JP3794118B2 - Air conditioning control device - Google Patents

Air conditioning control device Download PDF

Info

Publication number
JP3794118B2
JP3794118B2 JP22994997A JP22994997A JP3794118B2 JP 3794118 B2 JP3794118 B2 JP 3794118B2 JP 22994997 A JP22994997 A JP 22994997A JP 22994997 A JP22994997 A JP 22994997A JP 3794118 B2 JP3794118 B2 JP 3794118B2
Authority
JP
Japan
Prior art keywords
valve
valve opening
target value
drive signal
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22994997A
Other languages
Japanese (ja)
Other versions
JPH1163630A (en
Inventor
芳郎 高須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP22994997A priority Critical patent/JP3794118B2/en
Publication of JPH1163630A publication Critical patent/JPH1163630A/en
Application granted granted Critical
Publication of JP3794118B2 publication Critical patent/JP3794118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controller for air conditioning wherein the effect on a temperature regulating operation by an operation of calibration is reduced. SOLUTION: CPU 11 outputs a drive signal for opening or closing a chilled water valve 7 or a hot water valve 8 to a chilled water valve driving part 22a or a hot water valve driving part 22b from a digital output part 10 and makes the chilled water driving part 22a or the hot water driving part 22b open or close the chilled water valve 7 or the hot water valve 8 respectively. Herein the CPU 11 executes an operation of calibration for making the present valve travel (logical value of valve travel) of each valve 7 or 8 obtained by computation be in accord with the actual valve travel thereof only when a target value of the valve travel of each valve 7 or 8 obtained by computation is 0 or 100%.

Description

【0001】
【発明の属する技術分野】
本発明は、冷水又は温水と空気との間で熱交換を行う熱交換手段に冷水又は温水を供給する冷水弁又は温水弁の弁開度を調節して空気の温度を制御する空気調和制御装置に関するものである。
【0002】
【従来の技術】
従来より、連続した比例制御信号を受信して、この比例制御信号を自動的に弁開度に変換し、弁開度に応じて回転角度を調整しながら弁を駆動するモータユニットを用いて、弁の弁開度を制御する空気調和制御装置があった。
また、オン時に弁を開く方向に弁駆動用モータが回転する弁開接点と、オン時に弁を閉じる方向に弁駆動用モータが回転する弁閉接点とを設け、開方向接点又は閉方向接点のいずれかの接点を閉じる信号を出力するか、又は、どちらにも出力しないという所謂3位置制御を行う場合、弁駆動用モータに回転角度に比例して抵抗値が変化する抵抗器を設け、制御装置がこの抵抗器の抵抗値を読み取って、弁開度に変換し、現状の弁開度をフィードバックしながら、弁を操作するものもあった。
【0003】
ここで、弁開度の制御にあまり高い精度が要求されていない場合、弁駆動用モータが弁を全閉状態から全開状態まで(全開状態から全閉状態まで)駆動するのに要する時間(所謂、弁トラベルタイム)を予め設定しておき、弁開接点及び弁閉接点のオン時間をそれぞれ合計して、この合計時間と弁トラベルタイムとから現在の弁開度(弁開度論理値)を演算で求め、弁開度を制御する方法もあった。この時、弁開度論理値と実際の弁開度との誤差が拡大するのを防止するために、弁閉接点を一定時間閉じて弁を全閉状態にし、弁開度論理値と実際の弁開度とを共に0%として一致させる全閉キャリブレーションを定期的に行うか、又は、弁開接点を一定時間閉じて弁を全開状態にし、弁開度論値値と実際の弁開度とを共に100%として一致させる全開キャリブレーションを定期的に行い、弁開度論理値を補正していた。
【0004】
この空気調和制御装置の概略構成図を図10に示す。7は冷水と空気との間で熱交換を行う熱交換手段(図示せず)に冷水を供給する冷水弁、9は温度検出器6の検出信号を制御対象(空気)の温度に変換する温度検出手段、11は中央演算処理部たるCPU、12は制御目標温度や制御演算用パラメータを記憶するデータメモリ、21aはオン時に冷水弁7を開く方向に弁駆動用モータ7aが回転する弁開接点、10aはCPU11から入力される信号に応じて弁開接点21aをオンする駆動信号を発生する弁開接点出力手段、21bはオン時に冷水弁7を閉じる方向に弁駆動用モータ7aが回転する弁閉接点、10bはCPU11から入力される信号に応じて弁閉接点21bをオンする駆動信号を発生する弁閉接点出力手段である。尚、図10中の20は弁駆動用モータ7aの電源であり、弁駆動用モータ7aと、電源20と、弁開接点21aと、弁閉接点21bとから冷水弁駆動部22aが構成される。
【0005】
CPU11は、温度検出手段9から入力された空気の温度と、データメモリ12に予め格納された制御目標温度及び制御演算用パラメータとに基づいて、制御演算(一般的には、デジタルPID演算)を実行し、冷水弁7の弁開度目標値を決定する。この時、CPU11は弁開接点21a及び弁閉接点21bのオン時間を合計し、この合計時間を弁トラベルタイムで除して、演算により弁開度論理値を求める。そして、CPU11は、弁開度論理値と弁開度目標値との差から弁開接点21a又は弁閉接点21bをオンする駆動時間を求め、この駆動時間の間だけ弁開接点出力手段10a又は弁閉接点出力手段10bから駆動信号を発生させ、弁開接点21a又は弁閉接点21bをオンして、弁駆動用モータ7aを駆動し冷水弁7の弁開度を調節する。
【0006】
この空気調和制御装置は冷水弁7の弁開度を検出する手段を備えていないので、温度調整動作開始時は冷水弁7の弁開度が不明である。そこで、温度調整動作開始時に弁トラベルタイムよりも長い時間、CPU11は例えば弁閉接点出力手段10bから駆動信号を出力させて、弁閉接点21bをオンする。この時、弁駆動用モータ7aは弁トラベルタイムよりも長い時間冷水弁7を閉じる方向に駆動されるので、温度調整動作開始時に冷水弁7の弁開度がどのような状態であっても、冷水弁7の弁開度を0%にセットすることができる。而して、CPU11は弁開度論理値と実際の弁開度を共に0%に一致させた状態から、温度調整動作を開始することができる。
【0007】
ところで、CPU11は、演算で得られた弁開度目標値を0〜100%の範囲内に制限するリミット処理を行った後、この弁開度目標値と弁開度論理値に応じて、弁駆動用モータ7を駆動するための駆動信号を弁開接点出力手段10a又は弁閉接点出力手段10bから出力させる。ここで、弁トラベルタイムを例えば60秒とし、弁開度目標値を50%、弁開度論理値を0%とすると、CPU11は、冷水弁7を50%開くのに要する時間(30秒)だけ弁開接点駆動手段10aから駆動信号を出力すればよい。
【0008】
ところで、CPU11の演算サイクルは、通常、弁トラベルタイムに比べて短いため、弁開接点21aのオン時間を演算サイクル毎に積算し、その結果を弁トラベルタイムで除算することによって、弁開度目標値の変化として認識し、逐次演算によって得られる弁開度目標値と常時比較することによって、弁開接点21a又は弁閉接点21bの駆動時間を更新する。また、演算で得られた弁開度目標値が弁開度論理値を下回っている場合、CPU11は、弁閉接点出力手段10bから弁閉接点21bに駆動信号を出力させて弁閉接点21bをオンし、冷水弁7を閉じる方向に弁駆動用モータ7aを回転させて、冷水弁7の弁開度を小さくするが、弁閉接点21bのオン時間は、弁開接点21aのオン時間とは逆の値、すなわち負の値として積算し、弁開度論理値を演算する。
【0009】
ここで、弁トラベルタイムをTv(秒)、CPU11の演算サイクルをTc(秒)、弁開接点出力手段10aが弁開接点21aをオンする駆動信号を出力した回数をNo(回)、弁閉接点出力手段10bが弁閉接点21bをオンする駆動信号を出力した回数をNc(回)とすると、弁開度論理値Vo(%)は式(1)によって求められる。但し、0≦Vo≦100とする。
【0010】
Vo=100×Tc×(No−Nc〕/Tv ……(1)
このように、CPU11は、弁開接点21a又は弁閉接点21bをそれぞれオンした時間の合計時間と弁トラベルタイムTvとから、冷水弁7の弁開度論理値Voを求めているが、弁トラベルタイムTv自体があまり正確な値ではないので、弁駆動用モータ7aが回転、停止を繰り返して、冷水弁7の開閉動作を行う間に、実際の弁開度と、弁開度論理値との間に誤差が発生していた。
【0011】
しかし、この空気調和制御装置では、CPU11が制御目標温度と温度検出手段9の検出した現状温度との差に基づいて弁開度目標値を演算しているので、弁開度論理値と実際の弁開度との間に誤差が発生したとしても、この誤差による影響が現状温度に現れ、その結果、誤差による影響が弁開度目標値に反映されるので、弁開度論理値の誤差は実質的にはキャンセルされる。
【0012】
ところで、CPU11の演算で得られた弁開度目標値の範囲は0〜100%であり、弁開度論理値の範囲も0〜100%である。図11(a)に示すように、弁開度論理値VOが実際の弁開度VBよりも大きい側にずれた場合、弁開度目標値が例えば100%になると、CPU11は弁開接点出力手段10aから弁開接点21aに駆動信号を出力させて弁開接点21aをオンし、冷水弁7を開く方向に弁駆動用モータ7aを回転させる。弁駆動用モータ7aの回転に応じて冷水弁7が開くにつれて弁開度論理値VOが除々に増加し、弁開度論理値VOが100%となった時点で、弁開接点駆動手段10aが駆動信号の出力を停止し、弁開接点21aがオフして、弁駆動用モータ7aが停止する。ここで、弁開度論理値VOは実際の弁開度VBよりも大きい側にずれているので、実際の弁開度VBが100%より小さいにもかかわらず、CPU11は駆動信号の出力を停止し、冷水弁7を100%開くことができなかった。この時、温度検出手段9の検出した現状温度が制御目標温度からずれて、冷水弁7の弁開度をさらに大きくする必要があったとしても、弁開度論理値が100%になっているために、実際の弁開度が100%より小さいにもかかわらず、CPU11は冷水弁7をそれ以上開くことができず、現状温度を制御目標温度に追従させることができないという問題があった。
【0013】
これとは逆に、図11(b)に示すように、弁開度論理値VOが実際の弁開度VBより小さい側にずれた場合にも同様の不具合が発生する。すなわち、弁開度目標値が例えば0%になると、CPU11は弁閉接点出力手段10bから弁閉接点21bに駆動信号を出力させて弁閉接点21bをオンし、冷水弁7を閉じる方向に弁駆動用モータ7aを回転させる。ここで、弁駆動用モータ7aの回転に応じて冷水弁7が閉じるにつれて、弁開度論理値VOが除々に低下し、弁開度論理値VOが0%となった時点で、弁閉接点駆動手段10bは駆動信号の出力を停止し、弁閉接点21bがオフして、弁駆動用モータ7aが停止する。ここで、弁開度論理値VOは実際の弁開度VBよりも小さい側にずれているために、実際の弁開度VBが0%より大きいにもかかわらず、CPU11は冷水弁7をそれ以上閉じることができず、上述と同様に、現状温度を制御目標温度に追従させることができないという問題があった。
【0014】
このような不具合を防止するために、CPU11は、弁開度目標値と無関係に、冷水弁7を閉じるための駆動信号を、弁閉接点駆動手段10bから弁閉接点21bへ定期的に出力させ、弁開度論理値VOが0%になっても、さらに一定時間駆動信号を出力しつづけることによって、冷水弁7を全閉状態として、実際の弁開度VBと弁開度論理値VOとを共に0%とする補正(所謂、弁全閉キャリブレーション)を行い、その後、CPU11は通常の温度調整動作に復帰し、弁開度目標値に応じて冷水弁7の弁開度を調整していた。同様にCPU11は、弁開度目標値と無関係に、冷水弁7を開くための駆動信号を、弁開接点駆動手段10aから弁開接点21aへ定期的に出力させ、弁開度論理値VOが100%になっても、さらに一定時間駆動信号を出力しつづけることによって、冷水弁7を全開状態として、実際の弁開度VBと弁開度論理値VOとを共に100%とする補正(所謂、弁全開キャリブレーション)を行うことによっても、実際の弁開度と弁開度論理値とを一致させることができた。
【0015】
【発明が解決しようとする課題】
上述した前者の空気調和制御装置では、自ら回転角度を調整しながら弁を駆動するモータユニットを用いたり、モータの回転角度に比例して抵抗値が変化する抵抗器を弁駆動用モータに設けているので、装置のコストが高くなるという問題があった。
【0016】
また、後者の空気調和制御装置では、CPU11の制御状態と無関係に、定期的に弁全閉キャリブレーション又は弁全開キャリブレーションを行っているので、キャリブレーションを行う間、弁6が全閉状態又は全開状態となり、温度調節のための能力が全く不足したり、逆に過大になったりするため、制御対象の温度が制御目標温度から大きくずれてしまうという問題があった。
【0017】
本発明は、上記問題点に鑑みて為されたものであり、その目的とするところは、コストアップとなることなく、弁開度論理値と実際の弁開度との誤差を小さくし、且つ、温度調整動作に与える影響を小さくした空気調和制御装置を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、冷水又は温水と空気との間で熱交換を行う熱交換手段に、冷水又は温水を供給する弁の弁開度を調節して、空気の温度を制御する空気調和制御装置であって、弁を開閉する弁駆動用モータを駆動するための駆動信号を発生する駆動信号発生手段と、空気の温度を検出する温度検出手段と、弁駆動用モータが弁を全開状態から全閉状態まで駆動するのに要する弁トラベルタイムや制御目標温度や制御演算に必要なパラメータを記憶するデータメモリと、駆動信号発生手段が駆動信号を発生した時間の合計と弁トラベルタイムとから現在の弁開度を演算し、温度検出手段の検出した温度及び制御目標温度から弁の弁開度目標値を演算するとともに、演算で求めた現在の弁開度と弁開度目標値との差及び弁トラベルタイムから駆動信号を発生する駆動時間を演算し、前記駆動時間だけ駆動信号発生手段から駆動信号を発生させる中央演算処理部とを備え、弁開度目標値が略0%又は略100%になった場合、中央演算処理部は、前記駆動時間に予め設定された一定時間を加算した時間だけ駆動信号発生手段から駆動信号を発生させて、実際の弁開度を略0%又は略100%とするとともに、演算で求めた現在の弁開度を略0%又は略100%に設定して、実際の弁開度と演算で求めた弁開度とを一致させるキャリブレーション動作を行うことを特徴とする。したがって、弁開度目標値VCが0%又は100%になった時だけ、キャリブレーション動作が行われるので、キャリブレーション動作による温度調整動作への影響を小さくすることができる。
【0019】
請求項2の発明では、請求項1の発明において、弁開度目標値が略0%となって中央演算処理部がキャリブレーション動作を行う間に、弁開度目標値が略0%から変化した場合、中央演算処理部は演算で求めた弁開度を略0%に設定して、通常の温度調整動作に復帰するとともに、弁開度目標値が略100%となって中央演算処理部がキャリブレーション動作を行う間に、弁開度目標値が略100%から変化した場合、中央演算処理部は演算で求めた弁開度を略100%に設定して、通常の温度調整動作に復帰しているので、キャリブレーション動作中に、弁開度の変化によって制御対象の温度に影響が及び、弁開度目標値が変化すると、即座にキャリブレーション動作を終了しているので、キャリブレーション動作による温度調整動作への影響をさらに小さくすることができる。
【0020】
請求項3の発明では、冷水又は温水と空気との間で熱交換を行う熱交換手段に、冷水又は温水を供給する弁の弁開度を調節して、空気の温度を制御する空気調和制御装置であって、弁を開閉する弁駆動用モータを駆動するための駆動信号を発生する駆動信号発生手段と、空気の温度を検出する温度検出手段と、弁駆動用モータが弁を全開状態から全閉状態まで駆動するのに要する弁トラベルタイムや制御目標温度や制御演算に必要なパラメータを記憶するデータメモリと、駆動信号発生手段が駆動信号を発生した時間の合計と弁トラベルタイムとから現在の弁開度を演算し、温度検出手段の検出した温度及び制御目標温度から弁の弁開度目標値を演算するとともに、演算で求めた現在の弁開度と弁開度目標値との差及び弁トラベルタイムから駆動信号を発生する駆動時間を演算し、前記駆動時間だけ駆動信号発生手段から駆動信号を発生させる中央演算処理部とを備え、中央演算処理部が弁開度目標値の下限値を0%よりも小さい値に設定するとともに、弁開度目標値の上限値を100%よりも大きい値に設定し、弁開度目標値が下限値に等しくなった場合、中央演算処理部は弁を閉じる方向の駆動信号を駆動信号発生手段から発生させ、弁開度目標値が上限値に等しくなった場合、中央演算処理部は弁を開く方向の駆動信号を駆動信号発生手段から発生させて、実際の弁開度と演算で求めた弁開度とを一致させるキャリブレーション動作を行うことを特徴とする。したがって、弁開度目標値の範囲を下限値又は上限値に拡張することにより、弁開度論理値と実際の弁開度との誤差が拡張された範囲内に収まっている間は、弁のキャリブレーション動作は行われないので、キャリブレーション動作による温度調整動作への影響を小さくすることができる。また、弁開度論理値と実際の弁開度との誤差が拡張された範囲以上に拡大した場合は、弁のキャリブレーション動作が行われるので、誤差を補正して制御精度を向上させることができる。
【0021】
請求項4の発明では、請求項3の発明において、弁開度目標値が略100%を越える場合、中央演算処理部は弁を開く方向の駆動信号のみを駆動信号発生手段から発生させ、弁開度目標値が略0%を下回っている場合、中央演算処理部は弁を閉じる方向の駆動信号のみを駆動信号発生手段から発生させているので、弁開度論理値と実際の弁開度との誤差が拡張された範囲内に収まっていても、弁開度目標値が一旦拡張された範囲内に入り、その後0〜100%の範囲内に戻れば、その過程で弁開度論理値の誤差を補正することができる。
【0022】
請求項5の発明では、請求項1乃至4の発明において、温度調整動作開始時に、中央演算処理部は弁を全閉又は全開させる駆動信号を駆動信号発生手段から発生させ、演算で求めた弁開度を略0%又は略100%に設定するキャリブレーション動作を行っているので、弁開度論理値と実際の弁開度とを一致させた状態で温度調整動作を開始することができる。
【0023】
請求項6の発明では、請求項1乃至5の発明において、温度調整動作終了時に、中央演算処理部は弁を全閉又は全開させる駆動信号を駆動信号発生手段から発生させ、演算で求めた弁開度を略0%又は略100%に設定するキャリブレーション動作を行っているので、次回温度調整動作開始時にキャリブレーション動作を行う必要がなく、即座に温度調整動作を開始できる。
【0024】
【発明の実施の形態】
本願発明の実施の形態を図面を参照して説明する。
(実施形態1)
本実施形態の空気調和制御装置を用いるシステムの概略構成図を図1に示す。
1は、外気を取り入れる外気取り入れ口であり、外部(OA)から空気取り入れ口1を介して取り込まれた外気は、外気ダンパー14を介して空調機Bに取り込まれる。
【0025】
空調機Bは、外気ダンパー14を介して取り込まれた外気と冷水又は温水との間で夫々熱交換を行い外気を冷却又は加熱する熱交換手段たる冷水コイル2、温水コイル3と、冷水コイル2又は温水コイル3により冷却又は加熱された外気を加圧して吹き出し口5から室内(SA)に供給する送風機4から構成される。
13は、送風機4を駆動するための送風機動力盤であり、送風機動力盤13には、送風機4を起動又は停止させる制御信号が後述する空気調和制御装置DDCから入力される入力接点13aと、送風機4の運転状態を示す信号を空気調和制御装置DDCに出力するための出力接点13bとが設けられている。ここに、送風機4が停止している場合、外気ダンパー14は、空気調和制御装置DDCから入力された制御信号に応じて、空気取り入れ口1から空調機Bへの通風経路15を遮断し、室内に不要な外気が侵入するのを防止している。また、6は、送風機4の送風口と吹き出し口5との間の送風路に設けられた温度検出器であり、送風機4の出口温度を検出し、検出信号を空気調和制御装置DDCに出力している。尚、本実施形態では温度検出器6が送風機4の出口温度を検出しているが、室内の温度を検出するようにしても良い。
【0026】
16は、冷水コイル2に冷水を循環させる冷水配管であり、冷水配管16には冷水コイル2に供給する冷水の量を調節するための冷水弁7が設けられている。また、17は、温水コイル3に温水を循環させる温水配管であり、温水配管17には温水コイル3に供給する温水の量を調節するための温水弁8が設けられている。冷水弁7及び温水弁8には、それぞれ、各弁を開閉するための冷水弁駆動部22a、温水弁駆動部22bが設けられている。各弁駆動部22a,22bは、従来例で説明した図10に示す冷水弁駆動部22と同様の構成を有しているので、その説明は省略する。
【0027】
空気調和制御装置DDCは、制御目標温度や制御演算用のパラメータが格納されたデータメモリ12と、温度検出器6から入力された検出信号を空調機Bの出口温度に変換する温度検出手段たるA/D入力部(AI)9と、データメモリ12に格納された制御目標温度及び制御演算用のパラメータや、A/D入力部9から入力される空調機Bの出口温度に基づいて弁開度目標値を演算する中央演算処理部たるCPU11と、送風機動力盤13や外気ダンパー14に制御信号を出力するとともに、CPU11の演算で得られた各弁7,8の現在の弁開度(以下、弁開度論理値という)と弁開度目標値との差に応じて、各弁駆動用モータ7a,8aを駆動する駆動信号を各弁駆動部22a,22bに出力する駆動信号発生手段たるデジタル出力部(DO)10と、送風機制御盤13から送風機4の運転状態を示す信号が入力されるデジタル入力部(DI)19とを備えている。
【0028】
この空気調和制御装置DDCの動作を、冷水弁7を例とし、図2に示すフローチャートを参照して説明する。尚、温水弁8についての動作は、冷水弁7についての動作と同様であるので、その説明を省略する。
温度調整動作開始時、空気調和制御装置DDCはデータメモリ12から弁トラベルタイムや制御演算に必要なパラメータを読み込む(ステップS1 )。
【0029】
ところで、この空気調和制御装置DDCは冷水弁7の現在の弁開度を検出する手段を備えていないので、温度調整動作開始時に冷水弁7の実際の弁開度と弁開度論理値とを一致させる必要がある。そこで、ステップS2 において、CPU11は、冷水弁駆動部22aが冷水弁7を全開から全閉まで駆動するのに要する時間(弁トラベルタイム)だけ、冷水弁7を閉じる方向に冷水弁駆動部22aを動作させるための駆動信号をデジタル出力部10から冷水弁駆動部22aに出力させる。そして、温度調整動作開始時から弁トラベルタイムが経過し、冷水弁7が全閉状態となった時点で、CPU11は冷水弁7の弁開度論理値を0%に設定し、弁開度論理値と実際の弁開度とを共に0%に一致させる(以下、この動作を弁全閉キャリブレーションという)。弁全閉キャリブレーションが終了すると、CPU11は、ステップS3 で温度調整動作を開始し、ステップS4 で温度調整動作開始時からの経過時間を計時する経過タイマーを起動させ、ステップS5 で温度調整動作を継続する場合はステップS6 に移行する。
【0030】
次に、CPU11は、ステップS6 でA/D入力部9から現在の送風機4の出口温度を読み込み、ステップS7 でデジタルPID演算により弁開度目標値VCを演算し、ステップS8 で弁開度論理値VOを演算する。この時、CPU11では、弁開度目標値VCの上限値を100%、下限値を0%に制限するリミット処理を行っている。また、CPU11は、冷水弁7を開く方向に駆動した時間の合計値から、冷水弁7を閉じる方向に駆動した時間の合計値を差し引きし、弁トラベルタイムに対する割合(%)を求めて、冷水弁7の弁開度論理値VOを求めている。
【0031】
そして、弁開度目標値VCが0<VC<100(%)の範囲内であれば(ステップS9 )、CPU11はステップS10で弁開度目標値VCと弁開度論理値VOとを比較し、両者が一致していれば、ステップS16でデジタル出力部10から冷水弁駆動部22aへの駆動信号の出力を停止し、ステップS17へ移行する。一方、ステップS10で両者が異なっていれば、ステップS11で弁開度目標値VCと弁開度論理値VOとの差から冷水弁駆動部22aに駆動信号を出力する駆動時間を演算する。ここで、弁トラベルタイムを100で除した値が、冷水弁7の弁開度を1%だけ開閉するために、デジタル出力部10から冷水弁駆動部22aに駆動信号を出力する単位駆動時間となるので、CPU11は、弁開度目標値VCと弁開度論理値VOとの差に単位駆動時間をかけて冷水弁駆動部22aの駆動時間を演算する。
【0032】
次に、CPU11は、ステップS12で弁開度目標値VCと弁開度論理値VOとの大小を比較し、弁開度目標値VCが弁開度論理値VOよりも大きければ、ステップS13で冷水弁7を開く方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに駆動時間だけ出力させ、弁開度目標値VCが弁開度論理値VOよりも小さければ、ステップS14で冷水弁7を閉じる方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに駆動時間だけ出力させる。そして、ステップS15で経過タイマーの経過時間をチェックしてステップS5 に戻り、上述の動作を繰り返し実行する。
【0033】
一方、ステップS9 で弁開度目標値VCが100%になった場合、ステップS18で、CPU11は、現在の弁開度論理値VOと弁開度目標値VC(即ち、100%)との差から求められる冷水弁駆動部22aの駆動時間に、予め設定された一定時間(弁トラベルタイムの約30%)を加算した時間だけ、冷水弁7を開く方向の駆動信号をデジタル出力部10から冷水弁駆動部22aへ出力させて冷水弁7を全開にし、実際の弁開度VBを確実に100%とする。そして、CPU11は弁開度論理値VOを100%とし、弁開度論理値VOと実際の論理値VBとを共に100%に一致させる(弁全開キャリブレーション)。その後、ステップS17でCPU11は経過タイマーをクリアして、ステップS5 に戻り、上述の処理を繰り返す。
【0034】
また、ステップS9 で弁開度目標値VCが0%になった場合、ステップS19で、CPU11は、現在の弁開度論理値VOと弁開度目標値VC(即ち、0%)との差から求められる冷水弁駆動部22aの駆動時間に、予め設定された一定時間(弁トラベルタイムの約30%)を加算した時間だけ、冷水弁7を閉じる方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに出力させて冷水弁7を全閉にし、実際の弁開度VBを確実に0%とする。そして、CPU11は弁開度論理値VOを0%とし、弁開度論理値VOと実際の論理値VBとを共に0%に一致させる(弁全閉キャリブレーション)。その後、ステップS20でCPU11は経過タイマーをクリアして、ステップS5 に戻り、上述の処理を繰り返す。
【0035】
ところで、CPU11の演算で得られた弁開度目標値VCが、0<VC<100(%)の範囲内にある場合、CPU11はキャリブレーション動作を行わないので、冷水弁7の実際の弁開度VBと弁開度論理値VOとの間に誤差が発生する。しかしながら、この誤差の影響は制御対象の温度と制御目標温度との間の偏差となって表れるため、CPU11の演算によって、偏差を少なくする方向に弁開度目標値VCが修正されるため、制御精度に関して若干問題はあるものの、温度調整動作自体が不良となることはない。
【0036】
ここで、図3(a)に示すように、弁開度論理値VOが実際の弁開度VBに比べて大きい側にずれている場合、弁開度目標値VCが100%になると、CPU11は上述のように弁全開キャリブレーションを行うが、CPU11は、弁開度論理値VOを現在値から100%にするまでの時間〔図3(a)中の区間T1 〕に予め設定された一定時間〔図3(a)中の区間T2 〕を加算した時間だけ、冷水弁7を開く方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに出力させ、冷水弁駆動部22aを用いて冷水弁7を開く方向に駆動しているので、冷水弁7の実際の弁開度VBを確実に100%とすることができ、弁開度論理値VOと実際の弁開度VBとを共に100%に一致させることができる。
【0037】
同様にして、図3(b)に示すように、弁開度論理値VOが実際の弁開度VBに比べて小さい側にずれている場合に、弁開度目標値VCが0%になると、CPU11は上述のように弁全閉キャリブレーションを行うが、CPU11は、弁開度論理値VOを現在値から0%にするまでの時間〔図3(b)中の区間T3 〕に予め設定された時間〔図3(b)中の区間T4 〕を加算した時間だけ、デジタル出力部10から冷水弁駆動部22aに冷水弁7を閉じる方向の駆動信号を出力させ、冷水弁駆動部22aを用いて冷水弁7を閉じる方向に駆動しているので、冷水弁7の実際の弁開度VBを確実に0%とすることができ、弁開度論理値VOと実際の弁開度VBとを共に0%に一致させることができる。
【0038】
また、CPU11はステップS5 で温度調整動作を終了すると、ステップS2 で弁全閉キャリブレーション動作を行う。この時、CPU11は弁開度論理値VOを0%にするまでの時間に一定時間(弁トラベルタイムの約30%)を加算した時間だけ、デジタル出力部10から冷水弁駆動部22aに冷水弁7を閉じる方向の駆動信号を出力させ、冷水弁駆動部22aを用いて冷水弁7を閉じる方向に駆動しているので、冷水弁7の実際の弁開度VBを確実に0%とすることができ、弁開度論理値VOと実際の弁開度VBとを共に0%に一致させることができる。したがって、次回、CPU11が温度調整動作を行う際は、弁開度論理値VOと実際の弁開度VBとが共に0%になっているので、キャリブレーション動作を行うことなく、即座に温度調整動作を行うことができる。
【0039】
このように、本実施形態では、弁開度目標値VCが0%又は100%になった場合のみ、CPU11がキャリブレーション動作を行っているので、制御状態とは無関係に一定期間毎にキャリブレーション動作を行う場合に比べて、大きな温度変化が発生することがない。
また、冷水弁駆動部22aや温水弁駆動部22bに、自ら回転角度を調整しながら弁を駆動するモータユニットを用いたり、モータの回転角度に比例して抵抗値が変化する抵抗器を弁駆動用モータに設けたりしていないので、装置全体のコストアップとなることがない。
【0040】
(実施形態2)
実施形態1では、弁開度目標値VCが0%又は100%になった場合のみ、CPU11がキャリブレーション動作を行っているので、制御状態とは無関係に一定期間毎にキャリブレーション動作を行う場合に比べて、キャリブレーション動作時による温度調整動作への影響を小さくすることができる。
【0041】
しかしながら、弁開度目標値VCが0<VC<100(%)の範囲でCPU11が長時間にわたって温度調整動作を行うと、弁開度論理値VOと実際の弁開度VBとの誤差が大きくなる。したがって、弁開度目標値VCが0%或いは100%となった時の弁開度論理値VOと実際の弁開度VBとの誤差が大きくなり、キャリブレーション動作によって弁開度が大きく変化するため、制御対象の温度が大きく変化する虞がある。
【0042】
例えば、冷水弁7の実際の弁開度VBが70%、弁開度論理値VOが98%の時に、弁開度目標値VCが100%になったとすると、温度調整動作上は弁開度を98%から100%まで(実際の弁開度VBを70%から72%まで)2%だけ大きくすれば、冷水弁7の弁開度を所望の値に調整して、制御対象の温度を一定に制御することができるはずであるが、弁開度目標値VCが100%になった場合、CPU11が弁全開キャリブレーションを行い、冷水弁駆動部22aをさらに一定時間駆動させて、冷水弁7を全開状態とするので、実際の弁開度VBが70%から100%まで変化する。
【0043】
したがって、この時点における所望の弁開度72%に対して冷水弁7の弁開度が28%も大きくなるため、制御対象の温度が大きく変化する。そのため、キャリブレーション動作終了後、CPU11が通常の温度調整動作に復帰すると、CPU11は冷水弁駆動部22aを用いて温度の偏差を無くす方向に冷水弁7を駆動して、温度の偏差を修正する。このように、キャリブレーション動作を実行したために、通常の温度調整動作時に比べて、温度の制御精度が悪化するため、特に空調器Bの出口温度を制御するというように、応答時間の短い制御系では偏差が容認できない範囲まで拡大することが予想される。
【0044】
そこで、本実施形態では、CPU11がキャリブレーション動作を行っている間でも、逐次演算によって得られる弁開度目標値VCが0%又は100%でなくなった場合に、CPU11が即座に弁開度論理値VOを0%又は100%に設定し、キャリブレーション動作を終了して通常の温度調整動作に復帰する。したがって、上述の例では実際の弁開度VBが大きくなり所望の弁開度72%を上回ると、制御対象の現状温度が制御目標温度をゆきすぎてしまい、弁開度理論値VCが100%よりも小さくなるため、その時点でCPU11は即座に弁開度論理値VOを100%とし、キャリブレーション動作を終了して、通常の温度制御動作に復帰するため、キャリブレーション動作の温度変化に与える影響を小さくすることができる。
【0045】
この空気調和制御装置DDCの動作を、冷水弁7を例とし、図4のフローチャートを参照して説明する。尚、空気調和制御装置DDCの構成は、実施形態1と同様であるので、その説明は省略する。また、ステップS1 〜S9 、ステップS10〜S17までの動作は実施形態1と同様であるので、その説明は省略する。
ステップS9 で弁開度目標値VCが100%になると、CPU11は、ステップS22でキュリブレーションフラグがオンか否かを判断する。ステップS22でキャリブレーションフラグがオンであれば、CPU11はステップS5 に戻って上述の処理を繰り返し、弁開度目標値VCを演算して、弁開度目標値VCが0<VC<100%の範囲内か否かを判断する。ステップS22でキャリブレーションフラグがオフであれば、CPU11は、ステップS23でキャリブレーションタイマーをチェックし、ステップS24でデジタル出力部10から冷水弁駆動部22aに冷水弁7を開く方向の駆動信号を出力させ、冷水弁駆動部22aを用いて冷水弁7を開く方向に駆動し、ステップS25でキャリブレーションタイマーの設定時間が経過したか否かを判断する。ステップS25でキャリブレーションタイマーの設定時間が経過していなければ、CPU11は、ステップS5 に戻って上述の処理を繰り返し、弁開度目標値VCを演算して、弁開度目標値VCが0<VC<100%の範囲内か否かを判断する。ステップS25でキャリブレーションタイマーの設定時間が経過していれば、CPU11は、ステップS26でキャリブレーションフラグをオンにし、ステップS27でデジタル出力部10から冷水弁駆動部22aへの駆動信号の出力を停止し、ステップS28でキャリブレーションタイマーをクリアーし、ステップS5 に戻る。
【0046】
したがって、弁全開キャリブレーション動作中に、弁開度目標値VCが100%のままであれば、CPU11は、キャリブレーションタイマーの経過時間だけ、デジタル出力部10から冷水弁駆動部22aに冷水弁7を開く方向の駆動信号を出力させ、冷水弁7を開く方向に駆動する。一方、弁全開キャリブレーション動作中に、逐次演算によって得られる弁開度目標値VCが0<VC<100%の範囲内に入ると(ステップS9 )、CPU11は、ステップS21でキャリブレーションフラグをオフし、弁開度論理値VOを100%に設定して、ステップS10に移行し、通常の温度制御動作に復帰する。
【0047】
一方、ステップS9 で弁開度目標値VCが0%になると、CPU11は、ステップS29でキュリブレーションフラグがオンか否かを判断する。ステップS29でキャリブレーションフラグがオンであれば、CPU11はステップS5 に戻って上述の処理を繰り返し、弁開度目標値VCを演算して、弁開度目標値VCが0<VC<100%の範囲内か否かを判断する。ステップS29でキャリブレーションフラグがオフであれば、CPU11は、ステップS30でキャリブレーションタイマーをチェックし、ステップS31でデジタル出力部10から冷水弁駆動部22aに冷水弁7を閉じる方向の駆動信号を出力し、冷水弁駆動部22aを用いて冷水弁7を閉じる方向に駆動し、ステップS32でキャリブレーションタイマーの設定時間が経過したか否かを判断する。ステップS32でキャリブレーションタイマーの設定時間が経過していなければ、CPU11はステップS5 に戻って上述の処理を繰り返し、弁開度目標値VCを演算して、弁開度目標値VCが0<VC<100%の範囲内か否かを判断する。ステップS32でキャリブレーションタイマーの設定時間が経過していれば、CPU11は、ステップS33でキャリブレーションフラグをオンにし、ステップS34でデジタル出力部10から冷水弁駆動部22aへの駆動信号の出力を停止し、ステップS35でキャリブレーションタイマーをクリアーし、ステップS5 に戻る。
【0048】
したがって、弁全閉キャリブレーション動作中に、弁開度目標値VCが0%のままであれば、CPU11は、キャリブレーションタイマーの経過時間だけ、デジタル出力部10から冷水弁駆動部22aに冷水弁7を閉じる方向の駆動信号を出力させ、冷水弁7を閉じる方向に駆動する。一方、弁全閉キャリブレーション動作中に、逐次演算によって得られる弁開度目標値VCが0<VC<100%の範囲内に入ると(ステップS9 )、CPU11は、ステップS21でキャリブレーションフラグをオフし、弁開度論理値VOを0%に設定して、ステップS10に移行し、通常の温度制御動作に復帰する。
【0049】
(実施形態3)
本実施形態では、実施形態1の空気調和制御装置において、弁開度目標値VCの下限値を0%よりも小さい値(−X%)に設定するとともに、弁開度目標値VCの上限値を100%よりも大きい値(100+Y)(%)に設定している。例えば、本実施形態ではX=Y=20%として、弁開度目標値VC及び弁開度論理値VOの範囲を夫々(−20%)から120%にまで拡張し、CPU11がデジタルPID演算を行っている。
【0050】
この空気調和制御装置の動作を、冷水弁7を例として、図5のフローチャートを参照して説明する。尚、空気調和制御装置の構成は実施形態1と同様であるので、その説明を省略する。また、空気調和制御装置の基本的な動作は、図2のフローチャートに示す動作と同様であるので、同一の処理には、同一の符号を付して、その説明を省略し、異なる部分のみ説明を行う。
【0051】
CPU11は、ステップS6 〜S8 で弁開度目標値VCを演算し、ステップS9'で弁開度目標値VCが(−X)<VC<(100+Y)の範囲内にあるか否かを判断する。図6(a)(b)に示すように、弁開度目標値VCが(−X)<VC<(100+Y)の範囲内にある場合は、CPU11は実施形態1で説明したステップS11〜S15の演算を行い、ステップS5 に戻って上述の処理を繰り返す。
【0052】
一方、図7(a)に示すように、ステップS9'で弁開度目標値VCが上限値(100+Y)と等しくなった場合、CPU11は、ステップS18’で冷水弁7を開く方向の駆動信号をデジタル出力部10から冷水弁駆動部22aへ出力し、冷水弁駆動部22aを用いて冷水弁7を開く方向に駆動させ、キャリブレーション動作を行う〔図7(a)の区間T5 〕。
【0053】
また、図7(b)に示すように、ステップS9'で弁開度目標値VCが下限値(−X)と等しくなった場合、CPU11は、ステップS19’で冷水弁7を閉じる方向の駆動信号をデジタル出力部10から冷水弁駆動部22aへ出力し、冷水弁駆動部22aを用いて冷水弁7を開じる方向に駆動させ、キャリブレーション動作を行う〔図7(b)の区間T6 〕。
【0054】
ところで、実際の弁開度VBの範囲は0〜100%であるので、弁開度目標値VCが100%を越える範囲では、弁開度論理値VOと実際の弁開度VBとの間に必然的に誤差が発生する。同様に、弁開度目標値VCが0%を下回る範囲では、弁開度論理値VOと実際の弁開度VBとの間に必然的に誤差が発生する。しかしながら、弁開度目標値VCを0〜100%の範囲に制限したとしても、弁開度論理値VOと実際の弁開度VBとの間にある程度の誤差が発生すると予想されるので、弁開度目標値VCの範囲を拡張したことによって発生する誤差は予め容認して、冷水弁7の開閉操作を行う。また、弁開度目標値VCの範囲の拡張分以上の誤差が発生した場合は、その時点で誤差が弁開度目標値VCの拡張範囲内に収まるように補正される。
【0055】
このように、予想される弁開度論理値VOと実際の弁開度VBとの誤差の分だけ、弁開度目標値VCと弁開度論理値VOの範囲を0〜100%より拡張しておけば、弁開度論理値VOと実際の弁開度VBとの誤差が拡張範囲内に収まっている間は、キャリブレーション動作が行われないので、キャリブレーション動作のために制御対象の温度が急激に変化するのを防ぐことができる。また、誤差の補正分が小さくなるので、制御対象の温度に与える影響を抑えることもできる。
【0056】
(実施形態4)
実施形態3の空気調和制御装置では、弁開度目標値VCが上限値又は下限値となった場合のみ、CPU11がキャリブレーション動作を行っているが、CPU11は、弁開度論理値VOと実際の弁開度VBとの誤差の内、弁開度目標値VCの拡張分(−X%,Y%)を越える部分のみ補正しているので、拡張分の誤差が残ってしまう。
【0057】
例えば、弁開度目標値VC及び弁開度論理値VOの範囲が(−20)〜120%に拡張された場合に、CPU11の演算によって得られた弁開度目標値VCが98%となり、弁開度論理値VOが98%となったとする。この時、実際の弁開度VBが88%であり、弁開度論理値VOと実際の弁開度VBとの間に10%の誤差があるとする。ここで、次の演算サイクルで得られた弁開度目標値VCが20%増加して118%になったとすると、CPU11は、弁トラベルタイムに基づいて、弁を20%分開くのに要する時間だけ、弁を開く方向に駆動する駆動信号をデジタル出力部10から弁駆動部へ出力するが、弁駆動部がこの駆動信号に応じて弁を駆動した後、弁開度目標値VCと弁開度論理値VOは共に118%、実際の弁開度VBは100%となる。その後、弁開度目標値VCが100%になると、CPU11は、弁を18%分閉じるのに要する時間だけ、弁を閉じる方向の駆動信号をデジタル出力部10から弁駆動部に出力させるので、実際の弁開度VBが82%となり、弁開度論理値VOと実際の弁開度VBとの誤差が18%に拡大してしまう。
【0058】
そこで、本実施形態では、実施形態3の空気調和制御装置において、弁開度目標値VCが0%よりも小さく且つ下限値(−X%)よりも大きい場合は、弁を閉じる方向の駆動信号のみを出力し、弁開度目標値VCが100%よりも大きく且つ上限値(100+Y)%よりも小さい場合は、弁を開く方向の駆動信号のみを出力しており、弁開度目標値VCが0〜100%の範囲では、通常の温度調整動作を行っている。したがって、図9(a)に示すように、弁開度目標値VCが118%から100%に変化しても、CPU11は弁を閉じる方向の駆動信号をデジタル出力部10から弁駆動部に出力させないため、実際の弁開度VBは100%のままとなり、実際の弁開度VB、弁開度目標値VC、弁開度論理値VOが共に100%となって、実質的にキャリブレーション動作が行われる。同様に、図9(b)に示すように、弁開度目標値VCが0%よりも小さい値から0%に変化しても、CPU11は弁を開く方向の駆動信号をデジタル出力部10から弁駆動部に出力させないため、実際の弁開度VBは0%のままとなり、実際の弁開度VB、弁開度目標値VC、弁開度論理値VOが共に0%となって、実質的にキャリブレーション動作が行われる。
【0059】
この空気調和制御装置の動作を、冷水弁7を例として、図8のフローチャートを参照して説明する。尚、空気調和制御装置の構成は実施形態1と同様であるので、その説明を省略する。また、空気調和制御装置の基本的な動作は、図5のフローチャートに示す動作と同様であるので、同一の処理には、同一の符号を付して、その説明を省略し、異なる部分のみ説明を行う。
【0060】
CPU11の演算によって得られた弁開度目標値VCが(下限値)<VC<(上限値)の範囲内にある場合、CPU11はステップS10,S11の演算を行った後、ステップS12で弁開度目標値VCと弁開度論理値VOとの大小関係を比較する。弁開度目標値VCが弁開度論理値VOよりも大きい場合、CPU11は、ステップS36で弁開度目標値VCが0%よりも小さいか否かを判断する。その結果、弁開度目標値VCが0%以上の場合、CPU11は、ステップS37で冷水弁7を開く方向の駆動信号をデジタル出力部10から冷水弁駆動部22aへ出力し、冷水弁駆動部22aを用いて冷水弁7を開く方向に駆動し、ステップS15で経過タイマーをチェックして、ステップS5 に戻る。一方、弁開度目標値VCが0%よりも小さい場合、CPU11は、ステップS40でデジタル出力部10から冷水弁駆動部22aへの駆動信号の出力を停止し、ステップS15で経過タイマーをチェックして、ステップS5 に戻る。
【0061】
また、ステップS12で弁開度目標値VCと弁開度論理値VOとの大小関係を比較した結果、弁開度目標値VCが弁開度論理値VO以下の場合、CPU11は、ステッステップS38で弁開度目標値VCが100%よりも大きいか否かを判断する。その結果、弁開度目標値VCが100%以下の場合、CPU11は、ステップS39で冷水弁7を閉じる方向の駆動信号をデジタル出力部10から冷水弁駆動部22aへ出力し、冷水弁駆動部22aを用いて冷水弁7を閉じる方向に駆動し、ステップS15で経過タイマーをチェックして、ステップS5 に戻る。一方、弁開度目標値VCが100%よりも大きい場合、CPU11は、ステップS40でデジタル出力部10から冷水弁駆動部22aへの駆動信号の出力を停止し、ステップS15で経過タイマーをチェックして、ステップS5 に戻る。
【0062】
このように、弁開度目標値VCが100%を越えている場合、弁開度目標値VCが弁開度論理値VOより小さくなっても、CPU11は冷水弁7を閉じる方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに出力させない。同様に、弁開度目標値VCが0%を下回っている場合、弁開度目標値VCが弁開度論理値より大きくなっていても、CPU11は冷水弁7を開く方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに出力させないので、弁開度目標値VCと弁開度論理値VOとの間に誤差が発生したとしても、弁開度目標値VCが0≦VC≦100(%)の範囲内に戻る時点で、両者の誤差を自動的に補正することができる。したがって、補正動作時に弁開度が急激に変化することがなく、制御対象の温度に悪影響を与えることがなく、且つ、弁開度論理値VOと実際の弁開度VBとの誤差を小さくすることができる。また、実施形態3と同様、弁開度目標値VCが下限値(−X)%となった場合は、冷水弁7を閉じる方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに出力し、弁開度目標値VCが上限値(100+Y)%となった場合は、冷水弁7を開く方向の駆動信号をデジタル出力部10から冷水弁駆動部22aに出力することによって、キャリブレーション動作を行っている。
【0063】
【発明の効果】
上述のように、請求項1の発明は、冷水又は温水と空気との間で熱交換を行う熱交換手段に、冷水又は温水を供給する弁の弁開度を調節して、空気の温度を制御する空気調和制御装置であって、弁を開閉する弁駆動用モータを駆動するための駆動信号を発生する駆動信号発生手段と、空気の温度を検出する温度検出手段と、弁駆動用モータが弁を全開状態から全閉状態まで駆動するのに要する弁トラベルタイムや制御目標温度や制御演算に必要なパラメータを記憶するデータメモリと、駆動信号発生手段が駆動信号を発生した時間の合計と弁トラベルタイムとから現在の弁開度を演算し、温度検出手段の検出した温度及び制御目標温度から弁の弁開度目標値を演算するとともに、演算で求めた現在の弁開度と弁開度目標値との差及び弁トラベルタイムから駆動信号を発生する駆動時間を演算し、前記駆動時間だけ駆動信号発生手段から駆動信号を発生させる中央演算処理部とを備え、弁開度目標値が略0%又は略100%になった場合、中央演算処理部は、前記駆動時間に予め設定された一定時間を加算した時間だけ駆動信号発生手段から駆動信号を発生させて、実際の弁開度を略0%又は略100%とするとともに、演算で求めた現在の弁開度を略0%又は略100%に設定して、実際の弁開度と演算で求めた弁開度とを一致させるキャリブレーション動作を行うことを特徴とする。したがって、弁開度目標値VCが0%又は100%になった時だけ、キャリブレーション動作が行われるので、弁開度論理値と実際の弁開度との誤差を小さくするとともに、キャリブレーション動作による温度調整動作への影響を小さくできるという効果がある。また、弁駆動用モータに、自ら回転角度を調整しながら弁を駆動するモータユニットを用いたり、モータの回転角度に比例して抵抗値が変化する抵抗器を弁駆動用モータに設ける必要がないので、装置全体のコストアップを招くことがない。
【0064】
請求項2の発明は、弁開度目標値が略0%となって中央演算処理部がキャリブレーション動作を行う間に、弁開度目標値が略0%から変化した場合、中央演算処理部は演算で求めた弁開度を略0%に設定して、通常の温度調整動作に復帰するとともに、弁開度目標値が略100%となって中央演算処理部がキャリブレーション動作を行う間に、弁開度目標値が略100%から変化した場合、中央演算処理部は演算で求めた弁開度を略100%に設定して、通常の温度調整動作に復帰しているので、キャリブレーション動作中に、弁開度の変化によって制御対象の温度に影響が及び、弁開度目標値が変化すると、即座にキャリブレーション動作を終了しているので、キャリブレーション動作による温度調整動作への影響をさらに小さくできるという効果がある。
【0065】
請求項3の発明は、冷水又は温水と空気との間で熱交換を行う熱交換手段に、冷水又は温水を供給する弁の弁開度を調節して、空気の温度を制御する空気調和制御装置であって、弁を開閉する弁駆動用モータを駆動するための駆動信号を発生する駆動信号発生手段と、空気の温度を検出する温度検出手段と、弁駆動用モータが弁を全開状態から全閉状態まで駆動するのに要する弁トラベルタイムや制御目標温度や制御演算に必要なパラメータを記憶するデータメモリと、駆動信号発生手段が駆動信号を発生した時間の合計と弁トラベルタイムとから現在の弁開度を演算し、温度検出手段の検出した温度及び制御目標温度から弁の弁開度目標値を演算するとともに、演算で求めた現在の弁開度と弁開度目標値との差及び弁トラベルタイムから駆動信号を発生する駆動時間を演算し、前記駆動時間だけ駆動信号発生手段から駆動信号を発生させる中央演算処理部とを備え、中央演算処理部が弁開度目標値の下限値を0%よりも小さい値に設定するとともに、弁開度目標値の上限値を100%よりも大きい値に設定し、弁開度目標値が下限値に等しくなった場合、中央演算処理部は弁を閉じる方向の駆動信号を駆動信号発生手段から発生させ、弁開度目標値が上限値に等しくなった場合、中央演算処理部は弁を開く方向の駆動信号を駆動信号発生手段から発生させて、実際の弁開度と演算で求めた弁開度とを一致させるキャリブレーション動作を行うことを特徴とする。したがって、弁開度目標値の範囲を下限値又は上限値に拡張することにより、弁開度論理値と実際の弁開度との誤差が拡張された範囲内に収まっている間は、弁のキャリブレーション動作は行われないので、キャリブレーション動作による温度調整動作への影響を小さくすることができる。また、弁開度論理値と実際の弁開度との誤差が拡張された範囲以上に拡大した場合は、弁のキャリブレーション動作が行われるので、誤差を小さくして制御精度を向上できるという効果がある。また、弁駆動用モータに、自ら回転角度を調整しながら弁を駆動するモータユニットを用いたり、モータの回転角度に比例して抵抗値が変化する抵抗器を弁駆動用モータに設ける必要がないので、装置全体のコストアップを招くことがない。
【0066】
請求項4の発明は、弁開度目標値が略100%を越える場合、中央演算処理部は弁を開く方向の駆動信号のみを駆動信号発生手段から発生させ、弁開度目標値が略0%を下回っている場合、中央演算処理部は弁を閉じる方向の駆動信号のみを駆動信号発生手段から発生させているので、弁開度論理値と実際の弁開度との誤差が拡張された範囲内に収まっていても、弁開度目標値が一旦拡張された範囲内に入り、その後0〜100%の範囲内に戻れば、その過程で弁開度論理値の誤差を補正でき、温度調整動作に影響を与えることなく、キャリブレーションを行えるという効果がある。
【0067】
請求項5の発明は、温度調整動作開始時に、中央演算処理部は弁を全閉又は全開させる駆動信号を駆動信号発生手段から発生させ、演算で求めた弁開度を略0%又は略100%に設定するキャリブレーション動作を行っているので、弁開度論理値と実際の弁開度とを一致させた状態で温度調整動作を開始できるという効果がある。
【0068】
請求項6の発明は、温度調整動作終了時に、中央演算処理部は弁を全閉又は全開させる駆動信号を駆動信号発生手段から発生させ、演算で求めた弁開度を略0%又は略100%に設定するキャリブレーション動作を行っているので、次回温度調整動作開始時にキャリブレーション動作を行う必要がなく、即座に温度調整動作を開始できるという効果がある。
【図面の簡単な説明】
【図1】実施形態1の空気調和制御装置を用いるシステムの概略構成図である。
【図2】同上の動作を説明するフローチャートである。
【図3】(a)(b)は同上のキャリブレーション動作を説明する図である。
【図4】実施形態2の空気調和制御装置の動作を説明するフローチャートである。
【図5】実施形態3の空気調和制御装置の動作を説明するフローチャートである。
【図6】(a)(b)は同上のキャリブレーション動作を説明する図である。
【図7】(a)(b)は同上の別のキャリブレーション動作を説明する図である。
【図8】実施形態4の空気調和制御装置の動作を説明するフローチャートである。
【図9】(a)(b)は同上のキャリブレーション動作を説明する図である。
【図10】従来の空気調和制御装置を用いるシステムの概略構成図である。
【図11】(a)(b)は同上のキャリブレーション動作を説明する図である。
【符号の説明】
7 冷水弁
8 温水弁
10 デジタル出力部
11 CPU
22a 冷水弁駆動部
22a 温水弁駆動部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-conditioning control device that controls the temperature of air by adjusting the valve opening degree of a cold water valve or a hot water valve that supplies cold water or hot water to heat exchange means that performs heat exchange between cold water or hot water and air. It is about.
[0002]
[Prior art]
Conventionally, using a motor unit that receives a continuous proportional control signal, automatically converts this proportional control signal into a valve opening, and drives the valve while adjusting the rotation angle according to the valve opening, There was an air conditioning control device that controls the valve opening degree of the valve.
In addition, a valve opening contact that rotates the valve driving motor in the direction to open the valve when turned on and a valve closing contact that rotates the valve driving motor in the direction that closes the valve when turned on are provided. When performing a so-called three-position control that outputs a signal for closing any contact or neither, a control is provided with a resistor whose resistance changes in proportion to the rotation angle in the valve drive motor. Some devices read the resistance value of this resistor, convert it into a valve opening, and operate the valve while feeding back the current valve opening.
[0003]
Here, when control of the valve opening degree is not required to have high accuracy, the time required for the valve driving motor to drive the valve from the fully closed state to the fully open state (from the fully open state to the fully closed state) (so-called “so-called”) , Valve travel time) is set in advance, the valve open contact and valve close contact ON times are totaled, and the current valve opening (valve opening logical value) is calculated from this total time and the valve travel time. There was also a method of controlling the valve opening by calculating. At this time, in order to prevent the error between the valve opening logical value and the actual valve opening from expanding, the valve closing contact is closed for a certain period of time to fully close the valve, and the valve opening logical value and the actual Regularly perform full-closed calibration that matches the valve opening as 0%, or close the valve-open contact for a certain period of time to fully open the valve, and open the valve opening theoretical value and actual valve opening. The full opening calibration is periodically performed so that the values coincide with each other as 100%, and the valve opening logic value is corrected.
[0004]
FIG. 10 shows a schematic configuration diagram of the air conditioning control apparatus. 7 is a cold water valve that supplies cold water to heat exchange means (not shown) that exchanges heat between cold water and air, and 9 is a temperature that converts the detection signal of the temperature detector 6 into the temperature of the control object (air). Detection means, 11 is a central processing unit CPU, 12 is a data memory for storing a control target temperature and control calculation parameters, 21a is a valve opening contact for rotating the valve drive motor 7a in the direction to open the cold water valve 7 when turned on 10a is a valve opening contact output means for generating a driving signal for turning on the valve opening contact 21a in response to a signal input from the CPU 11, and 21b is a valve for rotating the valve driving motor 7a in a direction to close the cold water valve 7 when turned on. Closed contacts 10b are valve closed contact output means for generating a drive signal for turning on the valve closed contact 21b in response to a signal input from the CPU 11. In FIG. 10, reference numeral 20 denotes a power source for the valve driving motor 7a. The valve driving motor 7a, the power source 20, the valve opening contact 21a, and the valve closing contact 21b constitute a chilled water valve driving portion 22a. .
[0005]
The CPU 11 performs a control calculation (generally, a digital PID calculation) based on the air temperature input from the temperature detection means 9 and the control target temperature and control calculation parameters stored in advance in the data memory 12. This is executed, and the valve opening target value of the cold water valve 7 is determined. At this time, the CPU 11 sums the ON times of the valve opening contact 21a and the valve closing contact 21b, divides this total time by the valve travel time, and obtains the valve opening logical value by calculation. Then, the CPU 11 obtains the driving time for turning on the valve opening contact 21a or the valve closing contact 21b from the difference between the valve opening logical value and the valve opening target value, and only during this driving time, the valve opening contact output means 10a or A drive signal is generated from the valve closing contact output means 10b, the valve opening contact 21a or the valve closing contact 21b is turned on, the valve driving motor 7a is driven, and the valve opening degree of the cold water valve 7 is adjusted.
[0006]
Since this air conditioning control device does not include means for detecting the valve opening degree of the cold water valve 7, the valve opening degree of the cold water valve 7 is unknown at the start of the temperature adjustment operation. Therefore, for a time longer than the valve travel time at the start of the temperature adjustment operation, the CPU 11 outputs a drive signal from, for example, the valve closing contact output means 10b to turn on the valve closing contact 21b. At this time, since the valve driving motor 7a is driven in the direction to close the cold water valve 7 for a time longer than the valve travel time, the valve opening degree of the cold water valve 7 is in any state at the start of the temperature adjustment operation. The valve opening degree of the cold water valve 7 can be set to 0%. Thus, the CPU 11 can start the temperature adjustment operation from a state in which both the valve opening logical value and the actual valve opening coincide with 0%.
[0007]
By the way, the CPU 11 performs a limit process for limiting the valve opening target value obtained by the calculation within a range of 0 to 100%, and then, according to the valve opening target value and the valve opening logical value, A drive signal for driving the drive motor 7 is output from the valve opening contact output means 10a or the valve closing contact output means 10b. Here, assuming that the valve travel time is 60 seconds, the valve opening target value is 50%, and the valve opening logic value is 0%, the CPU 11 takes time (30 seconds) to open the cold water valve 7 by 50%. It is only necessary to output a drive signal from the valve opening contact driving means 10a.
[0008]
By the way, since the calculation cycle of the CPU 11 is usually shorter than the valve travel time, the on time of the valve opening contact 21a is integrated for each calculation cycle, and the result is divided by the valve travel time to obtain the valve opening target. The drive time of the valve opening contact 21a or the valve closing contact 21b is updated by recognizing it as a change in value and constantly comparing it with the target valve opening obtained by sequential calculation. When the valve opening target value obtained by the calculation is lower than the valve opening logical value, the CPU 11 outputs a drive signal from the valve closing contact output means 10b to the valve closing contact 21b to set the valve closing contact 21b. The valve opening motor 7a is rotated in the direction to close the cold water valve 7 to reduce the valve opening of the cold water valve 7, but the on time of the valve closing contact 21b is the on time of the valve opening contact 21a. The valve opening logic value is calculated by integrating as an opposite value, that is, a negative value.
[0009]
Here, the valve travel time is Tv (seconds), the calculation cycle of the CPU 11 is Tc (seconds), the number of times that the valve opening contact output means 10a outputs a drive signal for turning on the valve opening contact 21a is No (times), and the valve is closed. Assuming that the number of times that the contact output means 10b outputs a drive signal for turning on the valve closing contact 21b is Nc (times), the valve opening logical value Vo (%) is obtained by the equation (1). However, 0 ≦ Vo ≦ 100.
[0010]
Vo = 100 × Tc × (No−Nc) / Tv (1)
As described above, the CPU 11 obtains the valve opening logical value Vo of the cold water valve 7 from the total time when the valve opening contact 21a or the valve closing contact 21b is turned on and the valve travel time Tv. Since the time Tv itself is not a very accurate value, while the valve drive motor 7a repeatedly rotates and stops and the chilled water valve 7 is opened and closed, the actual valve opening and the valve opening logical value There was an error in between.
[0011]
However, in this air conditioning control apparatus, since the CPU 11 calculates the valve opening target value based on the difference between the control target temperature and the current temperature detected by the temperature detecting means 9, the valve opening logical value and the actual value are calculated. Even if an error occurs with the valve opening, the effect of this error appears in the current temperature, and as a result, the effect of the error is reflected in the valve opening target value. Virtually cancelled.
[0012]
By the way, the range of the valve opening target value obtained by the calculation of the CPU 11 is 0 to 100%, and the range of the valve opening logical value is also 0 to 100%. As shown in FIG. 11A, when the valve opening logical value VO is shifted to a larger side than the actual valve opening VB, the CPU 11 outputs the valve opening contact output when the valve opening target value becomes 100%, for example. The drive signal is output from the means 10a to the valve opening contact 21a to turn on the valve opening contact 21a, and the valve driving motor 7a is rotated in the direction to open the cold water valve 7. The valve opening logic value VO gradually increases as the chilled water valve 7 opens according to the rotation of the valve driving motor 7a, and when the valve opening logic value VO reaches 100%, the valve opening contact driving means 10a The output of the driving signal is stopped, the valve opening contact 21a is turned off, and the valve driving motor 7a is stopped. Here, since the valve opening logical value VO is shifted to a larger side than the actual valve opening VB, the CPU 11 stops outputting the drive signal even though the actual valve opening VB is smaller than 100%. However, the cold water valve 7 could not be opened 100%. At this time, even if the current temperature detected by the temperature detecting means 9 deviates from the control target temperature and the valve opening of the chilled water valve 7 needs to be further increased, the valve opening logic value is 100%. Therefore, although the actual valve opening is smaller than 100%, the CPU 11 cannot open the cold water valve 7 any more, and there is a problem that the current temperature cannot follow the control target temperature.
[0013]
On the contrary, as shown in FIG. 11B, the same problem occurs when the valve opening logical value VO is shifted to a side smaller than the actual valve opening VB. That is, when the valve opening target value becomes, for example, 0%, the CPU 11 outputs a drive signal from the valve closing contact output means 10b to the valve closing contact 21b, turns on the valve closing contact 21b, and closes the chilled water valve 7. The drive motor 7a is rotated. Here, as the chilled water valve 7 is closed according to the rotation of the valve driving motor 7a, the valve opening logical value VO gradually decreases, and the valve opening logical value VO becomes 0%. The driving means 10b stops outputting the driving signal, the valve closing contact 21b is turned off, and the valve driving motor 7a is stopped. Here, since the valve opening logical value VO is shifted to a side smaller than the actual valve opening VB, the CPU 11 sets the chilled water valve 7 in spite of the fact that the actual valve opening VB is larger than 0%. As described above, there is a problem that the current temperature cannot be made to follow the control target temperature.
[0014]
In order to prevent such a problem, the CPU 11 periodically outputs a drive signal for closing the cold water valve 7 from the valve closing contact driving means 10b to the valve closing contact 21b irrespective of the valve opening target value. Even if the valve opening logical value VO becomes 0%, the continuation of the drive signal for a certain period of time causes the chilled water valve 7 to be fully closed, so that the actual valve opening VB and the valve opening logical value VO Both of them are corrected to 0% (so-called valve fully closed calibration), and then the CPU 11 returns to the normal temperature adjustment operation and adjusts the valve opening of the chilled water valve 7 according to the valve opening target value. It was. Similarly, the CPU 11 periodically outputs a drive signal for opening the chilled water valve 7 from the valve opening contact driving means 10a to the valve opening contact 21a regardless of the valve opening target value, and the valve opening logic value VO is Even when it reaches 100%, by continuing to output the drive signal for a certain time, the chilled water valve 7 is fully opened, and the actual valve opening VB and the valve opening logical value VO are both 100% (so-called correction) Also, the actual valve opening degree and the valve opening logic value could be matched by performing the valve full opening calibration.
[0015]
[Problems to be solved by the invention]
In the former air conditioning control device described above, a motor unit that drives the valve while adjusting the rotation angle itself is used, or a resistor whose resistance value changes in proportion to the rotation angle of the motor is provided in the valve driving motor. Therefore, there is a problem that the cost of the apparatus becomes high.
[0016]
Further, in the latter air conditioning control apparatus, the valve fully closed calibration or the valve fully opened calibration is periodically performed regardless of the control state of the CPU 11, so that during the calibration, the valve 6 is in the fully closed state or There is a problem that the temperature to be controlled is greatly deviated from the control target temperature because the temperature adjustment capability is completely insufficient or excessively increased.
[0017]
The present invention has been made in view of the above problems, and its object is to reduce the error between the valve opening logical value and the actual valve opening without increasing the cost, and Another object of the present invention is to provide an air conditioning control apparatus that reduces the influence on the temperature adjustment operation.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the valve opening degree of a valve for supplying cold water or hot water is adjusted to a heat exchange means for performing heat exchange between cold water or hot water and air, An air conditioning control apparatus for controlling the temperature of the air-conditioning apparatus, a drive signal generating means for generating a drive signal for driving a valve driving motor for opening and closing the valve, a temperature detecting means for detecting the temperature of the air, and a valve drive Data memory that stores the valve travel time required for the motor to drive the valve from the fully open state to the fully closed state, the control target temperature, and parameters required for the control calculation, and the time when the drive signal generating means generates the drive signal. The current valve opening is calculated from the total and the valve travel time, and the valve opening target value of the valve is calculated from the temperature detected by the temperature detecting means and the control target temperature. With the valve opening target value And a central processing unit that calculates a drive time for generating a drive signal from the valve travel time and generates a drive signal from the drive signal generating means for the drive time, and the valve opening target value is approximately 0% or approximately 100. When it becomes%, the central processing unit generates a drive signal from the drive signal generating means for a time obtained by adding a predetermined time to the drive time, and the actual valve opening is set to approximately 0% or approximately The current valve opening obtained by calculation is set to approximately 0% or approximately 100%, and a calibration operation is performed to match the actual valve opening and the valve opening determined by the calculation. It is characterized by that. Accordingly, since the calibration operation is performed only when the valve opening target value VC becomes 0% or 100%, the influence on the temperature adjustment operation by the calibration operation can be reduced.
[0019]
In the invention of claim 2, in the invention of claim 1, the valve opening target value changes from approximately 0% while the valve opening target value is approximately 0% and the central processing unit performs the calibration operation. In this case, the central processing unit sets the valve opening obtained by the calculation to approximately 0% and returns to the normal temperature adjustment operation, and the valve opening target value becomes approximately 100% and the central processing unit When the valve opening target value changes from approximately 100% during the calibration operation, the central processing unit sets the valve opening obtained by the calculation to approximately 100% and performs normal temperature adjustment operation. Since it has been restored, if the temperature of the control target is affected by the change in the valve opening during the calibration operation, and the target value for the valve opening changes, the calibration operation is immediately terminated. To temperature control operation by operation It is possible to further reduce sound.
[0020]
In the invention of claim 3, the air conditioning control for controlling the temperature of the air by adjusting the valve opening degree of the valve for supplying the cold water or the hot water to the heat exchange means for exchanging heat between the cold water or the hot water and the air. A drive signal generating means for generating a drive signal for driving a valve drive motor for opening and closing the valve; a temperature detection means for detecting the temperature of the air; and the valve drive motor from the fully open state. A data memory that stores the valve travel time required for driving to the fully closed state, control target temperature, and parameters necessary for control calculation, the total time when the drive signal generating means generates the drive signal, and the valve travel time The valve opening target value of the valve is calculated from the temperature detected by the temperature detecting means and the control target temperature, and the difference between the current valve opening and the valve opening target value obtained by the calculation is calculated. And valve travel time A central processing unit that calculates a driving time for generating a dynamic signal and generates a driving signal from the driving signal generating means for the driving time, and the central processing unit sets the lower limit of the valve opening target value from 0% If the upper limit value of the valve opening target value is set to a value larger than 100% and the valve opening target value becomes equal to the lower limit value, the central processing unit closes the valve. When the valve opening target value is equal to the upper limit value, the central processing unit generates a drive signal in the direction to open the valve from the drive signal generating means, A calibration operation is performed to match the valve opening and the valve opening obtained by calculation. Therefore, by expanding the range of the valve opening target value to the lower limit value or the upper limit value, while the error between the valve opening logic value and the actual valve opening is within the expanded range, Since the calibration operation is not performed, the influence of the calibration operation on the temperature adjustment operation can be reduced. Also, if the error between the valve opening logic value and the actual valve opening is expanded beyond the expanded range, the valve calibration operation is performed, so the error can be corrected to improve control accuracy. it can.
[0021]
In the invention of claim 4, in the invention of claim 3, when the valve opening target value exceeds approximately 100%, the central processing unit generates only the drive signal in the direction of opening the valve from the drive signal generating means, When the target opening value is less than about 0%, the central processing unit generates only the driving signal in the direction to close the valve from the driving signal generating means. Even if the error is within the expanded range, if the valve opening target value once enters the expanded range and then returns to the range of 0 to 100%, then the valve opening logical value in the process Error can be corrected.
[0022]
According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, at the start of the temperature adjustment operation, the central processing unit generates a drive signal for driving the valve to be fully closed or fully opened from the drive signal generating means, and the valve is obtained by calculation. Since the calibration operation is performed to set the opening to approximately 0% or approximately 100%, the temperature adjustment operation can be started in a state where the logical value of the valve opening and the actual valve opening match.
[0023]
According to a sixth aspect of the present invention, in the first to fifth aspects of the invention, at the end of the temperature adjustment operation, the central processing unit generates a drive signal for fully closing or opening the valve from the drive signal generating means, and calculating the valve Since the calibration operation is performed to set the opening degree to approximately 0% or approximately 100%, it is not necessary to perform the calibration operation at the start of the next temperature adjustment operation, and the temperature adjustment operation can be started immediately.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
The schematic block diagram of the system using the air conditioning control apparatus of this embodiment is shown in FIG.
Reference numeral 1 denotes an outside air intake port for taking in outside air. Outside air taken in from the outside (OA) via the air intake port 1 is taken into the air conditioner B via the outside air damper 14.
[0025]
The air conditioner B includes a cold water coil 2, a hot water coil 3, and a cold water coil 2 that are heat exchange means for performing heat exchange between the outside air taken in via the outside air damper 14 and cold water or hot water to cool or heat the outside air. Or it is comprised from the air blower 4 which pressurizes the external air cooled or heated with the hot water coil 3, and supplies it to the room | chamber interior (SA) from the blower outlet 5.
Reference numeral 13 denotes a blower power panel for driving the blower 4. The blower power panel 13 has an input contact 13 a to which a control signal for starting or stopping the blower 4 is input from an air conditioning control device DDC described later, and a blower 4 is provided with an output contact 13b for outputting a signal indicating the operation state 4 to the air conditioning control device DDC. Here, when the blower 4 is stopped, the outside air damper 14 blocks the ventilation path 15 from the air intake 1 to the air conditioner B according to the control signal input from the air conditioning control device DDC. To prevent unnecessary outside air from entering. Reference numeral 6 denotes a temperature detector provided in the air passage between the air outlet of the blower 4 and the air outlet 5, which detects the outlet temperature of the air blower 4 and outputs a detection signal to the air conditioning controller DDC. ing. In this embodiment, the temperature detector 6 detects the outlet temperature of the blower 4, but it may detect the temperature in the room.
[0026]
A cold water pipe 16 circulates cold water through the cold water coil 2, and the cold water pipe 16 is provided with a cold water valve 7 for adjusting the amount of cold water supplied to the cold water coil 2. Reference numeral 17 denotes a hot water pipe for circulating hot water through the hot water coil 3, and the hot water pipe 17 is provided with a hot water valve 8 for adjusting the amount of hot water supplied to the hot water coil 3. The cold water valve 7 and the hot water valve 8 are respectively provided with a cold water valve drive unit 22a and a hot water valve drive unit 22b for opening and closing each valve. Since each valve drive part 22a, 22b has the structure similar to the cold water valve drive part 22 shown in FIG. 10 demonstrated in the prior art example, the description is abbreviate | omitted.
[0027]
The air conditioning control device DDC includes a data memory 12 in which a control target temperature and control calculation parameters are stored, and a temperature detection means A that converts a detection signal input from the temperature detector 6 into an outlet temperature of the air conditioner B. / D input unit (AI) 9 and valve opening degree based on control target temperature and control calculation parameters stored in data memory 12 and outlet temperature of air conditioner B input from A / D input unit 9 While outputting a control signal to CPU11 which is a central arithmetic processing part which calculates a target value, blower power board 13, and outside air damper 14, the current valve opening (below, hereinafter) of each valve 7 and 8 obtained by calculation of CPU11 Digital which is a drive signal generating means for outputting a drive signal for driving each of the valve drive motors 7a, 8a to each of the valve drive units 22a, 22b according to a difference between the valve opening logical value) and a valve opening target value. Output section And DO) 10, a signal indicating the operating state of the fan 4 from the blower control board 13 and a digital input section (DI) 19 input.
[0028]
The operation of this air conditioning control device DDC will be described with reference to the flowchart shown in FIG. 2, taking the cold water valve 7 as an example. Note that the operation of the hot water valve 8 is the same as the operation of the cold water valve 7, and the description thereof is omitted.
At the start of the temperature adjustment operation, the air conditioning controller DDC reads the valve travel time and parameters necessary for control calculation from the data memory 12 (step S). 1 ).
[0029]
By the way, since this air conditioning control device DDC is not provided with means for detecting the current valve opening degree of the chilled water valve 7, the actual valve opening degree and the valve opening logical value of the chilled water valve 7 are calculated at the start of the temperature adjustment operation. Must match. So step S 2 The CPU 11 operates the chilled water valve drive unit 22a in the direction to close the chilled water valve 7 for the time (valve travel time) required for the chilled water valve drive unit 22a to drive the chilled water valve 7 from fully open to fully closed. A drive signal is output from the digital output unit 10 to the chilled water valve drive unit 22a. When the valve travel time elapses from the start of the temperature adjustment operation and the chilled water valve 7 is fully closed, the CPU 11 sets the valve opening logic value of the chilled water valve 7 to 0%, and the valve opening logic Both the value and the actual valve opening are set to 0% (hereinafter, this operation is referred to as valve full-closed calibration). When the valve fully closed calibration is completed, the CPU 11 executes step S. Three Starts the temperature adjustment operation, and step S Four To start an elapsed timer that measures the elapsed time from the start of the temperature adjustment operation. Five If you want to continue the temperature adjustment operation at step S 6 Migrate to
[0030]
Next, the CPU 11 performs step S. 6 In step S, the current outlet temperature of the blower 4 is read from the A / D input unit 9. 7 In step S, the valve opening target value VC is calculated by digital PID calculation. 8 To calculate the valve opening logic value VO. At this time, the CPU 11 performs limit processing for limiting the upper limit value of the valve opening target value VC to 100% and the lower limit value to 0%. In addition, the CPU 11 subtracts the total time of driving in the direction of closing the cold water valve 7 from the total value of driving in the direction of opening the cold water valve 7 to obtain a ratio (%) with respect to the valve travel time. The valve opening logical value VO of the valve 7 is obtained.
[0031]
If the valve opening target value VC is within the range of 0 <VC <100 (%) (step S 9 ), The CPU 11 performs step S Ten The valve opening target value VC and the valve opening logical value VO are compared with each other. 16 In step S, the output of the drive signal from the digital output unit 10 to the chilled water valve drive unit 22a is stopped. 17 Migrate to On the other hand, step S Ten If they are different, step S 11 Thus, the drive time for outputting the drive signal to the chilled water valve drive unit 22a is calculated from the difference between the valve opening target value VC and the valve opening logical value VO. Here, a value obtained by dividing the valve travel time by 100 is a unit drive time for outputting a drive signal from the digital output unit 10 to the chilled water valve drive unit 22a in order to open and close the valve opening of the chilled water valve 7 by 1%. Therefore, the CPU 11 calculates the driving time of the chilled water valve driving unit 22a by multiplying the difference between the valve opening target value VC and the valve opening logic value VO by unit driving time.
[0032]
Next, the CPU 11 performs step S. 12 The valve opening target value VC is compared with the valve opening logical value VO. If the valve opening target value VC is larger than the valve opening logical value VO, step S 13 If the driving signal in the direction to open the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a for the driving time, and the valve opening target value VC is smaller than the valve opening logical value VO, step S 14 Then, the driving signal in the direction to close the cold water valve 7 is output from the digital output unit 10 to the cold water valve driving unit 22a for the driving time. And step S 15 Check the elapsed time of the elapsed timer with Step S Five Returning to the above, the above operation is repeatedly executed.
[0033]
On the other hand, step S 9 When the valve opening target value VC reaches 100%, step S 18 Then, the CPU 11 sets a predetermined time (valve for the valve) to the driving time of the chilled water valve driving unit 22a obtained from the difference between the current valve opening logic value VO and the valve opening target value VC (ie, 100%). The driving signal in the direction to open the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a for the time added by about 30% of the travel time to fully open the chilled water valve 7, and the actual valve opening VB Is 100%. Then, the CPU 11 sets the valve opening logic value VO to 100%, and matches both the valve opening logic value VO and the actual logic value VB to 100% (valve full opening calibration). Then step S 17 The CPU 11 clears the elapsed timer, and step S Five Returning to FIG.
[0034]
Step S 9 When the valve opening target value VC becomes 0%, step S 19 Thus, the CPU 11 sets a predetermined time (valve for the valve) to the driving time of the chilled water valve driving unit 22a obtained from the difference between the current valve opening logic value VO and the valve opening target value VC (ie, 0%). The driving signal in the direction to close the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a for the time obtained by adding about 30% of the travel time), and the chilled water valve 7 is fully closed. Ensure that VB is 0%. Then, the CPU 11 sets the valve opening logic value VO to 0%, and matches both the valve opening logic value VO and the actual logic value VB to 0% (valve fully closed calibration). Then step S 20 The CPU 11 clears the elapsed timer, and step S Five Returning to FIG.
[0035]
By the way, when the valve opening target value VC obtained by the calculation of the CPU 11 is within the range of 0 <VC <100 (%), the CPU 11 does not perform the calibration operation. An error occurs between the degree VB and the valve opening logic value VO. However, since the influence of this error appears as a deviation between the temperature of the controlled object and the control target temperature, the valve opening target value VC is corrected in a direction to reduce the deviation by the calculation of the CPU 11, so that the control Although there are some problems regarding accuracy, the temperature adjustment operation itself does not become defective.
[0036]
Here, as shown in FIG. 3A, when the valve opening logical value VO is shifted to a larger side than the actual valve opening VB, when the valve opening target value VC becomes 100%, the CPU 11 Performs the valve full open calibration as described above, but the CPU 11 determines the time until the valve opening logical value VO is set to 100% from the current value [section T in FIG. 1 ] For a predetermined time [section T in FIG. 2 ], A driving signal for opening the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a, and the chilled water valve driving unit 22a is used to drive the chilled water valve 7 in the opening direction. Therefore, the actual valve opening VB of the chilled water valve 7 can be reliably set to 100%, and both the valve opening logical value VO and the actual valve opening VB can be made equal to 100%.
[0037]
Similarly, as shown in FIG. 3B, when the valve opening degree logical value VO is shifted to a smaller side than the actual valve opening degree VB, the valve opening degree target value VC becomes 0%. The CPU 11 performs the valve full-closed calibration as described above, but the CPU 11 determines the time until the valve opening logical value VO is 0% from the current value [section T in FIG. Three ] For a preset time [section T in FIG. Four ] Is output from the digital output unit 10 to the chilled water valve drive unit 22a in the direction to close the chilled water valve 7, and the chilled water valve drive unit 22a is used to drive the chilled water valve 7 in the closing direction. Therefore, the actual valve opening VB of the cold water valve 7 can be surely set to 0%, and both the valve opening logical value VO and the actual valve opening VB can be made equal to 0%.
[0038]
Further, the CPU 11 performs step S. Five When the temperature adjustment operation is finished in step S, 2 Perform the valve fully closed calibration operation with. At this time, the CPU 11 supplies the chilled water valve from the digital output unit 10 to the chilled water valve driving unit 22a for a time obtained by adding a certain time (about 30% of the valve travel time) to the time until the valve opening logical value VO is set to 0%. 7 is output, and the chilled water valve 7 is driven in the closing direction using the chilled water valve drive unit 22a, so that the actual valve opening VB of the chilled water valve 7 is surely set to 0%. Both the valve opening logic value VO and the actual valve opening VB can be made equal to 0%. Therefore, when the CPU 11 performs the temperature adjustment operation next time, the valve opening logical value VO and the actual valve opening VB are both 0%, so that the temperature adjustment is immediately performed without performing the calibration operation. The action can be performed.
[0039]
Thus, in this embodiment, since the CPU 11 performs the calibration operation only when the valve opening target value VC becomes 0% or 100%, the calibration is performed at regular intervals regardless of the control state. Compared with the case where the operation is performed, a large temperature change does not occur.
Also, a motor unit that drives the valve while adjusting the rotation angle itself is used for the cold water valve drive unit 22a or the hot water valve drive unit 22b, or a resistor whose resistance value changes in proportion to the rotation angle of the motor is valve driven. Since it is not provided in the motor for use, the cost of the entire apparatus is not increased.
[0040]
(Embodiment 2)
In the first embodiment, since the CPU 11 performs the calibration operation only when the valve opening target value VC becomes 0% or 100%, the calibration operation is performed at regular intervals regardless of the control state. Compared to the above, the influence on the temperature adjustment operation during the calibration operation can be reduced.
[0041]
However, if the CPU 11 performs the temperature adjustment operation for a long time in the range where the valve opening target value VC is 0 <VC <100 (%), the error between the valve opening logical value VO and the actual valve opening VB is large. Become. Accordingly, an error between the valve opening logical value VO when the valve opening target value VC becomes 0% or 100% and the actual valve opening VB becomes large, and the valve opening greatly changes by the calibration operation. For this reason, there is a possibility that the temperature of the object to be controlled changes greatly.
[0042]
For example, if the actual valve opening VB of the cold water valve 7 is 70% and the valve opening logical value VO is 98%, the valve opening target value VC becomes 100%. Is increased by 2% from 98% to 100% (actual valve opening VB from 70% to 72%), the valve opening of the chilled water valve 7 is adjusted to a desired value, and the temperature of the controlled object is adjusted. Although it should be possible to control the valve opening target value VC to be 100%, the CPU 11 performs the valve full open calibration and drives the chilled water valve drive unit 22a for a further fixed time to 7 is in a fully open state, the actual valve opening VB changes from 70% to 100%.
[0043]
Therefore, the valve opening degree of the chilled water valve 7 is 28% larger than the desired valve opening degree 72% at this time, so that the temperature of the controlled object changes greatly. Therefore, when the CPU 11 returns to the normal temperature adjustment operation after the calibration operation is completed, the CPU 11 drives the chilled water valve 7 in a direction to eliminate the temperature deviation by using the chilled water valve driving unit 22a, and corrects the temperature deviation. . As described above, since the calibration operation is executed, the control accuracy of the temperature is deteriorated as compared with the normal temperature adjustment operation. Therefore, a control system with a short response time, such as controlling the outlet temperature of the air conditioner B in particular. Thus, the deviation is expected to expand to an unacceptable range.
[0044]
Therefore, in the present embodiment, even when the CPU 11 performs the calibration operation, when the valve opening target value VC obtained by the sequential calculation is not 0% or 100%, the CPU 11 immediately determines the valve opening logic. The value VO is set to 0% or 100%, the calibration operation is terminated, and the normal temperature adjustment operation is restored. Therefore, in the above-described example, when the actual valve opening VB increases and exceeds the desired valve opening 72%, the current temperature of the controlled object exceeds the control target temperature, and the valve opening theoretical value VC is 100%. At that time, the CPU 11 immediately sets the valve opening logical value VO to 100%, ends the calibration operation, and returns to the normal temperature control operation. The influence can be reduced.
[0045]
The operation of the air conditioning control device DDC will be described with reference to the flowchart of FIG. 4 using the cold water valve 7 as an example. In addition, since the structure of the air conditioning control apparatus DDC is the same as that of Embodiment 1, the description is abbreviate | omitted. Step S 1 ~ S 9 , Step S Ten ~ S 17 Since the operation up to this point is the same as that of the first embodiment, the description thereof is omitted.
Step S 9 When the valve opening target value VC becomes 100%, the CPU 11 performs step S twenty two To determine whether the calibration flag is on. Step S twenty two If the calibration flag is on, the CPU 11 proceeds to step S. Five Then, the above-described processing is repeated and the valve opening target value VC is calculated to determine whether or not the valve opening target value VC is within the range of 0 <VC <100%. Step S twenty two If the calibration flag is OFF, the CPU 11 proceeds to step S. twenty three Check the calibration timer with Step S twenty four In step S, the digital output unit 10 outputs a driving signal for opening the chilled water valve 7 to the chilled water valve driving unit 22a, and drives the chilled water valve 7 to open using the chilled water valve driving unit 22a. twenty five To determine whether or not the calibration timer set time has elapsed. Step S twenty five If the set time of the calibration timer has not elapsed, the CPU 11 Five Then, the above-described processing is repeated and the valve opening target value VC is calculated to determine whether or not the valve opening target value VC is within the range of 0 <VC <100%. Step S twenty five If the set time of the calibration timer has passed, the CPU 11 proceeds to step S. 26 To turn on the calibration flag and 27 In step S, the output of the drive signal from the digital output unit 10 to the chilled water valve drive unit 22a is stopped. 28 To clear the calibration timer, step S Five Return to.
[0046]
Therefore, if the valve opening target value VC remains 100% during the valve full-open calibration operation, the CPU 11 sends the chilled water valve 7 from the digital output unit 10 to the chilled water valve driving unit 22a for the elapsed time of the calibration timer. Is driven in the direction to open the chilled water valve 7. On the other hand, when the valve opening target value VC obtained by the sequential calculation enters the range of 0 <VC <100% during the valve full open calibration operation (step S). 9 ), The CPU 11 performs step S twenty one To turn off the calibration flag and set the valve opening logic value VO to 100%. Ten To return to normal temperature control operation.
[0047]
On the other hand, step S 9 When the valve opening target value VC becomes 0%, the CPU 11 executes step S 29 To determine whether the calibration flag is on. Step S 29 If the calibration flag is on, the CPU 11 proceeds to step S. Five Then, the above-described processing is repeated and the valve opening target value VC is calculated to determine whether or not the valve opening target value VC is within the range of 0 <VC <100%. Step S 29 If the calibration flag is OFF, the CPU 11 proceeds to step S. 30 Check the calibration timer with Step S 31 In step S, the digital output unit 10 outputs a driving signal for closing the chilled water valve 7 to the chilled water valve driving unit 22a, and drives the chilled water valve 7 using the chilled water valve driving unit 22a. 32 To determine whether or not the calibration timer set time has elapsed. Step S 32 If the calibration timer set time has not elapsed, the CPU 11 proceeds to step S. Five Then, the above-described processing is repeated and the valve opening target value VC is calculated to determine whether or not the valve opening target value VC is within the range of 0 <VC <100%. Step S 32 If the set time of the calibration timer has passed, the CPU 11 proceeds to step S. 33 To turn on the calibration flag and 34 In step S, the output of the drive signal from the digital output unit 10 to the chilled water valve drive unit 22a is stopped. 35 To clear the calibration timer, step S Five Return to.
[0048]
Therefore, if the valve opening target value VC remains 0% during the valve full-closed calibration operation, the CPU 11 sends the chilled water valve from the digital output unit 10 to the chilled water valve driving unit 22a for the elapsed time of the calibration timer. 7 is output in the direction of closing, and the chilled water valve 7 is driven in the direction of closing. On the other hand, when the valve opening target value VC obtained by the sequential calculation enters the range of 0 <VC <100% during the valve full-closed calibration operation (step S). 9 ), The CPU 11 performs step S twenty one To turn off the calibration flag, set the valve opening logic value VO to 0%, step S Ten To return to normal temperature control operation.
[0049]
(Embodiment 3)
In the present embodiment, in the air-conditioning control apparatus of the first embodiment, the lower limit value of the valve opening target value VC is set to a value smaller than 0% (−X%), and the upper limit value of the valve opening target value VC. Is set to a value (100 + Y) (%) larger than 100%. For example, in this embodiment, X = Y = 20%, and the range of the valve opening target value VC and the valve opening logical value VO is expanded from (−20%) to 120%, respectively, and the CPU 11 performs digital PID calculation. Is going.
[0050]
The operation of this air conditioning control apparatus will be described with reference to the flowchart of FIG. In addition, since the structure of an air conditioning control apparatus is the same as that of Embodiment 1, the description is abbreviate | omitted. In addition, since the basic operation of the air conditioning control apparatus is the same as the operation shown in the flowchart of FIG. 2, the same process is denoted by the same reference numeral, the description thereof is omitted, and only different parts are described. I do.
[0051]
CPU11 is step S 6 ~ S 8 To calculate the valve opening target value VC, step S 9 It is then determined whether or not the valve opening target value VC is within the range of (−X) <VC <(100 + Y). As shown in FIGS. 6A and 6B, when the valve opening target value VC is within the range of (−X) <VC <(100 + Y), the CPU 11 performs step S described in the first embodiment. 11 ~ S 15 To calculate step S Five Return to and repeat the above process.
[0052]
On the other hand, as shown in FIG. 9 When the valve opening target value VC becomes equal to the upper limit value (100 + Y), the CPU 11 performs step S 18 A drive signal in the direction of opening the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve drive unit 22a, and the chilled water valve 7 is driven in the direction of opening using the chilled water valve drive unit 22a to perform a calibration operation [ Section T in FIG. Five ].
[0053]
Further, as shown in FIG. 9 When the valve opening target value VC becomes equal to the lower limit value (−X), the CPU 11 determines in step S 19 The driving signal in the direction to close the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a, and the chilled water valve driving unit 22a is used to drive the chilled water valve 7 in the opening direction to perform the calibration operation. [Section T in FIG. 6 ].
[0054]
By the way, since the range of the actual valve opening VB is 0 to 100%, when the valve opening target value VC exceeds 100%, it is between the valve opening logical value VO and the actual valve opening VB. Inevitably errors occur. Similarly, in the range where the valve opening target value VC is less than 0%, an error inevitably occurs between the valve opening logical value VO and the actual valve opening VB. However, even if the valve opening target value VC is limited to a range of 0 to 100%, a certain degree of error is expected to occur between the valve opening logical value VO and the actual valve opening VB. The error generated by extending the range of the target opening value VC is accepted in advance, and the chilled water valve 7 is opened and closed. Further, when an error greater than or equal to the expansion of the range of the valve opening target value VC occurs, the error is corrected so that it falls within the expanded range of the valve opening target value VC at that time.
[0055]
Thus, the range of the valve opening target value VC and the valve opening logical value VO is expanded from 0 to 100% by the error between the expected valve opening logical value VO and the actual valve opening VB. In this case, the calibration operation is not performed while the error between the valve opening logical value VO and the actual valve opening VB is within the extended range. Can be prevented from changing suddenly. In addition, since the amount of error correction is reduced, the influence on the temperature of the control target can be suppressed.
[0056]
(Embodiment 4)
In the air conditioning control device of the third embodiment, the CPU 11 performs the calibration operation only when the valve opening target value VC becomes the upper limit value or the lower limit value. Since only the portion exceeding the expansion (−X%, Y%) of the valve opening target value VC is corrected among the errors with respect to the valve opening VB, the error for the expansion remains.
[0057]
For example, when the range of the valve opening target value VC and the valve opening logical value VO is expanded to (−20) to 120%, the valve opening target value VC obtained by the calculation of the CPU 11 becomes 98%. It is assumed that the valve opening logical value VO becomes 98%. At this time, it is assumed that the actual valve opening VB is 88%, and there is an error of 10% between the valve opening logical value VO and the actual valve opening VB. Here, if the valve opening target value VC obtained in the next calculation cycle is increased by 20% to 118%, the CPU 11 takes time required to open the valve by 20% based on the valve travel time. However, the driving signal for driving the valve in the opening direction is output from the digital output unit 10 to the valve driving unit. After the valve driving unit drives the valve in accordance with this driving signal, the valve opening target value VC and the valve opening value are opened. The degree logical value VO is 118%, and the actual valve opening VB is 100%. Thereafter, when the valve opening target value VC reaches 100%, the CPU 11 outputs a drive signal in the direction of closing the valve from the digital output unit 10 to the valve drive unit for the time required to close the valve by 18%. The actual valve opening VB becomes 82%, and the error between the valve opening logical value VO and the actual valve opening VB increases to 18%.
[0058]
Therefore, in the present embodiment, in the air-conditioning control apparatus of the third embodiment, when the valve opening target value VC is smaller than 0% and larger than the lower limit (−X%), the drive signal in the direction in which the valve is closed. When the valve opening target value VC is larger than 100% and smaller than the upper limit value (100 + Y)%, only the drive signal for opening the valve is output, and the valve opening target value VC In the range of 0 to 100%, a normal temperature adjustment operation is performed. Therefore, as shown in FIG. 9 (a), even if the valve opening target value VC changes from 118% to 100%, the CPU 11 outputs a drive signal in a direction to close the valve from the digital output unit 10 to the valve drive unit. Therefore, the actual valve opening VB remains at 100%, and the actual valve opening VB, the valve opening target value VC, and the valve opening logical value VO are all 100%. Is done. Similarly, as shown in FIG. 9B, even if the valve opening target value VC changes from a value smaller than 0% to 0%, the CPU 11 sends a drive signal in the direction to open the valve from the digital output unit 10. Since the valve drive unit does not output the actual valve opening VB, the actual valve opening VB remains 0%, and the actual valve opening VB, the valve opening target value VC, and the valve opening logical value VO are all 0%. A calibration operation is performed.
[0059]
The operation of the air conditioning control apparatus will be described with reference to the flowchart of FIG. 8 using the cold water valve 7 as an example. In addition, since the structure of an air conditioning control apparatus is the same as that of Embodiment 1, the description is abbreviate | omitted. Further, since the basic operation of the air conditioning control apparatus is the same as the operation shown in the flowchart of FIG. 5, the same process is denoted by the same reference numeral, the description thereof is omitted, and only different parts are described. I do.
[0060]
When the valve opening target value VC obtained by the calculation of the CPU 11 is within the range of (lower limit value) <VC <(upper limit value), the CPU 11 executes step S Ten , S 11 After performing the calculation of step S 12 Compare the magnitude relationship between the valve opening target value VC and the valve opening logical value VO. When the valve opening target value VC is larger than the valve opening logical value VO, the CPU 11 executes step S 36 It is then determined whether or not the valve opening target value VC is smaller than 0%. As a result, when the valve opening target value VC is 0% or more, the CPU 11 performs step S 37 Then, a drive signal for opening the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve drive unit 22a, and the chilled water valve drive unit 22a is used to drive the chilled water valve 7 in the opening direction. 15 Check the elapsed timer at step S Five Return to. On the other hand, when the valve opening target value VC is smaller than 0%, the CPU 11 performs step S 40 In step S, the output of the drive signal from the digital output unit 10 to the chilled water valve drive unit 22a is stopped. 15 Check the elapsed timer at step S Five Return to.
[0061]
Step S 12 As a result of comparing the magnitude relationship between the valve opening target value VC and the valve opening logical value VO, if the valve opening target value VC is less than or equal to the valve opening logical value VO, the CPU 11 performs step S 38 To determine whether the valve opening target value VC is larger than 100%. As a result, when the valve opening target value VC is 100% or less, the CPU 11 performs step S 39 Then, a driving signal for closing the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a, and the chilled water valve driving unit 22a is used to drive the chilled water valve 7 in the closing direction. 15 Check the elapsed timer at step S Five Return to. On the other hand, when the valve opening target value VC is larger than 100%, the CPU 11 determines that the step S 40 In step S, the output of the drive signal from the digital output unit 10 to the chilled water valve drive unit 22a is stopped. 15 Check the elapsed timer at step S Five Return to.
[0062]
Thus, when the valve opening target value VC exceeds 100%, even if the valve opening target value VC becomes smaller than the valve opening logical value VO, the CPU 11 gives a drive signal in the direction to close the cold water valve 7. The digital output unit 10 does not output the chilled water valve drive unit 22a. Similarly, when the valve opening target value VC is less than 0%, even if the valve opening target value VC is larger than the valve opening logical value, the CPU 11 digitally outputs a drive signal for opening the chilled water valve 7. Since no output is made from the output unit 10 to the chilled water valve drive unit 22a, even if an error occurs between the valve opening target value VC and the valve opening logical value VO, the valve opening target value VC is 0 ≦ VC ≦ 100. When returning to the range of (%), the error between the two can be automatically corrected. Therefore, the valve opening does not change abruptly during the correction operation, the temperature of the control target is not adversely affected, and the error between the valve opening logical value VO and the actual valve opening VB is reduced. be able to. Similarly to the third embodiment, when the valve opening target value VC becomes the lower limit (−X)%, a driving signal in a direction for closing the chilled water valve 7 is output from the digital output unit 10 to the chilled water valve driving unit 22a. When the valve opening target value VC reaches the upper limit value (100 + Y)%, the calibration operation is performed by outputting a driving signal for opening the chilled water valve 7 from the digital output unit 10 to the chilled water valve driving unit 22a. It is carried out.
[0063]
【The invention's effect】
As described above, the invention of claim 1 adjusts the valve opening degree of a valve for supplying cold water or hot water to the heat exchange means for exchanging heat between cold water or hot water and air, thereby adjusting the temperature of the air. An air conditioning control apparatus for controlling, a drive signal generating means for generating a drive signal for driving a valve driving motor for opening and closing a valve, a temperature detecting means for detecting the temperature of air, and a valve driving motor A data memory for storing the valve travel time required for driving the valve from the fully open state to the fully closed state, the control target temperature, and the parameters necessary for the control calculation, the total time when the drive signal generating means generates the drive signal, and the valve The current valve opening is calculated from the travel time, the valve opening target value of the valve is calculated from the temperature detected by the temperature detection means and the control target temperature, and the current valve opening and valve opening obtained by the calculation are calculated. Difference from target value and valve travel A central processing unit that calculates a driving time for generating a driving signal from the time and generates a driving signal from the driving signal generating means for the driving time, and the valve opening target value becomes approximately 0% or approximately 100%. In this case, the central processing unit generates a drive signal from the drive signal generating means for a time obtained by adding a predetermined time to the drive time, and the actual valve opening is set to approximately 0% or approximately 100%. In addition, the current valve opening obtained by calculation is set to approximately 0% or approximately 100%, and a calibration operation is performed to match the actual valve opening and the valve opening determined by the operation. And Accordingly, since the calibration operation is performed only when the valve opening target value VC becomes 0% or 100%, the error between the valve opening logical value and the actual valve opening is reduced, and the calibration operation is performed. There is an effect that the influence on the temperature adjustment operation due to can be reduced. In addition, it is not necessary to use a motor unit that drives the valve while adjusting the rotation angle by itself, or to provide a resistor whose resistance value changes in proportion to the rotation angle of the motor in the valve drive motor. Therefore, the cost of the entire apparatus is not increased.
[0064]
According to the invention of claim 2, when the valve opening target value changes from approximately 0% while the valve opening target value is approximately 0% and the central processing unit performs the calibration operation, the central processing unit Sets the valve opening obtained by calculation to approximately 0% and returns to the normal temperature adjustment operation, while the valve opening target value is approximately 100% and the central processing unit performs the calibration operation. In addition, when the valve opening target value changes from approximately 100%, the central processing unit sets the valve opening obtained by calculation to approximately 100% and returns to the normal temperature adjustment operation. During the calibration operation, if the valve opening change affects the temperature to be controlled and the valve opening target value changes, the calibration operation is immediately terminated. If the impact can be further reduced There is a cormorant effect.
[0065]
Invention of Claim 3 adjusts the valve opening degree of the valve which supplies cold water or warm water to the heat exchange means which performs heat exchange between cold water or warm water and air, and is the air conditioning control which controls the temperature of air A drive signal generating means for generating a drive signal for driving a valve drive motor for opening and closing the valve; a temperature detection means for detecting the temperature of the air; and the valve drive motor from the fully open state. A data memory that stores the valve travel time required for driving to the fully closed state, control target temperature, and parameters necessary for control calculation, the total time when the drive signal generating means generates the drive signal, and the valve travel time The valve opening target value of the valve is calculated from the temperature detected by the temperature detecting means and the control target temperature, and the difference between the current valve opening and the valve opening target value obtained by the calculation is calculated. And valve travel time A central processing unit that calculates a driving time for generating a signal and generates a driving signal from the driving signal generating means for the driving time, and the central processing unit sets the lower limit value of the valve opening target value to less than 0%. When the upper limit value of the valve opening target value is set to a value larger than 100% and the target value of the valve opening value becomes equal to the lower limit value, the central processing unit in the direction of closing the valve is set. When the drive signal is generated from the drive signal generating means and the valve opening target value becomes equal to the upper limit value, the central processing unit generates the drive signal in the direction to open the valve from the drive signal generating means, and the actual valve A calibration operation is performed to match the opening and the valve opening obtained by calculation. Therefore, by expanding the range of the valve opening target value to the lower limit value or the upper limit value, while the error between the valve opening logic value and the actual valve opening is within the expanded range, Since the calibration operation is not performed, the influence of the calibration operation on the temperature adjustment operation can be reduced. In addition, when the error between the valve opening logic value and the actual valve opening is expanded beyond the expanded range, the valve calibration operation is performed, so that the error can be reduced and the control accuracy can be improved. There is. In addition, it is not necessary to use a motor unit that drives the valve while adjusting the rotation angle by itself, or to provide a resistor whose resistance value changes in proportion to the rotation angle of the motor in the valve drive motor. Therefore, the cost of the entire apparatus is not increased.
[0066]
In the invention of claim 4, when the valve opening target value exceeds approximately 100%, the central processing unit generates only the drive signal in the direction of opening the valve from the drive signal generating means, and the valve opening target value is approximately 0. If the value is less than%, the central processing unit generates only the drive signal in the direction of closing the valve from the drive signal generating means, so the error between the valve opening logic value and the actual valve opening is expanded. Even if it is within the range, if the valve opening target value once enters the expanded range and then returns to the range of 0 to 100%, the error of the valve opening logic value can be corrected in the process, and the temperature There is an effect that calibration can be performed without affecting the adjustment operation.
[0067]
According to a fifth aspect of the present invention, at the start of the temperature adjustment operation, the central processing unit generates a drive signal for fully closing or opening the valve from the drive signal generating means, and the valve opening obtained by the calculation is approximately 0% or approximately 100. Since the calibration operation set to% is performed, there is an effect that the temperature adjustment operation can be started in a state in which the valve opening logical value and the actual valve opening coincide with each other.
[0068]
According to the sixth aspect of the present invention, at the end of the temperature adjustment operation, the central processing unit generates a drive signal for fully closing or opening the valve from the drive signal generating means, and the valve opening obtained by the calculation is approximately 0% or approximately 100. Since the calibration operation set to% is performed, there is no need to perform the calibration operation at the start of the next temperature adjustment operation, and the temperature adjustment operation can be immediately started.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a system using an air-conditioning control apparatus according to a first embodiment.
FIG. 2 is a flowchart illustrating the operation of the above.
FIGS. 3A and 3B are diagrams for explaining the same calibration operation.
FIG. 4 is a flowchart for explaining the operation of the air-conditioning control apparatus according to the second embodiment.
FIG. 5 is a flowchart for explaining the operation of the air-conditioning control apparatus according to the third embodiment.
6A and 6B are diagrams for explaining the calibration operation of the above. FIG.
FIGS. 7A and 7B are diagrams for explaining another calibration operation as described above.
FIG. 8 is a flowchart for explaining the operation of the air-conditioning control apparatus according to the fourth embodiment.
FIGS. 9A and 9B are diagrams for explaining the above-described calibration operation. FIG.
FIG. 10 is a schematic configuration diagram of a system using a conventional air conditioning control apparatus.
FIGS. 11A and 11B are diagrams for explaining the calibration operation of the above.
[Explanation of symbols]
7 Cold water valve
8 Hot water valve
10 Digital output section
11 CPU
22a Cold water valve drive
22a Hot water valve drive unit

Claims (6)

冷水又は温水と空気との間で熱交換を行う熱交換手段に、冷水又は温水を供給する弁の弁開度を調節して、空気の温度を制御する空気調和制御装置であって、弁を開閉する弁駆動用モータを駆動するための駆動信号を発生する駆動信号発生手段と、空気の温度を検出する温度検出手段と、弁駆動用モータが弁を全開状態から全閉状態まで駆動するのに要する弁トラベルタイムや制御目標温度や制御演算に必要なパラメータを記憶するデータメモリと、駆動信号発生手段が駆動信号を発生した時間の合計と弁トラベルタイムとから現在の弁開度を演算し、温度検出手段の検出した温度及び制御目標温度から弁の弁開度目標値を演算するとともに、演算で求めた現在の弁開度と弁開度目標値との差及び弁トラベルタイムから駆動信号を発生する駆動時間を演算し、前記駆動時間だけ駆動信号発生手段から駆動信号を発生させる中央演算処理部とを備え、弁開度目標値が略0%又は略100%になった場合、中央演算処理部は、前記駆動時間に予め設定された一定時間を加算した時間だけ駆動信号発生手段から駆動信号を発生させて、実際の弁開度を略0%又は略100%とするとともに、演算で求めた現在の弁開度を略0%又は略100%に設定して、実際の弁開度と演算で求めた弁開度とを一致させるキャリブレーション動作を行うことを特徴とする空気調和制御装置。An air-conditioning control device that controls the temperature of air by adjusting the valve opening degree of a valve that supplies cold water or hot water to heat exchange means that exchanges heat between cold water or hot water and air. Drive signal generating means for generating a drive signal for driving the valve drive motor that opens and closes, temperature detection means for detecting the temperature of the air, and the valve drive motor drives the valve from the fully open state to the fully closed state. The current valve opening is calculated from a data memory that stores the valve travel time, control target temperature, and parameters required for control calculation, and the total time that the drive signal generator generates the drive signal and the valve travel time. The valve opening target value of the valve is calculated from the temperature detected by the temperature detecting means and the control target temperature, and the drive signal is calculated from the difference between the current valve opening and the valve opening target value obtained by the calculation and the valve travel time. To drive A central processing unit that calculates time and generates a driving signal from the driving signal generating means for the driving time. When the valve opening target value becomes approximately 0% or approximately 100%, the central processing unit The drive signal is generated from the drive signal generating means for a time obtained by adding a predetermined time to the drive time so that the actual valve opening is approximately 0% or approximately 100%, and the current value obtained by calculation The air conditioning control apparatus is characterized in that a calibration operation is performed so that the actual valve opening and the calculated valve opening coincide with each other by setting the valve opening of the valve to approximately 0% or approximately 100%. 弁開度目標値が略0%となって中央演算処理部がキャリブレーション動作を行う間に、弁開度目標値が略0%から変化した場合、中央演算処理部は演算で求めた弁開度を略0%に設定して、通常の温度調整動作に復帰するとともに、弁開度目標値が略100%となって中央演算処理部がキャリブレーション動作を行う間に、弁開度目標値が略100%から変化した場合、中央演算処理部は演算で求めた弁開度を略100%に設定して、通常の温度調整動作に復帰することを特徴とする請求項1の空気調和制御装置。When the valve opening target value changes from approximately 0% while the target valve opening value is approximately 0% and the central processing unit performs the calibration operation, the central processing unit calculates the valve opening obtained by calculation. Set the degree to approximately 0% and return to the normal temperature adjustment operation. While the valve opening target value is approximately 100% and the central processing unit performs the calibration operation, the valve opening target value The air conditioning control according to claim 1, wherein when the air pressure changes from approximately 100%, the central processing unit sets the valve opening obtained by the operation to approximately 100% and returns to the normal temperature adjustment operation. apparatus. 冷水又は温水と空気との間で熱交換を行う熱交換手段に、冷水又は温水を供給する弁の弁開度を調節して、空気の温度を制御する空気調和制御装置であって、弁を開閉する弁駆動用モータを駆動するための駆動信号を発生する駆動信号発生手段と、空気の温度を検出する温度検出手段と、弁駆動用モータが弁を全開状態から全閉状態まで駆動するのに要する弁トラベルタイムや制御目標温度や制御演算に必要なパラメータを記憶するデータメモリと、駆動信号発生手段が駆動信号を発生した時間の合計と弁トラベルタイムとから現在の弁開度を演算し、温度検出手段の検出した温度及び制御目標温度から弁の弁開度目標値を演算するとともに、演算で求めた現在の弁開度と弁開度目標値との差及び弁トラベルタイムから駆動信号を発生する駆動時間を演算し、前記駆動時間だけ駆動信号発生手段から駆動信号を発生させる中央演算処理部とを備え、中央演算処理部が弁開度目標値の下限値を0%よりも小さい値に設定するとともに、弁開度目標値の上限値を100%よりも大きい値に設定し、弁開度目標値が下限値に等しくなった場合、中央演算処理部は弁を閉じる方向の駆動信号を駆動信号発生手段から発生させ、弁開度目標値が上限値に等しくなった場合、中央演算処理部は弁を開く方向の駆動信号を駆動信号発生手段から発生させて、実際の弁開度と演算で求めた弁開度とを一致させるキャリブレーション動作を行うことを特徴とする空気調和制御装置。An air-conditioning control device that controls the temperature of air by adjusting the valve opening degree of a valve that supplies cold water or hot water to heat exchange means that exchanges heat between cold water or hot water and air. Drive signal generating means for generating a drive signal for driving the valve drive motor that opens and closes, temperature detection means for detecting the temperature of the air, and the valve drive motor drives the valve from the fully open state to the fully closed state. The current valve opening is calculated from a data memory that stores the valve travel time, control target temperature, and parameters required for control calculation, and the total time that the drive signal generator generates the drive signal and the valve travel time. The valve opening target value of the valve is calculated from the temperature detected by the temperature detecting means and the control target temperature, and the drive signal is calculated from the difference between the current valve opening and the valve opening target value obtained by the calculation and the valve travel time. To drive A central processing unit that calculates time and generates a driving signal from the driving signal generation means for the driving time, and the central processing unit sets the lower limit value of the valve opening target value to a value smaller than 0%. At the same time, when the upper limit value of the valve opening target value is set to a value larger than 100% and the valve opening target value becomes equal to the lower limit value, the central processing unit outputs a driving signal in the direction of closing the valve as a driving signal. When the valve opening target value is equal to the upper limit value, the central processing unit generates a drive signal in the direction to open the valve from the drive signal generating means, and calculates the actual valve opening and calculation. An air conditioning control device that performs a calibration operation to match the obtained valve opening. 弁開度目標値が略100%を越える場合、中央演算処理部は弁を開く方向の駆動信号のみを駆動信号発生手段から発生させ、弁開度目標値が略0%を下回っている場合、中央演算処理部は弁を閉じる方向の駆動信号のみを駆動信号発生手段から発生させることを特徴とする請求項3記載の空気調和制御装置。When the valve opening target value exceeds approximately 100%, the central processing unit generates only the drive signal in the direction of opening the valve from the drive signal generating means, and when the valve opening target value is less than approximately 0%, 4. The air conditioning control apparatus according to claim 3, wherein the central processing unit generates only a driving signal in a direction for closing the valve from the driving signal generating means. 温度調整動作開始時に、中央演算処理部は弁を全閉又は全開させる駆動信号を駆動信号発生手段から発生させ、演算で求めた弁開度を略0%又は略100%に設定するキャリブレーション動作を行うことを特徴とする請求項1乃至4記載の空気調和制御装置。At the start of the temperature adjustment operation, the central processing unit generates a drive signal from the drive signal generating means for fully closing or opening the valve, and a calibration operation for setting the valve opening obtained by the calculation to approximately 0% or approximately 100%. The air conditioning control device according to any one of claims 1 to 4, wherein 温度調整動作終了時に、中央演算処理部は弁を全閉又は全開させる駆動信号を駆動信号発生手段から発生させ、演算で求めた弁開度を略0%又は略100%に設定するキャリブレーション動作を行うことを特徴とする請求項1乃至5記載の空気調和制御装置。At the end of the temperature adjustment operation, the central processing unit generates a drive signal from the drive signal generating means for fully closing or opening the valve, and a calibration operation for setting the valve opening obtained by the calculation to approximately 0% or approximately 100%. The air conditioning control device according to claim 1, wherein
JP22994997A 1997-08-26 1997-08-26 Air conditioning control device Expired - Fee Related JP3794118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22994997A JP3794118B2 (en) 1997-08-26 1997-08-26 Air conditioning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22994997A JP3794118B2 (en) 1997-08-26 1997-08-26 Air conditioning control device

Publications (2)

Publication Number Publication Date
JPH1163630A JPH1163630A (en) 1999-03-05
JP3794118B2 true JP3794118B2 (en) 2006-07-05

Family

ID=16900249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22994997A Expired - Fee Related JP3794118B2 (en) 1997-08-26 1997-08-26 Air conditioning control device

Country Status (1)

Country Link
JP (1) JP3794118B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817160B2 (en) * 2001-03-07 2011-11-16 日立バルブ株式会社 Air conditioning system and electric operating device
JP2005147458A (en) * 2003-11-13 2005-06-09 Sanki Eng Co Ltd Outside air processing device for air conditioning
CN115045852A (en) * 2021-03-09 2022-09-13 山东朗进科技股份有限公司 Control method and control system for air conditioner air valve of railway vehicle

Also Published As

Publication number Publication date
JPH1163630A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JPH07332740A (en) Operation control method of air conditioner
US10962249B2 (en) Air conditioning apparatus and air conditioning control method
CN114484606B (en) Fresh air conditioner, control method and device thereof and readable storage medium
US5564625A (en) Method for controlling motor vehicle interior temperature
JP3794118B2 (en) Air conditioning control device
JPH0359339A (en) Noise control device for outdoor device of air conditioner
JP2003254589A (en) Air conditioner
JP2661444B2 (en) Air conditioner
JP3429397B2 (en) Air conditioner
JPH0763392A (en) Controller for air conditioner
JPH02219941A (en) Method for controlling air conditioner
JPH07286761A (en) Air conditioner
JPH0760006B2 (en) Air conditioner control device
JP3155045B2 (en) Vehicle air conditioner
JP3075083B2 (en) Vehicle air conditioning controller
JP3834042B2 (en) Air conditioning control method and air conditioning system
JPH0717238A (en) Air-conditioner for vehicle
JPH0136016B2 (en)
WO2024043206A1 (en) Control device, control method, and air conditioner
JPS61215111A (en) Air conditioner for vehicle
JPH02203145A (en) Controlling method of air-conditioner
JP3468058B2 (en) Air conditioning method and air conditioning system
JP3906624B2 (en) Automotive air conditioner
WO2020240659A1 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
JPH07167477A (en) Outside air-cooling control device for air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

LAPS Cancellation because of no payment of annual fees