WO2024043206A1 - Control device, control method, and air conditioner - Google Patents

Control device, control method, and air conditioner Download PDF

Info

Publication number
WO2024043206A1
WO2024043206A1 PCT/JP2023/029993 JP2023029993W WO2024043206A1 WO 2024043206 A1 WO2024043206 A1 WO 2024043206A1 JP 2023029993 W JP2023029993 W JP 2023029993W WO 2024043206 A1 WO2024043206 A1 WO 2024043206A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
temperature
control device
deviation
value
Prior art date
Application number
PCT/JP2023/029993
Other languages
French (fr)
Japanese (ja)
Inventor
好教 布目
雅司 ▲高▼野
順道 宇野
誠心 沖野
臣悟 大野
宏大 増子
美桜 ▲桑▼山
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2024043206A1 publication Critical patent/WO2024043206A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content

Definitions

  • the present disclosure relates to a control device, a control method, and an air conditioner.
  • This application claims priority based on Japanese Patent Application No. 2022-134898 filed in Japan on August 26, 2022, the contents of which are incorporated herein.
  • Patent Document 1 describes the following air conditioner.
  • the air conditioner described in Patent Document 1 detects the size, airtightness, and heat insulation of a room, and adjusts the wind direction, air volume, and temperature correction amount at the start of operation or at a predetermined level according to the detection results. Adjust by hour.
  • the size of the room is determined based on the temperature difference between the detected room size, the detected temperature after the start of operation, and the detected temperature after a predetermined time after the start of operation. The airtightness and thermal insulation properties are detected.
  • the temperature correction amount is adjusted by adjusting the detection value of the room temperature sensor and the correction amount of the set temperature.
  • the temperature of the room when the thermostat is turned off, the temperature of the room can be prevented from falling too low during heating and making the room feel chilly, or when cooling the room, from falling too low and feeling hot. It is said to be able to suppress unevenness in indoor temperature within a room.
  • the present disclosure has been made to solve the above problems, and aims to provide a control device, a control method, and an air conditioner that can maintain comfort and reduce power consumption at the same time. .
  • a control device controls an air conditioner having a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger to a set temperature.
  • the control device controls the maximum rotational speed of the compressor based on a predetermined setting value so that a first deviation, which is a deviation of the indoor temperature from
  • the device includes a calculation unit that calculates a first time until the value becomes equal to or less than a predetermined value, and a setting unit that sets the set value based on the first time.
  • a control method controls an air conditioner having a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger, to a temperature that is a deviation of indoor temperature from a set temperature. 1 deviation is controlled so that the maximum rotation speed of the compressor is controlled based on a predetermined set value, and the maximum rotation speed of the compressor is controlled so that the first deviation becomes equal to or less than the first predetermined value.
  • the method includes a step of calculating one hour, and a step of setting the set value based on the first time.
  • An air conditioner includes a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger, and a first deviation that is a deviation of the indoor temperature from the set temperature.
  • the maximum rotation speed of the compressor is controlled based on a predetermined setting value until the first deviation becomes equal to or less than a first predetermined value.
  • a control device that has a calculation unit that calculates a first time, and a setting unit that sets the set value based on the first time.
  • control device According to the control device, control method, and air conditioner of the present disclosure, it is possible to maintain comfort and reduce power consumption at the same time.
  • FIG. 1 is a diagram showing an overview of an air conditioner according to a first embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a control device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure.
  • 3 is a flowchart illustrating an example of the operation of the control device according to the first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram for explaining a control device according to a second embodiment of the present disclosure. It is a flow chart which shows an example of operation of a control device concerning a 3rd embodiment of this indication.
  • FIG. 7 is a schematic diagram for explaining a control device according to a third embodiment of the present disclosure. It is a flow chart which shows an example of operation of a control device concerning a 4th embodiment of this indication.
  • FIG. 7 is a schematic diagram for explaining a control device according to a fourth embodiment of the present disclosure.
  • FIG. 1 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • FIG. 1 is a diagram schematically showing an air conditioner according to a first embodiment of the present disclosure.
  • an air conditioner 100 according to the present embodiment includes a compressor 2, an indoor heat exchanger 3, an outdoor heat exchanger 4, an expansion valve 5, a four-way valve 6, and refrigerant pipes connecting these. 7 and a control device 20 that controls the refrigerant circuit 1.
  • the indoor unit 8 is provided with an indoor heat exchanger 3
  • the outdoor unit 9 is provided with a compressor 2, an outdoor heat exchanger 4, an expansion valve 5, and a four-way valve 6.
  • the indoor unit 8 is provided with an indoor temperature sensor 11 that detects the indoor temperature of the room in which the indoor unit 8 is installed, and a radiation temperature sensor 13 that detects the radiant temperature from the walls and floor of the room.
  • the outdoor unit 9 is provided with an outdoor temperature sensor 12 that detects the outdoor temperature.
  • the set temperature and operation mode of the air conditioner 100 are set by a transmitting/receiving unit 30 such as a remote control or a smartphone operated by a user.
  • the indoor temperature sensor 11 detects, for example, the temperature of air sucked into the indoor heat exchanger 3.
  • the radiation temperature sensor 13 is, for example, a thermopile sensor, and includes a thermopile (infrared sensor), an optical system that focuses infrared rays emitted from an object onto the thermopile, and a signal processing circuit that processes the output signal of the thermopile. Be prepared.
  • the set temperature is a target temperature for room temperature control.
  • the operation mode is an operation method such as heating operation or cooling operation.
  • the compressor 2 compresses the refrigerant and discharges and supplies the compressed high temperature and high pressure refrigerant to the refrigerant pipe 7.
  • the high-pressure refrigerant compressed by the compressor 2 flows into the port 6a of the four-way valve 6 via the refrigerant pipe 7.
  • the control device 20 controls the four-way valve 6 to connect ports 6a and 6b of the four-way valve 6, and connect ports 6c and 6d of the four-way valve 6.
  • the refrigerant flows in the direction of arrow A1. That is, the high temperature and high pressure refrigerant is supplied to the indoor heat exchanger 3 via the four-way valve 6.
  • the refrigerant radiates heat in the indoor heat exchanger 3 and is condensed and liquefied. Further, the refrigerant condensed in the indoor heat exchanger 3 is reduced in pressure by the expansion valve 5, and becomes a low-pressure refrigerant.
  • the low-pressure refrigerant is supplied to the outdoor heat exchanger 4, and is vaporized by absorbing heat from the outside air, for example. That is, in heating operation, the indoor heat exchanger 3 functions as a condenser, and the outdoor heat exchanger 4 functions as an evaporator. Further, the vaporized refrigerant is sucked into the compressor 2 via the four-way valve 6. The compressor compresses the low-pressure refrigerant again and discharges the high-temperature, high-pressure refrigerant.
  • the control device 20 controls the four-way valve 6 to connect the port 6a and port 6d of the four-way valve 6, and to connect the port 6b and port 6c.
  • the refrigerant flows in the direction of arrow A2. That is, the high-temperature, high-pressure refrigerant is supplied to the outdoor heat exchanger 4 via the four-way valve 6, radiates heat to the outside air, and condenses. Further, the refrigerant condensed in the outdoor heat exchanger 4 is depressurized by the expansion valve 5 and is supplied to the indoor heat exchanger 3. In the indoor heat exchanger 3, the refrigerant is vaporized by absorbing heat from the indoor air, for example.
  • the outdoor heat exchanger 4 functions as a condenser
  • the indoor heat exchanger 3 functions as an evaporator. Further, the vaporized refrigerant is sucked into the compressor 2 via the four-way valve 6. The compressor compresses the low-pressure refrigerant again and discharges the high-temperature, high-pressure refrigerant.
  • the air conditioner 100 performs heating or cooling by repeating the above process and circulating the refrigerant.
  • the control device 20 switches between heating operation and cooling operation by controlling the four-way valve 6. Further, the control device 20 controls the rotation speed of the compressor 2 so that the room temperature reaches the set temperature based on the difference between the indoor temperature measured by the indoor temperature sensor 11 of the indoor heat exchanger 3 and the set temperature set by the user. Adjust and perform heating or cooling operation.
  • the control device 20 controls the air conditioner 100 having the refrigerant circuit 1 that circulates the refrigerant compressed by the compressor 2 between the indoor heat exchanger 3 and the outdoor heat exchanger 4.
  • the first deviation which is the deviation of the room temperature from the set temperature, is controlled to be small.
  • the air conditioner 100 performs a defrost operation to remove frost from the outdoor unit 9.
  • the control device 20 switches the four-way valve 6 to make the refrigerant flow direction the same as in the cooling operation (arrow A2 in FIG. 1).
  • a high-temperature, high-pressure refrigerant is supplied to the outdoor heat exchanger 4 to defrost the outdoor unit 9.
  • FIG. 2 is a diagram illustrating a configuration example of the control device 20 according to the first embodiment of the present disclosure.
  • FIG. 4, FIG. 6, and FIG. 7 are schematic diagrams for explaining the control device 20 according to the first embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating an example of the operation of the control device 20 according to the first embodiment of the present disclosure.
  • the control device 20 of this embodiment can be configured using a computer such as a microcomputer, and is a combination of hardware such as the computer, peripheral circuits, and peripheral devices, and software such as programs executed by the computer.
  • An air conditioning control section 21 is provided as a functional configuration consisting of. Further, the air conditioning control section 21 includes a calculation section 22 and a setting section 23.
  • the air conditioning control unit 21 receives output signals from various sensors such as an indoor temperature sensor 11, an outdoor temperature sensor 12, a radiation temperature sensor 13, and a humidity sensor (not shown), and also sends predetermined signals to and from the transmitting/receiving unit 30. Based on the set operation mode, set temperature, etc., the compressor 2, the expansion valve 5, the four-way valve 6, the fan in the indoor unit 8 (not shown), the wind direction plate, the fan in the outdoor unit 9, etc. (hereinafter referred to as , compressor 2, etc.).
  • the air conditioning control unit 21 controls the compressor 2 and the like so that the first deviation, which is the deviation of the indoor temperature from the set temperature, becomes small as described above.
  • the air conditioning control section 21 controls the maximum rotation speed of the compressor 2 based on the "set value" set by the setting section 23 as described later.
  • the maximum rotation speed of the compressor 2 is the maximum value (upper limit) of the rotation speed when controlling the rotation speed of the compressor 2.
  • the "setting value" used as a reference when controlling the maximum rotation speed of the compressor 2 may be, for example, the value of the maximum rotation speed itself, or the rotation speed may be controlled to be below the maximum rotation speed.
  • a predetermined reference value for example, a value of the rotation speed lower than the maximum rotation speed by a predetermined rotation speed, a value representing a rotation speed range having a predetermined width above and below the maximum rotation speed, etc.
  • the "setting value” is also referred to as the "compressor maximum rotation speed setting value.”
  • the calculation unit 22 calculates the first time until the first deviation becomes equal to or less than the first predetermined value.
  • the "first deviation”, “first predetermined value”, and “first time” will be explained with reference to FIG. 3.
  • a solid line shows an example of a change in indoor temperature over time when the air conditioner 100 is operated in a cooling operation.
  • the "first deviation” is the deviation of the indoor temperature from the set temperature (the temperature difference between the set temperature and the indoor temperature) as described above.
  • the “first deviation” is calculated, for example, using the formula “(indoor temperature) ⁇ (set temperature)”.
  • the "first predetermined value” is a determination value corresponding to the first deviation when it can be determined that the indoor temperature has almost reached the set temperature.
  • the first predetermined value may be positive, negative or zero.
  • the first deviation is equal to or less than the first predetermined value at time t1.
  • the "first time” is the time from when the air conditioner 100 starts room temperature control (or changes the control content) until the indoor temperature reaches (or almost reaches) the set temperature, In the example shown in , it is the time from time t0 to time t1.
  • the time t0 is, for example, the start time of operation of the air conditioner 100, the change time of the set temperature, the change time of the operation mode, etc.
  • the "first time” is influenced by the installation environment of the air conditioner 100, and changes depending on, for example, differences in the insulation and airtightness of the room. If the "first time” is relatively small, it can be said that the heat insulation properties are good, and if the "first time” is relatively large, it can be said that the heat insulation properties are poor, for example.
  • the setting unit 23 sets a “setting value” (compressor maximum rotation speed setting value) based on the “first time” calculated by the calculation unit 22.
  • FIG. 4 shows a table T1 that defines setting examples of setting values in this embodiment. According to the table T1 shown in FIG. 4, for example, when the first time is within the first threshold, the setting unit 23 decreases the setting value from the current setting value. If the first time is greater than the first threshold and less than the second threshold, the setting unit 23 does not change the setting value from the current setting value. However, the second threshold is a larger value than the first threshold. If the first time is equal to or greater than the second threshold, the setting unit 23 increases the setting value from the current setting value.
  • the first threshold value is, for example, a determination value by which it can be determined that the heat insulation properties are good.
  • the second threshold value is, for example, a determination value at which it can be determined that the insulation property is poor.
  • the setting of the "setting value" by the setting unit 23 includes cases where the "setting value” is changed and cases where the "setting value” is not changed. Note that the setting unit 23 increases or decreases the set value within the limits of the upper limit value of the rotation speed, such as the maximum rated rotation speed, and the limit of the lower limit value of the predetermined rotation speed.
  • the setting unit 23 determines that the heat insulation is high and lowers the set value (eg, from 100 rps to 95 rps). Further, during the next operation, when the set temperature is reached within A minutes from the start of the cooling operation, the setting unit 23 lowers the set value again (eg, from 95 rps to 90 rps). Further, if the set temperature is not reached for more than B minutes (eg, 20 minutes) from the start of operation, the setting unit 23 increases the set value (eg, from 90 to 95 rps). Further, the setting unit 23 does not change the set value if the time required to reach the set temperature is A to B.
  • a minutes eg, 10 minutes
  • the setting unit 23 determines that the heat insulation is high and lowers the set value (eg, from 100 rps to 95 rps). Further, during the next operation, when the set temperature is reached within A minutes from the start of the cooling operation, the setting unit 23 lowers the set value again (eg, from 95 rps to
  • the setting unit 23 automatically adjusts the set value (maximum rotation speed) of the compressor 2 to suit the room in which the air conditioner 100 is used.
  • the first threshold value shown in FIG. 4 corresponds to the A minute
  • the second threshold value corresponds to the B minute.
  • the rotational speed is changed by a predetermined amount (for example, 5 rps).
  • the increase/decrease is not limited to a constant value, and may be changed at a predetermined rate with respect to a variable or a current set value, for example.
  • FIG. 5 shows an example of a setting value setting operation by the control device 20.
  • the process shown in FIG. 5 is executed, for example, when the air conditioner 100 starts operating.
  • the calculation unit 22 calculates a first time during which a first deviation, which is a deviation of the indoor temperature from the set temperature, is equal to or less than a first predetermined value (step S11).
  • the setting unit 23 sets a set value for the maximum rotation speed of the compressor 2 based on the first time (step S12).
  • FIG. 6 shows an example of changes over time in the rotation speed of the compressor 2 and the indoor temperature during cooling operation of the air conditioner 100.
  • operation is started at time t0, and the rotation speed of the compressor 2 increases at a predetermined rate of change. Then, the rotation speed is controlled near the set value from time t02 to time t03 within a range that does not exceed the "set value" (compressor maximum rotation speed set value (before change)) at the start of operation. After time t03, the rotation speed gradually decreases, and at time t1, the first deviation becomes equal to or less than the first predetermined value, and the set value changes from the compressor maximum rotation speed setting value (before change) to the maximum compressor rotation speed.
  • set value compressor maximum rotation speed set value (before change)
  • FIG. 6 shows an example of how the rotation speed of the compressor 2 changes over time before and after the change. In the operation example after the change, compared to before the change, the operation time near the set value is extended, but the maximum rotation speed is suppressed.
  • FIG. 8 is a schematic diagram for explaining a control device according to a second embodiment of the present disclosure.
  • FIG. 8 shows an example of changes over time in the rotation speed of the compressor 2 and the indoor temperature during cooling operation of the air conditioner 100 in the second embodiment.
  • the configurations and operations of the air conditioner 100 and the control device 20 described with reference to FIGS. 1 to 5 are the same in the first embodiment and the second embodiment except for the following points. That is, in the first embodiment, as shown in FIG. 6, the set value is changed when the first time period during which the first deviation becomes equal to or less than the first predetermined value has elapsed.
  • the second embodiment as shown in FIG. 8, the first time is predicted and the set value is changed before the first time elapses.
  • the calculation unit 22 of the second embodiment calculates the first time by prediction before the first time elapses.
  • the calculation unit 22 of the second embodiment creates a regression model based on each actual value of the set temperature, indoor temperature, outdoor temperature, rotation speed of the compressor 2, first time, etc., and uses the created regression model to calculate the regression model. Predict the first hour.
  • the calculation unit 22 of the second embodiment creates a learned machine learning model that is machine learned based on at least the set temperature, the indoor temperature, the rotation speed of the compressor 2, and each actual value for the first time.
  • the first time is predicted using the learned machine learning model.
  • the indoor temperature may be only the value at the start of operation, or may include a plurality of time-series values before reaching the set temperature.
  • the rotation speed may be only the maximum rotation speed (set value), or may include a plurality of time-series values before reaching the set temperature.
  • the calculation unit 22 of the second embodiment calculates the lapse of the first time until a regression model can be created by acquiring a plurality of actual values. It is possible to change the setting value when the
  • the first time can be predicted before the rotation speed approaches the maximum rotation speed (set value) (before time t02) (time t02) (time t02
  • the set value can be changed (time t01) at a previous time t01), and the change in the set value can be reflected (made effective) in the current operation.
  • FIG. 9 is a flowchart illustrating an example of the operation of the control device according to the third embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram for explaining a control device according to a third embodiment of the present disclosure. Note that the configuration and operation of the air conditioner 100 and the control device 20 described with reference to FIGS. 1 to 3 are the same in the first embodiment and the third embodiment except for the following points. That is, the calculation unit 22 of the first embodiment calculates the first time until the first deviation becomes equal to or less than the first predetermined value. Further, the setting unit 23 of the first embodiment sets the setting value based on the first time.
  • the calculation unit 22 of the third embodiment further calculates the second deviation until the second deviation, which is the deviation of the radiant temperature measured indoors by the radiant temperature sensor 13 from the set temperature, becomes equal to or less than the second predetermined value. Calculate the time. Further, the setting unit 23 of the third embodiment sets the setting value based on the first time and the second time. Note that the second deviation, the second predetermined value, and the second time correspond to the case where the first deviation, the first predetermined value, and the indoor temperature at the first time are read as the radiant temperature.
  • the calculation unit 22 of the third embodiment calculates the temperature at which the first deviation, which is the deviation of the indoor temperature from the set temperature, is equal to or less than the first predetermined value.
  • One hour is calculated (step S31)
  • a second time during which the second deviation, which is the deviation of the radiant temperature from the set temperature, is equal to or less than the second predetermined value is calculated (step S32).
  • the setting unit 23 of the third embodiment sets a set value of the maximum rotation speed of the compressor 2 based on the first time and the second time (step S33).
  • FIG. 10 shows a table T3 that defines setting examples of setting values in this embodiment.
  • the setting unit 23 decreases the set value from the current set value when the second time is within the third threshold. , the set value is not changed from the current set value when the second time is greater than the third threshold.
  • the third threshold is a determination value for determining, for example, whether the insulation of the room is good or bad based on the temperature change of the wall or floor detected by the radiation temperature sensor.
  • the setting unit 23 does not change the setting value from the current setting value when the second time is within the third threshold, and When the time is greater than the third threshold, the set value is increased from the current set value. Further, when the first time is equal to or greater than the second threshold, the setting unit 23 increases the set value from the current set value.
  • the maximum rotation speed in addition to the indoor temperature, the maximum rotation speed can be adjusted to suit the room, taking into account changes in the temperature of the floor and walls.
  • FIG. 11 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram for explaining a control device according to a fourth embodiment of the present disclosure. Note that the configurations and operations of the air conditioner 100 and the control device 20 described with reference to FIGS. 1 to 3 are the same in the first embodiment and the fourth embodiment except for the following points. That is, the calculation unit 22 of the first embodiment calculates the first time until the first deviation becomes equal to or less than the first predetermined value. Further, the setting unit 23 of the first embodiment sets the setting value based on the first time.
  • the calculation unit 22 of the fourth embodiment further calculates the temperature difference between the set temperature at the start of operation and the indoor temperature (however, the calculation of the temperature difference may be performed by the setting unit 23, for example).
  • the setting unit 23 of the third embodiment sets the set value based on the temperature difference between the set temperature at the start of operation and the indoor temperature, and the first time.
  • the calculation unit 22 of the fourth embodiment calculates the temperature difference between the set temperature at the start of operation and the indoor temperature (step S41), and A first time during which a first deviation, which is a deviation of the indoor temperature from the temperature, is equal to or less than a first predetermined value is calculated (step S42).
  • the setting unit 23 of the fourth embodiment sets a set value for the maximum rotation speed of the compressor 2 based on the first time and the calculated temperature difference (step S43).
  • FIG. 12 shows a table T4 that defines setting examples of setting values in this embodiment.
  • the setting unit 23 when the first time is within the first threshold, the setting unit 23 does not change the set value when the temperature difference is within the fourth threshold, and when the temperature difference is within the fourth threshold.
  • the set value is decreased by a change ⁇ 1
  • the set value is decreased by a change ⁇ 2.
  • the amount of change ⁇ 1 is smaller than the amount of change ⁇ 2.
  • the fourth threshold is smaller than the fifth threshold.
  • the setting unit 23 does not change the setting value.
  • the setting unit 23 does not change the set value when the temperature difference is within the fourth threshold, and sets the set value when the temperature difference is greater than the fourth threshold and less than the fifth threshold.
  • the value is increased by a change amount ⁇ 2
  • the set value is increased by a change amount ⁇ 1.
  • the set value is not changed without determining the insulation properties of the room, etc. You can do it like this.
  • the amount of reduction when reducing the maximum rotation speed is increased compared to when the temperature difference is not large (less than the fifth threshold). At the same time, it is possible to reduce the amount of increase when increasing the maximum rotation speed.
  • the maximum rotation speed can be adjusted to suit the room, taking into consideration the temperature difference at the start of operation.
  • the first deviation is based on the first time until the first deviation becomes equal to or less than the first predetermined value.
  • the maximum rotation speed of the compressor is controlled based on the set value set by The first time is a factor that is influenced by the insulation properties of the room, etc., and the maximum rotation speed of the compressor is a factor that affects power consumption. Therefore, adjusting the maximum rotation speed according to the first time means adjusting the degree of reduction in power consumption according to the insulation properties of the room, etc. Therefore, according to the control device, control method, and air conditioner of the embodiment, by adjusting the maximum rotation speed according to the first time, it is possible to maintain both comfort and reduce power consumption.
  • the maximum rotation speed is increased or decreased depending on the comparison result between the first time and the predetermined thresholds (the first threshold and the second threshold).
  • the amount of increase or decrease may be changed depending on the magnitude of the difference from a predetermined threshold value, that is, depending on the length of time until the set temperature is reached.
  • actual values of outdoor temperature, humidity, etc. can be further used.
  • temperature changes in both may be considered, or one of them (for example, the one that changes slowly) may be selectively considered.
  • FIG. 13 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • Computer 90 includes a processor 91, main memory 92, storage 93, and interface 94.
  • the control device 20 described above is implemented in the computer 90.
  • the operations of each processing section described above are stored in the storage 93 in the form of a program.
  • the processor 91 reads the program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 reserves storage areas corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
  • the program may be one for realizing a part of the functions to be performed by the computer 90.
  • the program may function in combination with other programs already stored in storage or in combination with other programs installed in other devices.
  • the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array), and the like.
  • PLDs Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Storage 93 examples include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), and DVD-ROM (Digital Versatile Disc Read Only Memory). , semiconductor memory, etc.
  • Storage 93 may be an internal medium connected directly to the bus of computer 90, or may be an external medium connected to computer 90 via an interface 94 or a communication line. Furthermore, when this program is distributed to the computer 90 via a communication line, the computer 90 that received the distribution may develop the program in the main memory 92 and execute the above processing.
  • storage 93 is a non-transitory, tangible storage medium.
  • control device 20 described in each embodiment is understood as follows, for example.
  • the control device 20 includes an air conditioner 100 having a refrigerant circuit 1 that circulates refrigerant compressed by a compressor 2 between an indoor heat exchanger 3 and an outdoor heat exchanger 4. , a control device 20 that controls the first deviation, which is the deviation of the indoor temperature from the set temperature, to be small, and controls the maximum rotation speed of the compressor 2 based on a predetermined set value, and
  • the calculation unit 22 includes a calculation unit 22 that calculates a first time until one deviation becomes equal to or less than a first predetermined value, and a setting unit 23 that sets the set value based on the first time. According to this aspect and the following aspects, it is possible to maintain both comfort and reduce power consumption.
  • a control device 20 is the control device 20 of (1), in which the setting unit 23 decreases the set value when the first time is equal to or less than a first threshold. , the set value is not changed when it is less than a second threshold that is larger than the first threshold and larger than the first threshold, and the set value is increased when it is greater than or equal to the second threshold.
  • the control device 20 is the control device 20 of (1) or (2), in which the calculation unit 22 calculates the first time by prediction before the first time elapses. Calculate the time.
  • the control device 20 according to the fourth aspect is the control device 20 of (1) to (3), in which the calculation unit 22 includes at least the set temperature, the indoor temperature, the rotation speed, and the The first time is predicted using a learned machine learning model that is machine learned based on each actual value of the first time.
  • the control device 20 is the control device 20 of (1) to (4), in which the calculation unit 22 further calculates the radiation temperature measured by the radiation temperature sensor in the room.
  • the setting unit 23 calculates a second time until a second deviation, which is a deviation from the set temperature, becomes equal to or less than a second predetermined value, and the setting unit 23 sets the set value based on the first time and the second time. Set.
  • the maximum rotation speed can be set in consideration of temperature changes on the walls and floor of the room.
  • the control device 20 according to the sixth aspect is the control device 20 according to (1) to (5), in which the setting section is configured to adjust the temperature difference between the set temperature at the start of operation and the indoor temperature. , the set value is set based on the first time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This control device controls an air conditioner so that a first deviation, which is a deviation of an indoor temperature with respect to a setting temperature, decreases, the air conditioner including a refrigerant circuit through which a refrigerant that has been compressed by a compressor is circulated between an indoor heat exchanger and an outdoor heat exchanger. The control device controls the maximum rotation speed of the compressor on the basis of a prescribed setting value. The control device comprises: a calculation unit for calculating a first time which is the time until the first deviation reaches no more than a first prescribed setting value; and a setting unit that sets a setting value on the basis of the first time period.

Description

制御装置、制御方法および空気調和機Control device, control method and air conditioner
 本開示は、制御装置、制御方法および空気調和機に関する。
 本願は、2022年8月26日に、日本に出願された特願2022-134898号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a control device, a control method, and an air conditioner.
This application claims priority based on Japanese Patent Application No. 2022-134898 filed in Japan on August 26, 2022, the contents of which are incorporated herein.
 特許文献1には、次のような空気調和機が記載されている。すなわち、特許文献1に記載されている空気調和機は、部屋の広さ、気密性および断熱性を検知し、検知結果に応じて、風向、風量、および温度補正量を、運転開始時や所定時間毎に調節する。なお、特許文献1に記載されている空気調和機では、例えば、検知された部屋の広さと運転開始後の検出温度とその運転開始後の所定時間後の検出温度との温度差に基づき、部屋の気密性および断熱性が検知される。また、特許文献1に記載されている空気調和機では、温度補正量の調節が、室温センサの検出値や設定温度の補正量を調節すること行われる。この特許文献1に記載されている空気調和機によれば、例えば、サーモオフ時に部屋の温度が、暖房時に下がりすぎて肌寒く感じる、あるいは、冷房時に下がりすぎて暑く感じるということを防止したり、広い部屋での室内温度の不均一を抑えたりすることができる、とされる。 Patent Document 1 describes the following air conditioner. In other words, the air conditioner described in Patent Document 1 detects the size, airtightness, and heat insulation of a room, and adjusts the wind direction, air volume, and temperature correction amount at the start of operation or at a predetermined level according to the detection results. Adjust by hour. In addition, in the air conditioner described in Patent Document 1, for example, the size of the room is determined based on the temperature difference between the detected room size, the detected temperature after the start of operation, and the detected temperature after a predetermined time after the start of operation. The airtightness and thermal insulation properties are detected. Furthermore, in the air conditioner described in Patent Document 1, the temperature correction amount is adjusted by adjusting the detection value of the room temperature sensor and the correction amount of the set temperature. According to the air conditioner described in Patent Document 1, for example, when the thermostat is turned off, the temperature of the room can be prevented from falling too low during heating and making the room feel chilly, or when cooling the room, from falling too low and feeling hot. It is said to be able to suppress unevenness in indoor temperature within a room.
日本国特開2017-203581号公報Japanese Patent Application Publication No. 2017-203581
 しかしながら、特許文献1に記載の空気調和機は、快適性の維持を目的としたものであるため、省エネ性の向上については必ずしも適切な空調制御がなされない場合があるという課題があった。 However, since the air conditioner described in Patent Document 1 is intended to maintain comfort, there is a problem in that appropriate air conditioning control may not always be performed to improve energy saving.
 本開示は、上記課題を解決するためになされたものであって、快適性の維持と消費電力の低減を両立させることができる制御装置、制御方法および空気調和機を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a control device, a control method, and an air conditioner that can maintain comfort and reduce power consumption at the same time. .
 上記課題を解決するために、本開示に係る制御装置は、圧縮機によって圧縮された冷媒を室内熱交換器と室外熱交換器との間で循環させる冷媒回路を有する空気調和機を、設定温度に対する室内温度の偏差である第1偏差が小さくなるように制御する制御装置であって、所定の設定値に基づき前記圧縮機の最大回転数を制御するものであり、前記第1偏差が第1所定値以下となるまでの第1時間を算出する算出部と、前記第1時間に基づき前記設定値を設定する設定部とを備える。 In order to solve the above problems, a control device according to the present disclosure controls an air conditioner having a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger to a set temperature. The control device controls the maximum rotational speed of the compressor based on a predetermined setting value so that a first deviation, which is a deviation of the indoor temperature from The device includes a calculation unit that calculates a first time until the value becomes equal to or less than a predetermined value, and a setting unit that sets the set value based on the first time.
 本開示に係る制御方法は、圧縮機によって圧縮された冷媒を室内熱交換器と室外熱交換器との間で循環させる冷媒回路を有する空気調和機を、設定温度に対する室内温度の偏差である第1偏差が小さくなるように制御する制御方法であって、所定の設定値に基づき前記圧縮機の最大回転数を制御するものであり、前記第1偏差が第1所定値以下となるまでの第1時間を算出するステップと、前記第1時間に基づき前記設定値を設定するステップとを含む。 A control method according to the present disclosure controls an air conditioner having a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger, to a temperature that is a deviation of indoor temperature from a set temperature. 1 deviation is controlled so that the maximum rotation speed of the compressor is controlled based on a predetermined set value, and the maximum rotation speed of the compressor is controlled so that the first deviation becomes equal to or less than the first predetermined value. The method includes a step of calculating one hour, and a step of setting the set value based on the first time.
 本開示に係る空気調和機は、圧縮機によって圧縮された冷媒を室内熱交換器と室外熱交換器との間で循環させる冷媒回路と、設定温度に対する室内温度の偏差である第1偏差が小さくなるように前記圧縮機の回転数を制御するものであって、所定の設定値に基づき前記圧縮機の最大回転数を制御するものであり、前記第1偏差が第1所定値以下となるまでの第1時間を算出する算出部と、前記第1時間に基づき前記設定値を設定する設定部とを有する制御装置と、を備える。 An air conditioner according to the present disclosure includes a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger, and a first deviation that is a deviation of the indoor temperature from the set temperature. The maximum rotation speed of the compressor is controlled based on a predetermined setting value until the first deviation becomes equal to or less than a first predetermined value. and a control device that has a calculation unit that calculates a first time, and a setting unit that sets the set value based on the first time.
 本開示の制御装置、制御方法および空気調和機によれば、快適性の維持と消費電力の低減を両立させることができる。 According to the control device, control method, and air conditioner of the present disclosure, it is possible to maintain comfort and reduce power consumption at the same time.
本開示の第1実施形態に係る空気調和機の概要を示す図である。FIG. 1 is a diagram showing an overview of an air conditioner according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る制御装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a control device according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る制御装置を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る制御装置を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る制御装置の動作例を示すフローチャートである。3 is a flowchart illustrating an example of the operation of the control device according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る制御装置を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る制御装置を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a control device according to a first embodiment of the present disclosure. 本開示の第2実施形態に係る制御装置を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a control device according to a second embodiment of the present disclosure. 本開示の第3実施形態に係る制御装置の動作例を示すフローチャートである。It is a flow chart which shows an example of operation of a control device concerning a 3rd embodiment of this indication. 本開示の第3実施形態に係る制御装置を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a control device according to a third embodiment of the present disclosure. 本開示の第4実施形態に係る制御装置の動作例を示すフローチャートである。It is a flow chart which shows an example of operation of a control device concerning a 4th embodiment of this indication. 本開示の第4実施形態に係る制御装置を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a control device according to a fourth embodiment of the present disclosure. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。FIG. 1 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
 以下、図面を参照して、本開示の実施形態に係る制御装置、制御方法および空気調和機について説明する。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。 Hereinafter, a control device, a control method, and an air conditioner according to an embodiment of the present disclosure will be described with reference to the drawings. In addition, in each figure, the same reference numerals are used for the same or corresponding components, and the description thereof will be omitted as appropriate.
<第1実施形態>
(空気調和機の構成)
 図1は、本開示の第1実施形態に係る空気調和機の概要を示す図である。図1に示すように、本実施形態に係る空気調和機100は、圧縮機2、室内熱交換器3、室外熱交換器4、膨張弁5、四方弁6、および、これらを接続する冷媒配管7を含む冷媒回路1と、この冷媒回路1を制御する制御装置20とを備える。例えば、室内機8には室内熱交換器3が設けられ、室外機9には圧縮機2、室外熱交換器4、膨張弁5、および四方弁6が設けられる。また、室内機8には、室内機8が設置されている部屋の室内温度を検知する室内温度センサ11と、その部屋の壁や床からの放射温度を検知する放射温度センサ13が設けられている。また、室外機9には、室外温度を検知する室外温度センサ12が設けられている。また、制御装置20では、例えばユーザが操作するリモコン、スマートフォン等の送受信部30によって空気調和機100の設定温度や運転モードが設定される。なお、室内温度センサ11は、例えば室内熱交換器3へ吸い込まれる空気の温度を検知する。また、放射温度センサ13は、例えば、サーモパイルセンサであり、サーモパイル(赤外線センサ)と、物体から放射された赤外線をサーモパイルに集光する光学系と、サーモパイルの出力信号を処理する信号処理回路等を備える。なお、設定温度は、室温制御の目標温度である。運転モードは、暖房運転、冷房運転等の運転方式である。
<First embodiment>
(Air conditioner configuration)
FIG. 1 is a diagram schematically showing an air conditioner according to a first embodiment of the present disclosure. As shown in FIG. 1, an air conditioner 100 according to the present embodiment includes a compressor 2, an indoor heat exchanger 3, an outdoor heat exchanger 4, an expansion valve 5, a four-way valve 6, and refrigerant pipes connecting these. 7 and a control device 20 that controls the refrigerant circuit 1. For example, the indoor unit 8 is provided with an indoor heat exchanger 3, and the outdoor unit 9 is provided with a compressor 2, an outdoor heat exchanger 4, an expansion valve 5, and a four-way valve 6. Furthermore, the indoor unit 8 is provided with an indoor temperature sensor 11 that detects the indoor temperature of the room in which the indoor unit 8 is installed, and a radiation temperature sensor 13 that detects the radiant temperature from the walls and floor of the room. There is. Furthermore, the outdoor unit 9 is provided with an outdoor temperature sensor 12 that detects the outdoor temperature. Further, in the control device 20, the set temperature and operation mode of the air conditioner 100 are set by a transmitting/receiving unit 30 such as a remote control or a smartphone operated by a user. Note that the indoor temperature sensor 11 detects, for example, the temperature of air sucked into the indoor heat exchanger 3. The radiation temperature sensor 13 is, for example, a thermopile sensor, and includes a thermopile (infrared sensor), an optical system that focuses infrared rays emitted from an object onto the thermopile, and a signal processing circuit that processes the output signal of the thermopile. Be prepared. Note that the set temperature is a target temperature for room temperature control. The operation mode is an operation method such as heating operation or cooling operation.
 圧縮機2は、冷媒を圧縮し、圧縮後の高温高圧の冷媒を冷媒配管7に吐出して供給する。圧縮機2により圧縮された高圧冷媒は、冷媒配管7を介して四方弁6のポート6aに流入する。 The compressor 2 compresses the refrigerant and discharges and supplies the compressed high temperature and high pressure refrigerant to the refrigerant pipe 7. The high-pressure refrigerant compressed by the compressor 2 flows into the port 6a of the four-way valve 6 via the refrigerant pipe 7.
 暖房運転では、制御装置20は、四方弁6のポート6aとポート6bとを接続し、ポート6cとポート6dとを接続するように四方弁6を制御する。これにより、暖房運転では、冷媒は矢印A1の方向に流れる。即ち、高温高圧の冷媒は四方弁6を介して室内熱交換器3に供給される。冷媒は、室内熱交換器3で放熱し、凝縮して液化する。また、室内熱交換器3で凝縮した冷媒は、膨張弁5によって減圧され、低圧の冷媒となる。低圧の冷媒は、室外熱交換器4に供給され、例えば外気からの吸熱により気化する。つまり、暖房運転では、室内熱交換器3は凝縮器として機能し、室外熱交換器4は蒸発器として機能する。また、気化した冷媒は、四方弁6を介して圧縮機2へ吸入される。圧縮機は、低圧の冷媒を再び圧縮して、高温高圧の冷媒を吐出する。 In heating operation, the control device 20 controls the four-way valve 6 to connect ports 6a and 6b of the four-way valve 6, and connect ports 6c and 6d of the four-way valve 6. Thereby, in the heating operation, the refrigerant flows in the direction of arrow A1. That is, the high temperature and high pressure refrigerant is supplied to the indoor heat exchanger 3 via the four-way valve 6. The refrigerant radiates heat in the indoor heat exchanger 3 and is condensed and liquefied. Further, the refrigerant condensed in the indoor heat exchanger 3 is reduced in pressure by the expansion valve 5, and becomes a low-pressure refrigerant. The low-pressure refrigerant is supplied to the outdoor heat exchanger 4, and is vaporized by absorbing heat from the outside air, for example. That is, in heating operation, the indoor heat exchanger 3 functions as a condenser, and the outdoor heat exchanger 4 functions as an evaporator. Further, the vaporized refrigerant is sucked into the compressor 2 via the four-way valve 6. The compressor compresses the low-pressure refrigerant again and discharges the high-temperature, high-pressure refrigerant.
 一方、冷房運転では、制御装置20は、四方弁6のポート6aとポート6dとを接続し、ポート6bとポート6cとを接続するように四方弁6を制御する。これにより、冷房運転では、冷媒は矢印A2の方向に流れる。即ち、高温高圧の冷媒は四方弁6を介して室外熱交換器4に供給され、外気へ放熱して凝縮する。また、室外熱交換器4で凝縮した冷媒は、膨張弁5によって減圧され、室内熱交換器3に供給される。室内熱交換器3では、冷媒は例えば室内の空気からの吸熱により気化する。つまり、冷房運転では、室外熱交換器4は凝縮器として機能し、室内熱交換器3は蒸発器として機能する。また、気化した冷媒は、四方弁6を介して圧縮機2へ吸入される。圧縮機は、低圧の冷媒を再び圧縮して、高温高圧の冷媒を吐出する。 On the other hand, in the cooling operation, the control device 20 controls the four-way valve 6 to connect the port 6a and port 6d of the four-way valve 6, and to connect the port 6b and port 6c. As a result, during cooling operation, the refrigerant flows in the direction of arrow A2. That is, the high-temperature, high-pressure refrigerant is supplied to the outdoor heat exchanger 4 via the four-way valve 6, radiates heat to the outside air, and condenses. Further, the refrigerant condensed in the outdoor heat exchanger 4 is depressurized by the expansion valve 5 and is supplied to the indoor heat exchanger 3. In the indoor heat exchanger 3, the refrigerant is vaporized by absorbing heat from the indoor air, for example. That is, during cooling operation, the outdoor heat exchanger 4 functions as a condenser, and the indoor heat exchanger 3 functions as an evaporator. Further, the vaporized refrigerant is sucked into the compressor 2 via the four-way valve 6. The compressor compresses the low-pressure refrigerant again and discharges the high-temperature, high-pressure refrigerant.
 空気調和機100は、上記の過程が繰り返されて冷媒を循環させることにより、暖房または冷房を行う。制御装置20は、四方弁6の制御により暖房運転と冷房運転の切り換えを行う。また、制御装置20は、室内熱交換器3の室内温度センサ11が計測する室内温度とユーザが設定した設定温度の差に基づいて、室温が設定温度となるように圧縮機2の回転数を調整し、暖房運転または冷房運転を実行する。この場合、本実施形態に係る制御装置20は、圧縮機2によって圧縮された冷媒を室内熱交換器3と室外熱交換器4との間で循環させる冷媒回路1を有する空気調和機100を、設定温度に対する室内温度の偏差である第1偏差が小さくなるように制御する。 The air conditioner 100 performs heating or cooling by repeating the above process and circulating the refrigerant. The control device 20 switches between heating operation and cooling operation by controlling the four-way valve 6. Further, the control device 20 controls the rotation speed of the compressor 2 so that the room temperature reaches the set temperature based on the difference between the indoor temperature measured by the indoor temperature sensor 11 of the indoor heat exchanger 3 and the set temperature set by the user. Adjust and perform heating or cooling operation. In this case, the control device 20 according to the present embodiment controls the air conditioner 100 having the refrigerant circuit 1 that circulates the refrigerant compressed by the compressor 2 between the indoor heat exchanger 3 and the outdoor heat exchanger 4. The first deviation, which is the deviation of the room temperature from the set temperature, is controlled to be small.
 また、外気温が低い環境で暖房運転を行うと、室外熱交換器4に霜が着くことがある。着霜による暖房能力の低下を防ぐため、空気調和機100は、室外機9の霜を除去するデフロスト運転を行う。デフロスト運転では、制御装置20は、四方弁6を切り換えて、冷媒の流通方向を冷房運転と同じ方向(図1の矢印A2)とする。これにより、室外熱交換器4に高温高圧の冷媒を供給して室外機9の除霜を行う。 Additionally, if heating operation is performed in an environment where the outside temperature is low, frost may form on the outdoor heat exchanger 4. In order to prevent the heating capacity from decreasing due to frost formation, the air conditioner 100 performs a defrost operation to remove frost from the outdoor unit 9. In the defrost operation, the control device 20 switches the four-way valve 6 to make the refrigerant flow direction the same as in the cooling operation (arrow A2 in FIG. 1). As a result, a high-temperature, high-pressure refrigerant is supplied to the outdoor heat exchanger 4 to defrost the outdoor unit 9.
(制御装置の構成)
 図2は、本開示の第1実施形態に係る制御装置20の構成例を示す図である。図3、図4、図6および図7は、本開示の第1実施形態に係る制御装置20を説明するための模式図である。図5は、本開示の第1実施形態に係る制御装置20の動作例を示すフローチャートである。
(Configuration of control device)
FIG. 2 is a diagram illustrating a configuration example of the control device 20 according to the first embodiment of the present disclosure. 3, FIG. 4, FIG. 6, and FIG. 7 are schematic diagrams for explaining the control device 20 according to the first embodiment of the present disclosure. FIG. 5 is a flowchart illustrating an example of the operation of the control device 20 according to the first embodiment of the present disclosure.
 本実施形態の制御装置20は、マイクロコンピュータ等のコンピュータを用いて構成することができ、そのコンピュータ、周辺回路、周辺装置等のハードウェアと、そのコンピュータが実行するプログラム等のソフトウェアとの組み合わせ等から構成される機能的構成として、空調制御部21を備える。また、空調制御部21は、算出部22と、設定部23とを含む。 The control device 20 of this embodiment can be configured using a computer such as a microcomputer, and is a combination of hardware such as the computer, peripheral circuits, and peripheral devices, and software such as programs executed by the computer. An air conditioning control section 21 is provided as a functional configuration consisting of. Further, the air conditioning control section 21 includes a calculation section 22 and a setting section 23.
 空調制御部21は、室内温度センサ11、室外温度センサ12、放射温度センサ13、図示していない湿度センサ等の各種センサの出力信号を入力するとともに、送受信部30との間で所定の信号を送受信し、設定された運転モードや設定温度等に基づき、圧縮機2、膨張弁5、四方弁6、図示していない室内機8内のファン、風向板、室外機9内のファン等(以下、圧縮機2等という)を制御する。 The air conditioning control unit 21 receives output signals from various sensors such as an indoor temperature sensor 11, an outdoor temperature sensor 12, a radiation temperature sensor 13, and a humidity sensor (not shown), and also sends predetermined signals to and from the transmitting/receiving unit 30. Based on the set operation mode, set temperature, etc., the compressor 2, the expansion valve 5, the four-way valve 6, the fan in the indoor unit 8 (not shown), the wind direction plate, the fan in the outdoor unit 9, etc. (hereinafter referred to as , compressor 2, etc.).
 また、本実施形態において、空調制御部21は、上述したように設定温度に対する室内温度の偏差である第1偏差が小さくなるように、圧縮機2等を制御する。その際、空調制御部21は、後述するようにして設定部23が設定した「設定値」に基づき、圧縮機2の最大回転数を制御する。圧縮機2の最大回転数とは、圧縮機2の回転数を制御する際の回転数の最大値(上限値)である。また、圧縮機2の最大回転数を制御する際に基準とする「設定値」とは、例えば、最大回転数の値そのものであってもよいし、あるいは、回転数を最大回転数以下に制御する場合に用いる所定の基準値(例えば、最大回転数より所定回転数だけ低い回転数の値、最大回転数に対して上下に所定の幅を有する回転数の範囲を表す値等)であってもよい。なお、以下では、「設定値」を「圧縮機最大回転数設定値」ともいう。 Furthermore, in the present embodiment, the air conditioning control unit 21 controls the compressor 2 and the like so that the first deviation, which is the deviation of the indoor temperature from the set temperature, becomes small as described above. At this time, the air conditioning control section 21 controls the maximum rotation speed of the compressor 2 based on the "set value" set by the setting section 23 as described later. The maximum rotation speed of the compressor 2 is the maximum value (upper limit) of the rotation speed when controlling the rotation speed of the compressor 2. Further, the "setting value" used as a reference when controlling the maximum rotation speed of the compressor 2 may be, for example, the value of the maximum rotation speed itself, or the rotation speed may be controlled to be below the maximum rotation speed. A predetermined reference value (for example, a value of the rotation speed lower than the maximum rotation speed by a predetermined rotation speed, a value representing a rotation speed range having a predetermined width above and below the maximum rotation speed, etc.) used when Good too. Note that, hereinafter, the "setting value" is also referred to as the "compressor maximum rotation speed setting value."
 また、本実施形態に係る算出部22は、第1偏差が第1所定値以下となるまでの第1時間を算出する。ここで、図3を参照して、「第1偏差」、「第1所定値」および「第1時間」について説明する。図3は、空気調和機100を冷房運転した場合の室内温度の時間変化の例を実線で示す。図3に示すように、「第1偏差」は、上述したように設定温度に対する室内温度の偏差(設定温度と室内温度の温度差)である。「第1偏差」は、例えば、計算式「(室内温度)-(設定温度)」で算出される。また、「第1所定値」は、室内温度が設定温度にほぼ到達したと判定することができる場合の第1偏差に対応する判定値である。第1所定値は正、負またはゼロであってもよい。図3に示す例では、時刻t1で、第1偏差が第1所定値以下となっている。また、「第1時間」は、空気調和機100が室温制御を開始(あるいは制御内容を変更)してから、室内温度が設定温度に到達(あるいはほぼ到達)するまでの時間であり、図3に示す例では、時刻t0から時刻t1までの時間である。時刻t0は、例えば、空気調和機100の運転における運転開始時刻、設定温度の変更時刻、運転モードの変更時刻等である。なお、「第1時間」は、空気調和機100の設置環境に影響され、例えば部屋の断熱性や気密性の差異によって変化する。「第1時間」が、比較的小さい場合、例えば断熱性が良いということができ、比較的大きい場合、例えば断熱性が悪いということができる。 Furthermore, the calculation unit 22 according to the present embodiment calculates the first time until the first deviation becomes equal to or less than the first predetermined value. Here, the "first deviation", "first predetermined value", and "first time" will be explained with reference to FIG. 3. In FIG. 3, a solid line shows an example of a change in indoor temperature over time when the air conditioner 100 is operated in a cooling operation. As shown in FIG. 3, the "first deviation" is the deviation of the indoor temperature from the set temperature (the temperature difference between the set temperature and the indoor temperature) as described above. The “first deviation” is calculated, for example, using the formula “(indoor temperature)−(set temperature)”. Moreover, the "first predetermined value" is a determination value corresponding to the first deviation when it can be determined that the indoor temperature has almost reached the set temperature. The first predetermined value may be positive, negative or zero. In the example shown in FIG. 3, the first deviation is equal to or less than the first predetermined value at time t1. Further, the "first time" is the time from when the air conditioner 100 starts room temperature control (or changes the control content) until the indoor temperature reaches (or almost reaches) the set temperature, In the example shown in , it is the time from time t0 to time t1. The time t0 is, for example, the start time of operation of the air conditioner 100, the change time of the set temperature, the change time of the operation mode, etc. Note that the "first time" is influenced by the installation environment of the air conditioner 100, and changes depending on, for example, differences in the insulation and airtightness of the room. If the "first time" is relatively small, it can be said that the heat insulation properties are good, and if the "first time" is relatively large, it can be said that the heat insulation properties are poor, for example.
 また、設定部23は、算出部22が算出した「第1時間」に基づき、「設定値」(圧縮機最大回転数設定値)を設定する。図4は、本実施形態における設定値の設定例を定めたテーブルT1を示す。図4に示すテーブルT1によれば、例えば、第1時間が第1閾値以内である場合、設定部23は、設定値を現在の設定値から減少させる。第1時間が第1閾値より大きく、第2閾値未満である場合、設定部23は、設定値を現在の設定値から変更しない。ただし、第2閾値は第1閾値より大きい値である。第1時間が第2閾値以上である場合、設定部23は、設定値を現在の設定値から増加させる。第1閾値は、例えば、断熱性が良いと判断できる判定値である。また、第2閾値は、例えば、断熱性が悪いと判断できる判定値である。また、本実施形態において設定部23による「設定値」の設定とは、「設定値」を変更する場合と変更しない場合とを含む。なお、設定部23は、最大定格回転数等の回転数の上限値についての制限や所定の回転数の下限値についての制限の範囲内で設定値を増加または減少させる。 Furthermore, the setting unit 23 sets a “setting value” (compressor maximum rotation speed setting value) based on the “first time” calculated by the calculation unit 22. FIG. 4 shows a table T1 that defines setting examples of setting values in this embodiment. According to the table T1 shown in FIG. 4, for example, when the first time is within the first threshold, the setting unit 23 decreases the setting value from the current setting value. If the first time is greater than the first threshold and less than the second threshold, the setting unit 23 does not change the setting value from the current setting value. However, the second threshold is a larger value than the first threshold. If the first time is equal to or greater than the second threshold, the setting unit 23 increases the setting value from the current setting value. The first threshold value is, for example, a determination value by which it can be determined that the heat insulation properties are good. Further, the second threshold value is, for example, a determination value at which it can be determined that the insulation property is poor. Furthermore, in the present embodiment, the setting of the "setting value" by the setting unit 23 includes cases where the "setting value" is changed and cases where the "setting value" is not changed. Note that the setting unit 23 increases or decreases the set value within the limits of the upper limit value of the rotation speed, such as the maximum rated rotation speed, and the limit of the lower limit value of the predetermined rotation speed.
 設定部23は、例えば、冷房運転開始からA分(例:10分)以内に設定温度に到達したら、断熱性が高いと判断し、設定値を下げる(例:100rps→95rps)。また、設定部23は、次の運転時、冷房運転開始からA分以内に設定温度に達したら、設定値を再び下げる(例:95rps→90rps)。また、設定部23は、運転開始からB分(例:20分)以上設定温度に到達しない場合、設定値を上げる(例:90→95rps)。また、設定部23は、設定温度に到達する時間がA~B分の場合、設定値を変更しない。設定部23は、設定値のこの設定動作の繰り返しによって、空気調和機100が使用される部屋に適するように圧縮機2の設定値(最大回転数)を自動で調整する。この例では、図4に示す第1閾値がA分に対応し、第2閾値がB分に対応する。また、回転数を下げる場合と上げる場合には、所定の回転数だけ(例:5rps)変化させている。ただし、増減量は、定数に限らず、例えば変数あるいは現在の設定値に対して所定の割合で変化させてもよい。 For example, if the set temperature is reached within A minutes (eg, 10 minutes) from the start of cooling operation, the setting unit 23 determines that the heat insulation is high and lowers the set value (eg, from 100 rps to 95 rps). Further, during the next operation, when the set temperature is reached within A minutes from the start of the cooling operation, the setting unit 23 lowers the set value again (eg, from 95 rps to 90 rps). Further, if the set temperature is not reached for more than B minutes (eg, 20 minutes) from the start of operation, the setting unit 23 increases the set value (eg, from 90 to 95 rps). Further, the setting unit 23 does not change the set value if the time required to reach the set temperature is A to B. By repeating this setting value setting operation, the setting unit 23 automatically adjusts the set value (maximum rotation speed) of the compressor 2 to suit the room in which the air conditioner 100 is used. In this example, the first threshold value shown in FIG. 4 corresponds to the A minute, and the second threshold value corresponds to the B minute. Furthermore, when lowering or increasing the rotational speed, the rotational speed is changed by a predetermined amount (for example, 5 rps). However, the increase/decrease is not limited to a constant value, and may be changed at a predetermined rate with respect to a variable or a current set value, for example.
(空気調和機の動作例)
 図5は、制御装置20による設定値の設定動作の例を示す。図5に示す処理は、例えば空気調和機100の運転開始時に実行される。図5に示す処理では、まず、算出部22が、設定温度に対する室内温度の偏差である第1偏差が第1所定値以下となる第1時間を算出する(ステップS11)。次に、設定部23が、第1時間に基づき圧縮機2の最大回転数の設定値を設定する(ステップS12)。
(Example of air conditioner operation)
FIG. 5 shows an example of a setting value setting operation by the control device 20. As shown in FIG. The process shown in FIG. 5 is executed, for example, when the air conditioner 100 starts operating. In the process shown in FIG. 5, first, the calculation unit 22 calculates a first time during which a first deviation, which is a deviation of the indoor temperature from the set temperature, is equal to or less than a first predetermined value (step S11). Next, the setting unit 23 sets a set value for the maximum rotation speed of the compressor 2 based on the first time (step S12).
 図6は、空気調和機100の冷房運転における圧縮機2の回転数と室内温度の時間変化の例を示す。図6に示す例では、時刻t0で運転が開始され、圧縮機2の回転数が所定の変化率で上昇する。そして、運転開始時の「設定値」(圧縮機最大回転数設定値(変更前))を超えない範囲で時刻t02から時刻t03まで回転数が設定値近傍で制御される。そして、時刻t03の後、回転数は徐々に低下し、時刻t1で第1偏差が第1所定値以下となり、設定値が、圧縮機最大回転数設定値(変更前)から圧縮機最大回転数設定値(変更後)に変更(減少)されている。図6に示す例では、圧縮機2の回転数が最大回転数付近に到達し、さらに、低下した後に、設定値が変更されている。したがって、変更した設定値は次回の運転時から有効となる。図7は、変更前後の圧縮機2の回転数の時間変化の例を示す。変更後の運転例では、変更前と比べて、設定値近傍での運転時間は延びるが最大回転数が抑えられている。 FIG. 6 shows an example of changes over time in the rotation speed of the compressor 2 and the indoor temperature during cooling operation of the air conditioner 100. In the example shown in FIG. 6, operation is started at time t0, and the rotation speed of the compressor 2 increases at a predetermined rate of change. Then, the rotation speed is controlled near the set value from time t02 to time t03 within a range that does not exceed the "set value" (compressor maximum rotation speed set value (before change)) at the start of operation. After time t03, the rotation speed gradually decreases, and at time t1, the first deviation becomes equal to or less than the first predetermined value, and the set value changes from the compressor maximum rotation speed setting value (before change) to the maximum compressor rotation speed. It has been changed (decreased) to the set value (after change). In the example shown in FIG. 6, the set value is changed after the rotation speed of the compressor 2 reaches around the maximum rotation speed and further decreases. Therefore, the changed set value becomes effective from the next operation. FIG. 7 shows an example of how the rotation speed of the compressor 2 changes over time before and after the change. In the operation example after the change, compared to before the change, the operation time near the set value is extended, but the maximum rotation speed is suppressed.
(本実施形態の作用効果)
 圧縮機は基本的に回転数が高いと消費電力が大きくなる。本実施形態によれば、最大回転数を部屋に合わせて調整することで快適性を損なわず、消費電力を抑えることが可能となる。すなわち、本実施形態によれば、快適性の維持と消費電力の低減を両立させることができる。
(Operations and effects of this embodiment)
Basically, the higher the rotation speed of a compressor, the more power it consumes. According to this embodiment, by adjusting the maximum rotation speed according to the room, it is possible to suppress power consumption without impairing comfort. That is, according to this embodiment, it is possible to maintain comfort and reduce power consumption at the same time.
<第2実施形態>
 図8は、本開示の第2実施形態に係る制御装置を説明するための模式図である。図8は、第2実施形態おける空気調和機100の冷房運転における圧縮機2の回転数と室内温度の時間変化の例を示す。なお、図1~図5を参照して説明した空気調和機100および制御装置20の構成および動作については、第1実施形態と第2実施形態で次の点を除き同一である。すなわち、第1実施形態では、図6に示すように、第1偏差が第1所定値以下となる第1時間が経過した場合に設定値が変更された。一方、第2実施形態では、図8に示すように、第1時間が経過する前に、第1時間を予測し、設定値を変更する。この場合、第2実施形態の算出部22は、第1時間が経過する前に、予測によって第1時間を算出することになる。
<Second embodiment>
FIG. 8 is a schematic diagram for explaining a control device according to a second embodiment of the present disclosure. FIG. 8 shows an example of changes over time in the rotation speed of the compressor 2 and the indoor temperature during cooling operation of the air conditioner 100 in the second embodiment. Note that the configurations and operations of the air conditioner 100 and the control device 20 described with reference to FIGS. 1 to 5 are the same in the first embodiment and the second embodiment except for the following points. That is, in the first embodiment, as shown in FIG. 6, the set value is changed when the first time period during which the first deviation becomes equal to or less than the first predetermined value has elapsed. On the other hand, in the second embodiment, as shown in FIG. 8, the first time is predicted and the set value is changed before the first time elapses. In this case, the calculation unit 22 of the second embodiment calculates the first time by prediction before the first time elapses.
 第2実施形態の算出部22は、設定温度、室内温度、室外温度、圧縮機2の回転数、第1時間等の各実績値に基づいて回帰モデルを作成し、作成した回帰モデルを用いて第1時間を予測する。例えば、第2実施形態の算出部22は、少なくとも、設定温度、室内温度、圧縮機2の回転数および第1時間の各実績値に基づき機械学習された学習済み機械学習モデルを作成し、作成した学習済み機械学習モデルを用いて、第1時間を予測する。この場合、室内温度は、運転開始時の値のみであってもよいし、設定温度に到達する前の複数の時系列の値を含んでいてもよい。また、回転数は、最大回転数(設定値)の値のみであってもよいし、設定温度に到達する前の複数の時系列の値を含んでいてもよい。 The calculation unit 22 of the second embodiment creates a regression model based on each actual value of the set temperature, indoor temperature, outdoor temperature, rotation speed of the compressor 2, first time, etc., and uses the created regression model to calculate the regression model. Predict the first hour. For example, the calculation unit 22 of the second embodiment creates a learned machine learning model that is machine learned based on at least the set temperature, the indoor temperature, the rotation speed of the compressor 2, and each actual value for the first time. The first time is predicted using the learned machine learning model. In this case, the indoor temperature may be only the value at the start of operation, or may include a plurality of time-series values before reaching the set temperature. Further, the rotation speed may be only the maximum rotation speed (set value), or may include a plurality of time-series values before reaching the set temperature.
 なお、第2実施形態の算出部22は、複数の実績値を取得して回帰モデルが作成できるようになるまでは、例えば、第1実施形態の算出部22と同様に、第1時間が経過した場合に設定値を変更するようにすることができる。 Note that, for example, like the calculation unit 22 of the first embodiment, the calculation unit 22 of the second embodiment calculates the lapse of the first time until a regression model can be created by acquiring a plurality of actual values. It is possible to change the setting value when the
 第2実施形態によれば、例えば、図8に示すように、回転数が最大回転数(設定値)付近に近づく前(時刻t02より前)に第1時間を予測することができれば(時刻t02より前の時刻t01)、設定値を変更し(時刻t01)、現在の運転に設定値の変更を反映させる(有効とする)ことができる。 According to the second embodiment, for example, as shown in FIG. 8, if the first time can be predicted before the rotation speed approaches the maximum rotation speed (set value) (before time t02) (time t02 The set value can be changed (time t01) at a previous time t01), and the change in the set value can be reflected (made effective) in the current operation.
<第3実施形態>
 図9は、本開示の第3実施形態に係る制御装置の動作例を示すフローチャートである。図10は、本開示の第3実施形態に係る制御装置を説明するための模式図である。なお、図1~図3を参照して説明した空気調和機100および制御装置20の構成および動作については、第1実施形態と第3実施形態で次の点を除き同一である。すなわち、第1実施形態の算出部22は、第1偏差が第1所定値以下となるまでの第1時間を算出する。また、第1実施形態の設定部23は、第1時間に基づき設定値を設定する。これに対し、第3実施形態の算出部22は、さらに、室内において放射温度センサ13で計測された放射温度の設定温度に対する偏差である第2偏差が第2所定値以下となるまでの第2時間を算出する。また、第3実施形態の設定部23は、第1時間と第2時間とに基づいて設定値を設定する。なお、第2偏差、第2所定値および第2時間は、第1偏差、第1所定値および第1時間における室内温度を放射温度に読み替えた場合に対応する。
<Third embodiment>
FIG. 9 is a flowchart illustrating an example of the operation of the control device according to the third embodiment of the present disclosure. FIG. 10 is a schematic diagram for explaining a control device according to a third embodiment of the present disclosure. Note that the configuration and operation of the air conditioner 100 and the control device 20 described with reference to FIGS. 1 to 3 are the same in the first embodiment and the third embodiment except for the following points. That is, the calculation unit 22 of the first embodiment calculates the first time until the first deviation becomes equal to or less than the first predetermined value. Further, the setting unit 23 of the first embodiment sets the setting value based on the first time. On the other hand, the calculation unit 22 of the third embodiment further calculates the second deviation until the second deviation, which is the deviation of the radiant temperature measured indoors by the radiant temperature sensor 13 from the set temperature, becomes equal to or less than the second predetermined value. Calculate the time. Further, the setting unit 23 of the third embodiment sets the setting value based on the first time and the second time. Note that the second deviation, the second predetermined value, and the second time correspond to the case where the first deviation, the first predetermined value, and the indoor temperature at the first time are read as the radiant temperature.
 図9に示すように、第3実施形態の制御装置20は、まず、第3実施形態の算出部22が、設定温度に対する室内温度の偏差である第1偏差が第1所定値以下となる第1時間を算出し(ステップS31)、設定温度に対する放射温度の偏差である第2偏差が第2所定値以下となる第2時間を算出する(ステップS32)。次に、第3実施形態の設定部23が、第1時間と第2時間とに基づき圧縮機2の最大回転数の設定値を設定する(ステップS33)。 As shown in FIG. 9, in the control device 20 of the third embodiment, first, the calculation unit 22 of the third embodiment calculates the temperature at which the first deviation, which is the deviation of the indoor temperature from the set temperature, is equal to or less than the first predetermined value. One hour is calculated (step S31), and a second time during which the second deviation, which is the deviation of the radiant temperature from the set temperature, is equal to or less than the second predetermined value is calculated (step S32). Next, the setting unit 23 of the third embodiment sets a set value of the maximum rotation speed of the compressor 2 based on the first time and the second time (step S33).
 図10は、本実施形態における設定値の設定例を定めたテーブルT3を示す。図10に示すテーブルT3によれば、例えば、第1時間が第1閾値以内である場合、設定部23は、第2時間が第3閾値以内であるとき設定値を現在の設定値から減少させ、第2時間が第3閾値より大きいとき設定値を現在の設定値から変更しない。ここで、第3閾値は、放射温度センサが検知した壁や床の温度変化から例えば部屋の断熱性が良いか悪いかを判定するための判定値である。また、第1時間が第1閾値より大きく、第2閾値未満である場合、設定部23は、第2時間が第3閾値以内であるとき設定値を現在の設定値から変更せず、第2時間が第3閾値より大きいとき設定値を現在の設定値から増加させる。また、第1時間が第2閾値以上である場合、設定部23は、設定値を現在の設定値から増加させる。 FIG. 10 shows a table T3 that defines setting examples of setting values in this embodiment. According to table T3 shown in FIG. 10, for example, when the first time is within the first threshold, the setting unit 23 decreases the set value from the current set value when the second time is within the third threshold. , the set value is not changed from the current set value when the second time is greater than the third threshold. Here, the third threshold is a determination value for determining, for example, whether the insulation of the room is good or bad based on the temperature change of the wall or floor detected by the radiation temperature sensor. Further, when the first time is greater than the first threshold and less than the second threshold, the setting unit 23 does not change the setting value from the current setting value when the second time is within the third threshold, and When the time is greater than the third threshold, the set value is increased from the current set value. Further, when the first time is equal to or greater than the second threshold, the setting unit 23 increases the set value from the current set value.
 本実施形態によれば、室内温度に加え、床や壁の温度変化を考慮して、最大回転数を部屋に合わせて調整することができる。 According to this embodiment, in addition to the indoor temperature, the maximum rotation speed can be adjusted to suit the room, taking into account changes in the temperature of the floor and walls.
<第4実施形態>
 図11は、本開示の第4実施形態に係る制御装置の動作例を示すフローチャートである。図12は、本開示の第4実施形態に係る制御装置を説明するための模式図である。なお、図1~図3を参照して説明した空気調和機100および制御装置20の構成および動作については、第1実施形態と第4実施形態で次の点を除き同一である。すなわち、第1実施形態の算出部22は、第1偏差が第1所定値以下となるまでの第1時間を算出する。また、第1実施形態の設定部23は、第1時間に基づき設定値を設定する。これに対し、第4実施形態の算出部22は、さらに、運転開始時の設定温度と室内温度との温度差を算出する(ただし、温度差の算出は例えば設定部23が行ってもよい)。また、第3実施形態の設定部23は、運転開始時の設定温度と室内温度との温度差と、第1時間とに基づき設定値を設定する。
<Fourth embodiment>
FIG. 11 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment of the present disclosure. FIG. 12 is a schematic diagram for explaining a control device according to a fourth embodiment of the present disclosure. Note that the configurations and operations of the air conditioner 100 and the control device 20 described with reference to FIGS. 1 to 3 are the same in the first embodiment and the fourth embodiment except for the following points. That is, the calculation unit 22 of the first embodiment calculates the first time until the first deviation becomes equal to or less than the first predetermined value. Further, the setting unit 23 of the first embodiment sets the setting value based on the first time. In contrast, the calculation unit 22 of the fourth embodiment further calculates the temperature difference between the set temperature at the start of operation and the indoor temperature (however, the calculation of the temperature difference may be performed by the setting unit 23, for example). . Further, the setting unit 23 of the third embodiment sets the set value based on the temperature difference between the set temperature at the start of operation and the indoor temperature, and the first time.
 図12に示すように、第4実施形態の制御装置20は、まず、第4実施形態の算出部22が、運転開始時の設定温度と室内温度の温度差を算出し(ステップS41)、設定温度に対する室内温度の偏差である第1偏差が第1所定値以下となる第1時間を算出する(ステップS42)。次に、第4実施形態の設定部23が、第1時間と算出した温度差とに基づき圧縮機2の最大回転数の設定値を設定する(ステップS43)。 As shown in FIG. 12, in the control device 20 of the fourth embodiment, first, the calculation unit 22 of the fourth embodiment calculates the temperature difference between the set temperature at the start of operation and the indoor temperature (step S41), and A first time during which a first deviation, which is a deviation of the indoor temperature from the temperature, is equal to or less than a first predetermined value is calculated (step S42). Next, the setting unit 23 of the fourth embodiment sets a set value for the maximum rotation speed of the compressor 2 based on the first time and the calculated temperature difference (step S43).
 図12は、本実施形態における設定値の設定例を定めたテーブルT4を示す。図12に示すテーブルT4によれば、例えば、第1時間が第1閾値以内である場合、設定部23は、温度差が第4閾値以内のとき設定値を変更せず、温度差が第4閾値より大きく第5閾値未満のとき設定値を変化分Δ1だけ減少させ、温度差が第5閾値以上のとき設定値を変化分Δ2だけ減少させる。なお、変化分Δ1は変化分Δ2より小さい。また、第4閾値は第5閾値より小さい。また、第1時間が第1閾値より大きく第2閾値未満である場合、設定部23は、設定値を変更しない。また、第1時間が第2閾値以上である場合、設定部23は、温度差が第4閾値以内のとき設定値を変更せず、温度差が第4閾値より大きく第5閾値未満のとき設定値を変化分Δ2だけ増加させ、温度差が第5閾値以上のとき設定値を変化分Δ1だけ増加させる。 FIG. 12 shows a table T4 that defines setting examples of setting values in this embodiment. According to table T4 shown in FIG. 12, for example, when the first time is within the first threshold, the setting unit 23 does not change the set value when the temperature difference is within the fourth threshold, and when the temperature difference is within the fourth threshold. When the temperature difference is greater than the threshold and less than the fifth threshold, the set value is decreased by a change Δ1, and when the temperature difference is greater than or equal to the fifth threshold, the set value is decreased by a change Δ2. Note that the amount of change Δ1 is smaller than the amount of change Δ2. Further, the fourth threshold is smaller than the fifth threshold. Further, if the first time is greater than the first threshold and less than the second threshold, the setting unit 23 does not change the setting value. Further, when the first time is equal to or greater than the second threshold, the setting unit 23 does not change the set value when the temperature difference is within the fourth threshold, and sets the set value when the temperature difference is greater than the fourth threshold and less than the fifth threshold. The value is increased by a change amount Δ2, and when the temperature difference is greater than or equal to the fifth threshold value, the set value is increased by a change amount Δ1.
 本実施形態によれば、例えば、運転開始時の設定温度と室内温度との温度差が小さい場合(第4閾値以内の場合)、部屋の断熱性等の判定を行わず、設定値を変更しないようにすることができる。また、例えば、温度差が大きい場合(第5閾値以上の場合)、温度差が大きくない場合(第5閾値未満の場合)と比較して、最大回転数を減少させるときの減少量を大きくするとともに、最大回転数を増加させるときの増加量を小さくすることができる。本実施形態によれば、室内温度に加え、運転開始時の温度差を考慮して、最大回転数を部屋に合わせて調整することができる。 According to the present embodiment, for example, if the temperature difference between the set temperature at the start of operation and the room temperature is small (within the fourth threshold), the set value is not changed without determining the insulation properties of the room, etc. You can do it like this. Also, for example, when the temperature difference is large (greater than or equal to the fifth threshold), the amount of reduction when reducing the maximum rotation speed is increased compared to when the temperature difference is not large (less than the fifth threshold). At the same time, it is possible to reduce the amount of increase when increasing the maximum rotation speed. According to this embodiment, in addition to the indoor temperature, the maximum rotation speed can be adjusted to suit the room, taking into consideration the temperature difference at the start of operation.
(作用効果)
 上記構成の制御装置、制御方法および空気調和機では、設定温度に対する室内温度の偏差である第1偏差を小さくする制御において、第1偏差が第1所定値以下となるまでの第1時間に基づいて設定した設定値に基づき圧縮機の最大回転数が制御される。第1時間は部屋の断熱性等に影響される要素であり、圧縮機の最大回転数は消費電力に影響を与える要素である。このため、第1時間に応じて最大回転数を調整することは、部屋の断熱性等に応じて消費電力の低減の度合いを調整することになる。したがって、実施形態の制御装置、制御方法および空気調和機によれば、最大回転数を第1時間に応じて調整することで、快適性の維持と消費電力の低減を両立させることができる。
(effect)
In the control device, control method, and air conditioner configured as described above, in the control to reduce the first deviation, which is the deviation of the indoor temperature from the set temperature, the first deviation is based on the first time until the first deviation becomes equal to or less than the first predetermined value. The maximum rotation speed of the compressor is controlled based on the set value set by The first time is a factor that is influenced by the insulation properties of the room, etc., and the maximum rotation speed of the compressor is a factor that affects power consumption. Therefore, adjusting the maximum rotation speed according to the first time means adjusting the degree of reduction in power consumption according to the insulation properties of the room, etc. Therefore, according to the control device, control method, and air conditioner of the embodiment, by adjusting the maximum rotation speed according to the first time, it is possible to maintain both comfort and reduce power consumption.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、各実施形態の構成および動作は、適宜組み合わせることができる。なお、上記実施形態では、第1時間と所定の閾値(第1閾値および第2閾値)との比較結果に応じて最大回転数を例えば増加または減少させることとしているが、例えば、第1時間と所定の閾値との差の大きさに応じて、すなわち、設定温度に到達するまでの時間の長さによって、上げ幅や下げ幅を変化させてもよい。また、回帰モデルを作成する際には、さらに、室外温度、湿度等の実績値を用いることができる。また、室内温度と放射温度を考慮する場合、両者の温度変化を考慮してもよいし、どちらか一方(例えば変化が遅い方)を選択的に考慮するようにしてもよい。
(Other embodiments)
Although the embodiment of the present disclosure has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes within the scope of the gist of the present disclosure. . For example, the configurations and operations of each embodiment can be combined as appropriate. Note that in the above embodiment, the maximum rotation speed is increased or decreased depending on the comparison result between the first time and the predetermined thresholds (the first threshold and the second threshold). The amount of increase or decrease may be changed depending on the magnitude of the difference from a predetermined threshold value, that is, depending on the length of time until the set temperature is reached. Further, when creating a regression model, actual values of outdoor temperature, humidity, etc. can be further used. Furthermore, when considering indoor temperature and radiation temperature, temperature changes in both may be considered, or one of them (for example, the one that changes slowly) may be selectively considered.
〈コンピュータ構成〉
 図13は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、および、インタフェース94を備える。
 上述の制御装置20は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。
<Computer configuration>
FIG. 13 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
Computer 90 includes a processor 91, main memory 92, storage 93, and interface 94.
The control device 20 described above is implemented in the computer 90. The operations of each processing section described above are stored in the storage 93 in the form of a program. The processor 91 reads the program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 reserves storage areas corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
 プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータは、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)等が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。 The program may be one for realizing a part of the functions to be performed by the computer 90. For example, the program may function in combination with other programs already stored in storage or in combination with other programs installed in other devices. Note that in other embodiments, the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array), and the like. In this case, some or all of the functions implemented by the processor may be implemented by the integrated circuit.
 ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。  Examples of the storage 93 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), and DVD-ROM (Digital Versatile Disc Read Only Memory). , semiconductor memory, etc. Storage 93 may be an internal medium connected directly to the bus of computer 90, or may be an external medium connected to computer 90 via an interface 94 or a communication line. Furthermore, when this program is distributed to the computer 90 via a communication line, the computer 90 that received the distribution may develop the program in the main memory 92 and execute the above processing. In at least one embodiment, storage 93 is a non-transitory, tangible storage medium.​
<付記>
 各実施形態に記載の制御装置20は、例えば以下のように把握される。
<Additional notes>
The control device 20 described in each embodiment is understood as follows, for example.
(1)第1の態様に係る制御装置20は、圧縮機2によって圧縮された冷媒を室内熱交換器3と室外熱交換器4との間で循環させる冷媒回路1を有する空気調和機100を、設定温度に対する室内温度の偏差である第1偏差が小さくなるように制御する制御装置20であって、所定の設定値に基づき前記圧縮機2の最大回転数を制御するものであり、前記第1偏差が第1所定値以下となるまでの第1時間を算出する算出部22と、前記第1時間に基づき前記設定値を設定する設定部23とを備える。本態様および以下の各態様によれば、快適性の維持と消費電力の低減を両立させることができる。 (1) The control device 20 according to the first aspect includes an air conditioner 100 having a refrigerant circuit 1 that circulates refrigerant compressed by a compressor 2 between an indoor heat exchanger 3 and an outdoor heat exchanger 4. , a control device 20 that controls the first deviation, which is the deviation of the indoor temperature from the set temperature, to be small, and controls the maximum rotation speed of the compressor 2 based on a predetermined set value, and The calculation unit 22 includes a calculation unit 22 that calculates a first time until one deviation becomes equal to or less than a first predetermined value, and a setting unit 23 that sets the set value based on the first time. According to this aspect and the following aspects, it is possible to maintain both comfort and reduce power consumption.
(2)第2の態様に係る制御装置20は、(1)の制御装置20であって、前記設定部23は、前記第1時間が、第1閾値以下の場合に前記設定値を減少させ、前記第1閾値より大きい第2閾値未満で前記第1閾値より大きい場合に前記設定値を変更せず、前記第2閾値以上の場合に前記設定値を増加させる。 (2) A control device 20 according to a second aspect is the control device 20 of (1), in which the setting unit 23 decreases the set value when the first time is equal to or less than a first threshold. , the set value is not changed when it is less than a second threshold that is larger than the first threshold and larger than the first threshold, and the set value is increased when it is greater than or equal to the second threshold.
(3)第3の態様に係る制御装置20は、(1)または(2)の制御装置20であって、前記算出部22は、前記第1時間が経過する前に、予測によって前記第1時間を算出する。 (3) The control device 20 according to a third aspect is the control device 20 of (1) or (2), in which the calculation unit 22 calculates the first time by prediction before the first time elapses. Calculate the time.
(4)第4の態様に係る制御装置20は、(1)~(3)の制御装置20であって、前記算出部22は、少なくとも、前記設定温度、前記室内温度、前記回転数および前記第1時間の各実績値に基づき機械学習された学習済み機械学習モデルを用いて、前記第1時間を予測する。 (4) The control device 20 according to the fourth aspect is the control device 20 of (1) to (3), in which the calculation unit 22 includes at least the set temperature, the indoor temperature, the rotation speed, and the The first time is predicted using a learned machine learning model that is machine learned based on each actual value of the first time.
(5)第5の態様に係る制御装置20は、(1)~(4)の制御装置20であって、前記算出部22は、さらに、前記室内において放射温度センサで計測された放射温度の前記設定温度に対する偏差である第2偏差が第2所定値以下となるまでの第2時間を算出し、前記設定部23は、前記第1時間と前記第2時間とに基づいて前記設定値を設定する。本態様によれば、部屋の壁や床の温度変化を考慮して最大回転数を設定することができる。 (5) The control device 20 according to the fifth aspect is the control device 20 of (1) to (4), in which the calculation unit 22 further calculates the radiation temperature measured by the radiation temperature sensor in the room. The setting unit 23 calculates a second time until a second deviation, which is a deviation from the set temperature, becomes equal to or less than a second predetermined value, and the setting unit 23 sets the set value based on the first time and the second time. Set. According to this aspect, the maximum rotation speed can be set in consideration of temperature changes on the walls and floor of the room.
(6)第6の態様に係る制御装置20は、(1)~(5)の制御装置20であって、前記設定部は、運転開始時の前記設定温度と前記室内温度との温度差と、前記第1時間とに基づき前記設定値を設定する。 (6) The control device 20 according to the sixth aspect is the control device 20 according to (1) to (5), in which the setting section is configured to adjust the temperature difference between the set temperature at the start of operation and the indoor temperature. , the set value is set based on the first time.
 上述した一態様によれば、快適性の維持と消費電力の低減を両立させることができる。 According to one aspect described above, it is possible to maintain both comfort and reduce power consumption.
100…空気調和機
1…冷媒回路
2…圧縮機
3…室内熱交換器
4…室外熱交換器
5…膨張弁
6…四方弁
7…冷媒配管
8…室内機
9…室外機
11…室内温度センサ
12…室外温度センサ
13…放射温度センサ
20…制御装置
21…空調制御部
22…算出部
23…設定部
100...Air conditioner 1...Refrigerant circuit 2...Compressor 3...Indoor heat exchanger 4...Outdoor heat exchanger 5...Expansion valve 6...Four-way valve 7...Refrigerant piping 8...Indoor unit 9...Outdoor unit 11...Indoor temperature sensor 12... Outdoor temperature sensor 13... Radiation temperature sensor 20... Control device 21... Air conditioning control section 22... Calculation section 23... Setting section

Claims (8)

  1.  圧縮機によって圧縮された冷媒を室内熱交換器と室外熱交換器との間で循環させる冷媒回路を有する空気調和機を、設定温度に対する室内温度の偏差である第1偏差が小さくなるように制御する制御装置であって、
     所定の設定値に基づき前記圧縮機の最大回転数を制御するものであり、
     前記第1偏差が第1所定値以下となるまでの第1時間を算出する算出部と、
     前記第1時間に基づき前記設定値を設定する設定部と
     を備える制御装置。
    An air conditioner having a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger is controlled so that the first deviation, which is the deviation of the indoor temperature from the set temperature, is small. A control device that
    The maximum rotation speed of the compressor is controlled based on a predetermined setting value,
    a calculation unit that calculates a first time until the first deviation becomes equal to or less than a first predetermined value;
    A control device comprising: a setting section that sets the set value based on the first time.
  2.  前記設定部は、前記第1時間が、第1閾値以下の場合に前記設定値を減少させ、前記第1閾値より大きい第2閾値未満で前記第1閾値より大きい場合に前記設定値を変更せず、前記第2閾値以上の場合に前記設定値を増加させる
     請求項1に記載の制御装置。
    The setting unit decreases the set value when the first time is less than or equal to a first threshold, and changes the set value when the first time is less than a second threshold that is larger than the first threshold and is larger than the first threshold. The control device according to claim 1, wherein: first, the set value is increased when the set value is equal to or greater than the second threshold value.
  3.  前記算出部は、前記第1時間が経過する前に、予測によって前記第1時間を算出する 請求項2に記載の制御装置。 The control device according to claim 2, wherein the calculation unit calculates the first time by prediction before the first time elapses.
  4.  前記算出部は、少なくとも、前記設定温度、前記室内温度、前記最大回転数および前記第1時間の各実績値に基づき機械学習された学習済み機械学習モデルを用いて、前記第1時間を予測する
     請求項3に記載の制御装置。
    The calculation unit predicts the first time using a learned machine learning model that is machine learned based on at least the set temperature, the indoor temperature, the maximum rotation speed, and each actual value for the first time. The control device according to claim 3.
  5.  前記算出部は、さらに、室内において放射温度センサで計測された放射温度の前記設定温度に対する偏差である第2偏差が第2所定値以下となるまでの第2時間を算出し、
     前記設定部は、前記第1時間と前記第2時間とに基づいて前記設定値を設定する
     請求項4に記載の制御装置。
    The calculation unit further calculates a second time until a second deviation, which is a deviation of the radiant temperature measured indoors by the radiant temperature sensor from the set temperature, becomes equal to or less than a second predetermined value,
    The control device according to claim 4, wherein the setting unit sets the setting value based on the first time and the second time.
  6.  前記設定部は、運転開始時の前記設定温度と前記室内温度との温度差と、前記第1時間とに基づき前記設定値を設定する
     請求項5に記載の制御装置。
    The control device according to claim 5, wherein the setting unit sets the set value based on a temperature difference between the set temperature and the indoor temperature at the start of operation, and the first time.
  7.  圧縮機によって圧縮された冷媒を室内熱交換器と室外熱交換器との間で循環させる冷媒回路を有する空気調和機を、設定温度に対する室内温度の偏差である第1偏差が小さくなるように制御する制御方法であって、
     所定の設定値に基づき前記圧縮機の最大回転数を制御するものであり、
     前記第1偏差が第1所定値以下となるまでの第1時間を算出するステップと、
     前記第1時間に基づき前記設定値を設定するステップと
     を含む制御方法。
    An air conditioner having a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger is controlled so that the first deviation, which is the deviation of the indoor temperature from the set temperature, is small. A control method comprising:
    The maximum rotation speed of the compressor is controlled based on a predetermined setting value,
    calculating a first time until the first deviation becomes equal to or less than a first predetermined value;
    and setting the set value based on the first time.
  8.  圧縮機によって圧縮された冷媒を室内熱交換器と室外熱交換器との間で循環させる冷媒回路と、
     設定温度に対する室内温度の偏差である第1偏差が小さくなるように前記圧縮機の回転数を制御するものであって、所定の設定値に基づき前記圧縮機の最大回転数を制御するものであり、前記第1偏差が第1所定値以下となるまでの第1時間を算出する算出部と、前記第1時間に基づき前記設定値を設定する設定部とを有する制御装置と、
     を備える空気調和機。
    a refrigerant circuit that circulates refrigerant compressed by a compressor between an indoor heat exchanger and an outdoor heat exchanger;
    The number of rotations of the compressor is controlled so that a first deviation, which is a deviation of indoor temperature from a set temperature, is small, and the maximum number of rotations of the compressor is controlled based on a predetermined set value. , a control device comprising: a calculation unit that calculates a first time until the first deviation becomes equal to or less than a first predetermined value; and a setting unit that sets the set value based on the first time;
    Air conditioner equipped with.
PCT/JP2023/029993 2022-08-26 2023-08-21 Control device, control method, and air conditioner WO2024043206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134898A JP2024031381A (en) 2022-08-26 2022-08-26 Control device, control method and air conditioner
JP2022-134898 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024043206A1 true WO2024043206A1 (en) 2024-02-29

Family

ID=90013289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029993 WO2024043206A1 (en) 2022-08-26 2023-08-21 Control device, control method, and air conditioner

Country Status (2)

Country Link
JP (1) JP2024031381A (en)
WO (1) WO2024043206A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173633A (en) * 1997-12-09 1999-07-02 Sanyo Electric Co Ltd Heating system
JP2021050853A (en) * 2019-09-24 2021-04-01 パナソニックIpマネジメント株式会社 Method for starting operation of air conditioner and control device
WO2021117234A1 (en) * 2019-12-13 2021-06-17 三菱電機株式会社 Model sharing system, model management apparatus, and control apparatus for air conditioning apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173633A (en) * 1997-12-09 1999-07-02 Sanyo Electric Co Ltd Heating system
JP2021050853A (en) * 2019-09-24 2021-04-01 パナソニックIpマネジメント株式会社 Method for starting operation of air conditioner and control device
WO2021117234A1 (en) * 2019-12-13 2021-06-17 三菱電機株式会社 Model sharing system, model management apparatus, and control apparatus for air conditioning apparatus

Also Published As

Publication number Publication date
JP2024031381A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
JP3137114B1 (en) Multi-room air conditioner
US11262092B2 (en) Air conditioning system including a ventilator that supplies humidified outdoor air
CN111174372B (en) Air conditioner control method and device, storage medium and air conditioner
JP2004233034A (en) Power saving dehumidifying operation method of air conditioner
KR101948100B1 (en) Air conditioner and controlling method of the same
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
JP6109307B2 (en) Air conditioner
CN108151249A (en) Progress control method, device, air conditioner and computer readable storage medium
JP2020070986A (en) Air conditioner
WO2019034124A1 (en) Method for controlling automatic temperature-adjustment air conditioner and air conditioner
JP2006145204A (en) Air conditioner
JP3816782B2 (en) Air conditioner
JP2018124033A (en) Air conditioning control system and air conditioning control method
JP2009014321A (en) Air conditioner
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
WO2024043206A1 (en) Control device, control method, and air conditioner
KR101151321B1 (en) Multi system air conditioner and control method thereof
JP3518350B2 (en) Heat pump heating system
WO2017090220A1 (en) Air conditioning device
JP3518353B2 (en) Heat pump heating system
JP6890706B1 (en) Air conditioning system and control method
CN110542174B (en) Defrosting method of air conditioner external unit, computer readable storage medium and air conditioner
CN113587249A (en) Multi-split system
WO2024116241A1 (en) Air-conditioning device, air-conditioning control device, air-conditioning system, and air-conditioning control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857317

Country of ref document: EP

Kind code of ref document: A1