of 20 mm were inserted between the batteries at positions as shown in FIG. The position of the pressing member 402 was 20 mm from the center of the unit cell and the outside of the unit cell. Further, the beam member 501 on the front and back surfaces of the unit cell is a member (depth 4 mm, width 30 mm) formed by bending a 2 mm thick SUS304 flat plate so as to have the cross-sectional shape shown in FIG. ) Was used. As the beam member 502 on the thickness direction side of the battery, an aluminum plate having a thickness of 5 mm and a width of 30 mm was used. Further, as the vertical beam member 503, an L-shaped member made of SUS304 having a thickness of 2 mm and a width of 5 mm was used. Each beam member was fixed with bolts. The obtained battery module is designed so that the length in the thickness direction of the battery is 81 mm, the inner length of the exterior member 500 is 69 mm, and the distance between the both ends of the unit cell is 69 mm.
[0054]
(9) In the battery module obtained in (8), each single cell is connected in series, charged to 32.8V with a constant current of 5A, and then applied with a constant voltage of 32.8V. For 8 hours. Subsequently, the battery was discharged to 20V with a constant current of 10A. The discharge capacity was 20.7 Ah.
[0055]
(10) The capacity when charging / discharging was repeated 10 cycles under the same conditions using the unit cell of the battery module was 20.1 Ah. Furthermore, in the 11th cycle, the battery was charged to 32.8 V with a current of 5 A, and thereafter, constant current and constant voltage charging in which a constant voltage of 32.8 V was applied was performed for 8 hours. Subsequently, when the battery was discharged to 20 V with a constant current of 20 A, the capacity was 15.8 Ah, and the rate characteristics were improved as compared with the single cell.
(Comparative example)
A battery module was fabricated in the same manner as in the above example except that the pressing member was not used. The single cells were connected in series, charged to 32.8 V with a current of 5 A, and then subjected to constant current and constant voltage charging in which a constant voltage of 32.8 V was applied for 8 hours. Subsequently, the battery was discharged to 20V with a constant current of 10A. The discharge capacity was 20.4 Ah.
[0056]
Next, the capacity when charging / discharging was repeated 10 cycles under the same conditions using the unit cell of the battery module was 19.5 Ah. Furthermore, in the 11th cycle, the battery was charged to 32.8 V with a current of 5 A, and thereafter, constant current and constant voltage charging in which a constant voltage of 32.8 V was applied was performed for 8 hours. Subsequently, when the battery was discharged to 20 V with a constant current of 20 A, the capacity was 10.9 Ah and the rate characteristics were poor.
[0057]
【The invention's effect】
As is apparent from the above, according to the present invention, a highly safe organic electrolyte battery for a power storage system having a large capacity of 30 Wh or more and a volumetric energy density of 180 Wh / l or more, excellent heat dissipation characteristics, and used as a unit cell In the battery module for connecting a plurality of the unit cells, at least one pressing member for pressing the unit cells on both sides is disposed in the gap between the unit cells, thereby achieving good cycle characteristics and rate characteristics. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a battery module according to an embodiment of the present invention.
2 is a perspective view showing a configuration of an exterior member shown in FIG. 1. FIG.
3 is a diagram showing an example of a cross-sectional shape of a beam member of the exterior member shown in FIG. 2. FIG.
FIG. 4 is a perspective view for explaining a positional relationship between a pressing member and a unit cell.
FIG. 5 is a perspective view showing an example of another pressing member.
6 is a diagram showing a plan view and a side view of a non-aqueous secondary battery for a power storage system that is an example of the single battery shown in FIG. 1. FIG.
7 is a side view showing a configuration of an electrode laminate housed in the battery shown in FIG. 6. FIG.
FIG. 8 is an explanatory diagram of a conventional method for manufacturing a small prismatic battery.
FIG. 9 is an explanatory diagram of an example of a manufacturing method of the bottom container shown in FIG.
FIG. 10 is an explanatory diagram of another example of a method for manufacturing a battery case of a non-aqueous secondary battery according to the present invention.
FIG. 11 is an explanatory diagram of a cell electrode used in an example of the battery module of the present invention.
FIG. 12 is an explanatory diagram of the arrangement of single cells used in the example of the battery module of the present invention.
[Explanation of symbols]
1 Upper lid
2 Bottom container
3 Positive terminal
4 Negative terminal
5 Safety valve
101 electrode
101a Positive electrode (both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
102 Current collector
103 tabs
103a Positive electrode tab
103b Negative electrode tab
104 separator
111a positive electrode unit
111b negative electrode unit
111c single-sided negative electrode unit
401, 401a, 402b, 402c unit cell
402 Pressing member
500 Exterior member
501, 502, 503 Beam members

