JP3798894B2 - Harmonic compensation method - Google Patents

Harmonic compensation method Download PDF

Info

Publication number
JP3798894B2
JP3798894B2 JP26297497A JP26297497A JP3798894B2 JP 3798894 B2 JP3798894 B2 JP 3798894B2 JP 26297497 A JP26297497 A JP 26297497A JP 26297497 A JP26297497 A JP 26297497A JP 3798894 B2 JP3798894 B2 JP 3798894B2
Authority
JP
Japan
Prior art keywords
current
phase
harmonic
conversion circuit
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26297497A
Other languages
Japanese (ja)
Other versions
JPH11103527A (en
Inventor
文俊 市川
聡 宮崎
潤一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP26297497A priority Critical patent/JP3798894B2/en
Publication of JPH11103527A publication Critical patent/JPH11103527A/en
Application granted granted Critical
Publication of JP3798894B2 publication Critical patent/JP3798894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力系統の高調波を補償するアクティブフィルタ機能を有するアクティブフィルタやパワーラインコンデショナにおける高次高調波の補償に適した高調波補償方式に関するものである。
【0002】
【従来の技術】
図3に従来のアクティブフィルタの回路構成を示す。図中、10は高調波補償電力を系統に出力するインバータ、12は電流検出器CT1で検出した負荷電流iLU〜iLWをdq座標のd,q軸電流id,iqに変換する3相/dq座標変換回路、13,14はこのd,q軸電流の交流分(高調波電流成分)〜id,〜iqを抽出するハイパスフィルタ、15はこのd,q軸高調波電流成分を3相電流に変換するdq/3相座標変換回路、31はこの高調波電流と電流検出器CT2で検出したインバータ10の出力電流との偏差を検出する減算器、32はこの電流偏差をPI演算し電流指令を出力する電流制御器、33はこの電流指令を3角搬送波と比較してPWM制御信号に変換し、インバータ10を制御するPWM制御回路である。この方式はPIコントローラによる電流制御、三角波比較によるPWM制御の例であるが、他にもヒステリシスコンパレータ方式,空間ベクトル方式の場合にも同様に適用できる。(ヒステリシスコンパレータ方式,空間ベクトル方式は電流制御部とPWM制御部が一緒になっている。)
電流検出器CT1によって検出された3相負荷電流iLU〜iLWと電源周波数ωで回転する回転座標系のd,q軸の電流id,iqとの関係は(1)式となる。
【0003】
【数1】

Figure 0003798894
【0004】
この電流idは負荷電流の無効成分に、電流iqは有効成分となる。また、電流id,iqの直流分は基本波電流成分に、交流分は高調波成分となる。
【0005】
よって、図3のように電流id,iqからハイパスフィルタ13,14によって交流分だけを検出し、この電流〜id,〜iqを3相に変換し、電流制御により電圧形インバータから高調波電流を発生させ、系統に注入することにより、負荷電流に含まれる高調波電流を補償できる。これは一般に電力用アクティブフィルタの機能に相当する。
【0006】
座標変換した電流idの直流分(基本波無効成分)をローパスフィルタで抽出することにより無効電力の補償ができる。また、負荷電流を座標が逆回転する逆3相/dq座標変換回路で変換し、その変換した電流id,iqの直流分(基本波逆相成分)をローパスフィルタで抽出すると逆相電力の補償ができる。上記アクティブフィルタの機能に加えて無効電力補償,逆相電力補償を行うものがパワーラインコンディショナの機能に相当する。
【0007】
【発明が解決しようとする課題】
アクティブフィルタ,パワーラインコンデショナ等における高調波補償において、高次の高調波を補償する場合、制御周期、電流検出機器による電流検出の遅れ、電流制御の遅れにより十分な補償ができない。この対策として制御遅れ補償回路を付加する方式が考えられるが、微分動作となるため安定性に欠け、制御が困難となる。
【0008】
この発明は、このような問題点に鑑みてなされたものであり、その目的とするところは、電力系統の高次高調波電流を遅れなく検出し振幅位相補正をして確実に補償することのできる高調波補償方式を提供することにある。
【0009】
【課題を解決するための手段】
この発明は、3相の系統負荷電流を検出し、第1の3相/dq座標変換回路によりd軸電流,q軸電流に変換したのちハイパスフィルタで高調波成分を抽出し、抽出した高調波成分を第1のdq/3相変換回路を介して3相に変換した高周波電流と系統へ出力するインバータの出力電流とを比較し、その電流偏差がなくなるようにインバータを制御して高調波補償するものにおいて、
前記検出された負荷電流を3相/kω回転座標変換回路に導入し、この変換回路によって補償しようとする高調波電流の次数と電源角周波数との乗算値で回転する回転座標系により3相負荷電流を変換し、変換された負荷電流をローパスフィルタに出力して直流分を抽出し、この直流分をkω/3相回転座標変換回路によって3相の補償しようとする次数の高調波電流に変換し、変換された高調波電流を電源角周波数で回転するdq座標系に変換する第2の3相/dq座標変換回路に出力し、この変換回路によって変換された高調波電流の振幅と位相を振幅位相補正回路によって補正し、振幅位相補正後の高調波電流を第2のdq/3相変換回路により振幅位相補正された3相の補償しようとする次数の高周波電流に変換し、変換された高周波電流を前記検出された負荷電流に逆極性に加算して前記第1の3相/dq座標変換回路の入力側に出力すると共に、前記第1のdq/3相変換回路の出力と加算してインバータの出力電流と比較し、その電流偏差がなくなるようにインバータを制御することを特徴としたものである。
【0012】
【発明の実施の形態】
図1に実施の形態にかかるアクティブフィルタの回路構成を示す。
【0013】
図1において、Sは系統3相交流電源、Lは系統負荷、10はアクティブフィルタの補償電流を出力するインバータ、11は電流検出器CT1で検出した負荷電流iLU〜iLWから後記するk次高調波振幅位相補正ブロック21で検出され振幅位相補正されたk次高調波を引く減算器、12〜15は振幅位相補正を必要としない高調波を検出する高調波検出回路で、12は減算器11からのk次高調波が除去された負荷電流を電源周波数ωで回転するdq座標系へ変換しd,q軸電流id,iqを得る3相/dq軸座標変換回路、13,14はこのd,q軸電流の交流分(高調波電流成分)〜id,〜iqを抽出するハイパスフィルタ、15はこのd,q軸高調波電流成分を3相電流に変換するdq/3相座標変換回路。
【0014】
21(22〜29)は、k次高調波振幅位相補正ブロックで、22は上記CT1で検出した負荷電流を高調波次数kと回転角速度ωを掛けた値kωで回転するdq座標系でk次高調波のみを直流分に変換する3相/kω回転座標変換回路、23,24はk次以外の高調波分を除去し、このd,q軸電流の直流分idk,iqkを抽出するローパスフィルタ、25はこのd,q軸の直流分−idk,−iqkを(9)式の3相電流に変換するkω/3相回転座標変換回路、26はk次高調波成分の3相電流ika,ikb,ikcを電源周波数ωで回転するdq座標系に変換する3相/dq座標変換回路、27はこの変換されたk次高調波電流の振幅と位相に(1)式による補正を加える振幅位相補正回路、28は振幅位相補正後のdq軸k次高調波成分〜idk,〜iqkを3相電流に変換するdq/3相座標変換回路、29はdq/3相座標変換回路路15からの高調波に振幅位相補正回路27で振幅位相補正され、更にdq/3相座標変換回路28で3相に変換されたk次高調波電流を加算する加算器。
【0015】
31は加算器29からの高調波電流とCT2で検出したインバータの出力電流との偏差を検出する減算器、32はこの電流偏差をPI演算し電流指令を出力する電流制御器、33はこの電流指令を3角搬送波と比較してPWM制御信号に変換しインバータ10を制御するPWM制御回路である。
【0016】
上記k次高調波振幅位相補正ブロック21の動作を原理と共に説明する。
低次高調波の検出をハイパスフィルタを用いずに、この高調波の次数kと電源角周波数ωを掛けた値で回転する回転座標系に変換することによって検出する。
【0017】
負荷電流iLU,iLV,iLWを(2)式のように定義する。
【0018】
【数2】
Figure 0003798894
【0019】
(2)式中のnは整数であり、高調波の次数kを意味する。
負荷電流から第k次高調波を検出、補償する場合を考える。
【0020】
(2)式の負荷電流を高次高調波次数kと回転角速度ωを掛け合わせた値kωで回転する座標系へd,q変換する。この場合の変換式は(3)式のように定義できる。
【0021】
【数3】
Figure 0003798894
【0022】
上式に(2)式を代入すると、
【0023】
【数4】
Figure 0003798894
【0024】
となる。ここで、高調波電流をkωで回転す座標系へ変換した場合、高調波電流成分n=k+i(i=0,±1,±2,±3…)の成分は(4)式(5)式より(6)式(7)式のようになる。
【0025】
【数5】
Figure 0003798894
【0026】
(6)式(7)式より、負荷電流中に含まれているk次高調波電流が直流値に、基本調波及びその他の次数の高調波電流は交流値になることがわかる。よって、3相/kω回転座標変換回路で変換した電流id,iqの中からローパスフィルタ23,24により直流分だけを抽出すれば、(8)式に示すように系統電流中に含まれるk次高調波を検出することができる。高次高調波検出に微分動作となるハイパスフィルタを使用しないので、高精度に検出できる。
【0027】
【数6】
Figure 0003798894
【0028】
次に、(8)式を(9)式で座標変換し、更に(10)式で座標変換すると、
【0029】
【数7】
Figure 0003798894
【0030】
ここで得られた電流〜idk,〜iqkは角周波数3mω(ただしk=3m±1,m=整数)で回転する回転ベクトルとなる(図2参照)。
【0031】
振幅補正係数をαm、位相補正係数をθmとすると、補正後の電流値〜idk2,〜iqk2は(11)式で求めることができる。
【0032】
【数8】
Figure 0003798894
【0033】
kω/3相回転座標変換回路25はローパスフィルタ23,24からの直流分−idk,−iqkを(9)式で3相の電流ika,ikb,ikcに変換して第k次高調波を検出する。更に3相の電流ika,ikb,ikcを基本周波数ωで回転するdq座標系に3相/dq座標変換回路26で変換し、電流〜idk,〜iqkを得る。
【0034】
振幅位相補正回路27は電流〜idk,〜iqkを(11)式でその振幅Aと位相θを補正係数αmとθmで補正して〜idk2,〜iqk2とし、これをdq/3相座標変換回路28で3相に変換して振幅位相補正を加えた第k次高調波を出力する。
【0035】
このように、補正係数により、制御周期、電流検出器による電流検出の遅れ、電流制御の遅れを補償することができる。この補償は回転ベクトル上で行うため、従来の遅れ補償のような微分動作は必要とせず、位相,振幅の独立した調整が可能である。
【0036】
また、振幅補正係数、位相補正係数といったパラメータは制御回路の仕様から決定され、外部回路からは影響を受けない。
【0037】
図1において、k次高調波振幅位相補正ブロック21を並列に複数設ければ、複数の高次高調波の検出と振幅位相補正を同時に行うことが可能となる。
【0038】
【発明の効果】
この発明は、高調波成分を補正高調波のkの次数と電源角周波数を掛けた値で回転するベクトルに変換し、このベクトル振幅と位相を補正するので、従来のハイパスフィルタによる微分動作方式よりも高精度で安定した高次高調波の補正ができる。
【0039】
また、高次高調波の次数kの値の設定によって任意の高調波を振幅位相補償することができる。また、同時に複数の高調波の補正も可能である。
【0040】
したがって、任意次数の高調波を制御遅れなく補償することができる。
【図面の簡単な説明】
【図1】実施の形態にかかる電力用アクティブフィルタの回路構成図。
【図2】高次高調波電流の振幅位相補正を説明する回転ベクトル図。
【図3】従来例にかかる電力用アクティブフィルタの回路構成図。
【符号の説明】
10…電力形インバータ
12…3相/dq座標変換回路
13,14…ハイパスフィルタ
15…dq/3相座標変換回路
21…第k次高調波振幅位相補正ブロック。
22…3相/kω回転座標変換回路
23,24…ローパスフィルタ
25…kω/3相回転座標変換回路。
27…振幅位相補正回路
32…電流制御回路
33…PWM制御回路。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a harmonic compensation system suitable for compensation of high-order harmonics in an active filter having an active filter function for compensating harmonics in a power system and a power line conditioner.
[0002]
[Prior art]
FIG. 3 shows a circuit configuration of a conventional active filter. In the figure, 10 is an inverter that outputs harmonic compensation power to the system, and 12 is a circuit that converts load currents i LU to i LW detected by the current detector CT1 into d and q axis currents i d and i q in dq coordinates. Phase / dq coordinate conversion circuit, 13 and 14 are high-pass filters for extracting AC components (harmonic current components) to i d and to i q of the d and q axis currents, and 15 is the d and q axis harmonic current components. The dq / 3-phase coordinate conversion circuit 31 converts the current into a three-phase current, 31 is a subtractor for detecting the deviation between the harmonic current and the output current of the inverter 10 detected by the current detector CT2, and 32 is the PI for this current deviation. A current controller 33 that calculates and outputs a current command is a PWM control circuit that compares the current command with a triangular carrier wave, converts the current command into a PWM control signal, and controls the inverter 10. This method is an example of current control by a PI controller and PWM control by triangular wave comparison, but can also be applied to a hysteresis comparator method and a space vector method. (In the hysteresis comparator method and the space vector method, the current control unit and the PWM control unit are combined.)
The relationship between the three-phase load currents i LU to i LW detected by the current detector CT1 and the d and q axis currents i d and i q of the rotating coordinate system rotating at the power source frequency ω is expressed by equation (1).
[0003]
[Expression 1]
Figure 0003798894
[0004]
The current id is an ineffective component of the load current, and the current iq is an effective component. Further, the direct current component of the currents i d and i q is a fundamental wave current component, and the alternating current component is a harmonic component.
[0005]
Therefore, as shown in FIG. 3, only the AC component is detected from the currents i d and i q by the high-pass filters 13 and 14, and the currents i d and i q are converted into three phases. By generating the harmonic current and injecting it into the system, the harmonic current contained in the load current can be compensated. This generally corresponds to the function of a power active filter.
[0006]
Reactive power can be compensated by extracting the direct current component (fundamental wave ineffective component) of the current i d subjected to coordinate conversion with a low-pass filter. Further, when the load current is converted by a reverse three-phase / dq coordinate conversion circuit whose coordinates rotate in reverse, and the DC component (fundamental negative phase component) of the converted currents i d and i q is extracted by a low-pass filter, the negative phase power is obtained. Can be compensated. What performs reactive power compensation and reverse phase power compensation in addition to the function of the active filter corresponds to the function of the power line conditioner.
[0007]
[Problems to be solved by the invention]
In the harmonic compensation in an active filter, a power line conditioner, etc., when high-order harmonics are compensated, sufficient compensation cannot be performed due to a control cycle, a delay in current detection by a current detection device, and a delay in current control. As a countermeasure, a method of adding a control delay compensation circuit is conceivable. However, since the differential operation is performed, the stability is lacking and the control becomes difficult.
[0008]
The present invention has been made in view of such a problem, and an object of the present invention is to detect high-order harmonic currents of a power system without delay and to compensate for them by performing amplitude phase correction. It is to provide a harmonic compensation method that can be used.
[0009]
[Means for Solving the Problems]
In the present invention, a three-phase system load current is detected, converted into a d-axis current and a q-axis current by a first three-phase / dq coordinate conversion circuit, a harmonic component is extracted by a high-pass filter, and the extracted harmonics Comparing the high-frequency current obtained by converting the component into three phases via the first dq / 3-phase conversion circuit and the output current of the inverter output to the system, and controlling the inverter so that the current deviation is eliminated, thereby compensating for harmonics In what
The detected load current is introduced into a three-phase / kω rotational coordinate conversion circuit, and the three-phase load is rotated by a rotating coordinate system that rotates by a product of the order of the harmonic current to be compensated by the conversion circuit and the power supply angular frequency. Converts the current, outputs the converted load current to a low-pass filter, extracts the DC component, and converts this DC component to a harmonic current of the order to be compensated for three phases by the kω / 3-phase rotational coordinate conversion circuit. The converted harmonic current is output to a second three-phase / dq coordinate conversion circuit that converts it into a dq coordinate system that rotates at the power supply angular frequency, and the amplitude and phase of the harmonic current converted by this conversion circuit are output. Corrected by the amplitude phase correction circuit and converted the harmonic current after amplitude phase correction into a high-frequency current of the order to be compensated for the three phases whose amplitude and phase were corrected by the second dq / 3 phase conversion circuit. high frequency The current is added to the detected load current with the opposite polarity and output to the input side of the first three-phase / dq coordinate conversion circuit, and is added to the output of the first dq / 3-phase conversion circuit. Compared with the output current of the inverter, the inverter is controlled so that the current deviation is eliminated .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a circuit configuration of an active filter according to the embodiment.
[0013]
In FIG. 1, S is a system three-phase AC power source, L is a system load, 10 is an inverter that outputs the compensation current of the active filter, 11 is a k-th order described later from load currents i LU to i LW detected by the current detector CT1. A subtracter that subtracts the k-order harmonics detected by the harmonic amplitude phase correction block 21 and subjected to amplitude phase correction, 12 to 15 are harmonic detection circuits that detect harmonics that do not require amplitude phase correction, and 12 is a subtractor. A three-phase / dq-axis coordinate conversion circuit for converting the load current from which the k-th order harmonic from 11 is removed to a dq coordinate system rotating at the power supply frequency ω to obtain d and q-axis currents i d and i q Is a high-pass filter that extracts AC components (harmonic current components) to i d and to i q of the d and q axis currents, and 15 is a dq / 3 that converts the d and q axis harmonic current components into a three-phase current. Phase coordinate conversion circuit.
[0014]
21 (22 to 29) is a k-order harmonic amplitude phase correction block, and 22 is a k-th order dq coordinate system in which the load current detected by CT1 is rotated by a value kω multiplied by the harmonic order k and the rotational angular velocity ω. Three-phase / kω rotating coordinate conversion circuits 23 and 24 for converting only harmonics into DC components, remove harmonic components other than k-th order, and extract the DC components i dk and i qk of the d and q axis currents. A low-pass filter 25 is a kω / 3-phase rotational coordinate conversion circuit that converts the DC components −i dk and −i qk of the d and q axes into a three-phase current of the equation (9), and 26 is a 3rd-order harmonic component 3 A three-phase / dq coordinate conversion circuit for converting the phase currents i ka , i kb , and i kc into a dq coordinate system rotating at the power supply frequency ω, 27 indicates the amplitude and phase of the converted k-order harmonic current (1) Amplitude phase correction circuit for performing correction according to the equation, 28 is a dq-axis k-th harmonic component after amplitude phase correction to i d k , ˜i qk is converted into a three-phase current by a dq / 3-phase coordinate conversion circuit 29, and an amplitude / phase correction circuit 27 performs amplitude phase correction on the harmonics from the dq / three-phase coordinate conversion circuit 15, and dq / An adder that adds the k-th harmonic current converted into the three phases by the three-phase coordinate conversion circuit 28.
[0015]
31 is a subtractor that detects a deviation between the harmonic current from the adder 29 and the output current of the inverter detected by CT2, 32 is a current controller that PI-calculates this current deviation and outputs a current command, and 33 is this current. This is a PWM control circuit that controls the inverter 10 by comparing the command with a triangular carrier wave and converting it into a PWM control signal.
[0016]
The operation of the kth-order harmonic amplitude phase correction block 21 will be described together with the principle.
Low-order harmonics are detected by converting them into a rotating coordinate system that rotates at a value obtained by multiplying the harmonic order k and the power supply angular frequency ω without using a high-pass filter.
[0017]
Load currents i LU , i LV , i LW are defined as shown in equation (2).
[0018]
[Expression 2]
Figure 0003798894
[0019]
In the formula (2), n is an integer and means the harmonic order k.
Consider a case where the k-th harmonic is detected and compensated from the load current.
[0020]
The load current in equation (2) is converted into d and q into a coordinate system that rotates at a value kω obtained by multiplying the higher harmonic order k and the rotational angular velocity ω. The conversion formula in this case can be defined as shown in formula (3).
[0021]
[Equation 3]
Figure 0003798894
[0022]
Substituting equation (2) into the above equation,
[0023]
[Expression 4]
Figure 0003798894
[0024]
It becomes. Here, when the harmonic current is converted into a coordinate system rotating at kω, the component of the harmonic current component n = k + i (i = 0, ± 1, ± 2, ± 3...) Is expressed by Equation (5). From the equation, the equation (6) and the equation (7) are obtained.
[0025]
[Equation 5]
Figure 0003798894
[0026]
From equation (6) and equation (7), it can be seen that the k-order harmonic current contained in the load current has a DC value, and the harmonic currents of the fundamental harmonic and other orders have an AC value. Therefore, if only the DC component is extracted by the low-pass filters 23 and 24 from the currents i d and i q converted by the three-phase / kω rotation coordinate conversion circuit, they are included in the system current as shown in the equation (8). A k-th order harmonic can be detected. Since a high-pass filter that performs differential operation is not used for high-order harmonic detection, detection can be performed with high accuracy.
[0027]
[Formula 6]
Figure 0003798894
[0028]
Next, if the coordinates of equation (8) are transformed by equation (9) and further transformed by equation (10),
[0029]
[Expression 7]
Figure 0003798894
[0030]
The currents ˜i dk , ˜i qk obtained here are rotation vectors rotating at an angular frequency of 3 mω (where k = 3m ± 1, m = integer) (see FIG. 2).
[0031]
Assuming that the amplitude correction coefficient is α m and the phase correction coefficient is θ m , the corrected current values ˜i dk2 , ˜i qk2 can be obtained by equation (11).
[0032]
[Equation 8]
Figure 0003798894
[0033]
The kω / 3-phase rotational coordinate conversion circuit 25 converts the DC components −i dk and −i qk from the low-pass filters 23 and 24 into three-phase currents i ka , i kb , and i kc according to equation (9), and Detect the second harmonic. Further converts three-phase current i ka, with i kb, 3 phase i kc to the dq coordinate system rotating at the fundamental frequency omega / dq coordinate transformation circuit 26, give the current through i dk, a through i qk.
[0034]
Amplitude phase correction circuit 27 is a current through i dk, through i dk2 a through i qk (11) equation in that the amplitude A and the phase theta corrected by the correction coefficient alpha m and theta m, and through i Qk2, dq this / The three-phase coordinate conversion circuit 28 converts the signal into three phases and outputs the k-th order harmonic with amplitude phase correction.
[0035]
In this way, the correction coefficient can compensate for the control cycle, the delay in current detection by the current detector, and the delay in current control. Since this compensation is performed on the rotation vector, a differential operation like the conventional delay compensation is not required, and the phase and amplitude can be adjusted independently.
[0036]
The parameters such as the amplitude correction coefficient and the phase correction coefficient are determined from the specifications of the control circuit and are not affected by the external circuit.
[0037]
In FIG. 1, if a plurality of k-order harmonic amplitude phase correction blocks 21 are provided in parallel, detection of a plurality of higher harmonics and amplitude phase correction can be performed simultaneously.
[0038]
【The invention's effect】
In the present invention, the harmonic component is converted into a vector that is rotated by a value obtained by multiplying the order of k of the corrected harmonic and the power supply angular frequency, and the vector amplitude and phase are corrected. Therefore, the differential operation method using the conventional high-pass filter is used. Can correct high-order harmonics with high accuracy and stability.
[0039]
In addition, amplitude and phase compensation of an arbitrary harmonic can be performed by setting the value of the order k of the higher harmonic. In addition, a plurality of harmonics can be corrected simultaneously.
[0040]
Therefore, harmonics of any order can be compensated without control delay.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a power active filter according to an embodiment.
FIG. 2 is a rotation vector diagram for explaining amplitude phase correction of a high-order harmonic current.
FIG. 3 is a circuit configuration diagram of a power active filter according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Power type inverter 12 ... 3 phase / dq coordinate transformation circuit 13, 14 ... High pass filter 15 ... dq / 3 phase coordinate transformation circuit 21 ... kth harmonic amplitude phase correction block.
22... Three-phase / kω rotational coordinate conversion circuit 23, 24... Low pass filter 25.
27 ... Amplitude phase correction circuit 32 ... Current control circuit 33 ... PWM control circuit

Claims (1)

3相の系統負荷電流を検出し、第1の3相/dq座標変換回路によりd軸電流,q軸電流に変換したのちハイパスフィルタで高調波成分を抽出し、抽出した高調波成分を第1のdq/3相変換回路を介して3相に変換した高周波電流と系統へ出力するインバータの出力電流とを比較し、その電流偏差がなくなるようにインバータを制御して高調波補償するものにおいて、
前記検出された負荷電流を3相/kω回転座標変換回路に導入し、この変換回路によって補償しようとする高調波電流の次数と電源角周波数との乗算値で回転する回転座標系により3相負荷電流を変換し、変換された負荷電流をローパスフィルタに出力して直流分を抽出し、この直流分をkω/3相回転座標変換回路によって3相の補償しようとする次数の高調波電流に変換し、変換された高調波電流を電源角周波数で回転するdq座標系に変換する第2の3相/dq座標変換回路に出力し、この変換回路によって変換された高調波電流の振幅と位相を振幅位相補正回路によって補正し、振幅位相補正後の高調波電流を第2のdq/3相変換回路により振幅位相補正された3相の補償しようとする次数の高周波電流に変換し、変換された高周波電流を前記検出された負荷電流に逆極性に加算して前記第1の3相/dq座標変換回路の入力側に出力すると共に、前記第1のdq/3相変換回路の出力と加算してインバータの出力電流と比較し、その電流偏差がなくなるようにインバータを制御することを特徴とした高調波補正方式。
A three-phase system load current is detected, converted to d-axis current and q-axis current by the first three-phase / dq coordinate conversion circuit, and then a harmonic component is extracted by a high-pass filter. The high frequency current converted into the three phases via the dq / 3 phase conversion circuit of the above and the output current of the inverter output to the system are compared, and the inverter is controlled so as to eliminate the current deviation to compensate the harmonics.
The detected load current is introduced into a three-phase / kω rotational coordinate conversion circuit, and the three-phase load is rotated by a rotating coordinate system that rotates by a product of the order of the harmonic current to be compensated by the conversion circuit and the power supply angular frequency. Converts the current, outputs the converted load current to a low-pass filter, extracts the DC component, and converts this DC component to a harmonic current of the order to be compensated for three phases by the kω / 3-phase rotational coordinate conversion circuit. The converted harmonic current is output to a second three-phase / dq coordinate conversion circuit that converts it into a dq coordinate system that rotates at the power supply angular frequency, and the amplitude and phase of the harmonic current converted by this conversion circuit are output. Corrected by the amplitude phase correction circuit and converted the harmonic current after amplitude phase correction into a high-frequency current of the order to be compensated for the three phases whose amplitude and phase were corrected by the second dq / 3 phase conversion circuit. high frequency The current is added to the detected load current with the opposite polarity and output to the input side of the first three-phase / dq coordinate conversion circuit, and is added to the output of the first dq / 3-phase conversion circuit. A harmonic correction method characterized by controlling the inverter to eliminate the current deviation compared to the output current of the inverter .
JP26297497A 1997-09-29 1997-09-29 Harmonic compensation method Expired - Fee Related JP3798894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26297497A JP3798894B2 (en) 1997-09-29 1997-09-29 Harmonic compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26297497A JP3798894B2 (en) 1997-09-29 1997-09-29 Harmonic compensation method

Publications (2)

Publication Number Publication Date
JPH11103527A JPH11103527A (en) 1999-04-13
JP3798894B2 true JP3798894B2 (en) 2006-07-19

Family

ID=17383144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26297497A Expired - Fee Related JP3798894B2 (en) 1997-09-29 1997-09-29 Harmonic compensation method

Country Status (1)

Country Link
JP (1) JP3798894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683304A (en) * 2013-12-09 2014-03-26 国家电网公司 Control method for optimizing thyristor controlled transformer type controllable electric reactor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485504B1 (en) * 2002-08-09 2005-04-27 동부아남반도체 주식회사 Apparatus for lowering an earth electric potential in semiconductor device
JP5025295B2 (en) * 2007-03-20 2012-09-12 東芝三菱電機産業システム株式会社 Semiconductor power converter
JP5021390B2 (en) * 2007-08-01 2012-09-05 株式会社ダイヘン Signal extracting device and reactive power compensator including the same
JP5622030B2 (en) * 2010-06-03 2014-11-12 富士電機株式会社 Power conversion system
PL2487780T3 (en) * 2011-02-14 2020-07-13 Siemens Aktiengesellschaft Controller for a power converter and method of operating the same
KR101639825B1 (en) * 2011-08-22 2016-07-14 엘에스산전 주식회사 Apparatus for controlling current of inverter
CN102412579B (en) * 2011-09-26 2014-03-12 中国电力科学研究院 Harmonic current compensating method based on fast Fourier transform
CN102801346B (en) * 2012-08-21 2014-09-24 深圳市通业科技发展有限公司 Three-phase inverter with no-signal interconnecting lines connected in parallel and control method of three-phase inverter
JP5585643B2 (en) * 2012-12-14 2014-09-10 ダイキン工業株式会社 Active filter control device
CN103855717B (en) * 2014-03-27 2015-11-18 安徽工业大学 The nothing of a kind of low pressure SVG impacts soft-start method
JP6756975B2 (en) * 2016-09-14 2020-09-16 富士電機株式会社 Power converter controller
EP3902082A4 (en) * 2018-12-18 2021-12-29 Mitsubishi Electric Corporation Control device and active filter device
CN114061632B (en) * 2021-10-21 2024-03-19 上大电气科技(嘉兴)有限公司 Decoding method of high-precision magnetic encoder for compensating appointed subharmonic
CN114123205B (en) * 2021-11-01 2023-12-22 深圳供电局有限公司 Harmonic compensation system and phase correction method and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683304A (en) * 2013-12-09 2014-03-26 国家电网公司 Control method for optimizing thyristor controlled transformer type controllable electric reactor

Also Published As

Publication number Publication date
JPH11103527A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP3798894B2 (en) Harmonic compensation method
CN111313474B (en) Improved micro-grid-connected presynchronization control method
JPH10225131A (en) Controller of power converter
CN105610145B (en) Power feedback active full-harmonic arc extinction control method and system
CN110365039B (en) Microgrid inverter and control method and control device thereof
JP3236985B2 (en) Control device for PWM converter
JP3323759B2 (en) Pulse width modulation converter device
JP3793788B2 (en) Constant voltage control method for induction generator
JP2004080975A (en) Controller for motor
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
JP3173892B2 (en) Control device for voltage imbalance compensator
JP4303433B2 (en) Power converter for grid connection
JPH0880052A (en) Active filter for power
JP3509935B2 (en) Control device for voltage source PWM converter
Sindhu et al. Comparative study of exponential composition algorithm under dynamic conditions
JP6640317B1 (en) Self-excited reactive power compensator
JP2000350364A (en) Harmonic current detecting device
JPH08111937A (en) General purpose compensating apparatus
JP2653485B2 (en) Inverter control device
JP6419565B2 (en) Detection device, power conversion device, detection method using three-phase alternating current as input, and control method for power conversion device.
JP3261852B2 (en) Active filter compensation current command value calculation circuit
WO2021070295A1 (en) Power conversion device
JPH0833319A (en) Three-phase balancing unit
JP3321248B2 (en) Fault current suppression device
JP2914997B2 (en) Inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees