WO2020240659A1 - Control device, air environment adjustment system, air environment adjustment method, program, and recording medium - Google Patents

Control device, air environment adjustment system, air environment adjustment method, program, and recording medium Download PDF

Info

Publication number
WO2020240659A1
WO2020240659A1 PCT/JP2019/020893 JP2019020893W WO2020240659A1 WO 2020240659 A1 WO2020240659 A1 WO 2020240659A1 JP 2019020893 W JP2019020893 W JP 2019020893W WO 2020240659 A1 WO2020240659 A1 WO 2020240659A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermo
control
ventilation volume
air
ventilation
Prior art date
Application number
PCT/JP2019/020893
Other languages
French (fr)
Japanese (ja)
Inventor
芸青 范
齊藤 信
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/020893 priority Critical patent/WO2020240659A1/en
Priority to JP2021521590A priority patent/JP7357673B2/en
Publication of WO2020240659A1 publication Critical patent/WO2020240659A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a control device for adjusting the indoor air environment, an air environment adjustment system, an air environment adjustment method, a program, and a recording medium on which the program is recorded, and particularly controls the ventilation volume of the ventilation device based on information from the air conditioner. Regarding what to do.
  • the ventilation system and the air conditioner are operated independently and are not functionally linked. Temporarily reducing or increasing the ventilation volume may reduce the power consumption of the air conditioner and improve the thermal environment, but there is no means of communication between the devices. It wasn't functioning well.
  • Patent Document 1 there is a system in which a ventilation device and an air conditioner are communicably connected and operated in cooperation (see, for example, Patent Document 1).
  • the ventilation volume of the ventilation device is controlled according to the operation mode of the air conditioner. Specifically, when the air conditioner enters the thermo-off operation, the ventilation volume of the ventilation device is suppressed and the inflow of outdoor air is suppressed. As a result, the time until the room temperature converges to the set temperature is suppressed, and the sudden drop in the room temperature is suppressed.
  • the air conditioner When the air-conditioning load becomes smaller due to the high airtightness and high heat insulation of the housing frame and the air-conditioning load becomes less than the minimum capacity of the air conditioner, the air conditioner performs low-capacity operation for thermo-on and thermo-off control. For example, when the temperature of the air-conditioned room reaches a predetermined threshold value lower than the set temperature during the cooling operation, the air conditioner enters the thermo-off control and stops the temperature adjustment of the room to be air-conditioned. Further, when the temperature of the air-conditioned room reaches a predetermined threshold value higher than the set temperature by the thermo-off control, the air conditioner enters the thermo-on control and restarts the temperature adjustment of the room to be air-conditioned.
  • control is performed to suppress the ventilation volume of the ventilation device when the air conditioner enters the thermo-off control, the time until the room temperature converges to the set temperature is suppressed, and the room temperature suddenly drops. It is suppressing.
  • control is continued for a long time, the operation of the ventilation device with the ventilation amount suppressed is continued, so that the required ventilation amount cannot be secured.
  • the ventilation volume increases during the thermo-off control and the outdoor air flows in, so that the temperature fluctuation in the room becomes large. Therefore, in order to suppress the temperature fluctuation in the room, the air conditioner periodically repeats thermo-on and thermo-off control.
  • the threshold value for switching the thermo operation of the air conditioner becomes smaller, so the cycle between thermo-on and thermo-off becomes smaller, and the equipment provided in the air conditioner.
  • the number of times of starting and stopping (starting and stopping of equipment) increases. As a result, there is a problem that the energy loss of the air conditioner is increased and the life of the equipment provided in the air conditioner is shortened.
  • the present invention has been made to solve the above-mentioned problems, and the number of times of starting and stopping of the air-conditioning device by controlling the thermo-on and thermo-off of the air-conditioning device while maintaining an appropriate ventilation volume in the room to be air-conditioned. It is an object of the present invention to provide a control device, an air environment adjustment system, an air environment adjustment method, a program, and a recording medium that adjust the indoor air environment by reducing the amount.
  • the control device is a control device that controls the operation of a ventilation device that ventilates the air in an air-conditioned room whose room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state.
  • the operation state information of the air conditioner is acquired, the operation state information is stored as the operation history information of the air conditioner, and the air conditioner is in the low capacity operation state, the thermo-on control is performed from the operation history information.
  • the ventilation volume of the ventilation device at the time of the thermo-off control is determined, and the ventilation volume is changed according to the thermo-on control and the thermo-off control of the air conditioner.
  • the air environment adjustment system includes the above-mentioned control device and the above-mentioned ventilation device.
  • the air environment adjusting method is an air environment adjusting method in the air-conditioned room in which the room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state, and is an operating state of the air conditioner.
  • Information is acquired, the operation state information is stored as the operation history information of the air conditioner, and when the air conditioner is in the low capacity operation state, the thermo-on control and the thermo-off control are performed from the operation history information.
  • the ventilation volume is determined, and the ventilation volume is changed according to the thermo-on control and the thermo-off control of the air conditioner.
  • the program according to the present invention is a computer that controls the operation of a ventilation device that ventilates the air in the air-conditioned room in an air-conditioned room in which the room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state.
  • the operation state information of the air conditioner is acquired, the operation state information is stored as the operation history information of the air conditioner, and when the air conditioner is in the low capacity operation state, the thermo-on control of the air conditioner is performed. And, it functions as a means for changing the ventilation volume of the ventilation device according to the thermo-off control.
  • the recording medium according to the present invention is a computer-readable medium on which the above program is recorded.
  • the ventilation volume of the ventilation device is controlled according to the thermo-on and thermo-off control of the air conditioner, the fluctuation of the room temperature of the air-conditioned room is suppressed and the time interval between the thermo-on and the thermo-off of the air conditioner is lengthened. be able to. Therefore, while maintaining an appropriate ventilation volume in the air-conditioned room, the number of times the air-conditioning device is started and stopped is reduced, so that the life of the device is extended and the energy loss of the air-conditioning device is also reduced.
  • FIG. It is a schematic block diagram of the air environment adjustment system 100 in Embodiment 1.
  • FIG. It is a detailed block diagram of the air environment adjustment system 100 of FIG. This is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in cooling operation. This is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in cooling operation.
  • FIG. It is an operation control flow of the ventilation device 20 by the control device 10 of FIG. This is an example of the operation pattern of the compressor 41 of the air conditioner 30 in the air environment adjustment system 100 according to the first embodiment.
  • FIG. 1 An example of the operation history information of the air conditioner 30 of the air environment adjustment system 100 according to the first embodiment is shown. It is a figure which shows the correlation between the ventilation volume of the ventilation apparatus 20 and the threshold value of thermo operation switching of an air conditioner 30 in the 3rd pattern of FIG.
  • the communication may be a mixture of wireless communication and wired communication as well as wireless communication and wired communication.
  • wireless communication may be performed in a certain section, and wired communication may be performed in another space.
  • the communication from one device to another device may be performed by wired communication, and the communication from another device to a certain device may be performed by wireless communication.
  • FIG. 1 is a schematic configuration diagram of the air environment adjustment system 100 according to the first embodiment.
  • the schematic configuration of the air environment adjustment system 100 will be described with reference to FIG.
  • the air environment adjustment system 100 includes a control device 10, a ventilation device 20 that ventilates the inside of the air-conditioned room 1, and an air-conditioning device 30 that air-conditions the inside of the air-conditioned room 1.
  • the control device 10 is communicably connected to the ventilation device 20 and the air conditioner 30.
  • the control device 10 is configured so that at least the operation state information of the air conditioner 30 from the air conditioner 30 can be acquired to control the operation of the ventilation device 20.
  • the air environment adjustment system 100 coordinates the air conditioner 30 that adjusts the temperature of the air in the air-conditioned room 1 and the ventilation device 20 that controls the exchange amount between the air and the outside air in the air-conditioned room 1. Can be controlled.
  • the air environment adjustment system 100 may be configured to be able to communicate with an external terminal 90, which is a terminal connected by means such as the Internet.
  • the information processing performed by the control device 10 may be performed by the external terminal 90. That is, the operation state information of the air conditioner 30 from the air conditioner 30 is transmitted to the external terminal 90, the operation state information of the air conditioner 30 is processed by the external terminal 90, and the control instruction is transmitted from the external terminal 90 to the ventilation device 20. You may.
  • the external terminal 90 is, for example, a computer or server installed outside.
  • control device 10 may be independent as shown in FIG. 1, but may be integrally configured with the ventilation device 20, the air conditioner 30, or other devices.
  • FIG. 2 is a detailed configuration diagram of the air environment adjustment system 100 of FIG.
  • the configuration of the air environment adjustment system 100 including the schematic configuration of the ventilation device 20 and the air conditioner 30 will be described with reference to FIG. First, the schematic configuration of the ventilation device 20 will be described.
  • the ventilation device 20 includes an intake pipe 21, an exhaust pipe 22, a total heat exchange unit 23, and an outside air direct introduction bypass 24.
  • the total heat exchange unit 23 recovers the energy of the air discharged from the air-conditioned room 1.
  • An intake fan 25 is installed in the intake pipe 21, an exhaust fan 26 is installed in the exhaust pipe, and a bypass fan 27 is installed in the outside air direct introduction bypass 24.
  • the ventilation device 20 is provided with an opening / closing portion 29a at a connecting portion 29 between the intake pipe 21 and the outside air direct introduction bypass 24.
  • the connection portion 29 is installed on the way from the suction port 21a of the intake pipe 21 to the total heat exchange portion 23. By opening the opening / closing unit 29a, the air from the intake pipe 21 can be introduced into the air-conditioned room 1 without passing through the total heat exchange unit 23.
  • the ventilation device 20 supplies and exhausts air by operating the intake fan 25 and the exhaust fan 26.
  • the opening / closing unit 29a When the opening / closing unit 29a is closed, the outdoor air introduced into the intake pipe 21 by the intake fan 25 is introduced into the air-conditioned room 1 via the total heat exchange unit 23. Further, regardless of whether the opening / closing portion 29a is open or closed, the air in the air-conditioned chamber 1 introduced into the exhaust pipe 22 by the exhaust fan 26 passes through the total heat exchange portion 23 and from the exhaust port 22a. It is discharged to the outside of the room.
  • the ventilation device 20 can open and close the opening / closing unit 29a and change the outputs of the intake fan 25, the exhaust fan 26, and the bypass fan 27, if necessary.
  • the ventilation device 20 can appropriately change the ventilation volume of the air-conditioned room 1, and can also appropriately change the heat recovery from the air discharged from the air-conditioned room 1.
  • the ventilation device 20 basically operates continuously for 24 hours to ventilate the air-conditioned room 1.
  • the ventilation device 20 is set to ventilate half the volume of the air-conditioned room 1 in one hour in a normal state.
  • the normal ventilation volume of the ventilation device 20 is expressed as "0.5 times / h".
  • the normal ventilation volume of the ventilation device 20 is an example and is not limited to this value, and can be changed as necessary.
  • the ventilation volume of the ventilation device 20 can be changed by control. For example, when the ventilation volume is set to "0.1 times / h", the ventilation device 20 ventilates 1/10 of the volume of the air-conditioned room 1 in one hour.
  • the operation of the ventilation device 20 is controlled according to the operating state of the air conditioner 30 that adjusts the room temperature of the air-conditioned room 1.
  • the ventilation control terminal 12 shown in FIG. 2 is a terminal for controlling the operation of the ventilation device 20, and is for executing the operation start, operation stop, change of the ventilation volume, etc. of the ventilation device 20. ..
  • the operating state of the ventilation device 20 can be set manually, but in the first embodiment, the case where the ventilation device 20 is controlled by the control device 10 will be described.
  • the ventilation control terminal 12 may be integrally configured with the ventilation device 20 or may be separately configured. Further, the ventilation control terminal 12 may be integrally configured with the control device 10.
  • the air conditioner 30 is configured by connecting an indoor unit 31 installed in the air-conditioned room 1 and an outdoor unit 32 installed outside the air-conditioned room 1 by a refrigerant pipe.
  • the air conditioner 30 has a refrigeration cycle circuit 40 in which a compressor 41, a flow path switching device 42 such as a four-way valve, an indoor heat exchanger 43, an expansion device 44, and an outdoor heat exchanger 45 are sequentially connected by a refrigerant pipe.
  • a compressor 41, a flow path switching device 42, an expansion device 44, and an outdoor heat exchanger 45 are installed inside the outdoor unit 32, and outdoor air is heated to the outside in the vicinity of the outdoor heat exchanger 45.
  • An outdoor blower 49 for sending to the exchanger 45 is installed.
  • An indoor heat exchanger 43 is installed inside the indoor unit 31, and an indoor blower 47 that sends the air in the air-conditioned room 1 to the indoor heat exchanger 43 is installed in the vicinity of the indoor heat exchanger 43. ing.
  • the air conditioner 30 mainly performs cooling, heating, dehumidifying, humidifying, moisturizing, or blowing operation, and adjusts the air in the air conditioner target room 1.
  • the refrigeration cycle circuit 40 circulates the internal refrigerant while compressing and expanding it to form a heat pump. Further, the indoor heat exchanger 43 installed in the air-conditioned room 1 functions as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the air conditioner 30 includes a temperature sensor 33 that measures the room temperature of the air-conditioned room 1, a temperature sensor 34 that measures the temperature of the refrigerant flowing through the indoor heat exchanger 43, and a temperature sensor 35 that measures the temperature of the blown air. It has.
  • the indoor unit 31 sucks the indoor air of the air-conditioned room 1 into the housing, passes it through the indoor heat exchanger 43, and blows it out to the air-conditioned room 1.
  • the air conditioner 30 circulates the refrigerant in the refrigeration cycle circuit 40, and the indoor heat exchanger 43 exchanges heat between the refrigerant and the air to cool and heat the air-conditioned room 1.
  • the air conditioner 30 adjusts the air conditioning capacity so that the temperature of the air in the air conditioning target room 1 becomes the temperature set by, for example, a remote controller.
  • the air-conditioning control terminal 13 shown in FIG. 2 is a terminal for controlling the operation of the air-conditioning device 30, and is for setting a set temperature and the like to execute the operation of the air-conditioning device 30.
  • the air conditioning control terminal 13 may be integrally configured with the indoor unit 31 or the outdoor unit 32 or may be configured separately. Further, the air conditioning control terminal 13 may be integrally configured with the control device 10.
  • Control device 10 The control device 10 controls the operation of the ventilation device 20 based on the operation state information of the air conditioner 30 acquired from the air conditioner 30. As shown in FIG. 2, the control device 10 is communicably connected to each of the room temperature detector 11, the ventilation control terminal 12, and the air conditioning control terminal 13. The room temperature detector 11 detects the temperature of the air in the air-conditioned room 1 and transmits the temperature information to the control device 10. However, the control device 10 can acquire the temperature information from the temperature sensor 33 included in the indoor unit 31 of the air conditioner 30 from the air conditioning control terminal 13 and use it as the temperature of the air in the air conditioning target room 1.
  • the control device 10 acquires the operating state information of the air conditioning device 30 from the air conditioning control terminal 13.
  • the operating state information of the air conditioner 30 is the frequency of the compressor 41 included in the air conditioner 30.
  • the rotation speed of the compressor 41 is controlled by an inverter, and the rotation speed is increased, decreased, or stopped according to the cooling load or the heating load in the room.
  • the air conditioning control terminal 13 transmits the frequency of the compressor 41 to the control device 10 as operating state information of the air conditioning device 30.
  • the control device 10 processes the frequency of the compressor 41 as operating state information of the air conditioner 30, determines the required ventilation volume, and transmits it to the ventilation control terminal 12 as an instruction.
  • the ventilation control terminal 12 controls the specific operation of the ventilation device 20.
  • the cooling load is the heat contained in the air in the air-conditioned room 1, the heat source of a person or the like in the air-conditioned room 1, or the heat flowing into the air-conditioned room 1 when the ventilation device 20 ventilates. ..
  • the ventilation device 20 is normally operated at a ventilation rate of 0.5 times / h. Therefore, the air introduced into the air-conditioned room 1 by the ventilation device 20 is a cooling load.
  • the air-conditioning device 30 is operated with a cooling capacity higher than that of the cooling load, and lowers the temperature of the air in the room. At this time, the compressor 41 is operated at a high rotation speed.
  • the air-conditioning device 30 is in a low-capacity operating state. Driven by. At this time, when the cooling capacity required for the air conditioner 30 is equal to or less than the minimum output, the air conditioner 30 is subjected to thermo-off control and thermo-on control.
  • FIG. 3 is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in the cooling operation.
  • FIG. 3 shows changes in the operating state and temperature of the air conditioner 30 when the ventilation volume of the ventilation device 20 is normal.
  • the air conditioner 30 repeats operation and stop in order to maintain the temperature of the air in the air-conditioned room 1 within a predetermined range.
  • the air-conditioning device 30 is thermo-on controlled and starts operation. That is, the air conditioner 30 performs the cooling operation by starting the compressor 41 and circulating the refrigerant in the refrigeration cycle circuit 40.
  • the air conditioner 30 When the cooling capacity of the air conditioner 30 is higher than the cooling load in the air conditioner target room 1, the temperature of the air in the air conditioner target room 1 drops, and when the temperature reaches 0.5 ° C. lower than the set temperature, the air conditioner 30 Is thermo-off controlled to stop operation. At this time, the air conditioner 30 is put into an operating state in which the compressor 41 is stopped and the indoor heat exchanger 43 does not exchange heat between the refrigerant and the air.
  • the ventilation device 20 ventilates the air-conditioned room 1.
  • the air conditioner 30 is thermo-on and thermo-off controlled and the ventilation device 20 is operated at a ventilation rate of 0.5 times / h as in the normal state
  • the air conditioner 30 is operated by the ventilation device 20 in the air-conditioned room. Due to the heat generated by the air introduced into 1, the room temperature fluctuates, and the thermo-on and thermo-off controls are frequently repeated.
  • the equipment included in the air conditioner 30, particularly the compressor 41 has a problem that the number of starts and stops increases and the life of the equipment is shortened. Further, there is a problem that the energy loss also increases due to the increase in the number of starts and stops of the air conditioner 30.
  • control device 10 acquires the operation state information of the air conditioner 30 and controls the operation of the ventilation device 20 according to the operation state information of the air conditioner 30. can do.
  • FIG. 4 is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in the cooling operation.
  • FIG. 4 shows changes in the operating state and temperature of the air conditioner 30 when the ventilation volume of the ventilation device 20 is controlled by the control device 10.
  • the control device 10 sets the ventilation volume of the ventilation device 20 to 0.7 times / h when the air conditioner 30 is thermo-on controlled. Then, the control device 10 sets the ventilation volume of the ventilation device 20 to 0.3 times / h when the air conditioner 30 is thermo-off controlled.
  • the air conditioner 30 when the air conditioner 30 is thermo-on controlled, the amount of outside air introduced into the air-conditioned room 1 is larger than usual. Therefore, the temperature change of the air in the air-conditioned room 1 due to the cooling operation of the air-conditioning device 30 becomes gentle, and the air-conditioning device 30 is operated under the thermo-on control for a long time.
  • the air conditioner 30 when the air conditioner 30 is thermo-off controlled, the amount of outside air introduced into the air-conditioned room 1 is smaller than usual. Therefore, even if the cooling operation by the air conditioner 30 is stopped, the temperature of the air in the air-conditioned room 1 is easily maintained, and the temperature change becomes gradual. As a result, the operating time of the air conditioner 30 under the thermo-off control becomes longer.
  • the control device 10 shown in FIG. 4 allows the ventilation device 20 to operate.
  • the cycle of thermo-on and thermo-off control becomes longer. That is, the number of times the air conditioner 30 starts and stops per unit time is reduced.
  • FIG. 5 is a block diagram showing an example of the control device 10 according to the first embodiment.
  • the control device 10 includes an air-conditioning operation state detection unit 54 that acquires operation state information of the air-conditioning device 30 from the air-conditioning device 30, and a room temperature detection unit 55 that acquires air temperature information of the air in the air-conditioning target room 1 from the room temperature detector 11 and the like.
  • a communication unit 53 is provided.
  • the communication unit 53 is communicably connected to the room temperature detector 11, the ventilation control terminal 12, the air conditioning control terminal 13, and the external terminal 90, and acquires information from each unit and transmits information to each unit.
  • the control device 10 includes a storage unit 52 that stores the operation state information of the air conditioner 30, and a control unit 51 that determines the ventilation volume based on the operation state information of the air conditioner 30 and controls the ventilation device 20.
  • the control unit 51 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU is also referred to as a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the CPU reads out the programs and data stored in the ROM and uses the RAM as a work area to control the control device 10 in an integrated manner.
  • the storage unit 52 is, for example, a non-volatile semiconductor memory such as a flash memory, an EPROM (Erasable Programmable ROM), or an EPROM (Electrically Erasable Programmable ROM), and plays a role as a so-called secondary storage device.
  • the storage unit 52 stores the operating state information of the air conditioner 30 acquired by the communication unit 53. Further, the storage unit 52 stores the room temperature information acquired by the communication unit 53. Further, the storage unit 52 stores programs, data, and the like for communication between the control device 10 and each unit constituting the air environment adjustment system 100. When the control device 10 directly controls the ventilation device 20, the storage unit 52 stores a program and data for controlling the ventilation device 20.
  • the communication unit 53 includes a room temperature detector 11, a ventilation control terminal 12, an air conditioning control terminal 13, and a communication interface for communicating with the external terminal 90.
  • the timekeeping unit 56 is provided with, for example, an RTC (Real Time Clock), and is a timekeeping device that performs timekeeping for thermo-on control and thermo-off control of the air conditioner 30.
  • RTC Real Time Clock
  • FIG. 6 is an operation control flow of the ventilation device 20 by the control device 10 of FIG.
  • the flow of processing executed by the control device 10 of the air environment adjustment system 100 configured as described above will be described with reference to the flowchart shown in FIG.
  • the control device 10 acquires room temperature information (step A1).
  • the room temperature information is the temperature of the air in the air-conditioned room 1 detected by the room temperature detector 11 or the temperature of the air detected by the temperature sensor 33 included in the indoor unit 31 of the air-conditioning device 30.
  • the room temperature information is transmitted from at least one of the room temperature detector 11 and the air conditioning control terminal 13 to the communication unit 53 of the control device 10.
  • the room temperature information acquired by the communication unit 53 is processed by the control unit 51 and stored in the storage unit 52 as needed.
  • the control device 10 acquires the operating state information of the air conditioner 30 (step A2).
  • the operating state information of the air conditioner 30 is at least the frequency of the compressor 41 included in the air conditioner 30.
  • the operating state information of the air conditioner 30 is transmitted from the air conditioner control terminal 13 to the communication unit 53 of the control device 10.
  • the operation state information of the air conditioner 30 acquired by the communication unit 53 is processed by the control unit 51 and stored in the storage unit 52 as needed.
  • the control device 10 determines whether or not the air conditioner 30 is in a low-capacity operating state (step A3).
  • the control device 10 determines whether or not the air conditioner 30 is in the low capacity operating state based on the operating state information of the air conditioner 30 acquired in step A2.
  • the low-capacity operation state refers to a state in which the air conditioner 30 is performing thermo-on control and thermo-off control.
  • the case where the air conditioner 30 is normally operated means a state in which the air conditioner 30 is continuously operated at an output between the minimum output and the maximum output of the air conditioner 30.
  • Whether or not the air conditioner 30 is in the low capacity operating state is determined by the frequency pattern of the compressor 41 obtained by storing the operating state information of the air conditioner 30 or the operating state information of the air conditioner 30 of the air conditioner 30. Will be done. The determination of whether or not the air conditioner 30 of the control device 10 in step A3 is in the low capacity operating state will be described in detail later.
  • step A3 when the air conditioner 30 is normally operated, the ventilation device 20 continues to operate with the normal ventilation volume (0.5 times / h). That is, if No in step A3, the control ends.
  • the control device 10 acquires the operation history information of the air conditioner 30 (step A4). Specifically, the operation pattern of the compressor 41 of the air conditioner 30 stored in the storage unit 52 is acquired.
  • control device 10 determines the ventilation volume of the ventilation device 20 in each case of the thermo-on control and the thermo-off control of the air conditioner 30 (step A5).
  • the control device 10 controls the ventilation volume of the ventilation device 20 when the air conditioner 30 controls the thermo-on and the thermo-off control, respectively.
  • the ventilation volume control if the ventilation volume of the ventilation device 20 continues to be low for a long time, the ventilation volume required for the air-conditioned room 1 may not be secured.
  • the ventilation volume required for the air-conditioned room 1 is 0.5 times / h. This is usually referred to as ventilation volume Q0. That is, for example, when the ventilation volume of the ventilation device 20 is set to 0.3 times / h and the ventilation volume is continued for a long time, the thermo-on control and the thermo-off control of the air conditioner 30 are performed once each.
  • the ventilation volume per cycle of thermo operation may be less than 0.5 times / h.
  • the ventilation volume control if the state in which the ventilation volume of the ventilation device 20 is large continues for a long time, the cooling load of the air-conditioned room 1 becomes large due to the ventilation, and the cooling capacity of the air-conditioning device 30 is increased for operation. , The power consumption of the air conditioner 30 increases.
  • the control device 10 has a thermo-on control time ⁇ t1 which is a duration of thermo-on control and a thermo-off control which is a duration of thermo-off control from the operation history information of the air conditioner 30. Read the time ⁇ t2 respectively.
  • the control device 10 sets the ventilation volume of the ventilation device 20 at the time of thermo-on control to be larger than the normal ventilation volume Q0, and sets the ventilation volume of the ventilation device 20 at the time of thermo-off control to be smaller than the normal ventilation volume Q0, while performing the thermo operation.
  • the ventilation volume is controlled so that the average ventilation volume per cycle becomes equal to the normal ventilation volume Q0.
  • FIG. 7 is an example of the operation pattern of the compressor 41 of the air conditioner 30 in the air environment adjustment system 100 according to the first embodiment.
  • the first pattern is a case where the thermo-on control time ⁇ t1 is longer than the thermo-off control time ⁇ t2.
  • the second pattern is a case where the thermo-on control time ⁇ t1 is shorter than the thermo-off control time ⁇ t2.
  • the third pattern is a case where the thermo-on control time ⁇ t1 and the thermo-off control time ⁇ t2 have the same length.
  • the control device 10 may determine that it corresponds to the first pattern and the second pattern. In that case, the control device 10 determines that the third pattern is applicable when the difference between the thermo-on control time ⁇ t1 and the thermo-off control time ⁇ t2 is within 1 minute. With this configuration, the control device 10 can clearly determine the pattern of thermo operation. The details of how the control device 10 sets the ventilation volume of the ventilation device 20 in each pattern will be described later.
  • the control device 10 stores the ventilation volume at each of the thermo-on control time ⁇ t1 and the thermo-off control time ⁇ t2, for example, in the storage unit 52. Then, the control device 10 determines from the operation state information of the air conditioner 30 that the air conditioner 30 is being operated by the thermo-on control or the thermo-off control, and transmits the ventilation volume according to the operation state to the ventilation control terminal 12. ..
  • the ventilation control terminal 12 controls the ventilation device 20 based on the instruction from the control device 10 (step A6).
  • the control flow of the control device 10 shown in FIG. 6 repeats from the start to the end at a predetermined frequency while the air conditioner 30 of the air environment adjustment system 100 is operating. However, for example, when the user is set not to perform the control shown in FIG. 6, the cooling load of the air-conditioned room 1 becomes high, and the air-conditioning device 30 continues to operate at a predetermined cooling capacity. , The control may be terminated and the repetition of the control flow may be stopped.
  • FIG. 8 shows an example of the operation history information of the air conditioner 30 of the air environment adjustment system 100 according to the first embodiment.
  • the determination in step A3 of FIG. 6 will be described with reference to FIG.
  • FIG. 8 is a diagram showing a time transition of the frequency of the compressor 41 of the air conditioner 30.
  • the temperature of the air in the air-conditioned room 1 is higher than the target set temperature, so that the air-conditioning device 30 has the maximum cooling capacity. And be driven. At this time, the frequency of the compressor 41 is operated at the maximum value.
  • the frequency of the compressor 41 gradually decreases, and the compressor 41 is operated at the minimum operating frequency.
  • the room temperature reaches a temperature lower than the set temperature by a predetermined temperature while operating at the minimum operating frequency of the compressor 41, the compressor 41 stops operating. After that, if there is no large change in the cooling load of the air conditioner target room 1, the air conditioner 30 repeatedly starts and stops the compressor 41 to perform a thermo operation.
  • the control device 10 determines the low-capacity operating state of the air conditioner 30.
  • the control device 10 detects that the frequency of the compressor 41 of the air conditioner 30 is the minimum value and the room temperature is within the set temperature ⁇ x ° C.
  • the air conditioner 30 Is determined to be in a low capacity operating state.
  • the control device 10 acquires the set temperature, which is the target temperature of the air conditioning target room 1, and the frequency information of the compressor 41 from the air conditioning control terminal 13 as operating state information.
  • the control device 10 acquires room temperature information from the room temperature detector 11. When the room temperature information from the room temperature detector 11 is within the range of ⁇ x ° C.
  • the control device 10 determines that the room temperature is within the range of the set temperature ⁇ x ° C. ..
  • the room temperature information can be substituted by acquiring the temperature of the temperature sensor 33 of the indoor unit 31 from the air conditioning control terminal 13.
  • the control device 10 when the control device 10 detects that the frequency of the compressor 41 of the air conditioner 30 is 0, it is determined that the air conditioner 30 is in a low capacity operating state. At this time, the control device 10 acquires the frequency information of the compressor 41 from the air conditioning control terminal 13 as the operating state information of the air conditioner 30, and the compressor 41 is stopped while the air conditioning device 30 is in the operating state. In addition, it is judged that the operation is in a low capacity state. In the second means, the control device 10 does not use the room temperature information and the set temperature information, but whether or not the room temperature is within the set temperature ⁇ x ° C. range from the room temperature information and the set temperature information. The judgments may be made at the same time. This improves the accuracy of the determination.
  • the control device 10 acquires the operation history information of the compressor 41 of the air conditioner 30, and the compressor 41 is stopped and started at least once based on the frequency pattern of the compressor 41. In this case, it is determined that the air conditioner 30 is in low capacity operation. At this time, the control device 10 acquires the frequency pattern stored in the storage unit 52, and operates at a low capacity when the compressor 41 is stopped and started at least once within a predetermined time in the past from the present time. Judge that it is in a state.
  • the room temperature information may be used in the third means as well as in the first means and the second means. This improves the accuracy of the determination.
  • the ventilation volume setting of the ventilation device 20 by the control device 10 in step A5 of FIG. 6 will be described.
  • the ventilation volume control of the control device 10 in the first pattern shown in FIG. 7 will be described.
  • the thermo-on control time ⁇ t1 is longer than the thermo-off control time ⁇ t2.
  • the control device 10 determines the first ventilation volume Q1 at the thermo-off control time ⁇ t2.
  • the first ventilation volume Q1 is set to the ventilation volume at the time of thermo-off, which is smaller than the normal ventilation volume Q0 when the air conditioner 30 is normally operated, and is set to 0.3 times / h in the first embodiment.
  • the control device 10 calculates the first integrated ventilation volume V1 from the first ventilation volume Q1 and the thermo-off control time ⁇ t2 to the start of the thermo-on control.
  • the thermo-on control time ⁇ t1 is known from the operation history information.
  • the ventilation volume Q at the thermo-on control time ⁇ t1 such that the average ventilation volume is 0.5 times / h, which is the normal ventilation volume Q0 per one cycle of the thermo-operation, is obtained from the following equation.
  • Q ⁇ ⁇ t1 + Q1 ⁇ ⁇ t2 Q0 ⁇ ( ⁇ t1 + ⁇ t2) ... (Equation 1)
  • thermo-on control time ⁇ t1 is shorter than the thermo-off control time ⁇ t2.
  • the control device 10 determines the second ventilation volume Q2 at the thermoon control time ⁇ t1.
  • the second ventilation volume Q2 is set to the ventilation volume at the time of thermo-on, which is larger than the normal ventilation volume Q0 when the air conditioner 30 is normally operated, and is set to 0.7 times / h in the first embodiment.
  • the control device 10 calculates the second integrated ventilation volume V2 from the second ventilation volume Q2 and the thermo-on control time ⁇ t1 to the start of the thermo-off control.
  • the thermo-off control time ⁇ t2 is known from the operation history information.
  • the ventilation volume Q at the thermo-off control time ⁇ t2 such that the average ventilation volume becomes the normal ventilation volume Q0 per one cycle of the thermo operation can be obtained from the following equation.
  • Q2 ⁇ ⁇ t1 + Q ⁇ ⁇ t2 Q0 ⁇ ( ⁇ t1 + ⁇ t2) ... (Equation 2)
  • first ventilation volume Q1 and the second ventilation volume Q2 in the first pattern and the second pattern are preset ventilation volumes.
  • the first ventilation volume Q1 is the thermo-off ventilation volume lower than the normal ventilation volume Q0
  • the second ventilation volume Q2 is the thermo-on ventilation volume higher than the normal ventilation volume Q. That is, the first ventilation volume Q1 is set to 0 ⁇ Q1 ⁇ 0.5 times / h.
  • the second ventilation volume Q2 is set to 0.5 ⁇ Q2 ⁇ 1 time / h. Further, the thermo-on control time ⁇ t1 may be referred to as a first period, and the thermo-off control time ⁇ t2 may be referred to as a second period.
  • thermo-on control time ⁇ t1 and the thermo-off control time ⁇ t2 have the same length.
  • the control device 10 treats the thermo-on control time ⁇ t1 and the thermo-off control time ⁇ t2 as having the same length when the difference in length is, for example, less than 1 minute.
  • the control device 10 sets the first ventilation volume Q1 in the thermo-off control time ⁇ t2 based on the threshold values of the thermo-on control and the thermo-off control acquired from the air conditioning control terminal 13.
  • the threshold values for the thermo-on control and the thermo-off control may be obtained based on the history of the room temperature information acquired by the control device 10 from the room temperature detector 11 and stored in the storage unit 52. At this time, the control device 10 may also refer to the operation history information of the air conditioner 30.
  • FIG. 9 is a diagram showing the correlation between the ventilation volume of the ventilation device 20 and the threshold value for switching the thermo operation of the air conditioner 30 in the third pattern of FIG.
  • the control device 10 changes the first ventilation volume Q1 in the thermo-off control time ⁇ t2 according to the threshold value for switching the thermo operation of the air conditioner 30.
  • the threshold width for switching the thermo operation of the air conditioner 30 is less than the set temperature ⁇ 0.5 ° C.
  • the first ventilation volume Q1 is set to 0.1 times / h.
  • the threshold width is equal to or more than the set temperature ⁇ 0.5 ° C and less than ⁇ 1.0 ° C
  • the first ventilation volume Q1 is set to 0.2 times / h.
  • the control device 10 sets the first ventilation volume Q1 to increase in increments of 0.1 times / h each time the width of the threshold value of the air conditioner 30 increases by ⁇ 0.5 ° C.
  • the relationship between the threshold width and the increase amount of the first ventilation volume Q1 is not limited to that shown in FIG. 9, and for example, the relationship between the threshold width and the first ventilation volume Q1 is proportional. You may do so.
  • the control device 10 first determines the first ventilation volume Q1 at the thermo-off control time ⁇ t2 of the air conditioner 30 based on FIG.
  • the thermo-operation switching threshold value of the air conditioner 30 is the set temperature ⁇ 0.5 ° C. Therefore, here, the first ventilation volume Q1 is set to 0.2 times / h. Set.
  • the control device 10 calculates the first integrated ventilation volume V1 from the first ventilation volume Q1 and the thermo-off control time ⁇ t2 to the start of the thermo-on control.
  • the thermo-on control time ⁇ t1 is known from the operation history information.
  • the ventilation volume Q at the thermo-on control time ⁇ t1 such that the average ventilation volume becomes the normal ventilation volume Q0 per one cycle of the thermo operation can be obtained from the above equation 1.
  • the ventilation volume of the ventilation device 20 when the control flow of the control device 10 shown in FIG. 6 is repeated, it is preferable to set the ventilation volume of the ventilation device 20 based on the latest operation history.
  • the ventilation volume in each case of thermo-on control and thermo-off control is changed, but the lengths of the thermo-on control time ⁇ t1 and the thermo-off control time ⁇ t2 fluctuate as the ventilation volume is changed. It is possible that any of the above-mentioned first pattern, second pattern, and third pattern may be changed to another pattern. Therefore, by repeating the control flow of the control device 10 shown in FIG. 6 and changing the ventilation volume of the ventilation device 20 based on the updated operation history, the average ventilation volume of the air-conditioned room 1 can be maintained more appropriately. It is possible to further suppress frequent fluctuations in dripping and room temperature. Further, even if the load in the air-conditioned room 1 fluctuates, it is possible to deal with it by repeating the control flow.
  • the control device 10 and the air environment adjustment system 100 balance the load due to ventilation of the air-conditioned room 1 and the room temperature fluctuation, suppress the room temperature fluctuation, and start and stop the compressor 41 of the air-conditioning device 30. The number of times can be reduced. Further, the ventilation device 20 is operated by setting different ventilation volumes during the thermo-on control and the thermo-off control of the air conditioner 30. However, since the ventilation device 20 is set to secure the average ventilation volume in one cycle of the thermo operation of the air conditioner 30 equal to the normal ventilation volume Q0, the necessary ventilation volume of the air-conditioned room 1 should be secured. Can be done. Further, according to the control device 10 and the air environment adjustment system 100, the room temperature fluctuation of the air-conditioned room 1 becomes gentle, so that the comfort of the air-conditioned room 1 can be improved.
  • the air conditioner 30 cools the air conditioner target room 1
  • the same control is performed even when the air conditioner 30 operates for heating.
  • the temperature of the air in the air-conditioned room 1 gradually decreases due to ventilation during the thermo-off control of the air conditioner 30, and the heating capacity of the air conditioner 30 reduces the heating load of the air-conditioned room 1 during the thermo-on control. As it exceeds, the temperature will gradually rise.
  • control device 10 has the control unit 51, the communication unit 53, the air conditioning operation state detection unit 54, and the room temperature detection unit 55 by the CPU executing the program stored in the ROM or the storage unit 52. , Ventilation volume calculation unit 57, ventilation volume determination unit 58, and ventilation operation control unit 59, respectively.
  • the control device 10 may be dedicated hardware. Dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), a combination thereof, or the like.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • control device 10 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the computer By applying an operation program that defines the operation of the control device 10 to an existing computer such as a personal computer or an information terminal device, the computer can be made to function as the control device 10.
  • the external terminal 90 shown in FIGS. 1 and 2 can be made to function as the control device 10.
  • the distribution method of the program that regulates the operation of the control device 10 is arbitrary, and can be read by a computer such as a CD-ROM (Compact Disk ROM), a DVD (Digital entirely Disk), an MO (Magnet Optical Disk), or a memory card. It may be stored in a recording medium and distributed, or may be distributed via a communication network such as the Internet.
  • a computer such as a CD-ROM (Compact Disk ROM), a DVD (Digital entirely Disk), an MO (Magnet Optical Disk), or a memory card. It may be stored in a recording medium and distributed, or may be distributed via a communication network such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided are a control device, an air environment adjustment system, an air environment adjustment method, a program, and a recording medium that, by properly maintaining the amount of ventilation in a to-be-air-conditioned room and reducing the number of times of starts and stops of equipment of an air conditioner through thermo-on and thermo-off control of the air conditioner, adjusts the air environment in the room. This control device controls operation of a ventilation apparatus that ventilates the inside of the to-be-air-conditioned room where the temperature thereof is adjusted by an air conditioning apparatus in which thermo-on control and thermo-off control are performed in a low-performance operation state. The control device acquires operation state information about the air conditioning apparatus and stores the operation state information as operation history information about the air conditioning apparatus. When the air conditioning apparatus is in the low-performance operation state, the control device determines, from the operation history information, the amount of ventilation of the ventilation apparatus during thermo-on control and thermo-off control, and changes the amount of ventilation of the ventilation apparatus in accordance with the thermo-on control and thermo-off control by the air conditioning apparatus.

Description

制御装置、空気環境調整システム、空気環境調整方法、プログラム、及び記録媒体Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
 本発明は、室内の空気環境を調整する制御装置、空気環境調整システム、空気環境調整方法、プログラム、及びプログラムを記録した記録媒体に関し、特に空調装置からの情報を基に換気装置の換気量制御を行うものに関する。 The present invention relates to a control device for adjusting the indoor air environment, an air environment adjustment system, an air environment adjustment method, a program, and a recording medium on which the program is recorded, and particularly controls the ventilation volume of the ventilation device based on information from the air conditioner. Regarding what to do.
 住宅等の居室において24時間連続で換気が行われるのが一般的となり、例えば1時間で室内容積の半分の空気を入れ替えるような設備を導入することが法律で決められている。また、住宅躯体の高気密高断熱化の進行により、空調負荷が小さくなることで、設置される空調装置の最大空調能力に対して半分以下の空調能力で運転される時間が多くなっている。 It is common for ventilation to be performed continuously for 24 hours in a living room such as a house. For example, it is stipulated by law to introduce equipment that replaces half the volume of air in one hour. In addition, due to the progress of high airtightness and high heat insulation of the housing frame, the air conditioning load is reduced, and the time for operating with an air conditioning capacity less than half of the maximum air conditioning capacity of the installed air conditioner is increasing.
 一般に、換気装置と空調装置とはそれぞれ独立に運転されており、機能的に連携されていない。換気量を一時的に小さくしたり、大きくしたりすることで、空調装置の消費電力の削減および温熱環境の改善の可能性があるにも関わらず、装置間での通信手段が無いために、十分な機能を発揮していなかった。 In general, the ventilation system and the air conditioner are operated independently and are not functionally linked. Temporarily reducing or increasing the ventilation volume may reduce the power consumption of the air conditioner and improve the thermal environment, but there is no means of communication between the devices. It wasn't functioning well.
 このような課題を回避するため、従来、換気装置と空調装置とを通信可能に接続し、連携して動作するシステムがある(たとえば、特許文献1参照)。特許文献1では、空調装置の運転モードに応じて換気装置の換気量を制御している。具体的には、空調装置がサーモオフ運転に入ると、換気装置の換気量を抑え室外空気が流入することを抑える。これにより、室温が設定温度に収束するまでの時間を抑え、かつ急に室温が低下することを抑制する。 In order to avoid such a problem, conventionally, there is a system in which a ventilation device and an air conditioner are communicably connected and operated in cooperation (see, for example, Patent Document 1). In Patent Document 1, the ventilation volume of the ventilation device is controlled according to the operation mode of the air conditioner. Specifically, when the air conditioner enters the thermo-off operation, the ventilation volume of the ventilation device is suppressed and the inflow of outdoor air is suppressed. As a result, the time until the room temperature converges to the set temperature is suppressed, and the sudden drop in the room temperature is suppressed.
特開2014-134343号公報Japanese Unexamined Patent Publication No. 2014-134343
 住宅躯体の高気密高断熱化に伴い空調負荷が小さくなり、空調負荷が空調装置の最小能力以下になると、空調装置は、サーモオン及びサーモオフ制御を行う低能力運転を行う。例えば、冷房運転時において空調対象室の温度が設定温度よりも低い所定の閾値に達すると、空調装置は、サーモオフ制御に入り、空調対象となる室内の温度調整を停止する。また、サーモオフ制御により空調対象室の温度が設定温度よりも高い所定の閾値に達すると、空調装置は、サーモオン制御に入り、空調対象となる室内の温度調整を再開する。特許文献1では、空調装置がサーモオフ制御に入った際に換気装置の換気量を抑える制御を行っており、室温が設定温度に収束するまでの時間を抑え、かつ急に室温が低下することを抑制している。しかし、このような制御が長時間継続した場合、換気装置の換気量を抑えた運転が継続されるため、必要換気量を確保できなくなる。また、必要換気量を確保しようとすると、サーモオフ制御時に換気量が増え室外の空気が流入するため室内の温度変動が大きくなる。そのため、室内の温度変動を抑えるために、空調装置は周期的にサーモオン及びサーモオフ制御を繰り返すことになる。さらに、室内の快適性を向上させるために室内の温度の変動を抑えようとすると、空調装置のサーモ運転切り替えの閾値が小さくなるため、サーモオンとサーモオフとの周期が小さくなり、空調装置が備える機器の起動及び停止(機器の発停)の回数が多くなる。これにより、空調装置のエネルギー損失が増大し、また空調装置が備える機器の寿命が短くなるという課題があった。 When the air-conditioning load becomes smaller due to the high airtightness and high heat insulation of the housing frame and the air-conditioning load becomes less than the minimum capacity of the air conditioner, the air conditioner performs low-capacity operation for thermo-on and thermo-off control. For example, when the temperature of the air-conditioned room reaches a predetermined threshold value lower than the set temperature during the cooling operation, the air conditioner enters the thermo-off control and stops the temperature adjustment of the room to be air-conditioned. Further, when the temperature of the air-conditioned room reaches a predetermined threshold value higher than the set temperature by the thermo-off control, the air conditioner enters the thermo-on control and restarts the temperature adjustment of the room to be air-conditioned. In Patent Document 1, control is performed to suppress the ventilation volume of the ventilation device when the air conditioner enters the thermo-off control, the time until the room temperature converges to the set temperature is suppressed, and the room temperature suddenly drops. It is suppressing. However, if such control is continued for a long time, the operation of the ventilation device with the ventilation amount suppressed is continued, so that the required ventilation amount cannot be secured. Further, when trying to secure the required ventilation volume, the ventilation volume increases during the thermo-off control and the outdoor air flows in, so that the temperature fluctuation in the room becomes large. Therefore, in order to suppress the temperature fluctuation in the room, the air conditioner periodically repeats thermo-on and thermo-off control. Furthermore, if an attempt is made to suppress fluctuations in indoor temperature in order to improve indoor comfort, the threshold value for switching the thermo operation of the air conditioner becomes smaller, so the cycle between thermo-on and thermo-off becomes smaller, and the equipment provided in the air conditioner. The number of times of starting and stopping (starting and stopping of equipment) increases. As a result, there is a problem that the energy loss of the air conditioner is increased and the life of the equipment provided in the air conditioner is shortened.
 本発明は、上記のような課題を解決するためになされたもので、空調対象となる室内の換気量を適正に保ちつつ、空調装置のサーモオン及びサーモオフ制御による空調装置の機器の発停回数を低減させることにより室内の空気環境を調整する、制御装置、空気環境調整システム、空気環境調整方法、プログラム、及び記録媒体を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and the number of times of starting and stopping of the air-conditioning device by controlling the thermo-on and thermo-off of the air-conditioning device while maintaining an appropriate ventilation volume in the room to be air-conditioned. It is an object of the present invention to provide a control device, an air environment adjustment system, an air environment adjustment method, a program, and a recording medium that adjust the indoor air environment by reducing the amount.
 本発明に係る制御装置は、低能力運転状態においてサーモオン制御及びサーモオフ制御が行われる空調装置により室温が調整される空調対象室内の空気を換気する換気装置の運転を制御する制御装置であって、前記空調装置の運転状態情報を取得し、前記運転状態情報を前記空調装置の運転履歴情報として記憶し、前記空調装置が前記低能力運転状態である場合に、前記運転履歴情報から前記サーモオン制御時及び前記サーモオフ制御時の前記換気装置の換気量を決定し、前記空調装置の前記サーモオン制御及び前記サーモオフ制御に応じて前記換気量を変動させるものである。 The control device according to the present invention is a control device that controls the operation of a ventilation device that ventilates the air in an air-conditioned room whose room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state. When the operation state information of the air conditioner is acquired, the operation state information is stored as the operation history information of the air conditioner, and the air conditioner is in the low capacity operation state, the thermo-on control is performed from the operation history information. The ventilation volume of the ventilation device at the time of the thermo-off control is determined, and the ventilation volume is changed according to the thermo-on control and the thermo-off control of the air conditioner.
 本発明に係る空気環境調整システムは、上記の前記制御装置と、前記換気装置と、を備えるものである。 The air environment adjustment system according to the present invention includes the above-mentioned control device and the above-mentioned ventilation device.
 本発明に係る空気環境調整方法は、低能力運転状態においてサーモオン制御及びサーモオフ制御が行われる空調装置により室温が調整される前記空調対象室内の空気環境調整方法であって、前記空調装置の運転状態情報を取得し、前記運転状態情報を前記空調装置の運転履歴情報として記憶し、前記空調装置が前記低能力運転状態である場合に、前記運転履歴情報から前記サーモオン制御時及び前記サーモオフ制御時の換気量を決定し、前記空調装置の前記サーモオン制御及び前記サーモオフ制御に応じて前記換気量を変動させるものである。 The air environment adjusting method according to the present invention is an air environment adjusting method in the air-conditioned room in which the room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state, and is an operating state of the air conditioner. Information is acquired, the operation state information is stored as the operation history information of the air conditioner, and when the air conditioner is in the low capacity operation state, the thermo-on control and the thermo-off control are performed from the operation history information. The ventilation volume is determined, and the ventilation volume is changed according to the thermo-on control and the thermo-off control of the air conditioner.
 本発明に係るプログラムは、低能力運転状態においてサーモオン制御及びサーモオフ制御が行われる空調装置により室温が調整される空調対象室において、前記空調対象室内の空気を換気する換気装置の運転を制御するコンピュータを、前記空調装置の運転状態情報を取得し、前記運転状態情報を前記空調装置の運転履歴情報として記憶し、前記空調装置が前記低能力運転状態である場合に、前記空調装置の前記サーモオン制御及び前記サーモオフ制御に応じて前記換気装置の換気量を変動させる手段として機能させるものである。 The program according to the present invention is a computer that controls the operation of a ventilation device that ventilates the air in the air-conditioned room in an air-conditioned room in which the room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state. The operation state information of the air conditioner is acquired, the operation state information is stored as the operation history information of the air conditioner, and when the air conditioner is in the low capacity operation state, the thermo-on control of the air conditioner is performed. And, it functions as a means for changing the ventilation volume of the ventilation device according to the thermo-off control.
 本発明に係る記録媒体は、上記プログラムを記録したコンピュータ読み取り可能なものである。 The recording medium according to the present invention is a computer-readable medium on which the above program is recorded.
 本発明によれば、空調装置のサーモオン及びサーモオフ制御に合わせて換気装置の換気量が制御されるため、空調対象室の室温の変動を抑え、空調装置のサーモオンとサーモオフとの時間間隔を長くすることができる。よって、空調対象室の換気量を適正に保ちつつ、空調装置の機器の発停回数が低減するため、機器の寿命が延び、空調装置のエネルギー損失も低減する。 According to the present invention, since the ventilation volume of the ventilation device is controlled according to the thermo-on and thermo-off control of the air conditioner, the fluctuation of the room temperature of the air-conditioned room is suppressed and the time interval between the thermo-on and the thermo-off of the air conditioner is lengthened. be able to. Therefore, while maintaining an appropriate ventilation volume in the air-conditioned room, the number of times the air-conditioning device is started and stopped is reduced, so that the life of the device is extended and the energy loss of the air-conditioning device is also reduced.
実施の形態1における空気環境調整システム100の概略構成図である。It is a schematic block diagram of the air environment adjustment system 100 in Embodiment 1. FIG. 図1の空気環境調整システム100の詳細構成図である。It is a detailed block diagram of the air environment adjustment system 100 of FIG. 図1の空調装置30が冷房運転している時の換気装置20及び空調装置30の制御の一例である。This is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in cooling operation. 図1の空調装置30が冷房運転している時の換気装置20及び空調装置30の制御の一例である。This is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in cooling operation. 実施の形態1に係る制御装置10の一例を示すブロック図である。It is a block diagram which shows an example of the control device 10 which concerns on Embodiment 1. FIG. 図1の制御装置10による換気装置20の運転制御フローである。It is an operation control flow of the ventilation device 20 by the control device 10 of FIG. 実施の形態1に係る空気環境調整システム100における空調装置30の圧縮機41の運転パターンの一例である。This is an example of the operation pattern of the compressor 41 of the air conditioner 30 in the air environment adjustment system 100 according to the first embodiment. 実施の形態1に係る空気環境調整システム100の空調装置30の運転履歴情報の一例を示している。An example of the operation history information of the air conditioner 30 of the air environment adjustment system 100 according to the first embodiment is shown. 図7の第3のパターンにおける換気装置20の換気量と空調装置30のサーモ運転切り替えの閾値との相関を示す図である。It is a figure which shows the correlation between the ventilation volume of the ventilation apparatus 20 and the threshold value of thermo operation switching of an air conditioner 30 in the 3rd pattern of FIG.
 以下、実施の形態について、図面を用いて詳細に説明する。また、実施の形態で説明する具体的な構造及び設定例は一例を示すだけであり、これらに限定されない。 Hereinafter, the embodiment will be described in detail with reference to the drawings. Further, the specific structure and setting example described in the embodiment are shown only by one example, and are not limited thereto.
 実施の形態において、通信とは、無線通信及び有線通信は勿論、無線通信と有線通信とが混在した通信であってもよい。例えば、ある区間では無線通信が行われ、他の空間では有線通信が行われるようなものであってもよい。また、ある装置から他の装置への通信が有線通信で行われ、他の装置からある装置への通信が無線通信で行われるようなものであってもよい。 In the embodiment, the communication may be a mixture of wireless communication and wired communication as well as wireless communication and wired communication. For example, wireless communication may be performed in a certain section, and wired communication may be performed in another space. Further, the communication from one device to another device may be performed by wired communication, and the communication from another device to a certain device may be performed by wireless communication.
 実施の形態1.
 図1は、実施の形態1における空気環境調整システム100の概略構成図である。この図1に基づいて空気環境調整システム100の概略構成について説明する。空気環境調整システム100は、制御装置10と、空調対象室1内を換気する換気装置20と、空調対象室1内を空調する空調装置30とを備えている。制御装置10は、換気装置20及び空調装置30と通信可能に接続されている。制御装置10は、少なくとも、空調装置30からの空調装置30の運転状態情報を取得して、換気装置20の運転を制御できる様に構成されている。これにより、空気環境調整システム100は、空調対象室1の空気の温度を調整する空調装置30と、空調対象室1内の空気と外気との交換量を制御する換気装置20と、を協調させて制御することができる。
Embodiment 1.
FIG. 1 is a schematic configuration diagram of the air environment adjustment system 100 according to the first embodiment. The schematic configuration of the air environment adjustment system 100 will be described with reference to FIG. The air environment adjustment system 100 includes a control device 10, a ventilation device 20 that ventilates the inside of the air-conditioned room 1, and an air-conditioning device 30 that air-conditions the inside of the air-conditioned room 1. The control device 10 is communicably connected to the ventilation device 20 and the air conditioner 30. The control device 10 is configured so that at least the operation state information of the air conditioner 30 from the air conditioner 30 can be acquired to control the operation of the ventilation device 20. As a result, the air environment adjustment system 100 coordinates the air conditioner 30 that adjusts the temperature of the air in the air-conditioned room 1 and the ventilation device 20 that controls the exchange amount between the air and the outside air in the air-conditioned room 1. Can be controlled.
 空気環境調整システム100は、インターネット等の手段により接続された端末である外部端末90と通信できる様に構成されていても良い。以下の説明において、制御装置10が行う情報処理は、外部端末90で行われても良い。つまり、空調装置30からの空調装置30の運転状態情報を外部端末90に送信し、空調装置30の運転状態情報を外部端末90で処理し、外部端末90から換気装置20に制御指示を送信しても良い。外部端末90は、例えば、外部に設置されたコンピュータ又はサーバである。 The air environment adjustment system 100 may be configured to be able to communicate with an external terminal 90, which is a terminal connected by means such as the Internet. In the following description, the information processing performed by the control device 10 may be performed by the external terminal 90. That is, the operation state information of the air conditioner 30 from the air conditioner 30 is transmitted to the external terminal 90, the operation state information of the air conditioner 30 is processed by the external terminal 90, and the control instruction is transmitted from the external terminal 90 to the ventilation device 20. You may. The external terminal 90 is, for example, a computer or server installed outside.
 また、制御装置10は、図1に示される様に独立していても良いが、換気装置20、空調装置30、又はその他の装置と一体に構成されていても良い。 Further, the control device 10 may be independent as shown in FIG. 1, but may be integrally configured with the ventilation device 20, the air conditioner 30, or other devices.
 図2は、図1の空気環境調整システム100の詳細構成図である。図2に基づいて、換気装置20及び空調装置30の概略構成を含めた空気環境調整システム100の構成について説明する。まず、換気装置20の概略構成について説明する。 FIG. 2 is a detailed configuration diagram of the air environment adjustment system 100 of FIG. The configuration of the air environment adjustment system 100 including the schematic configuration of the ventilation device 20 and the air conditioner 30 will be described with reference to FIG. First, the schematic configuration of the ventilation device 20 will be described.
 (換気装置20)
 換気装置20は、吸気パイプ21と、排気パイプ22と、全熱交換部23と、外気直接導入バイパス24と、を備える。全熱交換部23は、空調対象室1内から排出される空気のエネルギーを回収するものである。吸気パイプ21には吸気ファン25、排気パイプには排気ファン26、外気直接導入バイパス24にはバイパスファン27がそれぞれ設置されている。
(Ventilation device 20)
The ventilation device 20 includes an intake pipe 21, an exhaust pipe 22, a total heat exchange unit 23, and an outside air direct introduction bypass 24. The total heat exchange unit 23 recovers the energy of the air discharged from the air-conditioned room 1. An intake fan 25 is installed in the intake pipe 21, an exhaust fan 26 is installed in the exhaust pipe, and a bypass fan 27 is installed in the outside air direct introduction bypass 24.
 換気装置20は、吸気パイプ21と外気直接導入バイパス24との接続部29に開閉部29aが設けられている。接続部29は、吸気パイプ21の吸入口21aから全熱交換部23に到る途中に設置されている。開閉部29aは、開放されることにより吸気パイプ21からの空気を全熱交換部23を経ずに空調対象室1に導入することができる。 The ventilation device 20 is provided with an opening / closing portion 29a at a connecting portion 29 between the intake pipe 21 and the outside air direct introduction bypass 24. The connection portion 29 is installed on the way from the suction port 21a of the intake pipe 21 to the total heat exchange portion 23. By opening the opening / closing unit 29a, the air from the intake pipe 21 can be introduced into the air-conditioned room 1 without passing through the total heat exchange unit 23.
 換気装置20は、吸気ファン25及び排気ファン26を作動させることにより、給気及び排気を行う。開閉部29aが閉じられている場合、吸気ファン25により吸気パイプ21に導入された室外の空気は、全熱交換部23を経て空調対象室1に導入される。また、開閉部29aが開放されている又は閉鎖されているに拘わらず、排気ファン26により排気パイプ22に導入された空調対象室1内の空気は、全熱交換部23を経て排気口22aから室外に排出される。 The ventilation device 20 supplies and exhausts air by operating the intake fan 25 and the exhaust fan 26. When the opening / closing unit 29a is closed, the outdoor air introduced into the intake pipe 21 by the intake fan 25 is introduced into the air-conditioned room 1 via the total heat exchange unit 23. Further, regardless of whether the opening / closing portion 29a is open or closed, the air in the air-conditioned chamber 1 introduced into the exhaust pipe 22 by the exhaust fan 26 passes through the total heat exchange portion 23 and from the exhaust port 22a. It is discharged to the outside of the room.
 換気装置20は、必要に応じ、開閉部29aの開閉と、吸気ファン25、排気ファン26、及びバイパスファン27の出力を変動させることができる。換気装置20は、空調対象室1の換気量を適宜変動させることができ、空調対象室1から排出される空気からの熱回収も適宜変動させることができる。 The ventilation device 20 can open and close the opening / closing unit 29a and change the outputs of the intake fan 25, the exhaust fan 26, and the bypass fan 27, if necessary. The ventilation device 20 can appropriately change the ventilation volume of the air-conditioned room 1, and can also appropriately change the heat recovery from the air discharged from the air-conditioned room 1.
 換気装置20は、基本的に24時間、連続的に運転して空調対象室1を換気するものである。換気装置20は、通常時において、1時間で空調対象室1の容積の半分の空気を換気するように設定されている。この換気装置20の通常時における換気量を「0.5回/h」と表す。換気装置20の通常時の換気量は、一例でありこの値のみに限定されるものではなく、必要に応じ変更することができる。換気装置20の換気量は、制御により変動させることができる。例えば換気量が「0.1回/h」に設定された場合は、換気装置20は、1時間に空調対象室1の容積の1/10の量の空気を換気する。 The ventilation device 20 basically operates continuously for 24 hours to ventilate the air-conditioned room 1. The ventilation device 20 is set to ventilate half the volume of the air-conditioned room 1 in one hour in a normal state. The normal ventilation volume of the ventilation device 20 is expressed as "0.5 times / h". The normal ventilation volume of the ventilation device 20 is an example and is not limited to this value, and can be changed as necessary. The ventilation volume of the ventilation device 20 can be changed by control. For example, when the ventilation volume is set to "0.1 times / h", the ventilation device 20 ventilates 1/10 of the volume of the air-conditioned room 1 in one hour.
 実施の形態1において、換気装置20は、空調対象室1の室温を調整する空調装置30の運転状態に応じて運転が制御されるものである。図2に示されている換気制御端末12は、換気装置20の運転を制御するための端末であり、換気装置20の運転開始、運転停止、換気量の変更等を実行させるためのものである。換気装置20は、手動でも運転状態を設定することができるが、実施の形態1においては、制御装置10により制御される場合について説明する。換気制御端末12は、換気装置20と一体に構成されていても別体に構成されていても良い。また、換気制御端末12は、制御装置10と一体に構成されていても良い。 In the first embodiment, the operation of the ventilation device 20 is controlled according to the operating state of the air conditioner 30 that adjusts the room temperature of the air-conditioned room 1. The ventilation control terminal 12 shown in FIG. 2 is a terminal for controlling the operation of the ventilation device 20, and is for executing the operation start, operation stop, change of the ventilation volume, etc. of the ventilation device 20. .. The operating state of the ventilation device 20 can be set manually, but in the first embodiment, the case where the ventilation device 20 is controlled by the control device 10 will be described. The ventilation control terminal 12 may be integrally configured with the ventilation device 20 or may be separately configured. Further, the ventilation control terminal 12 may be integrally configured with the control device 10.
 (空調装置30)
 次に、空調装置30の概略構成について説明する。空調装置30は、空調対象室1内に設置された室内機31と空調対象室1外に設置された室外機32とを冷媒配管により接続して構成されている。空調装置30は、圧縮機41、四方弁等の流路切替装置42、室内熱交換器43、膨張装置44、室外熱交換器45を順次冷媒配管で接続された冷凍サイクル回路40を有する。室外機32の内部には、圧縮機41、流路切替装置42、膨張装置44、及び室外熱交換器45が設置されており、室外熱交換器45の近傍には、室外の空気を室外熱交換器45に送る室外送風機49が設置されている。室内機31の内部には、室内熱交換器43が設置されており、室内熱交換器43の近傍には、空調対象室1内の空気を室内熱交換器43に送り込む室内送風機47が設置されている。
(Air conditioner 30)
Next, the schematic configuration of the air conditioner 30 will be described. The air conditioner 30 is configured by connecting an indoor unit 31 installed in the air-conditioned room 1 and an outdoor unit 32 installed outside the air-conditioned room 1 by a refrigerant pipe. The air conditioner 30 has a refrigeration cycle circuit 40 in which a compressor 41, a flow path switching device 42 such as a four-way valve, an indoor heat exchanger 43, an expansion device 44, and an outdoor heat exchanger 45 are sequentially connected by a refrigerant pipe. A compressor 41, a flow path switching device 42, an expansion device 44, and an outdoor heat exchanger 45 are installed inside the outdoor unit 32, and outdoor air is heated to the outside in the vicinity of the outdoor heat exchanger 45. An outdoor blower 49 for sending to the exchanger 45 is installed. An indoor heat exchanger 43 is installed inside the indoor unit 31, and an indoor blower 47 that sends the air in the air-conditioned room 1 to the indoor heat exchanger 43 is installed in the vicinity of the indoor heat exchanger 43. ing.
 空調装置30は、主に冷房、暖房、除湿、加湿、保湿、又は送風運転を行い、空調対象室1内の空気の調整を行う。冷凍サイクル回路40は、内部の冷媒を圧縮及び膨張させながら循環させ、ヒートポンプを形成している。また、空調対象室1内に設置されている室内熱交換器43は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する。 The air conditioner 30 mainly performs cooling, heating, dehumidifying, humidifying, moisturizing, or blowing operation, and adjusts the air in the air conditioner target room 1. The refrigeration cycle circuit 40 circulates the internal refrigerant while compressing and expanding it to form a heat pump. Further, the indoor heat exchanger 43 installed in the air-conditioned room 1 functions as an evaporator during the cooling operation and as a condenser during the heating operation.
 また、空調装置30は、空調対象室1の室温を計測する温度センサ33と、室内熱交換器43を流通する冷媒の温度を計測する温度センサ34と、吹出し空気温度を計測する温度センサ35とを備えている。 Further, the air conditioner 30 includes a temperature sensor 33 that measures the room temperature of the air-conditioned room 1, a temperature sensor 34 that measures the temperature of the refrigerant flowing through the indoor heat exchanger 43, and a temperature sensor 35 that measures the temperature of the blown air. It has.
 室内機31は、空調対象室1の室内空気を筐体内に吸い込み、室内熱交換器43を通過させて空調対象室1へと吹き出す。空調装置30は、冷凍サイクル回路40に冷媒を循環させることで、室内熱交換器43で冷媒と空気との間で熱交換を行って空調対象室1内の冷房及び暖房を行う。 The indoor unit 31 sucks the indoor air of the air-conditioned room 1 into the housing, passes it through the indoor heat exchanger 43, and blows it out to the air-conditioned room 1. The air conditioner 30 circulates the refrigerant in the refrigeration cycle circuit 40, and the indoor heat exchanger 43 exchanges heat between the refrigerant and the air to cool and heat the air-conditioned room 1.
 空調装置30は、空調対象室1の空気の温度が、例えばリモコンなどにより設定された温度となるように空調能力を調整する。図2に示されている空調制御端末13は、空調装置30の運転を制御するための端末であり、設定温度等を設定し、空調装置30の運転を実行させるためのものである。空調制御端末13は、室内機31又は室外機32と一体に構成されていても別体に構成されていても良い。また、空調制御端末13は、制御装置10と一体に構成されていても良い。 The air conditioner 30 adjusts the air conditioning capacity so that the temperature of the air in the air conditioning target room 1 becomes the temperature set by, for example, a remote controller. The air-conditioning control terminal 13 shown in FIG. 2 is a terminal for controlling the operation of the air-conditioning device 30, and is for setting a set temperature and the like to execute the operation of the air-conditioning device 30. The air conditioning control terminal 13 may be integrally configured with the indoor unit 31 or the outdoor unit 32 or may be configured separately. Further, the air conditioning control terminal 13 may be integrally configured with the control device 10.
 (制御装置10)
 制御装置10は、空調装置30から取得した空調装置30の運転状態情報に基づき、換気装置20の運転を制御するものである。図2に示される様に、制御装置10は、室温検知器11、換気制御端末12、及び空調制御端末13のそれぞれと通信可能に接続されている。室温検知器11は、空調対象室1の空気の温度を検知し、制御装置10に温度の情報を送信する。ただし、制御装置10は、空調制御端末13から空調装置30の室内機31が備える温度センサ33からの温度情報を取得し、空調対象室1の空気の温度として利用することができる。
(Control device 10)
The control device 10 controls the operation of the ventilation device 20 based on the operation state information of the air conditioner 30 acquired from the air conditioner 30. As shown in FIG. 2, the control device 10 is communicably connected to each of the room temperature detector 11, the ventilation control terminal 12, and the air conditioning control terminal 13. The room temperature detector 11 detects the temperature of the air in the air-conditioned room 1 and transmits the temperature information to the control device 10. However, the control device 10 can acquire the temperature information from the temperature sensor 33 included in the indoor unit 31 of the air conditioner 30 from the air conditioning control terminal 13 and use it as the temperature of the air in the air conditioning target room 1.
 制御装置10は、空調制御端末13から空調装置30の運転状態情報を取得する。実施の形態1において、空調装置30の運転状態情報は、空調装置30が備える圧縮機41の周波数である。圧縮機41は、インバータにより回転数が制御され、室内の冷房負荷又は暖房負荷に応じて回転を増加、減少、又は停止する。空調制御端末13は、圧縮機41の周波数を空調装置30の運転状態情報として制御装置10に送信する。制御装置10は、圧縮機41の周波数を空調装置30の運転状態情報として処理し、必要な換気量を決定し、指示として換気制御端末12に送信する。換気制御端末12は、換気装置20の具体的な動作を制御する。 The control device 10 acquires the operating state information of the air conditioning device 30 from the air conditioning control terminal 13. In the first embodiment, the operating state information of the air conditioner 30 is the frequency of the compressor 41 included in the air conditioner 30. The rotation speed of the compressor 41 is controlled by an inverter, and the rotation speed is increased, decreased, or stopped according to the cooling load or the heating load in the room. The air conditioning control terminal 13 transmits the frequency of the compressor 41 to the control device 10 as operating state information of the air conditioning device 30. The control device 10 processes the frequency of the compressor 41 as operating state information of the air conditioner 30, determines the required ventilation volume, and transmits it to the ventilation control terminal 12 as an instruction. The ventilation control terminal 12 controls the specific operation of the ventilation device 20.
 (空調装置30が低能力運転状態である場合の空気環境調整システム100の動作)
 次に、実施の形態1に係る空気環境調整システム100の動作について説明する。以下においては、空調装置30が冷房運転を行う場合について説明する。空調対象室1の温度調節を行う場合、空調対象室1内の冷房負荷に応じて、空調装置30の運転状態が決まる。例えば、空調対象室1内の空気が高温であり、空調装置30に設定された目標温度との差が大きい場合、空調装置30は、圧縮機41の回転数を増加させ、冷房能力が高い状態で運転される。冷房負荷とは、空調対象室1内の空気が有する熱、空調対象室1内に居る人等の熱源、又は換気装置20が換気を行うことにより空調対象室1内に流入する熱等である。換気装置20は、通常時においては、0.5回/hの換気量で運転されている。そのため、換気装置20により空調対象室1に導入される空気は、冷房負荷となっている。空調対象室1の冷房負荷が大きい場合、空調装置30は、冷房負荷よりも高い冷房能力で運転され、室内の空気の温度を低下させる。このとき、圧縮機41は高い回転数で運転される。
(Operation of the air environment adjustment system 100 when the air conditioner 30 is in a low capacity operating state)
Next, the operation of the air environment adjustment system 100 according to the first embodiment will be described. In the following, a case where the air conditioner 30 performs the cooling operation will be described. When the temperature of the air conditioner target room 1 is adjusted, the operating state of the air conditioner 30 is determined according to the cooling load in the air conditioner target room 1. For example, when the air in the air-conditioned room 1 is hot and the difference from the target temperature set in the air-conditioning device 30 is large, the air-conditioning device 30 increases the rotation speed of the compressor 41 and has a high cooling capacity. Driven by. The cooling load is the heat contained in the air in the air-conditioned room 1, the heat source of a person or the like in the air-conditioned room 1, or the heat flowing into the air-conditioned room 1 when the ventilation device 20 ventilates. .. The ventilation device 20 is normally operated at a ventilation rate of 0.5 times / h. Therefore, the air introduced into the air-conditioned room 1 by the ventilation device 20 is a cooling load. When the cooling load of the air-conditioned room 1 is large, the air-conditioning device 30 is operated with a cooling capacity higher than that of the cooling load, and lowers the temperature of the air in the room. At this time, the compressor 41 is operated at a high rotation speed.
 一方、空調装置30により空調対象室1内の空気の温度が目標温度、即ち空調装置30に設定された温度に達し、室内の冷房負荷が小さい状態になると、空調装置30は、低能力運転状態で運転される。このとき、空調装置30に必要とされる冷房能力が最低出力以下である場合、空調装置30は、サーモオフ制御及びサーモオン制御が行われる。 On the other hand, when the temperature of the air in the air-conditioned room 1 reaches the target temperature, that is, the temperature set in the air-conditioning device 30, and the cooling load in the room becomes small, the air-conditioning device 30 is in a low-capacity operating state. Driven by. At this time, when the cooling capacity required for the air conditioner 30 is equal to or less than the minimum output, the air conditioner 30 is subjected to thermo-off control and thermo-on control.
 図3は、図1の空調装置30が冷房運転している時の換気装置20及び空調装置30の制御の一例である。図3においては、換気装置20の通常時の換気量である場合の空調装置30の運転状態と温度の変化が示されている。空調装置30は、空調対象室1内の空気の温度を所定の範囲に維持するために、運転及び停止を繰り返す。実施の形態1においては、空調対象室1内の空気の温度が設定温度よりも0.5℃高い温度に達すると、空調装置30はサーモオン制御されて、運転を開始する。つまり、圧縮機41を起動させ、冷凍サイクル回路40に冷媒を循環させることにより、空調装置30は、冷房運転を行う。空調装置30の冷房能力が空調対象室1内の冷房負荷よりも高い場合、空調対象室1内の空気の温度は低下し、設定温度よりも0.5℃低い温度に達すると、空調装置30は、サーモオフ制御されて、運転を停止する。このとき、空調装置30は、圧縮機41を停止し、室内熱交換器43において冷媒と空気との熱交換を行わない運転状態になる。 FIG. 3 is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in the cooling operation. FIG. 3 shows changes in the operating state and temperature of the air conditioner 30 when the ventilation volume of the ventilation device 20 is normal. The air conditioner 30 repeats operation and stop in order to maintain the temperature of the air in the air-conditioned room 1 within a predetermined range. In the first embodiment, when the temperature of the air in the air-conditioned room 1 reaches a temperature 0.5 ° C. higher than the set temperature, the air-conditioning device 30 is thermo-on controlled and starts operation. That is, the air conditioner 30 performs the cooling operation by starting the compressor 41 and circulating the refrigerant in the refrigeration cycle circuit 40. When the cooling capacity of the air conditioner 30 is higher than the cooling load in the air conditioner target room 1, the temperature of the air in the air conditioner target room 1 drops, and when the temperature reaches 0.5 ° C. lower than the set temperature, the air conditioner 30 Is thermo-off controlled to stop operation. At this time, the air conditioner 30 is put into an operating state in which the compressor 41 is stopped and the indoor heat exchanger 43 does not exchange heat between the refrigerant and the air.
 上記の様に空調装置30がサーモオン及びサーモオフ制御されている場合においても、換気装置20は、空調対象室1内の換気を行っている。空調装置30がサーモオン及びサーモオフ制御されている場合に、換気装置20が通常時のまま0.5回/hの換気量で運転されていると、空調装置30は、換気装置20により空調対象室1内に導入される空気による熱により、室温が変動し、サーモオン及びサーモオフ制御を頻繁に繰り返すことになる。従来においては、空調装置30がサーモオン及びサーモオフ制御を繰り返すことにより、空調装置30が備える機器、特に圧縮機41は、発停回数が多くなり、機器寿命が低下するという課題があった。また、空調装置30の発停回数が増加することにより、エネルギー損失も増加するという課題があった。 Even when the air conditioner 30 is thermo-on and thermo-off controlled as described above, the ventilation device 20 ventilates the air-conditioned room 1. When the air conditioner 30 is thermo-on and thermo-off controlled and the ventilation device 20 is operated at a ventilation rate of 0.5 times / h as in the normal state, the air conditioner 30 is operated by the ventilation device 20 in the air-conditioned room. Due to the heat generated by the air introduced into 1, the room temperature fluctuates, and the thermo-on and thermo-off controls are frequently repeated. Conventionally, when the air conditioner 30 repeats thermo-on and thermo-off control, the equipment included in the air conditioner 30, particularly the compressor 41, has a problem that the number of starts and stops increases and the life of the equipment is shortened. Further, there is a problem that the energy loss also increases due to the increase in the number of starts and stops of the air conditioner 30.
 しかし、実施の形態1に係る空気環境調整システム100においては、制御装置10は、空調装置30の運転状態情報を取得して、空調装置30の運転状態情報に応じて換気装置20の運転を制御することができる。 However, in the air environment adjustment system 100 according to the first embodiment, the control device 10 acquires the operation state information of the air conditioner 30 and controls the operation of the ventilation device 20 according to the operation state information of the air conditioner 30. can do.
 図4は、図1の空調装置30が冷房運転している時の換気装置20及び空調装置30の制御の一例である。図4においては、制御装置10により、換気装置20の換気量が制御されている場合の空調装置30の運転状態と温度の変化が示されている。制御装置10は、空調装置30がサーモオン制御されている場合に、換気装置20の換気量を0.7回/hに設定する。そして、制御装置10は、空調装置30がサーモオフ制御されている場合は、換気装置20の換気量を0.3回/hに設定する。 FIG. 4 is an example of control of the ventilation device 20 and the air conditioner 30 when the air conditioner 30 of FIG. 1 is in the cooling operation. FIG. 4 shows changes in the operating state and temperature of the air conditioner 30 when the ventilation volume of the ventilation device 20 is controlled by the control device 10. The control device 10 sets the ventilation volume of the ventilation device 20 to 0.7 times / h when the air conditioner 30 is thermo-on controlled. Then, the control device 10 sets the ventilation volume of the ventilation device 20 to 0.3 times / h when the air conditioner 30 is thermo-off controlled.
 このように構成されることにより、空調装置30がサーモオン制御であるときには、空調対象室1内に導入される外気が通常より多くなる。そのため、空調装置30の冷房運転による空調対象室1の空気の温度変化が緩やかになり、空調装置30は、サーモオン制御で運転される時間が長くなる。一方、空調装置30がサーモオフ制御であるときには、空調対象室1に導入される外気の量が通常より少なくなる。そのため、空調装置30による冷房運転が停止されていても、空調対象室1の空気の温度が維持されやすくなり、温度変化が緩やかになる。これにより、空調装置30のサーモオフ制御で運転される時間が長くなる。つまり、図3で示された換気装置20が通常時の換気量である0.5回/hで運転されている場合と比較して、図4で示された制御装置10により換気装置20の運転が制御された場合は、サーモオン及びサーモオフ制御の周期が長くなる。つまり、単位時間当たりの空調装置30の発停回数が少なくなる。 With this configuration, when the air conditioner 30 is thermo-on controlled, the amount of outside air introduced into the air-conditioned room 1 is larger than usual. Therefore, the temperature change of the air in the air-conditioned room 1 due to the cooling operation of the air-conditioning device 30 becomes gentle, and the air-conditioning device 30 is operated under the thermo-on control for a long time. On the other hand, when the air conditioner 30 is thermo-off controlled, the amount of outside air introduced into the air-conditioned room 1 is smaller than usual. Therefore, even if the cooling operation by the air conditioner 30 is stopped, the temperature of the air in the air-conditioned room 1 is easily maintained, and the temperature change becomes gradual. As a result, the operating time of the air conditioner 30 under the thermo-off control becomes longer. That is, as compared with the case where the ventilation device 20 shown in FIG. 3 is operated at 0.5 times / h, which is the normal ventilation volume, the control device 10 shown in FIG. 4 allows the ventilation device 20 to operate. When the operation is controlled, the cycle of thermo-on and thermo-off control becomes longer. That is, the number of times the air conditioner 30 starts and stops per unit time is reduced.
 図5は、実施の形態1に係る制御装置10の一例を示すブロック図である。制御装置10は、空調装置30から空調装置30の運転状態情報を取得する空調運転状態検知部54と室温検知器11等から空調対象室1の空気の温度情報を取得する室温検知部55とを備える通信部53を備える。通信部53は、室温検知器11、換気制御端末12、空調制御端末13、及び外部端末90と通信可能に接続されており、各部からの情報の取得及び各部へ情報の送信を行う。また、制御装置10は、空調装置30の運転状態情報等を記憶する記憶部52及び空調装置30の運転状態情報を基に換気量を決定し換気装置20の制御を行う制御部51を備える。 FIG. 5 is a block diagram showing an example of the control device 10 according to the first embodiment. The control device 10 includes an air-conditioning operation state detection unit 54 that acquires operation state information of the air-conditioning device 30 from the air-conditioning device 30, and a room temperature detection unit 55 that acquires air temperature information of the air in the air-conditioning target room 1 from the room temperature detector 11 and the like. A communication unit 53 is provided. The communication unit 53 is communicably connected to the room temperature detector 11, the ventilation control terminal 12, the air conditioning control terminal 13, and the external terminal 90, and acquires information from each unit and transmits information to each unit. Further, the control device 10 includes a storage unit 52 that stores the operation state information of the air conditioner 30, and a control unit 51 that determines the ventilation volume based on the operation state information of the air conditioner 30 and controls the ventilation device 20.
 制御部51は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を備える。CPUは、中央処理装置、中央演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ又はDSP(Digital Signal Processor)ともいう。制御部51において、CPUは、ROMに格納されたプログラム及びデータを読み出し、RAMをワークエリアとして用いて、制御装置10を統括制御するものである。 The control unit 51 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The CPU is also referred to as a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor). In the control unit 51, the CPU reads out the programs and data stored in the ROM and uses the RAM as a work area to control the control device 10 in an integrated manner.
 記憶部52は、例えば、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性の半導体メモリであって、いわゆる二次記憶装置としての役割を担うものである。実施の形態1において、記憶部52は、通信部53で取得された空調装置30の運転状態情報を記憶する。また、記憶部52は、通信部53で取得された室温情報を記憶する。さらに、記憶部52は、制御装置10と空気環境調整システム100を構成する各部とが通信するためのプログラム及びデータ等を記憶する。また、制御装置10が換気装置20を直接制御する場合は、記憶部52が換気装置20を制御するためのプログラム及びデータを記憶する。 The storage unit 52 is, for example, a non-volatile semiconductor memory such as a flash memory, an EPROM (Erasable Programmable ROM), or an EPROM (Electrically Erasable Programmable ROM), and plays a role as a so-called secondary storage device. In the first embodiment, the storage unit 52 stores the operating state information of the air conditioner 30 acquired by the communication unit 53. Further, the storage unit 52 stores the room temperature information acquired by the communication unit 53. Further, the storage unit 52 stores programs, data, and the like for communication between the control device 10 and each unit constituting the air environment adjustment system 100. When the control device 10 directly controls the ventilation device 20, the storage unit 52 stores a program and data for controlling the ventilation device 20.
 通信部53は、室温検知器11、換気制御端末12、空調制御端末13、及び外部端末90と通信するための通信インタフェースを備える。 The communication unit 53 includes a room temperature detector 11, a ventilation control terminal 12, an air conditioning control terminal 13, and a communication interface for communicating with the external terminal 90.
 計時部56は、例えば、RTC(Real Time Clock)を備えており、空調装置30のサーモオン制御及びサーモオフ制御の計時を行う計時デバイスである。 The timekeeping unit 56 is provided with, for example, an RTC (Real Time Clock), and is a timekeeping device that performs timekeeping for thermo-on control and thermo-off control of the air conditioner 30.
 図6は、図1の制御装置10による換気装置20の運転制御フローである。以上のように構成された空気環境調整システム100の制御装置10において実行される処理の流れについて、図6に示すフローチャートを参照して説明する。 FIG. 6 is an operation control flow of the ventilation device 20 by the control device 10 of FIG. The flow of processing executed by the control device 10 of the air environment adjustment system 100 configured as described above will be described with reference to the flowchart shown in FIG.
 制御開始時において、制御装置10は、室温情報を取得する(ステップA1)。室温情報は、室温検知器11において検知された空調対象室1内の空気の温度又は空調装置30の室内機31が備える温度センサ33において検知された空気の温度である。室温情報は、室温検知器11及び空調制御端末13の少なくとも一方から制御装置10の通信部53に送信される。通信部53で取得された室温情報は、制御部51において処理され、必要に応じ記憶部52に記憶される。 At the start of control, the control device 10 acquires room temperature information (step A1). The room temperature information is the temperature of the air in the air-conditioned room 1 detected by the room temperature detector 11 or the temperature of the air detected by the temperature sensor 33 included in the indoor unit 31 of the air-conditioning device 30. The room temperature information is transmitted from at least one of the room temperature detector 11 and the air conditioning control terminal 13 to the communication unit 53 of the control device 10. The room temperature information acquired by the communication unit 53 is processed by the control unit 51 and stored in the storage unit 52 as needed.
 制御装置10は、空調装置30の運転状態情報を取得する(ステップA2)。空調装置30の運転状態情報は、少なくとも空調装置30が備える圧縮機41の周波数である。空調装置30の運転状態情報は、空調制御端末13から制御装置10の通信部53に送信される。通信部53で取得された空調装置30の運転状態情報は、制御部51において処理され、必要に応じ記憶部52に記憶される。 The control device 10 acquires the operating state information of the air conditioner 30 (step A2). The operating state information of the air conditioner 30 is at least the frequency of the compressor 41 included in the air conditioner 30. The operating state information of the air conditioner 30 is transmitted from the air conditioner control terminal 13 to the communication unit 53 of the control device 10. The operation state information of the air conditioner 30 acquired by the communication unit 53 is processed by the control unit 51 and stored in the storage unit 52 as needed.
 制御装置10は、空調装置30が低能力運転状態であるか否かを判定する(ステップA3)。制御装置10は、ステップA2において取得された空調装置30の運転状態情報を基に、空調装置30が低能力運転状態であるか否かを判定する。ここで、低能力運転状態は、空調装置30がサーモオン制御及びサーモオフ制御を行っている状態を言う。なお、空調装置30が通常運転されている場合とは、空調装置30が空調装置30の最低出力から最高出力までの間の出力で連続運転されている状態を言う。 The control device 10 determines whether or not the air conditioner 30 is in a low-capacity operating state (step A3). The control device 10 determines whether or not the air conditioner 30 is in the low capacity operating state based on the operating state information of the air conditioner 30 acquired in step A2. Here, the low-capacity operation state refers to a state in which the air conditioner 30 is performing thermo-on control and thermo-off control. The case where the air conditioner 30 is normally operated means a state in which the air conditioner 30 is continuously operated at an output between the minimum output and the maximum output of the air conditioner 30.
 空調装置30が低能力運転状態にあるか否かは、空調装置30の運転状態情報又は空調装置30の空調装置30の運転状態情報を記憶して得られた圧縮機41の周波数のパターンにより判定される。ステップA3における制御装置10の空調装置30が低能力運転状態にあるか否かの判定については、詳細後述する。 Whether or not the air conditioner 30 is in the low capacity operating state is determined by the frequency pattern of the compressor 41 obtained by storing the operating state information of the air conditioner 30 or the operating state information of the air conditioner 30 of the air conditioner 30. Will be done. The determination of whether or not the air conditioner 30 of the control device 10 in step A3 is in the low capacity operating state will be described in detail later.
 ステップA3において、空調装置30が通常運転されている場合は、換気装置20は、通常換気量(0.5回/h)のまま運転を継続する。つまり、ステップA3においてNoの場合は、制御を終了する。ステップA3において、空調装置30が低能力運転状態であると判定された場合は、制御装置10は、空調装置30の運転履歴情報を取得する(ステップA4)。具体的には、記憶部52に記憶された空調装置30の圧縮機41の運転パターンを取得する。 In step A3, when the air conditioner 30 is normally operated, the ventilation device 20 continues to operate with the normal ventilation volume (0.5 times / h). That is, if No in step A3, the control ends. When it is determined in step A3 that the air conditioner 30 is in the low capacity operation state, the control device 10 acquires the operation history information of the air conditioner 30 (step A4). Specifically, the operation pattern of the compressor 41 of the air conditioner 30 stored in the storage unit 52 is acquired.
 ステップA4が完了した後、制御装置10は、空調装置30のサーモオン制御時及びサーモオフ制御時のそれぞれの場合における換気装置20の換気量を決定する(ステップA5)。 After the step A4 is completed, the control device 10 determines the ventilation volume of the ventilation device 20 in each case of the thermo-on control and the thermo-off control of the air conditioner 30 (step A5).
 制御装置10は、空調装置30がサーモオン制御時及びサーモオフ制御時のそれぞれにおいて、換気装置20の換気量を制御する。しかし、換気量制御において、換気装置20の換気量が少ない状態が長時間継続すると、空調対象室1に必要な換気量が確保出来なくなる場合がある。実施の形態1においては、空調対象室1に必要な換気量は、0.5回/hとされている。これを通常換気量Q0と称する。つまり、例えば換気装置20の換気量が0.3回/hに設定された場合に、その換気量が長時間継続されると、空調装置30のサーモオン制御及びサーモオフ制御がそれぞれ1回ずつ行われるサーモ運転1周期当たりの換気量が0.5回/hに満たなくなる場合がある。また、換気量制御において、換気装置20の換気量が多い状態が長時間継続すると、換気により空調対象室1の冷房負荷が大きくなり、空調装置30の冷房能力を高くして運転することになり、空調装置30の消費電力が大きくなる。 The control device 10 controls the ventilation volume of the ventilation device 20 when the air conditioner 30 controls the thermo-on and the thermo-off control, respectively. However, in the ventilation volume control, if the ventilation volume of the ventilation device 20 continues to be low for a long time, the ventilation volume required for the air-conditioned room 1 may not be secured. In the first embodiment, the ventilation volume required for the air-conditioned room 1 is 0.5 times / h. This is usually referred to as ventilation volume Q0. That is, for example, when the ventilation volume of the ventilation device 20 is set to 0.3 times / h and the ventilation volume is continued for a long time, the thermo-on control and the thermo-off control of the air conditioner 30 are performed once each. The ventilation volume per cycle of thermo operation may be less than 0.5 times / h. Further, in the ventilation volume control, if the state in which the ventilation volume of the ventilation device 20 is large continues for a long time, the cooling load of the air-conditioned room 1 becomes large due to the ventilation, and the cooling capacity of the air-conditioning device 30 is increased for operation. , The power consumption of the air conditioner 30 increases.
 以上のような課題を解消するため、実施の形態1に係る制御装置10は、空調装置30の運転履歴情報からサーモオン制御の継続時間であるサーモオン制御時間Δt1及びサーモオフ制御の継続時間であるサーモオフ制御時間Δt2をそれぞれ読み取る。制御装置10は、サーモオン制御時の換気装置20の換気量を通常換気量Q0よりも多く設定し、サーモオフ制御時の換気装置20の換気量を通常換気量Q0よりも少なく設定しつつ、サーモ運転1周期当たりの平均換気量が通常換気量Q0と同等になるように換気量を制御する。 In order to solve the above problems, the control device 10 according to the first embodiment has a thermo-on control time Δt1 which is a duration of thermo-on control and a thermo-off control which is a duration of thermo-off control from the operation history information of the air conditioner 30. Read the time Δt2 respectively. The control device 10 sets the ventilation volume of the ventilation device 20 at the time of thermo-on control to be larger than the normal ventilation volume Q0, and sets the ventilation volume of the ventilation device 20 at the time of thermo-off control to be smaller than the normal ventilation volume Q0, while performing the thermo operation. The ventilation volume is controlled so that the average ventilation volume per cycle becomes equal to the normal ventilation volume Q0.
 図7は、実施の形態1に係る空気環境調整システム100における空調装置30の圧縮機41の運転パターンの一例である。図7に示される様に、空調装置30のサーモ運転のパターンは3種類がある。第1のパターンは、サーモオン制御時間Δt1がサーモオフ制御時間Δt2よりも長い場合である。第2のパターンは、サーモオン制御時間Δt1がサーモオフ制御時間Δt2よりも短い場合である。第3のパターンは、サーモオン制御時間Δt1とサーモオフ制御時間Δt2とが同じ長さである場合である。制御装置10は、例えばサーモオン制御時間Δt1とサーモオフ制御時間Δt2との差が1分以上ある場合に、第1のパターン及び第2のパターンに該当するという判断を行うと良い。その場合、制御装置10は、サーモオン制御時間Δt1とサーモオフ制御時間Δt2との差が1分以内である場合に、第3のパターンに該当すると判断する。このように構成されることにより、制御装置10は、サーモ運転のパターンを明確に判断できる。それぞれのパターンにおいて、制御装置10がどのように換気装置20の換気量を設定するかについては、詳細後述する。 FIG. 7 is an example of the operation pattern of the compressor 41 of the air conditioner 30 in the air environment adjustment system 100 according to the first embodiment. As shown in FIG. 7, there are three types of thermo-operation patterns of the air conditioner 30. The first pattern is a case where the thermo-on control time Δt1 is longer than the thermo-off control time Δt2. The second pattern is a case where the thermo-on control time Δt1 is shorter than the thermo-off control time Δt2. The third pattern is a case where the thermo-on control time Δt1 and the thermo-off control time Δt2 have the same length. For example, when the difference between the thermo-on control time Δt1 and the thermo-off control time Δt2 is 1 minute or more, the control device 10 may determine that it corresponds to the first pattern and the second pattern. In that case, the control device 10 determines that the third pattern is applicable when the difference between the thermo-on control time Δt1 and the thermo-off control time Δt2 is within 1 minute. With this configuration, the control device 10 can clearly determine the pattern of thermo operation. The details of how the control device 10 sets the ventilation volume of the ventilation device 20 in each pattern will be described later.
 図6に戻り、ステップA5が完了した後、制御装置10は、サーモオン制御時間Δt1及びサーモオフ制御時間Δt2のそれぞれにおける換気量を、例えば記憶部52に格納する。そして、制御装置10は、空調装置30の運転状態情報から空調装置30がサーモオン制御又はサーモオフ制御で運転されていることを判断し、その運転状態に応じた換気量を換気制御端末12に送信する。換気制御端末12は、制御装置10からの指示に基づき換気装置20を制御する(ステップA6)。 Returning to FIG. 6, after the step A5 is completed, the control device 10 stores the ventilation volume at each of the thermo-on control time Δt1 and the thermo-off control time Δt2, for example, in the storage unit 52. Then, the control device 10 determines from the operation state information of the air conditioner 30 that the air conditioner 30 is being operated by the thermo-on control or the thermo-off control, and transmits the ventilation volume according to the operation state to the ventilation control terminal 12. .. The ventilation control terminal 12 controls the ventilation device 20 based on the instruction from the control device 10 (step A6).
 図6に示される制御装置10の制御フローは、空気環境調整システム100の空調装置30が稼働している間は、所定の頻度で開始から終了までを繰り返す。ただし、例えば、ユーザーが図6に示された制御をしないように設定した場合、空調対象室1の冷房負荷が高くなり空調装置30が所定の冷房能力で運転を継続している場合等には、制御を終了し、制御フローの繰り返しを停止させても良い。 The control flow of the control device 10 shown in FIG. 6 repeats from the start to the end at a predetermined frequency while the air conditioner 30 of the air environment adjustment system 100 is operating. However, for example, when the user is set not to perform the control shown in FIG. 6, the cooling load of the air-conditioned room 1 becomes high, and the air-conditioning device 30 continues to operate at a predetermined cooling capacity. , The control may be terminated and the repetition of the control flow may be stopped.
 (空調装置30の低能力運転状態の判定について)
 図8は、実施の形態1に係る空気環境調整システム100の空調装置30の運転履歴情報の一例を示している。図8に基づき、図6のステップA3の判定について説明する。図8は、空調装置30の圧縮機41の周波数の時間的な推移を示した図である。空調対象室1を冷房する場合において、空調装置30の運転を開始した直後は、空調対象室1内の空気の温度が目標とする設定温度よりも高いため、空調装置30は、冷房能力を最大にして運転される。このとき圧縮機41の周波数は最大値で運転される。空調対象室1の温度が低下し設定温度に近づくと、圧縮機41の周波数は段階的に低くなり、圧縮機41の運転周波数の最小値で運転される。圧縮機41の運転周波数の最小値で運転されているときに、室温が設定温度から所定温度低い温度に達すると、圧縮機41は運転を停止する。それ以降、空調対象室1の冷房負荷に大きな変動が無ければ、空調装置30は、圧縮機41の発停を繰り返す、サーモ運転を行う。
(Regarding the determination of the low capacity operating state of the air conditioner 30)
FIG. 8 shows an example of the operation history information of the air conditioner 30 of the air environment adjustment system 100 according to the first embodiment. The determination in step A3 of FIG. 6 will be described with reference to FIG. FIG. 8 is a diagram showing a time transition of the frequency of the compressor 41 of the air conditioner 30. In the case of cooling the air-conditioned room 1, immediately after the operation of the air-conditioning device 30 is started, the temperature of the air in the air-conditioned room 1 is higher than the target set temperature, so that the air-conditioning device 30 has the maximum cooling capacity. And be driven. At this time, the frequency of the compressor 41 is operated at the maximum value. When the temperature of the air-conditioned room 1 decreases and approaches the set temperature, the frequency of the compressor 41 gradually decreases, and the compressor 41 is operated at the minimum operating frequency. When the room temperature reaches a temperature lower than the set temperature by a predetermined temperature while operating at the minimum operating frequency of the compressor 41, the compressor 41 stops operating. After that, if there is no large change in the cooling load of the air conditioner target room 1, the air conditioner 30 repeatedly starts and stops the compressor 41 to perform a thermo operation.
 制御装置10が、空調装置30の低能力運転状態を判定する手段としては、例えば以下の3つがある。第1の手段においては、制御装置10が、空調装置30の圧縮機41の周波数が最小値になっていることを検知しかつ室温が設定温度±x℃の範囲にある場合に、空調装置30が低能力運転状態であると判定する。このとき、制御装置10は、空調制御端末13から空調対象室1の目標温度である設定温度と、圧縮機41の周波数の情報を運転状態情報として取得する。また、制御装置10は、室温検知器11から室温情報を取得する。室温検知器11からの室温情報が、空調制御端末13からの設定温度に対し±x℃の範囲内にある場合に、制御装置10は、室温が設定温度±x℃の範囲にあると判断する。なお、室温情報は、空調制御端末13から室内機31の温度センサ33の温度を取得して代用することもできる。 There are, for example, the following three means for the control device 10 to determine the low-capacity operating state of the air conditioner 30. In the first means, when the control device 10 detects that the frequency of the compressor 41 of the air conditioner 30 is the minimum value and the room temperature is within the set temperature ± x ° C., the air conditioner 30 Is determined to be in a low capacity operating state. At this time, the control device 10 acquires the set temperature, which is the target temperature of the air conditioning target room 1, and the frequency information of the compressor 41 from the air conditioning control terminal 13 as operating state information. Further, the control device 10 acquires room temperature information from the room temperature detector 11. When the room temperature information from the room temperature detector 11 is within the range of ± x ° C. with respect to the set temperature from the air conditioning control terminal 13, the control device 10 determines that the room temperature is within the range of the set temperature ± x ° C. .. The room temperature information can be substituted by acquiring the temperature of the temperature sensor 33 of the indoor unit 31 from the air conditioning control terminal 13.
 第2の手段においては、制御装置10が空調装置30の圧縮機41の周波数が0になっていることを検知したときに、空調装置30が低能力運転状態であると判定する。このとき、制御装置10は、空調制御端末13から圧縮機41の周波数の情報を空調装置30の運転状態情報として取得し、空調装置30が運転状態でありながら圧縮機41が停止している場合に、低能力運転状態であると判断する。なお、第2の手段においては、制御装置10は、室温情報及び設定温度の情報を利用していないが、室温情報及び設定温度の情報から室温が設定温度±x℃の範囲にあるか否かの判断を同時に行っても良い。これにより、判定の精度が向上する。 In the second means, when the control device 10 detects that the frequency of the compressor 41 of the air conditioner 30 is 0, it is determined that the air conditioner 30 is in a low capacity operating state. At this time, the control device 10 acquires the frequency information of the compressor 41 from the air conditioning control terminal 13 as the operating state information of the air conditioner 30, and the compressor 41 is stopped while the air conditioning device 30 is in the operating state. In addition, it is judged that the operation is in a low capacity state. In the second means, the control device 10 does not use the room temperature information and the set temperature information, but whether or not the room temperature is within the set temperature ± x ° C. range from the room temperature information and the set temperature information. The judgments may be made at the same time. This improves the accuracy of the determination.
 第3の手段においては、制御装置10が、空調装置30の圧縮機41の運転履歴情報を取得し、圧縮機41の周波数パターンから、圧縮機41の停止及び起動が少なくとも1回以上行われた場合に空調装置30が低能力運転であると判定する。このとき、制御装置10は、記憶部52に記憶されている周波数パターンを取得し、現時点から過去の所定の時間内において圧縮機41の停止及び起動が少なくとも1回行われた場合に低能力運転状態であると判断する。なお、第3の手段においても、第1の手段及び第2の手段と同様に、室温情報を利用しても良い。これにより判定の精度が向上する。 In the third means, the control device 10 acquires the operation history information of the compressor 41 of the air conditioner 30, and the compressor 41 is stopped and started at least once based on the frequency pattern of the compressor 41. In this case, it is determined that the air conditioner 30 is in low capacity operation. At this time, the control device 10 acquires the frequency pattern stored in the storage unit 52, and operates at a low capacity when the compressor 41 is stopped and started at least once within a predetermined time in the past from the present time. Judge that it is in a state. The room temperature information may be used in the third means as well as in the first means and the second means. This improves the accuracy of the determination.
 (制御装置10による換気装置20の換気量の設定について)
 図6のステップA5における、制御装置10による換気装置20の換気量設定について説明する。まず、図7に示されている、第1のパターンにおける制御装置10の換気量制御について説明する。第1のパターンにおいては、サーモオン制御時間Δt1がサーモオフ制御時間Δt2よりも長い。まず、制御装置10は、サーモオフ制御時間Δt2における第1換気量Q1を決定する。第1換気量Q1は、空調装置30が通常運転されているときの通常換気量Q0よりも減少させたサーモオフ時換気量に設定され、実施の形態1においては0.3回/hとしている。そして、制御装置10は、第1換気量Q1とサーモオフ制御時間Δt2とからサーモオン制御に入るまでの第1積算換気量V1を算出する。サーモオン制御時間Δt1は、運転履歴情報から既知である。サーモ運転1周期当たりにおいて平均換気量が通常換気量Q0である0.5回/hとなるようなサーモオン制御時間Δt1における換気量Qは、以下の方程式から求められる。
 Q×Δt1+Q1×Δt2=Q0×(Δt1+Δt2)・・・(式1)
(Regarding the setting of the ventilation volume of the ventilation device 20 by the control device 10)
The ventilation volume setting of the ventilation device 20 by the control device 10 in step A5 of FIG. 6 will be described. First, the ventilation volume control of the control device 10 in the first pattern shown in FIG. 7 will be described. In the first pattern, the thermo-on control time Δt1 is longer than the thermo-off control time Δt2. First, the control device 10 determines the first ventilation volume Q1 at the thermo-off control time Δt2. The first ventilation volume Q1 is set to the ventilation volume at the time of thermo-off, which is smaller than the normal ventilation volume Q0 when the air conditioner 30 is normally operated, and is set to 0.3 times / h in the first embodiment. Then, the control device 10 calculates the first integrated ventilation volume V1 from the first ventilation volume Q1 and the thermo-off control time Δt2 to the start of the thermo-on control. The thermo-on control time Δt1 is known from the operation history information. The ventilation volume Q at the thermo-on control time Δt1 such that the average ventilation volume is 0.5 times / h, which is the normal ventilation volume Q0 per one cycle of the thermo-operation, is obtained from the following equation.
Q × Δt1 + Q1 × Δt2 = Q0 × (Δt1 + Δt2) ... (Equation 1)
 図7に示されている第2のパターンにおける制御装置10の換気量制御について説明する。第2のパターンにおいては、サーモオン制御時間Δt1がサーモオフ制御時間Δt2よりも短い。まず、制御装置10は、サーモオン制御時間Δt1における第2換気量Q2を決定する。第2換気量Q2は、空調装置30が通常運転されているときの通常換気量Q0よりも増加させたサーモオン時換気量に設定され、実施の形態1においては0.7回/hとしている。そして、制御装置10は、第2換気量Q2とサーモオン制御時間Δt1とからサーモオフ制御に入るまでの第2積算換気量V2を算出する。サーモオフ制御時間Δt2は、運転履歴情報から既知である。サーモ運転1周期当たりにおいて平均換気量が通常換気量Q0となるようなサーモオフ制御時間Δt2における換気量Qは、以下の方程式から求められる。
 Q2×Δt1+Q×Δt2=Q0×(Δt1+Δt2)・・・(式2)
The ventilation volume control of the control device 10 in the second pattern shown in FIG. 7 will be described. In the second pattern, the thermo-on control time Δt1 is shorter than the thermo-off control time Δt2. First, the control device 10 determines the second ventilation volume Q2 at the thermoon control time Δt1. The second ventilation volume Q2 is set to the ventilation volume at the time of thermo-on, which is larger than the normal ventilation volume Q0 when the air conditioner 30 is normally operated, and is set to 0.7 times / h in the first embodiment. Then, the control device 10 calculates the second integrated ventilation volume V2 from the second ventilation volume Q2 and the thermo-on control time Δt1 to the start of the thermo-off control. The thermo-off control time Δt2 is known from the operation history information. The ventilation volume Q at the thermo-off control time Δt2 such that the average ventilation volume becomes the normal ventilation volume Q0 per one cycle of the thermo operation can be obtained from the following equation.
Q2 × Δt1 + Q × Δt2 = Q0 × (Δt1 + Δt2) ... (Equation 2)
 なお、第1のパターン及び第2のパターンにおける第1換気量Q1及び第2換気量Q2は、予め設定された換気量である。実施の形態1においては、Q1=0.3回/h、Q2=0.7回/hに設定されているが、これは一例であり、空調装置30の性能、空調対象室1の断熱性能等の条件に応じて適宜変更することができる。ただし、第1換気量Q1は、通常換気量Q0よりも低いサーモオフ時換気量であり、第2換気量Q2は、通常換気量Qよりも多いサーモオン時換気量である。つまり、第1換気量Q1は、0≦Q1<0.5回/hに設定される。第2換気量Q2は、0.5<Q2≦1回/hに設定される。また、サーモオン制御時間Δt1は、第1期間と称される場合があり、サーモオフ制御時間Δt2は、第2期間と称される場合がある。 Note that the first ventilation volume Q1 and the second ventilation volume Q2 in the first pattern and the second pattern are preset ventilation volumes. In the first embodiment, Q1 = 0.3 times / h and Q2 = 0.7 times / h are set, but this is an example, and the performance of the air conditioner 30 and the heat insulation performance of the air conditioning target room 1 It can be changed as appropriate according to the conditions such as. However, the first ventilation volume Q1 is the thermo-off ventilation volume lower than the normal ventilation volume Q0, and the second ventilation volume Q2 is the thermo-on ventilation volume higher than the normal ventilation volume Q. That is, the first ventilation volume Q1 is set to 0 ≦ Q1 <0.5 times / h. The second ventilation volume Q2 is set to 0.5 <Q2 ≦ 1 time / h. Further, the thermo-on control time Δt1 may be referred to as a first period, and the thermo-off control time Δt2 may be referred to as a second period.
 図7に示されている第3のパターンにおける制御装置10の換気量制御について説明する。第3のパターンにおいては、サーモオン制御時間Δt1とサーモオフ制御時間Δt2とが同じ長さである。実際には、制御装置10は、サーモオン制御時間Δt1とサーモオフ制御時間Δt2との長さの差が、例えば1分未満である場合に同じ長さであるとして扱う。 The ventilation volume control of the control device 10 in the third pattern shown in FIG. 7 will be described. In the third pattern, the thermo-on control time Δt1 and the thermo-off control time Δt2 have the same length. Actually, the control device 10 treats the thermo-on control time Δt1 and the thermo-off control time Δt2 as having the same length when the difference in length is, for example, less than 1 minute.
 第3のパターンにおいては、制御装置10は、空調制御端末13から取得したサーモオン制御及びサーモオフ制御の閾値設定に基づき、サーモオフ制御時間Δt2における第1換気量Q1を設定する。なお、サーモオン制御及びサーモオフ制御の閾値は、制御装置10が室温検知器11から取得し記憶部52に記憶させた室温情報の履歴に基づいて求めても良い。このとき制御装置10は、空調装置30の運転履歴情報も併せて参照すると良い。 In the third pattern, the control device 10 sets the first ventilation volume Q1 in the thermo-off control time Δt2 based on the threshold values of the thermo-on control and the thermo-off control acquired from the air conditioning control terminal 13. The threshold values for the thermo-on control and the thermo-off control may be obtained based on the history of the room temperature information acquired by the control device 10 from the room temperature detector 11 and stored in the storage unit 52. At this time, the control device 10 may also refer to the operation history information of the air conditioner 30.
 図9は、図7の第3のパターンにおける換気装置20の換気量と空調装置30のサーモ運転切り替えの閾値との相関を示す図である。制御装置10は、空調装置30のサーモ運転切り替えの閾値に応じてサーモオフ制御時間Δt2における第1換気量Q1を変更する。具体的には、図9に示される様に空調装置30のサーモ運転切り替えの閾値の幅が設定温度±0.5℃未満の場合は、第1換気量Q1を0.1回/hに設定する。また、閾値の幅が設定温度±0.5℃以上±1.0℃未満の場合は、第1換気量Q1を0.2回/hに設定する。以降、制御装置10は、空調装置30の閾値の幅が±0.5℃大きくなる毎に、第1換気量Q1を0.1回/h刻みで大きくなるように設定する。ただし、閾値の幅と第1換気量Q1の増加量との関係は、図9に示すもののみに限定されるものではなく、例えば、閾値の幅と第1換気量Q1との関係を比例させるようにしても良い。 FIG. 9 is a diagram showing the correlation between the ventilation volume of the ventilation device 20 and the threshold value for switching the thermo operation of the air conditioner 30 in the third pattern of FIG. The control device 10 changes the first ventilation volume Q1 in the thermo-off control time Δt2 according to the threshold value for switching the thermo operation of the air conditioner 30. Specifically, as shown in FIG. 9, when the threshold width for switching the thermo operation of the air conditioner 30 is less than the set temperature ± 0.5 ° C., the first ventilation volume Q1 is set to 0.1 times / h. To do. When the threshold width is equal to or more than the set temperature ± 0.5 ° C and less than ± 1.0 ° C, the first ventilation volume Q1 is set to 0.2 times / h. After that, the control device 10 sets the first ventilation volume Q1 to increase in increments of 0.1 times / h each time the width of the threshold value of the air conditioner 30 increases by ± 0.5 ° C. However, the relationship between the threshold width and the increase amount of the first ventilation volume Q1 is not limited to that shown in FIG. 9, and for example, the relationship between the threshold width and the first ventilation volume Q1 is proportional. You may do so.
 第3のパターンにおける換気装置20の換気量の設定は、まず、制御装置10が、空調装置30のサーモオフ制御時間Δt2における第1換気量Q1を図9に基づいて決定する。実施の形態1においては、図4等に示される様に空調装置30のサーモ運転切り替え閾値が設定温度±0.5℃であるため、ここでは第1換気量Q1を0.2回/hに設定される。そして、制御装置10は、第1換気量Q1とサーモオフ制御時間Δt2とからサーモオン制御に入るまでの第1積算換気量V1を算出する。サーモオン制御時間Δt1は、運転履歴情報から既知である。サーモ運転1周期当たりにおいて平均換気量が通常換気量Q0となるようなサーモオン制御時間Δt1における換気量Qは、上記の式1から求められる。 In the setting of the ventilation volume of the ventilation device 20 in the third pattern, the control device 10 first determines the first ventilation volume Q1 at the thermo-off control time Δt2 of the air conditioner 30 based on FIG. In the first embodiment, as shown in FIG. 4 and the like, the thermo-operation switching threshold value of the air conditioner 30 is the set temperature ± 0.5 ° C. Therefore, here, the first ventilation volume Q1 is set to 0.2 times / h. Set. Then, the control device 10 calculates the first integrated ventilation volume V1 from the first ventilation volume Q1 and the thermo-off control time Δt2 to the start of the thermo-on control. The thermo-on control time Δt1 is known from the operation history information. The ventilation volume Q at the thermo-on control time Δt1 such that the average ventilation volume becomes the normal ventilation volume Q0 per one cycle of the thermo operation can be obtained from the above equation 1.
 また、図6に示されている制御装置10の制御フローを繰り返し行う場合は、直近の運転履歴に基づいて上記の換気装置20の換気量の設定を行うと良い。上記の換気量の設定により、サーモオン制御時とサーモオフ制御時とのそれぞれの場合における換気量が変更されるが、換気量の変更に伴いサーモオン制御時間Δt1及びサーモオフ制御時間Δt2の長さがそれぞれ変動する場合があり、上記の第1のパターン、第2のパターン、及び第3のパターンの何れかから他のパターンに変わる場合があり得る。従って、図6に示されている制御装置10の制御フローを繰り返し行い、更新された運転履歴により換気装置20の換気量を変更することにより、空調対象室1の平均換気量がより適正に保たれ、かつ室温の頻繁な変動をより抑えることができる。また、空調対象室1内の負荷が変動した場合であっても、制御フローを繰り返すことにより対応が可能となる。 Further, when the control flow of the control device 10 shown in FIG. 6 is repeated, it is preferable to set the ventilation volume of the ventilation device 20 based on the latest operation history. Depending on the above ventilation volume setting, the ventilation volume in each case of thermo-on control and thermo-off control is changed, but the lengths of the thermo-on control time Δt1 and the thermo-off control time Δt2 fluctuate as the ventilation volume is changed. It is possible that any of the above-mentioned first pattern, second pattern, and third pattern may be changed to another pattern. Therefore, by repeating the control flow of the control device 10 shown in FIG. 6 and changing the ventilation volume of the ventilation device 20 based on the updated operation history, the average ventilation volume of the air-conditioned room 1 can be maintained more appropriately. It is possible to further suppress frequent fluctuations in dripping and room temperature. Further, even if the load in the air-conditioned room 1 fluctuates, it is possible to deal with it by repeating the control flow.
 以上に説明した制御により、制御装置10及び空気環境調整システム100は、空調対象室1の換気による負荷と室温変動とのバランスをとり、室温変動を抑え、空調装置30の圧縮機41の発停回数を低減させることができる。また、換気装置20は、空調装置30のサーモオン制御時及びサーモオフ制御時のそれぞれにおいて異なる換気量に設定して運転される。しかし、換気装置20は、空調装置30のサーモ運転の一周期における平均換気量を通常換気量Q0と同等に確保するように設定されるため、空調対象室1の必要な換気量を確保することができる。また、制御装置10及び空気環境調整システム100によれば、空調対象室1の室温変動が緩やかになるため、空調対象室1の快適性も向上させることができる。 By the control described above, the control device 10 and the air environment adjustment system 100 balance the load due to ventilation of the air-conditioned room 1 and the room temperature fluctuation, suppress the room temperature fluctuation, and start and stop the compressor 41 of the air-conditioning device 30. The number of times can be reduced. Further, the ventilation device 20 is operated by setting different ventilation volumes during the thermo-on control and the thermo-off control of the air conditioner 30. However, since the ventilation device 20 is set to secure the average ventilation volume in one cycle of the thermo operation of the air conditioner 30 equal to the normal ventilation volume Q0, the necessary ventilation volume of the air-conditioned room 1 should be secured. Can be done. Further, according to the control device 10 and the air environment adjustment system 100, the room temperature fluctuation of the air-conditioned room 1 becomes gentle, so that the comfort of the air-conditioned room 1 can be improved.
 また、以上の説明においては、空調装置30が空調対象室1の冷房を行う場合について説明したが、空調装置30が暖房運転する場合においても同様な制御が行われる。暖房運転の場合は、空調装置30のサーモオフ制御時には、換気により空調対象室1内の空気の温度が徐々に低下し、サーモオン制御時には、空調装置30の暖房能力が空調対象室1の暖房負荷を上回るため、温度が徐々に上昇することになる。 Further, in the above description, the case where the air conditioner 30 cools the air conditioner target room 1 has been described, but the same control is performed even when the air conditioner 30 operates for heating. In the case of heating operation, the temperature of the air in the air-conditioned room 1 gradually decreases due to ventilation during the thermo-off control of the air conditioner 30, and the heating capacity of the air conditioner 30 reduces the heating load of the air-conditioned room 1 during the thermo-on control. As it exceeds, the temperature will gradually rise.
 また、上記実施の形態では、制御装置10は、CPUがROM又は記憶部52に記憶されたプログラムを実行することによって、制御部51、通信部53、空調運転状態検知部54、室温検知部55、換気量演算部57、換気量決定部58、及び換気動作制御部59のそれぞれとして機能する。しかし、制御装置10は、専用のハードウェアであってもよい。専用のハードウェアとは、例えば単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、これらの組み合わせ等である。制御装置10が専用のハードウェアである場合、各部の機能それぞれを個別のハードウェアで実現してもよいし、各部の機能をまとめて単一のハードウェアで実現してもよい。 Further, in the above embodiment, the control device 10 has the control unit 51, the communication unit 53, the air conditioning operation state detection unit 54, and the room temperature detection unit 55 by the CPU executing the program stored in the ROM or the storage unit 52. , Ventilation volume calculation unit 57, ventilation volume determination unit 58, and ventilation operation control unit 59, respectively. However, the control device 10 may be dedicated hardware. Dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), a combination thereof, or the like. When the control device 10 is dedicated hardware, the functions of each part may be realized by individual hardware, or the functions of each part may be collectively realized by a single hardware.
 また、各部の機能のうち、一部を専用のハードウェアによって実現し、他の一部をソフトウェア又はファームウェアによって実現してもよい。このように、制御装置10は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 In addition, some of the functions of each part may be realized by dedicated hardware, and other parts may be realized by software or firmware. In this way, the control device 10 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 制御装置10の動作を規定する動作プログラムを既存のパーソナルコンピュータ又は情報端末装置等のコンピュータに適用することで、当該コンピュータを、制御装置10として機能させることも可能である。例えば、図1及び図2に示される外部端末90を制御装置10として機能させることもできる。 By applying an operation program that defines the operation of the control device 10 to an existing computer such as a personal computer or an information terminal device, the computer can be made to function as the control device 10. For example, the external terminal 90 shown in FIGS. 1 and 2 can be made to function as the control device 10.
 制御装置10の動作を規定するプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk ROM)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。 The distribution method of the program that regulates the operation of the control device 10 is arbitrary, and can be read by a computer such as a CD-ROM (Compact Disk ROM), a DVD (Digital Versailles Disk), an MO (Magnet Optical Disk), or a memory card. It may be stored in a recording medium and distributed, or may be distributed via a communication network such as the Internet.
 1 空調対象室、10 制御装置、11 室温検知器、12 換気制御端末、13 空調制御端末、20 換気装置、21 吸気パイプ、21a 吸入口、22 排気パイプ、22a 排気口、23 全熱交換部、24 外気直接導入バイパス、25 吸気ファン、26 排気ファン、27 バイパスファン、29 接続部、29a 開閉部、30 空調装置、31 室内機、32 室外機、33 温度センサ、34 温度センサ、35 温度センサ、40 冷凍サイクル回路、41 圧縮機、42 流路切替装置、43 室内熱交換器、44 膨張装置、45 室外熱交換器、47 室内送風機、49 室外送風機、51 制御部、52 記憶部、53 通信部、54 空調運転状態検知部、55 室温検知部、56 計時部、57 換気量演算部、58 換気量決定部、59 換気動作制御部、90 外部端末、100 空気環境調整システム、Q 換気量、Q0 通常換気量、Q1 第1換気量、Q2 第2換気量、V1 第1積算換気量、V2 第2積算換気量、Δt1 サーモオン制御時間、Δt2 サーモオフ制御時間。 1 air conditioning target room, 10 control device, 11 room temperature detector, 12 ventilation control terminal, 13 air conditioning control terminal, 20 ventilation device, 21 intake pipe, 21a suction port, 22 exhaust pipe, 22a exhaust port, 23 total heat exchange part, 24 outside air direct introduction bypass, 25 intake fan, 26 exhaust fan, 27 bypass fan, 29 connection part, 29a opening / closing part, 30 air conditioner, 31 indoor unit, 32 outdoor unit, 33 temperature sensor, 34 temperature sensor, 35 temperature sensor, 40 Refrigeration cycle circuit, 41 Compressor, 42 Flow path switching device, 43 Indoor heat exchanger, 44 Expansion device, 45 Outdoor heat exchanger, 47 Indoor blower, 49 Outdoor blower, 51 Control unit, 52 Storage unit, 53 Communication unit , 54 Air conditioning operation state detection unit, 55 Room temperature detection unit, 56 Measuring unit, 57 Ventilation volume calculation unit, 58 Ventilation volume determination unit, 59 Ventilation operation control unit, 90 External terminal, 100 Air environment adjustment system, Q Ventilation volume, Q0 Normal ventilation volume, Q1 first ventilation volume, Q2 second ventilation volume, V1 first integrated ventilation volume, V2 second integrated ventilation volume, Δt1 thermo-on control time, Δt2 thermo-off control time.

Claims (18)

  1.  低能力運転状態においてサーモオン制御及びサーモオフ制御が行われる空調装置により室温が調整される空調対象室内の空気を換気する換気装置の運転を制御する制御装置であって、
     前記空調装置の運転状態情報を取得し、
     前記運転状態情報を前記空調装置の運転履歴情報として記憶し、
     前記空調装置が前記低能力運転状態である場合に、
     前記運転履歴情報から前記サーモオン制御時及び前記サーモオフ制御時の前記換気装置の換気量を決定し、
     前記空調装置の前記サーモオン制御及び前記サーモオフ制御に応じて前記換気量を変動させる、制御装置。
    A control device that controls the operation of a ventilation device that ventilates the air in an air-conditioned room whose room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state.
    Acquire the operating state information of the air conditioner and
    The operation state information is stored as the operation history information of the air conditioner,
    When the air conditioner is in the low capacity operating state,
    From the operation history information, the ventilation volume of the ventilation device at the time of the thermo-on control and the thermo-off control is determined.
    A control device that fluctuates the ventilation volume according to the thermo-on control and the thermo-off control of the air conditioner.
  2.  前記運転状態情報は、
     前記空調装置が備える圧縮機の周波数であり、
     前記周波数の変動の履歴である前記運転履歴情報を基に前記低能力運転状態であると判定する、請求項1に記載の制御装置。
    The operating state information is
    It is the frequency of the compressor included in the air conditioner.
    The control device according to claim 1, wherein the low-capacity operation state is determined based on the operation history information which is the history of frequency fluctuation.
  3.  前記空調対象室の前記室温を取得し、
     前記空調装置の設定温度を取得し、
     前記室温と前記設定温度との差が所定の範囲内である場合に前記空調装置が前記低能力運転状態であると判定する、請求項2に記載の制御装置。
    Obtaining the room temperature of the air-conditioned room,
    Obtain the set temperature of the air conditioner and
    The control device according to claim 2, wherein when the difference between the room temperature and the set temperature is within a predetermined range, it is determined that the air conditioner is in the low capacity operating state.
  4.  前記運転状態情報が前記サーモオフ制御である場合に、前記換気装置の前記換気量を、前記空調装置が通常運転されている時の通常換気量よりも減少させたサーモオフ時換気量とし、
     前記運転状態情報が前記サーモオン制御である場合に、前記換気装置の前記換気量を、前記通常換気量よりも増加させたサーモオン時換気量とする、請求項1~3の何れか1項に記載の制御装置。
    When the operating state information is the thermo-off control, the ventilation volume of the ventilation device is set to the ventilation volume at the time of thermo-off, which is smaller than the normal ventilation volume when the air conditioner is normally operated.
    6. Control device.
  5.  前記運転履歴情報において前記サーモオン制御を行っている時間である第1期間が前記サーモオフ制御を行っている時間である第2期間よりも長い場合に、
     前記サーモオフ時換気量を前記通常換気量よりも減少させた第1換気量に固定し、前記第2期間の間に前記第1換気量で前記換気装置を運転させた場合の第1積算換気量を算出し、
     前記第1期間及び前記第2期間を合わせたサーモ運転の一周期における単位時間当たりの平均換気量が前記通常換気量と同じになるように前記サーモオン時換気量を決定する、請求項4に記載の制御装置。
    When the first period, which is the time during which the thermo-on control is performed, is longer than the second period, which is the time during which the thermo-off control is performed, in the operation history information.
    The first integrated ventilation volume when the thermo-off ventilation volume is fixed to the first ventilation volume which is smaller than the normal ventilation volume and the ventilation device is operated at the first ventilation volume during the second period. Is calculated and
    The fourth aspect of the present invention, wherein the ventilation volume at the time of thermo-on is determined so that the average ventilation volume per unit time in one cycle of the thermo operation including the first period and the second period is the same as the normal ventilation volume. Control device.
  6.  前記運転履歴情報において前記サーモオン制御を行っている時間である第1期間が前記サーモオフ制御を行っている時間である第2期間よりも短い場合に、
     前記サーモオン時換気量を前記通常換気量よりも増加させた第2換気量に固定し、前記第1期間の間に前記第2換気量で前記換気装置を運転させた場合の第2積算換気量を算出し、
     前記第1期間及び前記第2期間を合わせたサーモ運転の一周期における単位時間当たりの平均換気量が前記通常換気量と同じになるように前記サーモオフ時換気量を決定する、請求項4に記載の制御装置。
    When the first period, which is the time during which the thermo-on control is performed, is shorter than the second period, which is the time during which the thermo-off control is performed, in the operation history information.
    The second integrated ventilation volume when the thermo-on ventilation volume is fixed to the second ventilation volume increased from the normal ventilation volume and the ventilation device is operated at the second ventilation volume during the first period. Is calculated and
    The fourth aspect of the present invention, wherein the thermo-off ventilation volume is determined so that the average ventilation volume per unit time in one cycle of the thermo-operation including the first period and the second period is the same as the normal ventilation volume. Control device.
  7.  前記運転履歴情報において前記サーモオン制御を行っている時間である第1期間と前記サーモオフ制御を行っている時間である第2期間とが同じ長さである場合に、
     前記空調装置の前記サーモオン制御と前記サーモオフ制御との切り替えを行う温度の閾値の幅に応じて、前記サーモオフ時換気量を前記通常換気量よりも減少させた第1換気量に設定し、
     前記第1期間の間に前記第1換気量で前記換気装置を運転させた場合の第1積算換気量を算出し、
     前記第1期間及び前記第2期間を合わせたサーモ運転の一周期における単位時間当たりの平均換気量が前記通常換気量と同じになるように前記サーモオン時換気量を決定する、請求項4に記載の制御装置。
    When the first period, which is the time during which the thermo-on control is performed, and the second period, which is the time during which the thermo-off control is performed, are the same length in the operation history information,
    The ventilation volume at the time of the thermo-off is set to the first ventilation volume which is smaller than the normal ventilation volume according to the width of the threshold value of the temperature at which the thermo-on control and the thermo-off control of the air conditioner are switched.
    The first integrated ventilation volume when the ventilation device is operated with the first ventilation volume during the first period is calculated.
    The fourth aspect of the present invention, wherein the ventilation volume at the time of thermo-on is determined so that the average ventilation volume per unit time in one cycle of the thermo operation including the first period and the second period is the same as the normal ventilation volume. Control device.
  8.  請求項1~7の何れか1項に記載の前記制御装置と、
     前記換気装置と、を備える、空気環境調整システム。
    The control device according to any one of claims 1 to 7.
    An air environment adjustment system including the ventilation device.
  9.  請求項1~7の何れか1項に記載の前記制御装置と、
     前記換気装置と、
     前記空調装置と、を備える、空気環境調整システム。
    The control device according to any one of claims 1 to 7.
    With the ventilation device
    An air environment adjustment system including the air conditioner.
  10.  低能力運転状態においてサーモオン制御及びサーモオフ制御が行われる空調装置により室温が調整される空調対象室内の空気環境調整方法であって、
     前記空調装置の運転状態情報を取得し、
     前記運転状態情報を前記空調装置の運転履歴情報として記憶し、
     前記空調装置が前記低能力運転状態である場合に、
     前記運転履歴情報から前記サーモオン制御時及び前記サーモオフ制御時の換気量を決定し、
     前記空調装置の前記サーモオン制御及び前記サーモオフ制御に応じて前記換気量を変動させる、空気環境調整方法。
    It is a method of adjusting the air environment in an air-conditioned room where the room temperature is adjusted by an air conditioner that performs thermo-on control and thermo-off control in a low-capacity operating state.
    Acquire the operating state information of the air conditioner and
    The operation state information is stored as the operation history information of the air conditioner,
    When the air conditioner is in the low capacity operating state,
    From the operation history information, the ventilation volume at the time of the thermo-on control and the thermo-off control is determined.
    A method for adjusting an air environment in which the ventilation volume is changed according to the thermo-on control and the thermo-off control of the air conditioner.
  11.  前記運転状態情報は、
     前記空調装置が備える圧縮機の周波数であり、
     前記周波数の変動の履歴である前記運転履歴情報を基に前記低能力運転状態であると判定する、請求項10に記載の空気環境調整方法。
    The operating state information is
    It is the frequency of the compressor included in the air conditioner.
    The air environment adjusting method according to claim 10, wherein the low-capacity operating state is determined based on the operation history information which is the history of frequency fluctuation.
  12.  前記空調対象室の前記室温を取得し、
     前記空調装置の設定温度を取得し、
     前記室温と前記設定温度との差が所定の範囲内である場合に前記空調装置が前記低能力運転状態であると判定する、請求項11に記載の空気環境調整方法。
    Obtaining the room temperature of the air-conditioned room,
    Obtain the set temperature of the air conditioner and
    The air environment adjusting method according to claim 11, wherein when the difference between the room temperature and the set temperature is within a predetermined range, it is determined that the air conditioner is in the low capacity operating state.
  13.  前記運転状態情報が前記サーモオフ制御である場合に、前記換気量を、前記空調装置が通常運転されている時の通常換気量よりも減少させたサーモオフ時換気量とし、
     前記運転状態情報が前記サーモオン制御である場合に、前記換気量を、前記通常換気量よりも増加させたサーモオン時換気量とする、請求項10~12の何れか1項に記載の空気環境調整方法。
    When the operating state information is the thermo-off control, the ventilation volume is set as the thermo-off ventilation volume obtained by reducing the ventilation volume from the normal ventilation volume when the air conditioner is normally operated.
    The air environment adjustment according to any one of claims 10 to 12, wherein when the operating state information is the thermo-on control, the ventilation volume is the ventilation volume at the time of thermo-on, which is larger than the normal ventilation volume. Method.
  14.  前記運転履歴情報において前記サーモオン制御を行っている時間である第1期間が前記サーモオフ制御を行っている時間である第2期間よりも長い場合に、
     前記サーモオフ時換気量を前記通常換気量よりも減少させた第1換気量に固定し、前記第2期間の間に前記第1換気量で換気した場合の第1積算換気量を算出し、
     前記第1期間及び前記第2期間を合わせたサーモ運転の一周期における単位時間当たりの平均換気量が前記通常換気量と同じになるように前記サーモオン時換気量を決定する、請求項13に記載の空気環境調整方法。
    When the first period, which is the time during which the thermo-on control is performed, is longer than the second period, which is the time during which the thermo-off control is performed, in the operation history information.
    The first integrated ventilation volume when the thermo-off ventilation volume was fixed to the first ventilation volume reduced from the normal ventilation volume and the ventilation was performed at the first ventilation volume during the second period was calculated.
    13. The thirteenth aspect of the present invention, wherein the thermo-on ventilation volume is determined so that the average ventilation volume per unit time in one cycle of the thermo-operation including the first period and the second period is the same as the normal ventilation volume. Air environment adjustment method.
  15.  前記運転履歴情報において前記サーモオン制御を行っている時間である第1期間が前記サーモオフ制御を行っている時間である第2期間よりも短い場合に、
     前記サーモオン時換気量を前記通常換気量よりも増加させた第2換気量に固定し、前記第1期間の間に前記第2換気量で換気した場合の第2積算換気量を算出し、
     前記第1期間及び前記第2期間を合わせたサーモ運転の一周期における単位時間当たりの平均換気量が前記通常換気量と同じになるように前記サーモオフ時換気量を決定する、請求項13に記載の空気環境調整方法。
    When the first period, which is the time during which the thermo-on control is performed, is shorter than the second period, which is the time during which the thermo-off control is performed, in the operation history information.
    The second ventilation volume when the thermo-on ventilation volume was fixed to the second ventilation volume increased from the normal ventilation volume, and the ventilation was performed with the second ventilation volume during the first period, the second integrated ventilation volume was calculated.
    13. The thirteenth aspect of the present invention, wherein the thermo-off ventilation volume is determined so that the average ventilation volume per unit time in one cycle of the thermo-operation including the first period and the second period is the same as the normal ventilation volume. Air environment adjustment method.
  16.  前記運転履歴情報において前記サーモオン制御を行っている時間である第1期間と前記サーモオフ制御を行っている時間である第2期間とが同じ長さである場合に、
     前記空調装置の前記サーモオン制御と前記サーモオフ制御との切り替えを行う温度の閾値の幅に応じて、前記サーモオフ時換気量を前記通常換気量よりも減少させた第1換気量を設定し、
     前記第2期間の間に前記第1換気量で換気した場合の第1積算換気量を算出し、
     前記第1期間及び前記第2期間を合わせたサーモ運転の一周期における単位時間当たりの平均換気量が前記通常換気量と同じになるように前記サーモオン時換気量を決定する、請求項13に記載の空気環境調整方法。
    In the operation history information, when the first period, which is the time during which the thermo-on control is performed, and the second period, which is the time during which the thermo-off control is performed, are the same length.
    The first ventilation volume in which the ventilation volume at the time of the thermo-off is smaller than the normal ventilation volume is set according to the width of the threshold value of the temperature at which the thermo-on control and the thermo-off control of the air conditioner are switched.
    The first integrated ventilation volume when ventilated with the first ventilation volume during the second period is calculated.
    13. The thirteenth aspect of the present invention, wherein the thermo-on ventilation volume is determined so that the average ventilation volume per unit time in one cycle of the thermo-operation including the first period and the second period is the same as the normal ventilation volume. Air environment adjustment method.
  17.  低能力運転状態においてサーモオン制御及びサーモオフ制御が行われる空調装置により室温が調整される空調対象室において、前記空調対象室内の空気を換気する換気装置の運転を制御するコンピュータを、
     前記空調装置の運転状態情報を取得し、
     前記運転状態情報を前記空調装置の運転履歴情報として記憶し、
     前記空調装置が前記低能力運転状態である場合に、前記空調装置の前記サーモオン制御及び前記サーモオフ制御に応じて前記換気装置の換気量を変動させる手段として機能させる、プログラム。
    A computer that controls the operation of the ventilation device that ventilates the air in the air-conditioned room in the air-conditioned room where the room temperature is adjusted by the air-conditioning device that performs thermo-on control and thermo-off control in the low-capacity operating state.
    Acquire the operating state information of the air conditioner and
    The operation state information is stored as the operation history information of the air conditioner,
    A program that functions as a means for varying the ventilation volume of the ventilation device according to the thermo-on control and the thermo-off control of the air conditioner when the air conditioner is in the low capacity operating state.
  18.  請求項17に記載のプログラムを記録したコンピュータ読み取り可能な、記録媒体。 A computer-readable recording medium on which the program according to claim 17 is recorded.
PCT/JP2019/020893 2019-05-27 2019-05-27 Control device, air environment adjustment system, air environment adjustment method, program, and recording medium WO2020240659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/020893 WO2020240659A1 (en) 2019-05-27 2019-05-27 Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
JP2021521590A JP7357673B2 (en) 2019-05-27 2019-05-27 Control device, air environment adjustment system, air environment adjustment method, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020893 WO2020240659A1 (en) 2019-05-27 2019-05-27 Control device, air environment adjustment system, air environment adjustment method, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2020240659A1 true WO2020240659A1 (en) 2020-12-03

Family

ID=73553120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020893 WO2020240659A1 (en) 2019-05-27 2019-05-27 Control device, air environment adjustment system, air environment adjustment method, program, and recording medium

Country Status (2)

Country Link
JP (1) JP7357673B2 (en)
WO (1) WO2020240659A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134343A (en) * 2013-01-10 2014-07-24 Daikin Ind Ltd Air conditioning system
WO2017002245A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Air-conditioning system control device and air-conditioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134343A (en) * 2013-01-10 2014-07-24 Daikin Ind Ltd Air conditioning system
WO2017002245A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Air-conditioning system control device and air-conditioning system

Also Published As

Publication number Publication date
JPWO2020240659A1 (en) 2020-12-03
JP7357673B2 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
US11752832B2 (en) Peak demand response operation of HVAC systems
US10047967B2 (en) Systems and methods for adaptive control of staging for outdoor modulating unit
US11480353B2 (en) Peak demand response operation of HVAC system with face-split evaporator
US11802705B2 (en) Peak demand response operation with improved sensible capacity
JP2011158219A (en) Air conditioning control method and device
JP7012885B2 (en) Air conditioning ventilation system
WO2019193680A1 (en) Air conditioning system
JP6897848B2 (en) Air conditioning system
EP3591318A1 (en) Variable speed blower control for hvac systems
JP7002918B2 (en) Ventilation system, air conditioning system, ventilation method and program
US11703248B2 (en) Proactive system control using humidity prediction
WO2020240685A1 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
WO2020240659A1 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
JPH11294871A (en) Air conditioner
WO2019159241A1 (en) Air-conditioning system, air-conditioning control device, air-conditioning control method and program
KR102558826B1 (en) Air conditioner system and control method
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
JP7042628B2 (en) Air conditioning system, control device, air conditioning control method and program
WO2024116241A1 (en) Air-conditioning device, air-conditioning control device, air-conditioning system, and air-conditioning control method
JP2020153607A (en) Air conditioning system
CN116928808A (en) Three-pipe type heat recovery multi-split air conditioning unit and control method thereof
CN115335643A (en) Ventilation air conditioning system
CN117006507A (en) Dehumidification control method of air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930511

Country of ref document: EP

Kind code of ref document: A1