Claims (4)

直列及び/又は並列に電気的に接続され、電池の厚み方向に1mm以上の隙間をもって配置された複数の単電池と、
前記単電池間の隙間に配置され、両側の単電池を押圧するための少なくとも1つ以上の押圧部材と、
前記複数の単電池を収容して固定するための外装部材とを備え、
前記単電池は、正極、負極及びリチウム塩を含む非水系電解質を備え、厚さ12mm未満の扁平形状であり、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上である非水系二次電池であり、
前記押圧部材は、前記単電池の中央部付近に少なくとも1つ配置され、
電池の厚み方向における外装部材の内側の長さは、前記複数の単電池の合計の厚さと、前記単電池間の隙間に配置された前記押圧部材の合計の厚さとを加えた長さであり、
前記外装部材の少なくとも一部が、前記電池の厚み方向の両端に配置された前記単電池の表裏面側の中央付近に配置されていることを特徴とする電池モジュール。
A plurality of single cells that are electrically connected in series and / or parallel and arranged with a gap of 1 mm or more in the thickness direction of the battery;
At least one pressing member disposed in the gap between the unit cells, for pressing the unit cells on both sides;
An exterior member for housing and fixing the plurality of single cells,
The unit cell includes a nonaqueous electrolyte containing a positive electrode, a negative electrode, and a lithium salt, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more, and a volume energy density of 180 Wh / l or more. der is,
At least one pressing member is disposed near the center of the unit cell,
The inner length of the exterior member in the thickness direction of the battery is a length obtained by adding the total thickness of the plurality of unit cells and the total thickness of the pressing members arranged in the gaps between the unit cells. ,
At least a part of the exterior member is disposed in the vicinity of the center of the front and back surfaces of the unit cell disposed at both ends in the thickness direction of the battery.
前記単電池の電池容器の板厚は、0.2mm以上1mm以下であることを特徴とする請求項1に記載の電池モジュール。The battery module according to claim 1, wherein a plate thickness of the battery container of the unit cell is 0.2 mm or more and 1 mm or less. 前記単電池の扁平形状の表裏面の形状は、矩形であることを特徴とする請求項1又は2に記載の電池モジュール。The battery module according to claim 1, wherein a shape of the flat front and back surfaces of the unit cell is a rectangle. 前記押圧部材と前記単電池とが接触する面積は、前記単電池の扁平形状部分の面積の50%以下であることを特徴とする請求項1から3までのいずれかに記載の電池モジュール。The battery module according to any one of claims 1 to 3, wherein an area where the pressing member and the unit cell come into contact is 50% or less of an area of a flat portion of the unit cell.
JP37375498A 1998-12-28 1998-12-28 Battery module Expired - Fee Related JP3799463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37375498A JP3799463B2 (en) 1998-12-28 1998-12-28 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37375498A JP3799463B2 (en) 1998-12-28 1998-12-28 Battery module

Publications (2)

Publication Number Publication Date
JP2000195480A JP2000195480A (en) 2000-07-14
JP3799463B2 true JP3799463B2 (en) 2006-07-19

Family

ID=18502702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37375498A Expired - Fee Related JP3799463B2 (en) 1998-12-28 1998-12-28 Battery module

Country Status (1)

Country Link
JP (1) JP3799463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081704A2 (en) * 2009-01-19 2010-07-22 Li-Tec Battery Gmbh Electrochemical energy storage device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526718B2 (en) * 2001-02-20 2010-08-18 株式会社Kri Power storage device
JP2002298792A (en) * 2001-04-02 2002-10-11 Sony Corp Battery device
JP4892788B2 (en) * 2001-04-23 2012-03-07 トヨタ自動車株式会社 Battery module
JP3937839B2 (en) 2001-12-28 2007-06-27 日本電気株式会社 module
JP4652984B2 (en) * 2002-01-24 2011-03-16 日立マクセル株式会社 Electronic equipment with built-in non-aqueous secondary battery
JP3594023B2 (en) 2002-07-30 2004-11-24 日産自動車株式会社 Battery module
JP4250932B2 (en) * 2002-08-30 2009-04-08 ソニー株式会社 Battery block made of non-aqueous electrolyte battery and battery pack of exchange equipment size
JP4363065B2 (en) * 2003-03-10 2009-11-11 日産自動車株式会社 Assembled battery
JP3972885B2 (en) 2003-10-10 2007-09-05 日産自動車株式会社 Assembled battery
JP3972884B2 (en) 2003-10-10 2007-09-05 日産自動車株式会社 Assembled battery
US7291422B2 (en) 2003-10-10 2007-11-06 Nissan Motor Co., Ltd. Battery and related method
KR100556101B1 (en) * 2003-12-16 2006-03-03 주식회사 엘지화학 Secondary battery module
JP4062273B2 (en) 2004-03-31 2008-03-19 日産自動車株式会社 Assembled battery
US7659029B2 (en) 2004-10-26 2010-02-09 Nissan Motor Co., Ltd. Battery module with insulating plates nipping electrode tabs
WO2006059434A1 (en) * 2004-11-30 2006-06-08 Nec Corporation Electrical device assembly
KR100933425B1 (en) * 2005-09-02 2009-12-23 주식회사 엘지화학 Easy to manufacture battery module
JP2007165698A (en) * 2005-12-15 2007-06-28 Mitsubishi Electric Corp Electric power storage device
KR100948970B1 (en) * 2006-03-13 2010-03-23 주식회사 엘지화학 Middle or Large-sized Battery Module Employing Impact-absorbing Member
JP4857896B2 (en) 2006-05-11 2012-01-18 トヨタ自動車株式会社 Battery pack and vehicle
WO2008007767A1 (en) * 2006-07-13 2008-01-17 Gs Yuasa Corporation Assembled battery formed by stacking a plurality of flat cells
WO2011004858A1 (en) * 2009-07-08 2011-01-13 愛鋼株式会社 Non-linear spring structure and pressure spacer using same
DE102010031462A1 (en) * 2010-07-16 2012-01-19 Sb Limotive Company Ltd. Battery cell module, battery and motor vehicle
US8852789B2 (en) 2010-11-04 2014-10-07 Samsung Sdi Co., Ltd. Battery module having battery cell holder
WO2012169167A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Power supply system and charging method for battery pack
JP5966314B2 (en) * 2011-10-28 2016-08-10 三洋電機株式会社 Power supply
JP6176369B2 (en) * 2016-07-04 2017-08-09 三洋電機株式会社 Power supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081704A2 (en) * 2009-01-19 2010-07-22 Li-Tec Battery Gmbh Electrochemical energy storage device
WO2010081704A3 (en) * 2009-01-19 2010-09-23 Li-Tec Battery Gmbh Electrochemical energy storage device
EP2605301A3 (en) * 2009-01-19 2013-08-21 Li-Tec Battery GmbH Electrochemical energy storage device

Also Published As

Publication number Publication date
JP2000195480A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
JP3799463B2 (en) Battery module
JP3997370B2 (en) Non-aqueous secondary battery
JP2008300692A (en) Power storage device
JP2002352863A (en) Lithium secondary battery and prolonged structure of lithium secondary battery
WO2005018038A2 (en) Rechargeable bipolar high power electrochemical device with reduced monitoring requirement
JP2003297303A (en) Electrochemical device module
US20220311057A1 (en) Electrode assembly and secondary battery comprising same
CN107836061B (en) Nonaqueous electrolyte battery and battery pack
EP0910131B1 (en) Lithium secondary battery
JP4562304B2 (en) Method for producing non-aqueous secondary battery
JP4053802B2 (en) Electrochemical devices
JP4009803B2 (en) Non-aqueous secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP2002246068A (en) Nonaqueous secondary cell
JP2002270241A (en) Nonaqueous secondary cell
JP4601109B2 (en) Non-aqueous secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4594478B2 (en) Non-aqueous secondary battery
JP2002270240A (en) Nonaqueous secondary cell
JP2001256942A (en) Battery module and flat-type battery
JP4859277B2 (en) Non-aqueous secondary battery
JP4025944B2 (en) Organic electrolyte battery for power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees