JP4601109B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4601109B2
JP4601109B2 JP2000024224A JP2000024224A JP4601109B2 JP 4601109 B2 JP4601109 B2 JP 4601109B2 JP 2000024224 A JP2000024224 A JP 2000024224A JP 2000024224 A JP2000024224 A JP 2000024224A JP 4601109 B2 JP4601109 B2 JP 4601109B2
Authority
JP
Japan
Prior art keywords
battery
terminal
secondary battery
electrode
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000024224A
Other languages
Japanese (ja)
Other versions
JP2001216953A (en
Inventor
史朗 加藤
彰人 早野
治夫 菊田
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2000024224A priority Critical patent/JP4601109B2/en
Publication of JP2001216953A publication Critical patent/JP2001216953A/en
Application granted granted Critical
Publication of JP4601109B2 publication Critical patent/JP4601109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池に関し、特に、蓄電システム用非水系二次電池に関するものである。
【0002】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特開平6−86463号公報には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、電圧が例えば50〜400Vの組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0003】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べ優れることから、その市場を飛躍的に延ばしている。
【0004】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、リチウムイオン電池をターゲットとし、リチウム電池電力貯蔵技術研究組合(LIBES)等で精力的に開発が進められている。
【0005】
これら大型リチウムイオン電池のエネルギー容量は、100Whから400Wh程度であり、体積エネルギー密度は、200〜300Wh/lと携帯機器用小型二次電池並のレベルに達している。その形状は、直径50mm〜70mm、長さ250mm〜450mmの円筒型、厚さ35mm〜50mmの角形又は長円角形等の扁平角柱形が代表的なものである。
【0006】
また、薄型のリチウム二次電池については、薄型の外装に、例えば、金属とプラスチックをラミネートした厚さ1mm以下のフィルムを収納したフィルム電池(特開平5−159757号公報、特開平7−57788号公報等)、厚さ2mm〜15mm程度の小型角型電池(特開平8−195204号公報、特開平8−138727号公報、特開平9−213286号公報等)が知られている。これらのリチウム二次電池は、いずれも、その目的が携帯機器の小型化及び薄型化に対応するものであり、例えば携帯用パソコンの底面に収納できる厚さ数mmでJIS A4サイズ程度の面積を有する薄型電池も開示されているが(特開平5−283105号公報)、エネルギー容量が10Wh以下であるため、蓄電システム用二次電池としては容量が小さ過ぎる。
【0007】
【発明が解決しようとする課題】
一般的に携帯機器用の小型円筒型リチウムイオン電池における外部端子構造は、一方の極性を電池容器を構成する缶に導通接続させ、他方の極性を電池容器の蓋に導通接続させて、これら缶と蓋とを絶縁樹脂製ガスケットによってかしめ、密封固定することにより、これらの缶と蓋が外部端子を兼ねている構造である。又小型の角型リチウムイオン電池については、容器と蓋を溶接させて密閉させる必要があるため、蓋の中央部に一方の極端子が絶縁樹脂を介してかしめ固定されている場合が多い。よって小型の角型の場合は、一方の極性は缶へ、他方の極性は蓋に備えられた極端子へと導通接続されている。
【0008】
小型円筒型及び小型の角型どちらの場合も機器側との接続には、容器底及び蓋に備えられた端子あるいは蓋よりなる端子と各々耐腐食性の高い金めっきされた機器側端子で圧接導通接続させる方式や、容器底及び蓋に備えられた端子あるいは蓋よりなる端子に金属片をスポット溶接する方式などが使われている。これらの接続方式は、通常大きくとも5A程度までしか電流を流さない携帯機器に使われている場合がほとんどである。
【0009】
しかしエネルギー容量が30Whを超えるような大型電池については、より大きな電流を流す必要があるため、上述のような小型電池で一般的に用いられている接続方式に対しより強固で信頼性の高い接続方式が必要である。大型電池を組電池として使用する場合にはなおさらである。よって一般的に大型リチウムイオン電池の接続には、外部端子に予め雌ネジあるいは雄ネジ加工が施されている。接続時には、ナットあるいはボルトにて機器側端子板や圧着端子付電線を締め付けて固定する方法が使われている。又別の例としては、端子の一部に円柱型の部分を設けて割型セットカラーをはめ込み、内径を小さくする方向へ締め込んで固定するといった方法も使われている。
【0010】
しかし上述の様な各電極端子1個あたり1個のボルトやナットによる締め付け固定方法では、組み付け時や使用時に機器側端子板や圧着端子付の太い電線へネジが緩む回転方向の外力が加わるとネジ締め部が緩み接触抵抗が増大する。接触不良部へ大電流が印加されると発熱し、やがては熱が電池へと伝わり非常に危険な事態におちいることが予想される。
【0011】
又上述の通り一般的に大型リチウムイオン電池の端子部品は、外部端子に予め雌ネジあるいは雄ネジ加工が施された円柱を組合せた外部端子をかしめやOリング等を介して電池容器へ固定されている。組み付け時や使用時に、機器側端子板や圧着端子付の太い電線へネジが締まる回転方向の外力が必要以上に加わると、前記固定部が電池容器上で空回りすることにより電池内部の接続構造を破損し、最悪の場合は内部短絡を引き起こす可能性がある。大型電池での内部短絡は大きな発熱反応を伴う場合が多く、前記外部の接触不良による発熱現象以上に極めて危険な事態を招く可能性がある。
【0012】
例えば円筒型大型リチウムイオン電池に関しては、特開平9−92250に記載されている様に、Oリングを締めつけることにより密閉を維持し、キャップに回転止めピンを内部極板が集合接続されている極柱に設けられた穴に刺し込むことにより、内部でキャップと極柱とが空回りし内容物破壊を防止する例がある。しかし外側端子は雌ネジ加工された円注型1個の端子へのボルトの締め付けによる固定方法である。よって端子接続金具へ外部から回転方向になんらかの外力が加わった際に、締め緩みによる外側での接触不良を防止することはできない。
【0013】
又電極端子を電槽蓋にガラスシールを介して熱膨張比率差により密閉性を保ち固定する構造は、一般的にリチウム系大型電池においてよく使われている。しかし圧縮力の方向は、一方向なので、その方向に対して垂直方向や回転方向の外力には弱いという欠点がある。例えば特開平11−7923に記載されている様に、金属製の鍔と電池蓋で囲まれた空間にガラス材を充填することにより上述の方式であっても、垂直方向に対しての衝撃に耐える構造が考案されている。しかし回転方向の力には弱く、強い外力が加わった場合ガラスシール部の内側あるいは外側で端子が空回りし、電池内部の集電体を接続している部分等を破損してしまう可能性がある。
【0014】
本発明の目的は、上記問題点を解決すべく、製造時や使用時に内部破損による内部短絡や外側端子接続部の接触不良による異常発熱を確実に防止できる安全性の高い優れた非水系二次電池を提供することにある。
【0015】
本発明の更なる目的は、30Wh以上の大容量且つ180Wh/l以上の体積エネルギー密度を有し、内部抵抗が小さく放熱特性に優れた安全性の高い非水系二次電池を提供する事にある。
【0016】
【課題を解決するための手段】
本発明の上記目的は、正極、負極、及びセパレータからなる電極積層体とリチウム塩を含む非水系電解質とを電池容器内に密閉してなり、かつ、厚さが12mm未満の扁平形状である非水系二次電池であって、前記電池容器の所定位置に固定された正極端子及び負極端子を備え前記正極及び負極は、それぞれ集電体に電極材料を塗布して形成されているとともに、集電体の一辺部に電極材料の非塗布部が設けられており、前記正極端子及び負極端子の少なくとも一方の電極端子は、該電池内部の正極あるいは負極の集電体の前記非塗布部に電気的に接続された連結部材と、前記連結部材を介して連結固定される2個以上の端子とからなり前記2個以上の端子は、前記連結部材に一体形成されているとともに、樹脂製ガスケットを介して前記電池容器にかしめ固定することにより密閉固定され、かつ、前記電極端子を外部機器または他の電池の電極端子と接続するために前記端子と同数の穴が形成された接続端子板をネジ部材によりねじ止めするためのネジ穴部を有していることを特徴とする非水系二次電池により達成される。
【0018】
前記2個以上の端子の前記ガスケットを介して前記電池容器にかしめ固定されている部分は、円形状であることが好ましい。
【0019】
前記電池容器の平面形状は、矩形であることが好ましい。
【0020】
前記非水系二次電池は、エネルギー容量が30Wh以上、及び、体積エネルギー密度が180Wh/l以上であることが好ましい。
【0022】
前記電池容器の板厚は、0.2mm以上1mm以下であることが好ましい。
【0023】
【発明の実施の形態】
以下、本発明の一実施の形態の非水系二次電池について図面を参照しながら説明する。図1は、本発明の一実施の形態の扁平な矩形(ノート型)の蓄電システム用非水系二次電池の外形を示す(a)平面図及び(b)側面図であり、図2は、図1に示す電池の内部に収納される電極積層体の構成を示す側断面図である。尚、全図を通じ、同符号は同部分を示す。
【0024】
図1及び図2に示すように、本実施の形態の非水系二次電池は、上蓋1と底容器2とを密着させてなる電池ケース(電池容器)と、該電池ケースの中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。本実施の形態のような扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図2に示すように、セパレータ104を介して交互に配置されて積層されるが、本発明は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。
【0025】
各正極101aの正極集電体105aは、正極端子3の2個の端子に電気的に接続され、同様に、各負極101b、101cの負極集電体105bは、負極端子4の2個の端子に電気的に接続されている。正極端子3及び負極端子4は、電池ケースすなわち上蓋1と絶縁された状態で取り付けられている。上蓋1及び底容器2は、図1中の拡大断面図に示したA点で全周を上蓋を溶かし込み、溶接されている。上蓋1には、電解液の注液口5が開けられており、電解液注液後、アルミニウム-変性ポリプロピレンラミネートフィルム、アルミニウム-変性ポリエチレンラミネートフィルムに代表される水分透過率の低い熱可塑性フィルム6を用いて、熱融着にて封口される。
【0026】
その封口工程においては、電池内の圧力を大気圧未満とすることが好ましい。好ましくは650torr以下、更に好ましくは550torr以下で行う。この圧力は、使用するセパレータ、電解液の種類、電池缶の素材、厚み、電池の形状を加味して決定されるものである。内圧が大気圧以上の場合、電池が設計厚みより大きくなる、あるいは、厚みバラツキが大きくなり、電池の内部抵抗、容量がばらつく原因となる。
【0027】
図1及び図2に示す非水系二次電池の形状は、例えば縦300mm×横210mm×厚さ6mmであり、正極101aにLiMn24、負極101b、101cに炭素材料を用いるリチウム二次電池の場合、例えば、蓄電システムに用いることができる。
【0028】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、高電圧、高容量の電池が得られることから、好ましい。また、安全性を重視する場合、熱分解温度が高いマンガン酸化物が好ましい。このマンガン酸化物としてはLiMn24に代表されるリチウム複合マンガン酸化物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系、さらにはリチウム、酸素等を量論比よりも過剰にしたLiMn24が挙げられる。
【0029】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物、或いはポリアセン系有機半導体に代表される導電性高分子等が挙げられる。特に、安全性の観点から、150℃前後の発熱が小さいポリアセン系物質又はこれを含んだ材料が望ましい。
【0030】
セパレータ104の構成は、特に限定されるものではないが、単層又は複層のセパレータを用いることができ、少なくとも1枚は不織布を用いることが好ましく、サイクル特性が向上する。また、セパレータ104の材質は、特に限定されるものではないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス等が挙げられるが、ポリエチレン、ポリプロピレンが、コスト、含水などの観点から好ましい。また、セパレータ104として、ポリエチレン、ポリプロピレンを用いる場合、セパレータの目付量は、好ましくは5g/m2以上30g/m2以下であり、より好ましくは5g/m2以上20g/m2以下であり、さらに好ましくは8g/m2以上20g/m2以下である。セパレータの目付量が30g/m2を越える場合、セパレータが厚くなり過ぎたり、又は気孔率が低下し、電池の内部抵抗が高くなるので好ましくなく、5g/m2未満の場合、実用的な強度が得られないので好ましくない。
【0031】
本実施の形態の非水系二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF6、LiBF4、LiClO4等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γーブチルラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、該電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0032】
上記のように構成された非水系二次電池は、家庭用蓄電システム(夜間電力貯蔵、コージェネレション、太陽光発電等)、電気自動車等の蓄電システム等に用いることができ、大容量且つ高エネルギー密度を有することができる。この場合、エネルギー容量は、好ましくは30Wh以上(一般には500Wh以下)、より好ましくは50Wh以上であり、且つエネルギー密度は、好ましくは180Wh/l以上(一般には400Wh/l以下)、より好ましくは200Wh/l以上である。エネルギー容量が30Wh未満の場合、或いは、体積エネルギー密度が180Wh/l未満の場合は、蓄電システムに用いるには容量が小さく、充分なシステム容量を得るために電池の直並列数を増やす必要があること、また、コンパクトな設計が困難となることから蓄電システム用としては好ましくない。
【0033】
ところで、一般に、蓄電システム用の大型リチウム二次電池(エネルギー容量30Wh以上)においては、高エネルギー密度が得られるものの、その電池設計が携帯機器用小型電池の延長にあることから、直径又は厚さが携帯機器用小型電池の3倍以上の円筒型、角型等の電池形状とされる。この場合には、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りによって活物質のエントロピーが変化することによる電池の内部発熱により、電池内部に熱が蓄積されやすい。このため、電池内部の温度と電池表面付近の温度差が大きく、これに伴って内部抵抗が異なる。その結果、充電量、電圧のバラツキを生じ易い。また、この種の電池は複数個を組電池にして用いるため、システム内での電池の設置位置によっても蓄熱されやすさが異なって各電池間のバラツキが生じ、組電池全体の正確な制御が困難になる。更には、高率充放電時等に放熱が不十分な為、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解等よる寿命の低下、更には電池の熱暴走の誘起など信頼性、特に、安全性に問題が残されていた。
【0034】
本実施の形態の扁平形状の非水系二次電池は、放熱面積が大きくなり、放熱に有利であるため、上記のような問題も解決することができる。すなわち、本実施の形態の非水系二次電池は、扁平形状をしており、その厚さは、好ましくは12mm未満、より好ましくは10mm未満、さらに好ましくは8mm未満である。厚さの下限については電極の充填率、電池サイズ(薄くなれば同容量を得るためには面積が大きくなる)を考慮した場合、2mm以上が実用的である。電池の厚さが12mm以上になると、電池内部の発熱を充分に外部に放熱することが難しくなること、或いは電池内部と電池表面付近での温度差が大きくなり、内部抵抗が異なる結果、電池内での充電量、電圧のバラツキが大きくなる。なお、具体的な厚さは、電池容量、エネルギー密度に応じて適宜決定されるが、期待する放熱特性が得られる最大厚さで設計するのが、好ましい。
【0035】
また、本実施の形態の非水系二次電池の形状としては、例えば、扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点から、電池の扁平形状の表裏面が矩形であり、図1に示すようなノート型の形状が好ましい。
【0036】
電池ケースとなる上蓋1及び底容器2に用いられる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、鉄、ステンレス鋼、アルミニウム等が一般的であり、実用的である。また、電池ケースの厚さも電池の用途、形状或いは電池ケースの材質により適宜決定され、特に限定されるものではない。好ましくは、その電池表面積の80%以上の部分の厚さ(電池ケースを構成する一番面積が広い部分の厚さ)が0.2mm以上である。上記厚さが0.2mm未満では、電池の製造に必要な強度が得られないことから望ましくなく、この観点から、より好ましくは0.3mm以上である。また、同部分の厚さは、1mm以下であることが望ましい。この厚さが1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し充分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0037】
上記のように、非水系二次電池の厚さを12mm未満に設計することにより、例えば、該電池が30Wh以上の大容量且つ180Wh/lの高エネルギー密度を有する場合、高率充放電時等においても、電池温度の上昇が小さく、優れた放熱特性を有することができる。従って、内部発熱による電池の蓄熱が低減され、結果として電池の熱暴走も抑止することが可能となり信頼性、安全性に優れた非水系二次電池を提供することができる。
【0038】
次に、上記の様に構成された本発明の非水系二次電池具備する電極端子構造について詳細に説明する。図1、図3に示すように、予め所定位置に固定された正極端子3及び負極端子4の少なくとも一方の電極端子は、2個以上の端子を設けていることが望ましい。この個数は、電池の形状、電池の厚み、電池容器及び蓋の素材、電池の容量等により適宜設計されるが、エネルギー容量が30Wh以上の大型電池においては容器に対して正極端子及び負極端子のどちらに対しても絶縁した構造とし、正極端子及び負極端子どちらも2個以上の端子が設けられていることがより好ましい。本発明において、各電極端子3,4の端子の個数は、少なくとも2個以上あれば回転方向の空回りを防止でき、特に3個以上設けてもよい。
【0039】
電池の組み付け時や使用時には、例えば図6に示すように、各電極端子3,4の端子に対応した位置に、2個以上の穴10aが形成された電池と電動機器とを接続する接続端子板10を接続するが、上記のように2個以上の端子を配置しておくことにより、負極端子4、正極端子3に接続端子板10をネジ11等により接続固定すれば、接続端子板10に回転方向の外力が加わってもネジ締め部が緩み接触抵抗が増大するような事態を防止できる。特に大型電池の用途である蓄電システムや電気自動車を考えた場合、多数の電池を組電池として全体のモジュールを最小限の大きさにするように組み立てる必要がある。その組み立て作業は、狭いスペースの中で多数の接続端子板10を各電池の電極端子へネジ締め固定するような厳しい作業であることが多い。既にネジ締めの終わった接続端子板10に他の接続端子板10を接続作業する時に、手や工具が当たることは容易に予想され、端子上で接続端子板10が回転できる構造であると一部のネジが緩む可能性があるので、端子を2個以上設けて回転できないようにする効果が高い。又、各電極端子3,4が具備する2個以上の端子は、前記電池容器平面方向に並行方向で回転方向の力が加わった時に、電池容器の固定部を破壊することなしには回転できないように、上記電池容器の外側あるいは内側において連結部材33、43により連結固定されている。
【0040】
さらには、正極端子3の各端子と連結部材33、又は、負極端子4の各端子と連結部材43とが一体的に形成された一体成形加工品であることが、圧接による抵抗バラツキも発生せずより好ましい。
【0041】
各電極端子3,4が具備する2個以上の端子は、電池容器に樹脂製ガスケット31、41を介してかしめ固定することにより密閉固定することがコスト面よりガラスシール等と比較して好ましい。又、各電極端子3,4の2個以上の端子をかしめ固定している部分は、円形を含む形状であることがかしめ力が偏在することなく押さえられるので、気密性の信頼性が高くより好ましい。なぜならば扁平型端子をガスケットで介してかしめる場合、コーナー部に力が集中し直線部の面並行方向への押さえ力が弱くなるからである。特に電池軽量化のため前述の様に電池容器の板厚を薄くするほど顕著である。
【0042】
正極端子3は、図3に示すように、電池内部正極集電体を電気的に接続させるネジ穴34を備えた連結部材33を構成する中継端子板上に二段円筒を設けた一体形状とすることができ、2個の円筒部を電池ケース上蓋1へ樹脂製ガスケット31を介して刺し込み、プレスを用いて電池外部より円筒部を変形させてかしめることにより気密固定することができる。負極端子4も同様にして2個の端子を連結部材43を構成する中継端子板により連結することで形成することができる。図示の例では、正負極合計4個の端子は全て円筒形であり、均一なかしめ力により気密性を保持できる。また、正負極とも各々2個の端子が連結部材33、43により連結されて回転できない構造であるため、外部からネジ穴部32、42へ接続端子板10(図6)を挟んでネジを締め込む際に、大きなトルクをかけても電池内部で連結部材33,43が回転することにより上記正極あるいは負極集電体接続部を破損するような事態には至らない。又機器等との外側接続についても、予め2個の穴を設けた接続端子板10等を2個のネジで締め付け固定すれば、外側の接続端子板10が外力により回転して接触不良を起こすような事態も避けられる。
【0043】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。
【0044】
(実施例1)
(1)LiCo2O4100重量部、アセチレンブラック8重量部、ポリビニリデンフルオライド(PVDF)3重量部をN−メチルピロリドン(NMP)100重量部と混合し正極合材スラリーを得た。該スラリーを集電体となる厚さ20μmのアルミ箔の両面に塗布、乾燥した後、プレスを行い、正極を得た。図4は電極の説明図である。本実施例において正極101aの塗布面積(W1×W2)は、262.5×192mm2であり、20μmの集電体105aの両面に103μmの厚さで塗布されている。その結果、電極厚さtは226μmとなっている。また、電極の短辺側には電極が塗布されていない耳部分があり、φ3の穴が開けられている。
【0045】
(2)黒鉛化メソカーボンマイクロビーズ(MCMB、大阪ガスケミカル製、品番6−28)100重量部、PVDF10重量部をNMP90重量部と混合し、負極合材スラリーを得た。該スラリーを集電体となる厚さ14μmの銅箔の両面に塗布、乾燥した後、プレスを行い、負極を得た。図4を用いて説明する。負極101b又は101cの塗布面積(W1×W2)は、267×195mm2であり、18μmの集電体105bの両面に108μmの厚さで塗布されている。その結果、電極厚さtは234μmとなっている。また、電極の短辺側には電極が塗布されていない耳部分があり、φ3の穴が開けられている。更に、同様の手法で片面だけに塗布し、それ以外は同様の方法で厚さ126μmの片面電極を作成した。片面電極は(3)項の電極積層体において外側に配置される(図2中101c)。
【0046】
(3)上記(1)項で得られた正極8枚、負極9枚(内片面2枚)を図2に示すようにセパレータ104a(ポリプロピレン不織布:目付10g/m2)とセパレータ104b(ポリエチレン製微孔膜:目付13.3g/m2)を介して(図2中104として標記されている)、交互に積層し電極積層体を作成した。セパレータ104bは正極側に配置した。また、容器との絶縁の為、積層体の外側の負極板101cの更に外側にセパレーター104bを配置した。
【0047】
(4)電池の底容器2(図1参照)は、0.5mmのSUS304製薄板を深さ5mmに絞り作成した。また、電池の上蓋1も厚さ0.5mmのSUS304製薄板で作成した。上蓋1には、アルミ製の正極端子3の端子、及び、銅製の負極端子4の端子(6mmφ、外側M3のねじ切り)が各々2個備えられている。
【0048】
(5)正極端子3あるいは負極端子4(図3参照)は、電池内部正極集電体あるいは負極集電体を電気的に接続させるネジ穴34あるいは44を備えた中継端子板33あるいは43上に各々二段円筒を設けた一体形状であり、2個の円筒部を電池ケース上蓋1へ樹脂製ガスケット31あるいは41を介して刺し込み、円筒部を外側よりプレスにて押し変形させてかしめることにより気密固定した。正負極合計4個の端子は全て円筒形であり、均一なかしめ力により気密性を保持できる。又正負極とも各々2個の端子が一体成形部品で形成されており回転できない構造であるため、外部からネジ穴部32あるいは42へボルトを締め込む際に大きなトルクをかけても電池内部で上記中継端子板が回転して上記正極あるいは負極集電体接続部を破損することはない。
(6)上記(3)項で作成した電極積層体の各正極耳の穴を正極端子3に、各負極耳1の穴を負極端子4に入れ、それぞれ、アルミ、銅のボルトで接続した。電極積層体を絶縁テープで固定し、図1の角部Aを全周に亘りレーザー溶接した。その後、電解液注液孔5(6mmφ)から電解液としてエチレンカーボネートとジエチルカーボネートを1:1重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液した。この電池を、12mmφに打ち抜いた厚さ0.08mmのアルミ箔-変性ポリプロピレンラミネートフィルムを100torrの減圧下で熱融着する事により、電解液注液孔5を封口した。
(7)上記のようにして得られた電池の正極及び負極外部端子へ複数電池接続のために又機器等との外側接続についても、予め2個の穴を設けた外部端子板を2個のネジで締め付け固定した。2個のネジで締め付け固定しているため外側の端子板が回転して接触不良を起こすような事態は発生しなかった。又ネジ締め時に高トルク電動ドライバーにてトルク4N・mで強く締め付け、上記のような工程により作製した10個の電池の初期内部抵抗を1kHzの交流法で測定したところ、全て最小6.1Ωから最大6.3Ωの範囲に入っており非常にばらつきの少ないことがわかった。又その内の一つの電池を5Aの電流で4.1Vまで充電し、その後4.1Vの定電圧を印加する定電流定電圧充電を12時間行い、続いて5Aの低電流で2.5Vまで放電したところ、放電容量は24Ahであり、エネルギー容量は86Whであった。
(比較例1)
実施例1で採用した端子構造以外は、実施例1と同様に電池を作製した。
【0049】
正極端子3あるいは負極端子4は、図4に示すように、図示しない電池内部正極集電体又は負極集電体と電気的に接続させるネジ穴54あるいは64を備えた中継端子板53あるいは63に設けた穴より電池内側から刺し込み円筒部を電池ケース上蓋1へ樹脂製ガスケット51あるいは61を介して刺し込み、プレスを用いて円筒部を外側よりプレスにて押し変形させてかしめることにより気密固定した。
【0050】
上記工程により得られた電池の正極及び負極外部端子へ、複数電池接続のために予め1個の穴を設けた外部端子板を1個のネジで締め付け固定した。ネジ締め時に高トルク電動ドライバーにてトルク4N・mにて強く締め付けたところ、一部のセルで端子がガスケット部で少し空回りしていることがわかった。そこでねじ締めには低トルク1N・m以下の電動ドライバーを使用することに変更したが、もし高いトルクドライバーで作業された場合に予め位置合わせされた電池内積層物を動かしていまう。最悪の場合内部短絡や耳切れ等の内部破損が発生して、極めて危険な事態が発生する可能性があった。
上記のような工程により作製した10個の電池の初期内部抵抗を1kHzの交流法で測定したところ、最小6.4Ωから最大7.8Ωの範囲とかなりばらついていることがわかった。これは中継端子と電極端子とがかしめによる圧接のみで接続されていることが原因と推定される。
【0051】
電池内容物を積層後、各電極の耳の穴を電極端子に接続してからその端子の外側への接続部に外部機器と接続するための穴のあいた端子板をねじ止めし、20セルよりなるモジュールの連結作業を行った。作業後再度締め度合いを全数チェックしたところ、1セル締めが緩んでいるものがあった。これは作業時に工具等が当たり、偶発的に端子板の回転方向に力が加わってしまったことが原因と考えられる。もし再度締めずに大きな電流を流していれば、その緩んだ部分のみ接触抵抗が増大しているので発熱源となり、外部より接続している電池を加温してしまう危険な事態が予想された。
【0052】
(比較例2)
実施例1で採用した端子構造以外は実施例1と同様に電池を作製した。
図5に示すように、角部が円弧形状である長方形の扁平型端子3あるいは4を作製し、扁平型ガスケット71あるいは81を介してプレスによりかしめ固定した。電池の上蓋1が厚さ0.5mmのSUS304薄板であるためか長辺方向に歪みが発生し、電池蓋の平面性を保持することができなかった。この歪みを防止するためには、かしめ力にも依存するが少なくとも1mm以上の厚さが必要と思われた。その後溶接により封口し注液したが、前記長辺方向の一部より少量の液漏れが発生した。かしめ力が均一でないとこの様に気密性が保持できなくなり、内部からの液漏れや外気の侵入が発生してしまうことが予想された。
【0053】
【発明の効果】
以上から明らかな通り、本発明によれば、扁平型電池、特に、大容量且つ高体積エネルギー密度を有する扁平型電池において、製造時や使用時に内部破損による内部短絡や外側端子接続部の接触不良による異常発熱を防止できる安全性の高い優れた非水系二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る蓄電システム用非水系二次電池の一実施形態を示し、(a)は平面図、(b)は側面図である。
【図2】図1に示す電池の内部に収納される電極積層体の構成を示す側断面図である。
【図3】図1の非水系二次電池の電極端子構造を示し、(a)は組込後の断面図、(b)は組込前の正極端子、負極端子及びそれらに連結された連結部材を示す側面図である。
【図4】比較例として用いた電極端子構造を示し、(a)は組込後の断面図、(b)は組込前の分解図、(c)は組込後の電池外観を示す平面図である。
【図5】比較例に用いた端子構造を示し、(a)は組込後の断面図、(b)は組込前の分解図、(c)は組込後の電池外観を示す平面図である。
【図6】図1の非水系二次電池を接続端子板ともに示し、(a)は該接続端子板の平面図、(b)は該接続端子板をネジで固定した状態を示す平面図である。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 注液口
6 封口フィルム
31、41 樹脂製ガスケット
32、42 ネジ穴
33、43 連結部材(中継端子)
34、44 ネジ穴
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104、104a、104b セパレータ
105a 正極集電体
105b 負極集電体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery for a power storage system.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Japanese Patent Laid-Open No. 6-86463 proposes a total system that combines electricity, gas cogeneration, fuel cells, storage batteries, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. ing. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of 50 to 400 V, for example, and in most cases, lead batteries are used.
[0003]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. , Has dramatically expanded its market.
[0004]
In response, in the field of large-scale batteries for power storage systems, lithium-ion batteries are targeted as candidates for high-energy density batteries, and development is actively underway by the Lithium Battery Power Storage Technology Research Association (LIBES) and others. .
[0005]
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, the same level as a small secondary battery for portable devices. The shape is typically a cylindrical shape having a diameter of 50 mm to 70 mm, a length of 250 mm to 450 mm, and a flat prismatic shape such as a square or oblong square having a thickness of 35 mm to 50 mm.
[0006]
As for a thin lithium secondary battery, for example, a film battery (Japanese Patent Laid-Open Nos. 5-159757 and 7-57788, in which a film having a thickness of 1 mm or less obtained by laminating metal and plastic is housed in a thin exterior. And a small prismatic battery having a thickness of about 2 mm to 15 mm (Japanese Patent Laid-Open Nos. 8-195204, 8-138727, 9-213286, etc.) are known. Each of these lithium secondary batteries has a purpose corresponding to the miniaturization and thinning of portable devices. For example, the lithium secondary battery has a thickness of several millimeters that can be stored on the bottom of a portable personal computer and has an area of about JIS A4 size. Although the thin battery which has is also disclosed (Unexamined-Japanese-Patent No. 5-283105), since an energy capacity is 10 Wh or less, a capacity | capacitance is too small as a secondary battery for electrical storage systems.
[0007]
[Problems to be solved by the invention]
In general, the external terminal structure in a small cylindrical lithium ion battery for portable devices is such that one polarity is conductively connected to a can constituting the battery container and the other polarity is conductively connected to a lid of the battery container. The can and the lid serve as an external terminal by caulking the lid and the lid with an insulating resin gasket and sealingly fixing them. In addition, since a small prismatic lithium ion battery needs to be sealed by welding a container and a lid, one electrode terminal is often caulked and fixed to the center of the lid via an insulating resin. Therefore, in the case of a small square, one polarity is conductively connected to the can, and the other polarity is conductively connected to a pole terminal provided on the lid.
[0008]
In both the small cylindrical type and the small square type, the equipment side is connected with the terminal on the container bottom and the lid or the terminal made of the lid and the equipment side terminal plated with gold with high corrosion resistance. A method of conducting connection, a method of spot welding a metal piece to a terminal provided on a container bottom and a lid, or a terminal made of a lid are used. In most cases, these connection methods are used in portable devices that normally flow current up to about 5 A at most.
[0009]
However, for large batteries with energy capacities exceeding 30 Wh, it is necessary to pass a larger current, so the connection method is more robust and reliable than the connection methods generally used in small batteries as described above. A method is needed. This is especially true when large batteries are used as assembled batteries. Therefore, in general, when connecting a large-sized lithium ion battery, a female screw or a male screw is processed in advance on the external terminal. At the time of connection, a method is used in which a device-side terminal plate or a wire with a crimp terminal is fastened and fixed with nuts or bolts. As another example, there is also used a method in which a cylindrical part is provided in a part of a terminal, a split set collar is fitted, and the inner diameter is reduced and fixed.
[0010]
However, with the tightening and fixing method using one bolt or nut per electrode terminal as described above, when an external force in the rotational direction that loosens the screw is applied to the equipment side terminal plate or thick wire with crimp terminal during assembly or use The screw tightening portion is loosened and the contact resistance is increased. When a large current is applied to the poor contact portion, heat is generated, and it is expected that the heat will eventually be transferred to the battery, resulting in a very dangerous situation.
[0011]
As described above, generally, the terminal parts of a large-sized lithium ion battery are fixed to the battery container through caulking, an O-ring, or the like by combining an external terminal with a female screw or a cylinder pre-processed with a male screw. ing. When an external force in the rotational direction that tightens the screw is applied to the equipment side terminal plate or thick wire with crimp terminal more than necessary during assembly or use, the fixed part turns idle on the battery container, so that the connection structure inside the battery is It can break and in the worst case it can cause an internal short circuit. An internal short circuit in a large battery often involves a large exothermic reaction, which may lead to an extremely dangerous situation beyond the exothermic phenomenon due to the poor external contact.
[0012]
For example, as for a cylindrical large lithium ion battery, as described in JP-A-9-92250, a hermetic seal is maintained by tightening an O-ring, and an anti-rotation pin is connected to the cap with an internal electrode plate collectively connected. There is an example in which the cap and the pole column are idled inside by piercing into a hole provided in the column to prevent destruction of the contents. However, the outer terminal is a fixing method by tightening a bolt to one circular cast type terminal in which a female thread is processed. Therefore, when any external force is applied to the terminal fitting in the rotational direction from the outside, it is impossible to prevent contact failure on the outside due to loosening.
[0013]
In addition, a structure in which the electrode terminal is fixed to the battery case lid through a glass seal while maintaining hermeticity by a difference in thermal expansion ratio is generally used in a large lithium battery. However, since the direction of the compressive force is one direction, there is a drawback that it is weak against an external force in the direction perpendicular to the direction or the rotational direction. For example, as described in Japanese Patent Application Laid-Open No. 11-7923, even if the above-described method is used by filling a space surrounded by a metal cage and a battery lid, A durable structure has been devised. However, it is weak against the force in the direction of rotation, and if a strong external force is applied, the terminal may run idle inside or outside the glass seal part, and the part connecting the current collector inside the battery may be damaged. .
[0014]
The object of the present invention is to solve the above-mentioned problems, and at the time of manufacture and use, a highly safe and excellent non-aqueous secondary system that can reliably prevent abnormal heat generation due to internal short circuit due to internal breakage or contact failure of the outer terminal connection part. To provide a battery.
[0015]
A further object of the present invention is to provide a highly safe non-aqueous secondary battery having a large capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more, a small internal resistance and excellent heat dissipation characteristics. .
[0016]
[Means for Solving the Problems]
The above object of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte will be sealed to the battery container comprising an electrode laminate and a lithium salt comprising a separator, and a thickness of a flat shape of less than 12mm non a nonaqueous secondary battery comprising a positive terminal and a negative terminal which is fixed to a predetermined position of the battery case, the positive electrode and the negative electrode, together are each formed by coating an electrode material on the current collector, collecting An electrode material non-applied portion is provided on one side of the electric body, and at least one of the positive electrode terminal and the negative electrode terminal is electrically connected to the non-applied portion of the positive or negative current collector in the battery. and connected to the connecting member consists of two or more terminals that are connected and fixed via the connecting member, wherein the two or more terminals, along with is integrally formed on the connecting member, a resin gasket Before A connection terminal plate, which is hermetically fixed by caulking and fixing to a battery container, and has the same number of holes as that of the terminal for connecting the electrode terminal to an electrode terminal of an external device or another battery, is screwed with a screw member. This is achieved by a non-aqueous secondary battery characterized by having a screw hole for fastening .
[0018]
The portions of the two or more terminals that are caulked and fixed to the battery container via the gasket are preferably circular .
[0019]
The planar shape of the battery container is preferably a rectangular shape .
[0020]
The nonaqueous secondary battery energy capacity is more than 30 Wh, and it is preferable that a volume energy density of 180 Wh / l or more.
[0022]
The plate thickness of the battery container is preferably 0.2 mm or more and 1 mm or less.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a nonaqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a plan view and FIG. 2B is a side view showing the outer shape of a flat rectangular (note-type) power storage system non-aqueous secondary battery according to an embodiment of the present invention. It is a sectional side view which shows the structure of the electrode laminated body accommodated in the inside of the battery shown in FIG. Note that the same reference numerals denote the same parts throughout the drawings.
[0024]
As shown in FIGS. 1 and 2, the non-aqueous secondary battery of the present embodiment is housed in a battery case (battery container) in which an upper lid 1 and a bottom container 2 are in close contact with each other, and the battery case. A plurality of positive electrodes 101 a, negative electrodes 101 b and 101 c, and an electrode laminate including a separator 104. In the case of a flat type non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the laminate) have separators 104, for example, as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of layers and the like can be variously changed according to the required capacity and the like.
[0025]
The positive electrode current collector 105 a of each positive electrode 101 a is electrically connected to the two terminals of the positive electrode terminal 3. Similarly, the negative electrode current collector 105 b of each of the negative electrodes 101 b and 101 c is the two terminals of the negative electrode terminal 4. Is electrically connected. The positive terminal 3 and the negative terminal 4 are attached in a state insulated from the battery case, that is, the upper lid 1. The upper lid 1 and the bottom container 2 are welded by melting the upper lid all around the point A shown in the enlarged sectional view in FIG. The upper lid 1 is provided with an electrolytic solution injection port 5. After the electrolytic solution is injected, a thermoplastic film 6 having a low moisture permeability represented by an aluminum-modified polypropylene laminate film and an aluminum-modified polyethylene laminate film. And sealed by heat fusion.
[0026]
In the sealing step, the pressure in the battery is preferably less than atmospheric pressure. Preferably it is 650 torr or less, more preferably 550 torr or less. This pressure is determined in consideration of the separator to be used, the type of electrolyte, the material of the battery can, the thickness, and the shape of the battery. When the internal pressure is equal to or higher than the atmospheric pressure, the battery becomes larger than the design thickness or the thickness variation becomes large, which causes the internal resistance and capacity of the battery to vary.
[0027]
The shape of the nonaqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm long × 210 mm wide × 6 mm thick, and a lithium secondary battery using LiMn 2 O 4 for the positive electrode 101a and a carbon material for the negative electrodes 101b and 101c. In this case, for example, it can be used for a power storage system.
[0028]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used, and a high voltage and high capacity battery can be obtained, which is preferable. Further, when safety is important, manganese oxide having a high thermal decomposition temperature is preferable. As this manganese oxide, a lithium composite manganese oxide typified by LiMn 2 O 4 , a system in which one or more different metal elements are added to these composite oxides, and further, lithium, oxygen, etc. are in excess of the stoichiometric ratio. LiMn 2 O 4 prepared in the above manner.
[0029]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene, which are used as negative electrode materials for known lithium ion batteries. Examples thereof include conductive polymers represented by organic organic semiconductors. In particular, from the viewpoint of safety, a polyacene-based substance that generates a small amount of heat at around 150 ° C. or a material containing the same is desirable.
[0030]
Although the structure of the separator 104 is not particularly limited, a single-layer or multi-layer separator can be used, and at least one sheet is preferably a non-woven fabric, which improves cycle characteristics. The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamide, kraft paper, and glass. Polyethylene and polypropylene are preferable from the viewpoints of cost, moisture content, and the like. . When polyethylene or polypropylene is used as the separator 104, the weight per unit area of the separator is preferably 5 g / m 2 or more and 30 g / m 2 or less, more preferably 5 g / m 2 or more and 20 g / m 2 or less. still more preferably 8 g / m 2 or more 20 g / m 2 or less. If the basis weight of the separator exceeds 30 g / m 2, the separator is too thick, or the porosity is reduced, it is not preferable because the internal resistance of the battery is high, if it is less than 5 g / m 2, practical strength Is not preferable.
[0031]
As the electrolyte of the non-aqueous secondary battery of this embodiment, a non-aqueous electrolyte containing a known lithium salt can be used, which is appropriately determined depending on the use conditions such as the positive electrode material, the negative electrode material, and the charging voltage, and more specifically. Specifically, lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone, methyl acetate, methyl formate, or two or more of these And those dissolved in an organic solvent such as a mixed solvent. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and naturally the electrolytic solution has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0032]
The non-aqueous secondary battery configured as described above can be used for a household power storage system (night power storage, cogeneration, solar power generation, etc.), a power storage system such as an electric vehicle, and the like. It can have an energy density. In this case, the energy capacity is preferably 30 Wh or more (generally 500 Wh or less), more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more (generally 400 Wh / l or less), more preferably 200 Wh. / L or more. When the energy capacity is less than 30 Wh or when the volumetric energy density is less than 180 Wh / l, the capacity is small for use in the power storage system, and it is necessary to increase the number of series-parallel batteries to obtain sufficient system capacity. In addition, it is not preferable for a power storage system because a compact design becomes difficult.
[0033]
By the way, in general, a large lithium secondary battery (energy capacity of 30 Wh or more) for a power storage system can obtain a high energy density, but its battery design is an extension of a small battery for portable devices. However, the shape of the battery is a cylindrical shape, a rectangular shape or the like that is three times or more that of a small battery for portable devices. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to the internal resistance of the battery during charging and discharging, or internal heat generation of the battery due to change in entropy of the active material due to the entry and exit of lithium ions. For this reason, the temperature difference between the temperature inside the battery and the vicinity of the battery surface is large, and the internal resistance differs accordingly. As a result, variations in charge amount and voltage are likely to occur. In addition, since this type of battery is used as a plurality of assembled batteries, the ease of heat storage differs depending on the installation position of the batteries in the system, resulting in variations among the batteries, and accurate control of the entire assembled battery is possible. It becomes difficult. In addition, because of insufficient heat dissipation during high-rate charging / discharging, etc., the battery temperature rises, leaving the battery unfavorable, resulting in a decrease in life due to decomposition of the electrolyte, and thermal runaway of the battery. Problems such as induction of reliability, particularly safety, remained.
[0034]
The flat non-aqueous secondary battery according to the present embodiment has a large heat radiation area and is advantageous for heat radiation, and thus can solve the above-described problems. That is, the nonaqueous secondary battery of the present embodiment has a flat shape, and the thickness thereof is preferably less than 12 mm, more preferably less than 10 mm, and further preferably less than 8 mm. As for the lower limit of the thickness, 2 mm or more is practical in consideration of the filling factor of the electrode and the battery size (the area becomes larger in order to obtain the same capacity as the thickness is reduced). When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases, resulting in different internal resistances. The variation in the amount of charge and voltage in the battery increases. The specific thickness is appropriately determined according to the battery capacity and the energy density, but it is preferable to design with the maximum thickness that provides the expected heat dissipation characteristics.
[0035]
In addition, as the shape of the non-aqueous secondary battery of the present embodiment, for example, the flat front and back surfaces can be various shapes such as a square, a circle, an oval, etc. However, it may be a polygon such as a triangle or a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of manufacture, the flat front and back surfaces of the battery are rectangular, and a notebook shape as shown in FIG. 1 is preferable.
[0036]
The materials used for the top lid 1 and the bottom container 2 that serve as the battery case are appropriately selected depending on the use and shape of the battery, and are not particularly limited, and iron, stainless steel, aluminum, etc. are common and practical. is there. Further, the thickness of the battery case is appropriately determined depending on the use and shape of the battery or the material of the battery case, and is not particularly limited. Preferably, the thickness of the portion of 80% or more of the battery surface area (the thickness of the portion having the largest area constituting the battery case) is 0.2 mm or more. If the thickness is less than 0.2 mm, it is not desirable because the strength required for manufacturing the battery cannot be obtained. From this viewpoint, it is more preferably 0.3 mm or more. The thickness of the same part is desirably 1 mm or less. If this thickness exceeds 1 mm, the force to hold down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and a sufficient capacity cannot be obtained, or the weight increases. Preferably it is 0.7 mm or less.
[0037]
As described above, by designing the thickness of the non-aqueous secondary battery to be less than 12 mm, for example, when the battery has a large capacity of 30 Wh or more and a high energy density of 180 Wh / l, a high rate charge / discharge, etc. However, the rise in battery temperature is small, and it can have excellent heat dissipation characteristics. Therefore, the heat storage of the battery due to internal heat generation is reduced, and as a result, it is possible to suppress the thermal runaway of the battery, and it is possible to provide a non-aqueous secondary battery excellent in reliability and safety.
[0038]
It will now be described in detail nonaqueous secondary battery comprising the electrode terminal structure of the present invention constructed as described above. As shown in FIGS. 1 and 3, it is desirable that at least one of the positive electrode terminal 3 and the negative electrode terminal 4 fixed in advance at a predetermined position is provided with two or more terminals. This number is appropriately designed according to the shape of the battery, the thickness of the battery, the material of the battery container and the lid, the capacity of the battery, etc., but in a large battery with an energy capacity of 30 Wh or more, the positive terminal and the negative terminal are It is more preferable that both have an insulated structure and that both the positive electrode terminal and the negative electrode terminal are provided with two or more terminals . In the present invention, if the number of terminals of each electrode terminal 3 and 4 is at least 2 or more, idle rotation in the rotation direction can be prevented, and in particular, 3 or more may be provided.
[0039]
When assembling or using the battery, as shown in FIG. 6, for example, as shown in FIG. 6, a connection terminal that connects the battery in which two or more holes 10a are formed at positions corresponding to the terminals of the electrode terminals 3 and 4 and the electric device The plate 10 is connected. If the connection terminal plate 10 is connected and fixed to the negative electrode terminal 4 and the positive electrode terminal 3 with screws 11 or the like by arranging two or more terminals as described above, the connection terminal plate 10 is connected. Even when an external force in the rotational direction is applied to the screw, it is possible to prevent a situation in which the screw tightening portion is loosened and the contact resistance is increased. In particular, when considering a power storage system or an electric vehicle, which is an application of a large battery, it is necessary to assemble a large number of batteries as an assembled battery so that the entire module is minimized. The assembling work is often a rigorous work in which a large number of connection terminal plates 10 are screwed and fixed to the electrode terminals of each battery in a narrow space. When connecting another connection terminal board 10 to the connection terminal board 10 that has already been screw-tightened, it is easily expected that a hand or a tool will hit it, and the connection terminal board 10 can be rotated on the terminal. Since there is a possibility that the screw of the part is loosened, the effect of preventing rotation by providing two or more terminals is high. Further, two or more terminals included in each of the electrode terminals 3 and 4 cannot rotate without destroying the fixing portion of the battery container when a rotational force is applied parallel to the plane direction of the battery container. As described above, the battery members are connected and fixed by connecting members 33 and 43 outside or inside the battery container.
[0040]
Furthermore, resistance variation due to pressure contact may occur because each terminal of the positive electrode terminal 3 and the connecting member 33 or each terminal of the negative electrode terminal 4 and the connecting member 43 are integrally formed. More preferred.
[0041]
Two or more terminals included in each of the electrode terminals 3 and 4 are preferably hermetically fixed by caulking and fixing to the battery container via the resin gaskets 31 and 41 from the viewpoint of cost compared to a glass seal or the like. In addition, the portion where two or more terminals of each of the electrode terminals 3 and 4 are fixed by caulking has a shape including a circle so that the caulking force can be suppressed without being unevenly distributed. preferable. This is because when a flat terminal is caulked with a gasket, the force concentrates on the corner portion and the pressing force in the plane parallel direction of the straight portion becomes weak. In particular, as the weight of the battery is reduced, the thickness of the battery container is reduced as described above.
[0042]
As shown in FIG. 3, the positive electrode terminal 3 has an integrated shape in which a two-stage cylinder is provided on a relay terminal plate constituting a connecting member 33 having a screw hole 34 for electrically connecting a positive electrode current collector inside the battery. The two cylindrical parts can be inserted into the battery case upper lid 1 through the resin gasket 31 and the cylindrical part can be deformed and caulked from the outside of the battery using a press to fix the cylinder in an airtight manner. Similarly, the negative terminal 4 can be formed by connecting two terminals with a relay terminal plate constituting the connecting member 43. In the example shown in the figure, the total of the four terminals in total, positive and negative, are all cylindrical and can maintain airtightness with a uniform caulking force. Further, since both the positive and negative terminals are connected to each other by the connecting members 33 and 43 so that they cannot rotate, the screws are tightened with the connection terminal plate 10 (FIG. 6) sandwiched from the outside to the screw holes 32 and 42. Even when a large torque is applied, the connecting members 33 and 43 rotate within the battery, so that the situation where the positive electrode or negative electrode current collector connecting portion is damaged is not reached. Also, with respect to the outside connection with the device etc., if the connection terminal plate 10 provided with two holes in advance is fastened and fixed with two screws, the outer connection terminal plate 10 is rotated by an external force to cause poor contact. Such a situation can be avoided.
[0043]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0044]
Example 1
(1) 100 parts by weight of LiCo 2 O 4, 8 parts by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. FIG. 4 is an explanatory diagram of electrodes. In this embodiment, the application area (W1 × W2) of the positive electrode 101a is 262.5 × 192 mm 2 and is applied to both surfaces of a 20 μm current collector 10 5a with a thickness of 103 μm. As a result, the electrode thickness t is 226 μm. Further, there is an ear portion on which the electrode is not applied on the short side of the electrode, and a hole of φ3 is formed.
[0045]
(2) 100 parts by weight of graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., No. 6-28) and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied to both sides of a 14 μm thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. This will be described with reference to FIG. The application area (W1 × W2) of the negative electrode 101b or 101c is 267 × 195 mm 2 and is applied to both surfaces of an 18 μm current collector 10 5b with a thickness of 108 μm. As a result, the electrode thickness t is 234 μm. Further, there is an ear portion on which the electrode is not applied on the short side of the electrode, and a hole of φ3 is formed. Further, a single-sided electrode having a thickness of 126 μm was prepared by the same method except that the coating was applied to only one side. The single-sided electrode is arranged on the outer side in the electrode laminate of item (3) (101c in FIG. 2).
[0046]
(3) Eight positive electrodes and nine negative electrodes (two inner surfaces) obtained in the above item (1) are separated into separators 104a (polypropylene nonwoven fabric: 10 g / m 2 per unit area) and separators 104b (made of polyethylene) as shown in FIG. A microporous membrane: 13.3 g / m 2 per unit area (labeled as 104 in FIG. 2) was alternately laminated to prepare an electrode laminate. The separator 104b was disposed on the positive electrode side. Further, a separator 104b was disposed on the outer side of the negative electrode plate 101c outside the laminated body for insulation from the container.
[0047]
(4) The bottom container 2 of the battery (see FIG. 1) was prepared by drawing a 0.5 mm SUS304 thin plate to a depth of 5 mm. Further, the upper lid 1 of the battery was also made of a thin plate made of SUS304 having a thickness of 0.5 mm. The upper lid 1 is provided with two terminals of a positive electrode terminal 3 made of aluminum and two terminals (6 mmφ, threaded outside M3) of a negative electrode terminal 4 made of copper.
[0048]
(5) The positive electrode terminal 3 or the negative electrode terminal 4 (see FIG. 3) is placed on the relay terminal plate 33 or 43 having a screw hole 34 or 44 for electrically connecting the positive electrode current collector or the negative electrode current collector inside the battery. Each unit has a two-stage cylinder, and the two cylinder parts are inserted into the battery case upper lid 1 through the resin gasket 31 or 41, and the cylinder part is pressed and deformed from outside by pressing. Airtightly fixed. All four terminals, positive and negative, are all cylindrical, and airtightness can be maintained by uniform caulking force. In addition, since the positive and negative electrodes each have two terminals formed as an integrally molded part and cannot be rotated, the above-mentioned inside the battery even when a large torque is applied to the screw hole 32 or 42 from the outside. The relay terminal plate does not rotate to damage the positive electrode or negative electrode current collector connecting portion.
(6) The hole of each positive electrode ear of the electrode laminate prepared in the above item (3) was put in the positive electrode terminal 3 and the hole of each negative electrode ear 1 was put in the negative electrode terminal 4 and connected with aluminum and copper bolts, respectively. The electrode laminate was fixed with an insulating tape, and the corner A in FIG. 1 was laser welded over the entire circumference. Thereafter, a solution in which LiPF6 was dissolved at a concentration of 1 mol / l was poured into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a 1: 1 weight ratio as an electrolytic solution from the electrolytic solution injection hole 5 (6 mmφ). This battery was heat-sealed with a 0.08 mm thick aluminum foil-modified polypropylene laminate film punched to 12 mmφ under a reduced pressure of 100 torr to seal the electrolyte injection hole 5.
(7) In order to connect a plurality of batteries to the positive electrode and negative electrode external terminals of the battery obtained as described above, and also for the external connection with devices, etc., two external terminal plates provided with two holes in advance are provided. Tightened with screws. Since it was fastened and fixed with two screws, there was no situation where the outer terminal board rotated and caused poor contact. Also, when tightening the screws with a high torque electric screwdriver and tightening with a torque of 4 N · m, the initial internal resistance of 10 batteries produced by the above process was measured by the 1 kHz AC method. It was found that it was in the range of maximum 6.3Ω and there was very little variation. One of the batteries is charged to 4.1V with a current of 5A, and then a constant current / constant voltage charge is applied for 12 hours by applying a constant voltage of 4.1V, followed by 2.5V with a low current of 5A. When discharged, the discharge capacity was 24 Ah and the energy capacity was 86 Wh.
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except for the terminal structure employed in Example 1.
[0049]
As shown in FIG. 4, the positive electrode terminal 3 or the negative electrode terminal 4 is connected to a relay terminal plate 53 or 63 having a screw hole 54 or 64 that is electrically connected to a battery internal positive electrode current collector or negative electrode current collector (not shown). The cylindrical portion inserted from the inside of the battery through the hole provided is inserted into the battery case upper lid 1 through the resin gasket 51 or 61, and the cylindrical portion is pressed and deformed from the outside by a press using a press. Fixed.
[0050]
An external terminal plate provided with one hole in advance for connecting a plurality of batteries was fastened and fixed to the positive electrode and negative electrode external terminals of the battery obtained by the above process with one screw. When tightening with a high torque electric screwdriver with a torque of 4 N · m during screw tightening, it was found that in some cells the terminals were slightly idle in the gasket. Therefore, it was changed to use an electric screwdriver with a low torque of 1 N · m or less for screw tightening, but if working with a high torque screwdriver, the pre-aligned laminate in the battery will be moved. In the worst case, internal damage such as an internal short circuit or an ear break may occur, and an extremely dangerous situation may occur.
When the initial internal resistance of the 10 batteries manufactured by the above-described process was measured by an alternating current method of 1 kHz, it was found that they varied considerably from a minimum of 6.4Ω to a maximum of 7.8Ω. This is presumably because the relay terminal and the electrode terminal are connected only by crimping by caulking.
[0051]
After stacking the battery contents, connect the hole of each electrode to the electrode terminal, and then screw the terminal plate with a hole for connecting to the external device to the connection part to the outside of the terminal. The connection work of the module becomes. When all the tightening degrees were checked again after the work, one cell tightening was loose. This is considered to be caused by a tool or the like hitting the work and accidentally applying a force in the direction of rotation of the terminal board. If a large current is applied without tightening again, the contact resistance increases only in the loose part, so it becomes a heat source, and a dangerous situation is expected that heats the battery connected from the outside. .
[0052]
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1 except for the terminal structure employed in Example 1.
As shown in FIG. 5, rectangular flat terminals 3 or 4 having corners with arcuate shapes were produced and caulked and fixed by pressing through flat gaskets 71 or 81. The battery lid 1 is a SUS304 thin plate having a thickness of 0.5 mm, so that distortion occurred in the long side direction, and the flatness of the battery lid could not be maintained. In order to prevent this distortion, although it also depends on the caulking force, it seems that a thickness of at least 1 mm or more is necessary. Thereafter, sealing was performed and liquid injection was performed, but a small amount of liquid leakage occurred from a part in the long side direction. If the caulking force is not uniform, the airtightness cannot be maintained in this way, and it is expected that liquid leakage from the inside and intrusion of outside air will occur.
[0053]
【The invention's effect】
As is apparent from the above, according to the present invention, in flat batteries, in particular, in flat batteries having a large capacity and high volume energy density, internal short circuit due to internal breakage or poor contact of the outer terminal connection part during manufacture or use. It is possible to provide an excellent non-aqueous secondary battery with high safety that can prevent abnormal heat generation due to.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a non-aqueous secondary battery for a power storage system according to the present invention, where (a) is a plan view and (b) is a side view.
2 is a side sectional view showing a configuration of an electrode laminate housed in the battery shown in FIG. 1. FIG.
3 shows an electrode terminal structure of the non-aqueous secondary battery of FIG. 1, wherein (a) is a cross-sectional view after assembly, (b) is a positive electrode terminal, a negative electrode terminal before connection, and a connection connected thereto. It is a side view which shows a member.
4A and 4B show an electrode terminal structure used as a comparative example, where FIG. 4A is a cross-sectional view after assembly, FIG. 4B is an exploded view before assembly, and FIG. 4C is a plan view showing the appearance of the battery after assembly. FIG.
FIGS. 5A and 5B show a terminal structure used in a comparative example, where FIG. 5A is a cross-sectional view after assembly, FIG. 5B is an exploded view before assembly, and FIG. 5C is a plan view showing the appearance of a battery after assembly. It is.
6 shows the non-aqueous secondary battery of FIG. 1 together with a connection terminal plate, (a) is a plan view of the connection terminal plate, and (b) is a plan view showing a state in which the connection terminal plate is fixed with screws. is there.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Top cover 2 Bottom container 3 Positive electrode terminal 4 Negative electrode terminal 5 Injection hole 6 Sealing film 31, 41 Resin gasket 32, 42 Screw hole 33, 43 Connecting member (relay terminal)
34, 44 Screw hole 101a Positive electrode (both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
104, 104a, 104b Separator 105a Positive electrode current collector 105b Negative electrode current collector

Claims (5)

正極、負極、及びセパレータからなる電極積層体とリチウム塩を含む非水系電解質とを電池容器内に密閉してなり、かつ、厚さが12mm未満の扁平形状である非水系二次電池であって、
前記電池容器の所定位置に固定された正極端子及び負極端子を備え
前記正極及び負極は、それぞれ集電体に電極材料を塗布して形成されているとともに、集電体の一辺部に電極材料の非塗布部が設けられており
前記正極端子及び負極端子の少なくとも一方の電極端子は、該電池内部の正極あるいは負極の集電体の前記非塗布部に電気的に接続された連結部材と、前記連結部材を介して連結固定される2個以上の端子とからなり
前記2個以上の端子は、前記連結部材に一体形成されているとともに、樹脂製ガスケットを介して前記電池容器にかしめ固定することにより密閉固定され、かつ、前記電極端子を外部機器または他の電池の電極端子と接続するために前記端子と同数の穴が形成された接続端子板をネジ部材によりねじ止めするためのネジ穴部を有していることを特徴とする非水系二次電池。
A positive electrode, a negative electrode, and a nonaqueous electrolyte will be sealed to the battery container comprising an electrode laminate and a lithium salt comprising a separator, and a nonaqueous secondary battery thickness is less than 12mm flat shape ,
A positive electrode terminal and a negative electrode terminal fixed to a predetermined position of the battery case ;
The positive electrode and the negative electrode are each formed by applying an electrode material to a current collector, and a non-coated portion of the electrode material is provided on one side of the current collector ,
At least one electrode terminal of the positive electrode terminal and the negative electrode terminal is connected and fixed via a connecting member electrically connected to the non-application portion of the positive or negative current collector in the battery. that consists of two or more terminals,
The two or more terminals are integrally formed with the connecting member and are hermetically fixed by caulking and fixing to the battery container via a resin gasket, and the electrode terminals are connected to an external device or other battery. A non-aqueous secondary battery comprising a screw hole portion for screwing a connection terminal plate formed with the same number of holes as the terminal to be connected to the electrode terminal by a screw member .
前記2個以上の端子の前記ガスケットを介して前記電池容器にかしめ固定されている部分は、円形状であることを特徴とする請求項1に記載の非水系二次電池。2. The non-aqueous secondary battery according to claim 1, wherein portions of the two or more terminals that are caulked and fixed to the battery container via the gasket are circular . 前記電池容器の平面形状は、矩形であることを特徴とする請求項1または2に記載の非水系二次電池。The non-aqueous secondary battery according to claim 1, wherein the planar shape of the battery container is a rectangular shape . 請求項1〜3のいずれかに記載の非水系二次電池であって、
エネルギー容量が30Wh以上、及び、体積エネルギー密度が180Wh/l以上であることを特徴とする非水系二次電池。
The non-aqueous secondary battery according to claim 1,
Energy capacity is more than 30 Wh, and a non-aqueous secondary battery, wherein the volumetric energy density of 180 Wh / l or more.
前記電池容器の板厚は、0.2mm以上1mm以下であることを特徴とする請求項1〜4のいずれかに記載の非水系二次電池。  The nonaqueous secondary battery according to any one of claims 1 to 4, wherein a thickness of the battery container is 0.2 mm or more and 1 mm or less.
JP2000024224A 2000-02-01 2000-02-01 Non-aqueous secondary battery Expired - Fee Related JP4601109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024224A JP4601109B2 (en) 2000-02-01 2000-02-01 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024224A JP4601109B2 (en) 2000-02-01 2000-02-01 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2001216953A JP2001216953A (en) 2001-08-10
JP4601109B2 true JP4601109B2 (en) 2010-12-22

Family

ID=18550250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024224A Expired - Fee Related JP4601109B2 (en) 2000-02-01 2000-02-01 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4601109B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507300A4 (en) 2002-05-15 2006-09-13 Gs Yuasa Corp Battery
JP4590869B2 (en) * 2004-01-14 2010-12-01 トヨタ自動車株式会社 Laminated secondary battery
JP5396801B2 (en) * 2008-10-03 2014-01-22 株式会社Gsユアサ battery
EP3633758B1 (en) * 2010-07-21 2022-11-16 Kabushiki Kaisha Toshiba Battery and battery assembly
JP2013157232A (en) * 2012-01-31 2013-08-15 Gs Yuasa Corp Battery
JP6924640B2 (en) * 2017-07-11 2021-08-25 東芝テック株式会社 Batteries, mobile terminals and chargers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282841A (en) * 1994-04-05 1995-10-27 Mitsubishi Chem Corp Lithium ion secondary battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752185Y2 (en) * 1989-11-06 1995-11-29 株式会社室戸鉄工所 Suspending structure for hooks of earthworking machines
JPH06203813A (en) * 1993-01-06 1994-07-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282841A (en) * 1994-04-05 1995-10-27 Mitsubishi Chem Corp Lithium ion secondary battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same

Also Published As

Publication number Publication date
JP2001216953A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
JP3997370B2 (en) Non-aqueous secondary battery
US8771854B2 (en) Secondary battery
JP3799463B2 (en) Battery module
US9887404B2 (en) Secondary battery
EP2325924B1 (en) Secondary battery comprising a short circuit inducing member
JP4009803B2 (en) Non-aqueous secondary battery
JP5236199B2 (en) Non-aqueous secondary battery
US10944092B2 (en) Secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP4601109B2 (en) Non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JP4428796B2 (en) Non-aqueous secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2002245991A (en) Non-aqueous secondary battery
JP4594478B2 (en) Non-aqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP4688305B2 (en) Non-aqueous secondary battery
JP4025944B2 (en) Organic electrolyte battery for power storage system
JP4859277B2 (en) Non-aqueous secondary battery
JP2002270240A (en) Nonaqueous secondary cell
JP2001266848A (en) Non-aqueous secondary battery
JP2001243980A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees