JP3796069B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP3796069B2
JP3796069B2 JP20175499A JP20175499A JP3796069B2 JP 3796069 B2 JP3796069 B2 JP 3796069B2 JP 20175499 A JP20175499 A JP 20175499A JP 20175499 A JP20175499 A JP 20175499A JP 3796069 B2 JP3796069 B2 JP 3796069B2
Authority
JP
Japan
Prior art keywords
solar cell
protective layer
cell module
substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20175499A
Other languages
Japanese (ja)
Other versions
JP2001036102A (en
Inventor
伸 松見
武志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20175499A priority Critical patent/JP3796069B2/en
Publication of JP2001036102A publication Critical patent/JP2001036102A/en
Application granted granted Critical
Publication of JP3796069B2 publication Critical patent/JP3796069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質半導体からなる太陽電池モジュールに係り、特に耐衝撃性の向上した太陽電池モジュールを提供する技術に関する。
【0002】
【従来の技術】
現在、太陽電池を用いた太陽光発電システムはクリーンな電源システムであることから、住宅用の電源システム等への普及が進んでいる。太陽電池を構成する材料としては、単結晶シリコンや多結晶シリコン等の結晶系半導体材料、非晶質シリコンや非晶質シリコンゲルマニウム等の非晶質半導体材料、或いはGaAs,CdTe等の化合物半導体材料が検討されている。このうち、非晶質半導体材料を用いた太陽電池は、基板の選択自由度や出力設計における自由度が高く、且つ安価に製造することができる、という特徴を有している。
【0003】
斯かる非晶質半導体を用いた従来の太陽電池モジュールの構造を、図7に示す断面図を参照して説明する。
【0004】
同図において、1はガラスからなる基板であり、光は図中矢印で示す如く該基板1の受光面A側から入射する。基板1の光透過面B上には、非晶質半導体からなる光起電力素子2が形成されている。光起電力素子2は、基板1の光透過面B上にSnO2,ITO或いはZnO等の透光性を有する導電性材料からなる第1電極11と、非晶質半導体からなり内部にpin接合を有する光電変換層12と、Ag,Al等の高反射性材料からなる第2電極13と、がこの順に積層されて構成されている。また、第2電極13が相隣接する光電変換層12間の分離部に埋設されて第1電極11と接することにより、隣接する光起電力素子2が電気的に直列接続されている。
【0005】
さらに、3は、後工程において作業中に光起電力素子2の表面に引っかき傷等が付くことを防止するために該光起電力素子2の表面を覆って設けられた被覆層であり、通常エポキシ樹脂を用いて形成されている。また、光起電力素子2で発生した起電力は、両端に位置する光起電力素子2の第1電極及び第2電極からリード線(図示せず)を介して外部に取出される。
【0006】
【発明が解決しようとする課題】
斯かる構成の太陽電池モジュールは通常家屋の屋根上やビルの屋上等の屋外に設置されて使用される。従って、最も受光面側に配される基体1には霰や雹等の落下物に対する耐衝撃性が要求され、このため従来は上記基体1として強化ガラスを用いる、或いは基体1の厚みを厚くする等の方法が用いられている。然し乍ら、斯かる方法は、いずれもコストの増大を招くと共に、重量が重くなることから設置の際の作業性が著しく低下する、等の問題があった。
【0007】
本発明は、斯かる従来の課題を解決し、軽量で耐衝撃性の向上した太陽電池モジュールを低コストで提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明太陽電池モジュールは、ガラスからなる基体の光透過面上に非晶質半導体からなる光起電力素子を備え、且つ前記基体の受光面に保護層を備えた太陽電池モジュールであって、前記保護層は、前記基体の受光面領域に錫が添加されてなることを特徴とする。
【0010】
また、前記保護層の厚みが、10Å以上、1000Å以下の範囲であることを特徴とする。この保護層の厚みは、100Å以上、1000Å以下の範囲とすることがさらに好ましい。
【0012】
【発明の実施の形態】
本発明の実施の形態について、図1に示す断面図を参照して説明する。尚、同図において、図7と同一の機能を呈する部分には、同一の符号を付している。
【0013】
同図を参照して、本発明が従来と異なる点は、ガラスからなる基体1の受光面Aに保護層10を備えた点にある。本発明にあっては、この保護層10が錫を含有した層から構成されている。斯かる保護層10を形成するにあたっては、基体1中に受光面A側から錫を拡散させ、基体1中における受光面A側の受光面領域に錫を添加することにより形成することができる。或いは、基体1の受光面A上にスパッタ法或いは蒸着法等の方法により錫膜を形成し、この錫膜を保護層10としても良い。斯かる構成によれば、基体1の強度を増大させることが可能となり、耐衝撃性に優れた太陽電池モジュールを提供することができる。また、斯かる保護層10を設けることにより基体1の受光面Aでの紫外線の反射率が増大し、紫外線による基体1の強度劣化も抑制することができる。
【0014】
(第1実施例)
以下に、本発明の第1実施例について、図2に示す工程別断面図を参照して説明する。
【0015】
まず、同図(A)に示す第1工程においては、1m×1mで厚みが4mmのガラス板からなる基体1の受光面A上に、蒸着法を用いて厚さ約2000〜3000Åの錫膜20を形成した。
【0016】
次に、同図(B)に示す第2工程においては、受光面A上に錫膜20が形成された基体1を約700℃にまで加熱し、その状態で5〜10分間程度維持した後に徐冷することにより基体1中に錫を熱拡散させ、基体1の受光面領域に錫が添加されてなる保護層10を形成した。そして、錫膜20をエッチングにより除去した。
【0017】
次いで、同図(C)に示す第3工程においては、基体1の光透過面B上に、熱CVD法を用いて膜厚約8000ÅのSnO2膜を形成し、レーザスクライブ法によりこのSnO2膜を複数の領域に分割して複数の第1電極11を形成した。
【0018】
さらに、同図(D)に示す第4工程においては、第1電極11上を含んで基体1の光透過面B上の全面に、プラズマCVD法を用いてp型の非晶質シリコンカーバイドからなる膜厚約100Åのp型層、真性の非晶質シリコンからなる膜厚約4000Åのi型層及びn型の非晶質シリコンからなる膜厚約200Åのn型層をこの順に形成した。そして、レーザスクライブ法によりこれらの積層膜を複数の領域に分割して複数の光電変換層12を形成した。
【0019】
そして、同図(E)に示す第5工程においては、光電変換層12上を含んで基体1の光透過面B上の全面に、スパッタ法を用いて銀膜を形成し、レーザスクライブ法により銀膜を複数の領域に分割して複数の第2電極13を形成した。
【0020】
最後に、第2電極13上を含んで基体1の光透過面B上の全面にエポキシ樹脂を塗布して被覆層3を形成し、図1に示す太陽電池モジュールを製造した。
【0021】
そして、上記第1工程における基体1の受光面A上に形成する錫膜20の膜厚、或いは第2工程における熱拡散の時間等を制御することにより保護層10の厚みを変化させた太陽電池モジュールを複数個製造し、これらの太陽電池モジュールについて耐衝撃性の試験を行った。耐衝撃性の試験は製造直後のもの及び屋外に1年間暴露後のもの2種類について行った。
【0022】
尚、ここで耐衝撃性の試験は、JIS規格C8938で規定される降雹試験(簡易試験方法)を用いて行った。即ち、基体1の受光面Aを上側として水平に固定し、この基体1の中央に、質量227±2g、直径約38mmの表面が滑らかな鋼球を1mの高さから力を加えずに落下させて破損の有無を調べ、破損の生じなかったものを良品、破損が生じたものを不良品とした。
【0023】
図3は斯かる耐衝撃性試験の結果を示す特性図であり、縦軸は良品の歩留、横軸は保護層の膜厚である。また、製造直後の太陽電池モジュールに対して試験を行った結果を実線で示し、屋外に1年間暴露後の太陽電池モジュールに対して試験を行った結果を破線で示す。
【0024】
同図に実線で示すように、製造直後の太陽電池モジュールにおいては保護層の膜厚を10Å以上とすることで、歩留を95%以上に向上できることがわかる。また、破線で示すように1年間屋外で暴露した太陽電池モジュールについても、保護層の膜厚が10Å未満の場合には製造直後のものに比べて歩留が大きく低下するのに対し、保護層の膜厚を厚くすることにより歩留が向上し、保護層の膜厚を100Å以上とすることにより1年間屋外暴露後でも歩留を95%以上に向上することができた。斯様に保護層を備えることにより屋外暴露後でも歩留が向上した理由は、保護層を設けることにより基体の受光面での紫外線の反射率が増大し、紫外線による基体の強度低下を抑制することができたことによるものと考えられる。
【0025】
また、図4は耐衝撃性試験に用いた製造直後の太陽電池モジュールの光電変換特性を示す特性図であり、縦軸は光電変換効率の相対値、横軸は保護層の膜厚を示す。同図に示す如く、光電変換効率は保護層の膜厚を大きくするにつれ次第に減少し、保護層の膜厚が1000Åよりも大きくなると光電変換効率は保護層を備えない場合の95%以下にまで低下することがわかる。斯様に光電変換効率が保護層の膜厚を大きくすると低下する理由は、基体中に錫が添加されることにより次第にその光透過特性が低下するためと考えられる。従って、図3及び図4の結果から、保護層の膜厚は10Å以上1000Å以下の範囲が好ましく、100Å以上1000Å以下の範囲がより好ましい。
【0026】
(第2実施例)
次に、本発明の第2実施例について説明する。本実施例が第1実施例と異なる点は、上述した第1実施工程において基体1の受光面A上にスパッタ法を用いて形成した錫膜を保護層10とした点であり、他の工程は実施例1と同一である。
【0027】
本実施例においてもスパッタ時の条件を制御することにより保護層10の膜厚を変化させた太陽電池モジュールを製造し、製造直後と1年間屋外暴露後の2種類について、耐衝撃性の試験を行った。その結果を図5の特性図に示す。
【0028】
同図に示す如く、本実施例にあっては実線で示すように、保護層の膜厚を5Å以上とすることで製造直後の太陽電池モジュールの歩留を95%以上に向上できることがわかった。また、破線で示す1年間屋外暴露後の太陽電池モジュールにおいては、保護層の膜厚を50Å以上とすることで歩留を95%以上に向上できることがわかった。
【0029】
また、本実施例太陽電池モジュールについても光電変換特性の測定を行った。その結果を図6の特性図に示す。同図から、本実施例の場合においては保護層の膜厚が500Åより大きくなると、光電変換効率が保護層を備えない場合の95%未満にまで低下することがわかった。
【0030】
従って、図5及び図6の結果から、本実施例においては保護層の膜厚を5Å以上500Å以下の範囲とすることが好ましく、50Å以上500Å未満とすることがより好ましい。
【0031】
【発明の効果】
以上説明した如く、本発明によれば基体の受光面に保護層を設けることで、耐衝撃性に優れた太陽電池モジュールを提供することができ、紫外線による基体の強度低下も抑制することができる。
【0032】
さらに、保護層の膜厚は薄いので重量が増大することがなく、軽量の太陽電池モジュールを提供することができると共に、コストの増大を抑制することもできる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池モジュールの断面図である。
【図2】本発明太陽電池モジュールの製造工程を説明するための工程別断面図である。
【図3】第1実施例に係る太陽電池モジュールの耐衝撃性と保護層の膜厚との関係を示す特性図である。
【図4】第1実施例に係る太陽電池モジュールの光電変換特性と保護層の膜厚との関係を示す特性図である。
【図5】第2実施例に係る太陽電池モジュールの耐衝撃性と保護層の膜厚との関係を示す特性図である。
【図6】第2実施例に係る太陽電池モジュールの光電変換特性と保護層の膜厚との関係を示す特性図である。
【図7】従来の太陽電池モジュールの断面図である。
【符号の説明】
1…基体、2…光起電力素子、3…被覆層、10…保護層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell module made of an amorphous semiconductor, and more particularly to a technique for providing a solar cell module with improved impact resistance.
[0002]
[Prior art]
At present, a solar power generation system using solar cells is a clean power supply system, and is therefore widely used in residential power supply systems. As a material constituting the solar cell, a crystalline semiconductor material such as single crystal silicon or polycrystalline silicon, an amorphous semiconductor material such as amorphous silicon or amorphous silicon germanium, or a compound semiconductor material such as GaAs or CdTe Is being considered. Among these, a solar cell using an amorphous semiconductor material has a feature that it has a high degree of freedom in substrate selection and output design and can be manufactured at low cost.
[0003]
The structure of a conventional solar cell module using such an amorphous semiconductor will be described with reference to a cross-sectional view shown in FIG.
[0004]
In the figure, reference numeral 1 denotes a substrate made of glass, and light enters from the light receiving surface A side of the substrate 1 as indicated by an arrow in the figure. A photovoltaic element 2 made of an amorphous semiconductor is formed on the light transmission surface B of the substrate 1. The photovoltaic element 2 includes a first electrode 11 made of a light-transmitting conductive material such as SnO 2 , ITO or ZnO on the light transmission surface B of the substrate 1, and an amorphous semiconductor made of a pin junction. And a second electrode 13 made of a highly reflective material such as Ag and Al are laminated in this order. Moreover, the adjacent photovoltaic element 2 is electrically connected in series by the 2nd electrode 13 being embed | buried in the isolation | separation part between the adjacent photoelectric converting layers 12, and the 1st electrode 11 being contacted.
[0005]
Furthermore, 3 is a coating layer provided so as to cover the surface of the photovoltaic element 2 in order to prevent the surface of the photovoltaic element 2 from being scratched or the like during work in a post process, It is formed using an epoxy resin. Further, the electromotive force generated in the photovoltaic element 2 is taken out from the first electrode and the second electrode of the photovoltaic element 2 located at both ends via lead wires (not shown).
[0006]
[Problems to be solved by the invention]
The solar cell module having such a configuration is usually used by being installed outdoors on the roof of a house or the roof of a building. Therefore, the substrate 1 arranged closest to the light receiving surface is required to have impact resistance against falling objects such as wrinkles and wrinkles. For this reason, conventionally, tempered glass is used as the substrate 1 or the thickness of the substrate 1 is increased. Etc. are used. However, each of these methods has problems such as an increase in cost and an increase in weight, which significantly reduces workability during installation.
[0007]
An object of the present invention is to solve such a conventional problem and to provide a solar cell module that is lightweight and has improved impact resistance at a low cost.
[0008]
[Means for Solving the Problems]
The solar cell module of the present invention is a solar cell module comprising a photovoltaic element made of an amorphous semiconductor on a light transmitting surface of a substrate made of glass, and a protective layer on the light receiving surface of the substrate , The protective layer is characterized in that tin is added to the light receiving surface region of the substrate .
[0010]
The thickness of the pre-Symbol protective layer, 10 Å or more, characterized in that it is a less range 1000 Å. The thickness of the protective layer is more preferably in the range of 100 to 1000 mm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to a cross-sectional view shown in FIG. In the figure, parts having the same functions as those in FIG. 7 are denoted by the same reference numerals.
[0013]
Referring to the figure, the present invention is different from the prior art in that a protective layer 10 is provided on a light receiving surface A of a substrate 1 made of glass. In the present invention, the protective layer 10 is composed of a layer containing tin. The protective layer 10 can be formed by diffusing tin from the light receiving surface A side into the substrate 1 and adding tin to the light receiving surface region on the light receiving surface A side in the substrate 1. Alternatively, a tin film may be formed on the light receiving surface A of the substrate 1 by a method such as sputtering or vapor deposition, and this tin film may be used as the protective layer 10. According to such a configuration, the strength of the substrate 1 can be increased, and a solar cell module excellent in impact resistance can be provided. Further, by providing such a protective layer 10, the reflectance of ultraviolet rays at the light receiving surface A of the substrate 1 is increased, and the strength deterioration of the substrate 1 due to ultraviolet rays can be suppressed.
[0014]
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to cross-sectional views according to processes shown in FIG.
[0015]
First, in the first step shown in FIG. 1A, a tin film having a thickness of about 2000 to 3000 mm is formed on the light-receiving surface A of the substrate 1 made of a glass plate having a size of 1 m × 1 m and a thickness of 4 mm by using a vapor deposition method. 20 was formed.
[0016]
Next, in the second step shown in FIG. 5B, after heating the substrate 1 having the tin film 20 formed on the light receiving surface A to about 700 ° C. and maintaining that state for about 5 to 10 minutes. By slowly cooling, tin was thermally diffused in the substrate 1 to form a protective layer 10 in which tin was added to the light receiving surface region of the substrate 1. Then, the tin film 20 was removed by etching.
[0017]
Next, in the third step shown in FIG. 3C, an SnO 2 film having a thickness of about 8000 mm is formed on the light transmission surface B of the substrate 1 by using a thermal CVD method, and this SnO 2 film is formed by a laser scribing method. The film was divided into a plurality of regions to form a plurality of first electrodes 11.
[0018]
Further, in the fourth step shown in FIG. 4D, the p-type amorphous silicon carbide is formed on the entire surface of the light transmission surface B of the substrate 1 including the first electrode 11 by using the plasma CVD method. A p-type layer having a thickness of about 100 mm, an i-type layer having a thickness of about 4000 mm made of intrinsic amorphous silicon, and an n-type layer having a thickness of about 200 mm made of n-type amorphous silicon were formed in this order. Then, these stacked films were divided into a plurality of regions by a laser scribing method to form a plurality of photoelectric conversion layers 12.
[0019]
Then, in the fifth step shown in FIG. 5E, a silver film is formed on the entire surface of the light transmission surface B of the substrate 1 including the photoelectric conversion layer 12 by sputtering, and laser scribe is used. A plurality of second electrodes 13 were formed by dividing the silver film into a plurality of regions.
[0020]
Finally, an epoxy resin was applied to the entire surface of the substrate 1 including the second electrode 13 on the light transmission surface B to form the coating layer 3, and the solar cell module shown in FIG. 1 was manufactured.
[0021]
And the solar cell which changed the thickness of the protective layer 10 by controlling the film thickness of the tin film 20 formed on the light-receiving surface A of the base 1 in the first step or the time of thermal diffusion in the second step, etc. A plurality of modules were produced, and impact resistance tests were performed on these solar cell modules. The impact resistance test was carried out on two types immediately after production and one after outdoor exposure for one year.
[0022]
Here, the impact resistance test was carried out using a falling test (simple test method) defined in JIS standard C8938. That is, the light receiving surface A of the base 1 is fixed horizontally and the steel ball with a mass of 227 ± 2 g and a diameter of about 38 mm is dropped from the height of 1 m without applying force to the center of the base 1. Then, the presence or absence of breakage was examined, and those that did not break were regarded as non-defective products and those that broke were regarded as defective.
[0023]
FIG. 3 is a characteristic diagram showing the results of such an impact resistance test. The vertical axis represents the yield of good products and the horizontal axis represents the film thickness of the protective layer. Moreover, the result of having tested with respect to the solar cell module immediately after manufacture is shown as a continuous line, and the result of having tested with respect to the solar cell module after being exposed outdoors for 1 year is shown with a broken line.
[0024]
As shown by the solid line in the figure, in the solar cell module immediately after manufacture, it can be seen that the yield can be improved to 95% or more by setting the thickness of the protective layer to 10 mm or more. Also, as shown by the broken line, the solar cell module exposed outdoors for one year also has a significantly lower yield when the protective layer thickness is less than 10 mm, compared to that immediately after manufacture. The yield was improved by increasing the thickness of the film, and the yield was improved to 95% or more even after outdoor exposure for one year by setting the thickness of the protective layer to 100 mm or more. The reason why the yield is improved even after outdoor exposure by providing the protective layer in this way is to increase the reflectance of the ultraviolet ray on the light receiving surface of the substrate by providing the protective layer, and suppress the decrease in the strength of the substrate due to the ultraviolet ray. It is thought that it was due to being able to.
[0025]
FIG. 4 is a characteristic diagram showing the photoelectric conversion characteristics of the solar cell module immediately after production used in the impact resistance test. The vertical axis shows the relative value of photoelectric conversion efficiency, and the horizontal axis shows the film thickness of the protective layer. As shown in the figure, the photoelectric conversion efficiency gradually decreases as the thickness of the protective layer is increased, and when the protective layer thickness exceeds 1000 mm, the photoelectric conversion efficiency reaches 95% or less when the protective layer is not provided. It turns out that it falls. The reason why the photoelectric conversion efficiency decreases as the thickness of the protective layer is increased in this way is considered to be that its light transmission characteristics are gradually decreased by adding tin to the substrate. Therefore, from the results of FIGS. 3 and 4, the thickness of the protective layer is preferably in the range of 10 to 1000 mm, and more preferably in the range of 100 to 1000 mm.
[0026]
(Second embodiment)
Next, a second embodiment of the present invention will be described. This embodiment differs from the first embodiment in that a tin film formed by sputtering on the light receiving surface A of the substrate 1 in the first embodiment described above is used as the protective layer 10. Is the same as in Example 1.
[0027]
Also in this example, a solar cell module in which the thickness of the protective layer 10 is changed by controlling the sputtering conditions is manufactured, and impact resistance tests are performed on two types immediately after manufacture and after outdoor exposure for one year. went. The result is shown in the characteristic diagram of FIG.
[0028]
As shown in the figure, in the present example, as indicated by the solid line, it was found that the yield of the solar cell module immediately after manufacture can be improved to 95% or more by setting the thickness of the protective layer to 5 mm or more. . Moreover, in the solar cell module after outdoor exposure for 1 year shown with a broken line, it turned out that a yield can be improved to 95% or more by making the film thickness of a protective layer into 50 mm or more.
[0029]
Moreover, the photoelectric conversion characteristic was measured also about the present Example solar cell module. The result is shown in the characteristic diagram of FIG. From the figure, it was found that in the case of this example, when the thickness of the protective layer is larger than 500 mm, the photoelectric conversion efficiency is reduced to less than 95% in the case where the protective layer is not provided.
[0030]
Therefore, from the results of FIGS. 5 and 6, in this embodiment, the thickness of the protective layer is preferably in the range of 5 to 500 mm, and more preferably in the range of 50 to 500 mm.
[0031]
【The invention's effect】
As described above, according to the present invention, by providing a protective layer on the light-receiving surface of the substrate, it is possible to provide a solar cell module with excellent impact resistance and to suppress a decrease in strength of the substrate due to ultraviolet rays. .
[0032]
Furthermore, since the protective layer is thin, the weight does not increase, a lightweight solar cell module can be provided, and an increase in cost can be suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a solar cell module according to the present invention.
FIG. 2 is a cross-sectional view for each process for explaining a manufacturing process of the solar cell module of the present invention.
FIG. 3 is a characteristic diagram showing the relationship between the impact resistance of the solar cell module according to the first example and the film thickness of the protective layer.
FIG. 4 is a characteristic diagram showing the relationship between the photoelectric conversion characteristics of the solar cell module according to the first example and the film thickness of the protective layer.
FIG. 5 is a characteristic diagram showing the relationship between the impact resistance of the solar cell module according to the second example and the thickness of the protective layer.
FIG. 6 is a characteristic diagram showing the relationship between the photoelectric conversion characteristics of the solar cell module according to the second example and the film thickness of the protective layer.
FIG. 7 is a cross-sectional view of a conventional solar cell module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base | substrate, 2 ... Photovoltaic element, 3 ... Covering layer, 10 ... Protective layer

Claims (2)

ガラスからなる基体の光透過面上に非晶質半導体からなる光起電力素子を備え、且つ前記基体の受光面に保護層を備えた太陽電池モジュールであって、
前記保護層は、前記基体の受光面領域に錫が添加されてなることを特徴とする太陽電池モジュール。
A solar cell module comprising a photovoltaic element made of an amorphous semiconductor on a light transmission surface of a substrate made of glass, and a protective layer on the light receiving surface of the substrate ,
The solar cell module , wherein the protective layer is formed by adding tin to a light receiving surface region of the substrate .
前記保護層の厚みが、10Å以上、1000Å以下の範囲であることを特徴とする請求項1記載の太陽電池モジュール。  2. The solar cell module according to claim 1, wherein the thickness of the protective layer is in a range of 10 to 1000 mm.
JP20175499A 1999-07-15 1999-07-15 Solar cell module Expired - Lifetime JP3796069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20175499A JP3796069B2 (en) 1999-07-15 1999-07-15 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20175499A JP3796069B2 (en) 1999-07-15 1999-07-15 Solar cell module

Publications (2)

Publication Number Publication Date
JP2001036102A JP2001036102A (en) 2001-02-09
JP3796069B2 true JP3796069B2 (en) 2006-07-12

Family

ID=16446393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20175499A Expired - Lifetime JP3796069B2 (en) 1999-07-15 1999-07-15 Solar cell module

Country Status (1)

Country Link
JP (1) JP3796069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299021A (en) * 2016-08-17 2017-01-04 横店集团东磁股份有限公司 A kind of single crystal battery diffusion technique of high open circuit voltage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670638B2 (en) * 2007-05-17 2010-03-02 Sunpower Corporation Protection layer for fabricating a solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957914A (en) * 1982-09-27 1984-04-03 Nippon Sheet Glass Co Ltd Formation of tin oxide film on substrate
US4782376A (en) * 1983-09-21 1988-11-01 General Electric Company Photovoltaic device with increased open circuit voltage
JPH06101576B2 (en) * 1985-02-25 1994-12-12 日立造船株式会社 Amorphous Silicon X-ray sensor
JPH03293778A (en) * 1990-04-11 1991-12-25 Matsushita Electric Ind Co Ltd Solar cell module
JPH0694377B2 (en) * 1990-12-25 1994-11-24 セントラル硝子株式会社 Infrared UV absorbing glass and its manufacturing method
JP2792276B2 (en) * 1991-04-03 1998-09-03 日本板硝子株式会社 Conductive glass
JP2785882B2 (en) * 1991-08-30 1998-08-13 キヤノン株式会社 Photovoltaic element and method for manufacturing the same
JPH09162435A (en) * 1995-12-07 1997-06-20 Toppan Printing Co Ltd Filter for solar battery
JPH11145495A (en) * 1997-11-04 1999-05-28 Asahi Glass Co Ltd Glass substrate for solar cells and manufacture thereof
JP2000344544A (en) * 1999-06-02 2000-12-12 Nippon Electric Glass Co Ltd Crystallized glass article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299021A (en) * 2016-08-17 2017-01-04 横店集团东磁股份有限公司 A kind of single crystal battery diffusion technique of high open circuit voltage

Also Published As

Publication number Publication date
JP2001036102A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
AU741432B2 (en) Solar cell module and method for manufacturing same
KR101065752B1 (en) Solar Cell Module and Method For Fabricating The Same
JP3222361B2 (en) Method of manufacturing solar cell module and solar cell module
US20090007955A1 (en) Photovoltaic Device, Photovoltaic Module Comprising Photovoltaic Device, and Method for Manufacturing Photovoltaic Device
KR101703829B1 (en) Method for manufacturing photovoltaic cells with multiple junctions and multiple electrodes
US7026542B2 (en) Cover glass for a solar battery, a method for producing the cover glass and a solar battery module using the cover glass
US20120118352A1 (en) Photoelectric conversion module and photoelectric conversion device
JPH10135497A (en) Solar cell element and solar cell module
US10790402B2 (en) Degradation-resistant photovoltaic devices
US7678992B2 (en) Thin-film photoelectric converter
US4922218A (en) Photovoltaic device
JP2003197943A (en) Solar cell device and solar cell module
JP3796069B2 (en) Solar cell module
US20110030760A1 (en) Photovoltaic device and method of manufacturing a photovoltaic device
JP3754806B2 (en) Solar cell module and manufacturing method thereof
WO2014050193A1 (en) Photoelectric conversion module
WO2011014023A2 (en) Triple-junction tandem solar cell and a production method therefor
JP2015023216A (en) Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor
JPH11214734A (en) Solar battery module, its manufacture and execution method and solar battery power generation system
JPH09331079A (en) Frameless solar cell module
US20140299180A1 (en) Multi-junction photovoltaic modules incorporating ultra-thin flexible glass
JP2004153028A (en) Thin-film photoelectric converting device
JP2004111557A (en) Thin-film photoelectric converter
US20110155215A1 (en) Solar cell having a two dimensional photonic crystal
KR20110076398A (en) Solar cell including barrier layer and method for fabricating of the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R151 Written notification of patent or utility model registration

Ref document number: 3796069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term