JP3785020B2 - 半導体レーザ駆動回路 - Google Patents

半導体レーザ駆動回路 Download PDF

Info

Publication number
JP3785020B2
JP3785020B2 JP2000085113A JP2000085113A JP3785020B2 JP 3785020 B2 JP3785020 B2 JP 3785020B2 JP 2000085113 A JP2000085113 A JP 2000085113A JP 2000085113 A JP2000085113 A JP 2000085113A JP 3785020 B2 JP3785020 B2 JP 3785020B2
Authority
JP
Japan
Prior art keywords
current
circuit
output
input
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000085113A
Other languages
English (en)
Other versions
JP2001274504A (ja
Inventor
豊喜 田口
誠 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000085113A priority Critical patent/JP3785020B2/ja
Priority to US09/814,719 priority patent/US6501775B2/en
Publication of JP2001274504A publication Critical patent/JP2001274504A/ja
Application granted granted Critical
Publication of JP3785020B2 publication Critical patent/JP3785020B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスク装置等に用いられる半導体レーザを入力制御電流に応じて駆動する半導体レーザ駆動回路に関する。
【0002】
【従来の技術】
光ディスク装置、レーザプリンタ及び光通信システム等では、記録あるいは伝送すべき情報に対応した入力制御電流が集積回路外部から供給され、この入力制御電流に応じて半導体レーザに駆動電流を供給する集積回路により構成される半導体レーザ駆動回路が用いられる。このような半導体レーザ駆動回路の公知例としては、例えば特開平4−208581号、特開平8−83948号がある。
【0003】
これらの公知例の半導体レーザ駆動回路では、半導体レーザの光出力を光検出器で検出し、これにより得られたモニタ電流と入力制御電流を比較して、両者の差が最小となるように広帯域のフィードバック制御を行い、半導体レーザを駆動する構成がとられている。これらの構成では通常、外部から供給される入力制御電流を受ける入力回路や、この入力回路を介して与えられる制御電流と半導体レーザの光出力のモニタ電流との差電流に応じた電圧を増幅して出力回路に供給する制御増幅回路でオフセットが発生する。このオフセットは、CMOSトランジスタで回路を構成した場合、特に顕著に発生する。
【0004】
【発明が解決しようとする課題】
半導体レーザ駆動回路に上述したようなオフセットがあると、例えば光ディスク装置の場合、以下のような問題点が発生する。まず、このオフセットは半導体レーザを低出力光量とする再生時においては、無視できない大きな誤差となる。例えば、このオフセットにより半導体レーザの出力光量が所望値以上になると、光ディスク上の既に記録されている情報を徐々に消去してしまい、また半導体レーザの出力光量が所望値以下になると、再生信号のS/Nが低下して正常な再生が不可能となる。
【0005】
一方、光ディスク装置などの市場の強い低消費電力化・低コスト化の要求に応えるには、半導体レーザ駆動回路を全CMOSトランジスタ構成とすることが望まれる。ところが、CMOSトランジスタ回路では、入力回路や制御増幅回路のオフセット電圧は従来のバイポーラトランジスタ回路に比較して極めて大きいために上述した問題が顕著となり、このオフセットを低減させない限り全CMOSトランジスタ構成とすることは不可能に近い。
【0006】
さらに、光ディスク装置の光学系の各種仕様、例えば半導体レーザの種類や、この半導体レーザからモニタ用光検出器に至る光学経路固有のモニタ量等の違いに対応するには、フィードバックループのループゲインを広範囲に調整可能とし、かつモニタ電流の大きさに合わせて外部からの入力制御電流の大きさを増減する必要がある。しかし、前述した公知例の半導体レーザ駆動回路では、前者に関しては制御増幅回路によるループゲイン可変能力には限界があるために、十分に対応することが難しいという問題があり、また後者についてはモニタ電流の大きさに合わせて入力制御電流の大きさを増減しようとすると、消費電力の増加や入力制御電流の伝送S/Nの低下を招くという問題があった。
【0007】
従って、本発明の目的は、オフセットを十分に低減して、例えば全CMOSトランジスタ回路構成においても半導体レーザを安定に駆動できる半導体レーザ駆動回路を提供することにある。
【0008】
さらに、本発明の他の目的は、フィードバックループのループゲインを広範囲に調整でき、またモニタ電流の大きさに適合した制御が容易な半導体レーザ駆動回路を提供することにある。
【0009】
【課題を解決するための手段】
上記の課題を解決するため、本発明は外部から供給される入力制御電流に従って半導体レーザを駆動する集積回路により構成される半導体レーザ駆動装置において、入力制御電流を集積回路内部の制御電流に変換する電流/電流変換回路を含む入力回路と、この入力回路から出力される制御電流と半導体レーザの光出力を検出する光検出器からフィードバックされる該光出力に応じたモニタ電流との差電流に応じた電圧を増幅する制御増幅回路と、この制御増幅回路からの出力に対応して半導体レーザに駆動電流を供給する出力回路と、入力回路の入力から制御増幅回路の出力までの信号経路で生じるオフセットを補償するオフセット補償回路とを備え、オフセット補償回路は半導体レーザの駆動指令が与えられた直後の期間において入力回路への前記入力制御電流を遮断し、かつ制御増幅回路の出力を出力回路の入力から切り離した状態でオフセットを検知し、該検知結果に基づいて該オフセットの補償を行うことを特徴とする。
【0010】
また、入力回路への入力制御電流をオン/オフする第1のスイッチと、制御増幅回路の出力と出力回路の入力との間に挿入された第2のスイッチとをさらに備え、オフセット補償回路において半導体レーザの駆動指令が与えられたとき、一時的に第1のスイッチをオフ状態としかつ第2のスイッチを制御して制御増幅回路の出力を電流増幅出力回路の入力から切り離すと共に、制御増幅回路からの出力を取り込んだ状態でオフセットを検知することを特徴とする。
【0011】
オフセット補償回路は、より具体的には制御増幅回路の出力電圧と基準電圧とを比較し、両者の大小関係に応じた極性の出力信号を出力する第1の比較器と、この第1の比較器の出力信号極性に従ってアップカウントまたはダウンカウントを行ってディジタル値を出力するアップダウンカウンタと、このアップダウンカウンタからの出力ディジタル値をアナログ電流に変換して入力回路にフィードバックするD/A変換器と、第1の比較器の出力信号をフィルタリングするフィルタと、このフィルタの出力電圧を例えば二つの基準電圧と比較して所定範囲内にあるか否かを判定することで、オフセット検知終了タイミングを決定する第2の比較器とを有する。
【0012】
このように構成された半導体レーザ駆動回路では、入力回路の入力から制御増幅回路の出力までの信号経路で生じるオフセットが効果的に低減され、低消費電力・低コスト化のために回路を全てCMOSトランジスタ回路により構成した場合でも、半導体レーザの出力光量を入力制御電流に応じた値に安定に制御することができる。従って、この半導体レーザ駆動回路を例えば光ディスクの記録・再生に用いる半導体レーザの駆動に適用した場合、出力光量が所望値から大きく外れることによる光ディスク上の既記録情報の損傷・消去や、再生信号S/Nの低下といった問題を避けることが可能となる。
【0013】
また、入力回路は電流/電流変換回路からの出力電流を外部からの制御信号に基づいて制御される変換比で切り換えて出力する電流切換回路をさらに有することが望ましい。このような電流切換回路を追加することにより、入力制御電流の設定範囲を大きくすることなく、電流切換回路の出力電流、すなわち制御増幅回路への入力電圧を大きく変化させることができ、半導体レーザの駆動電流の制御精度を低下させることなく、光ディスク装置に設けられる種々の仕様の出力光モニタ用光学系に対応することが可能となり、また入力制御電流を増減することによる消費電力の増加や伝送S/Nの低下の問題も解決される。
【0014】
制御増幅回路は、より具体的には入力回路からの出力電流とモニタ電流との差電流に応じた電圧を入力とする、一対の能動負荷を有する差動増幅器と、これら一対の能動負荷から一対の電流入力端にそれぞれ入力される電流を一対の電流出力端へ外部からの制御信号に従った分配比で分配する電流分配回路と、この電流分配回路の一対の電流出力端からの出力電流の差電流を検出して出力する差電流検出回路と、この差電流検出回路により検出された差電流を電圧に変換して出力する出力段回路とを有する。これにより増幅段が差動増幅器一段からなる遅延の少ない構成でありながら、増幅機能と利得可変機能を併せ持つ制御増幅回路とすることができる。
【0015】
さらに、本発明に係る他の半導体レーザ駆動装置は、入力制御電流を集積回路内部の制御電流に変換する電流/電流変換回路と、この電流/電流変換回路から出力される制御電流を外部からの制御信号に基づいて制御される変換比で切り換えて出力する電流切換回路と、入力回路から出力される制御電流と前記半導体レーザの光出力を検出する光検出器からフィードバックされる該光出力に応じたモニタ電流との差電流を電圧に変換する電流/電圧変換抵抗と、この電流/電圧変換抵抗の両端間に生じる電圧を増幅する制御増幅回路と、この制御増幅回路からの出力に対応して前記半導体レーザに駆動電流を供給する出力回路とを備え、電流/電流変換回路、電流切換回路、制御増幅回路及び出力回路は集積回路として構成され、電流/電圧変換抵抗は該集積回路に外付け素子として接続されていることを特徴とする。
【0016】
この半導体レーザ駆動回路によると、半導体レーザ装置に用いられる半導体レーザの種類や出力光モニタ用光学系の仕様に応じて、電流切換回路における変換比を外部からの制御により変更し、かつ外付けの電流/電圧変換抵抗を交換することができる。すなわち、半導体レーザ装置の光学系では、半導体レーザ自体の発光効率、半導体レーザからの光出力の光検出器への分配比、光検出器における受光感度等によりモニタ電流の大きさが変動するが、この半導体レーザ駆動回路は、モニタ電流の大きさに適合した制御が容易化され、その場合、入力制御電流を大きく増減する必要がないので、消費電力の増加や伝送S/Nの低下が問題となることもなくなる。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
(半導体レーザ装置の全体構成)
図1は、本発明の一実施形態に係る半導体レーザ装置の構成を示すブロック図である。図1において、半導体レーザ駆動回路(以下、LD駆動回路という)1は、この例では1チップの集積回路によって構成され、第1のスイッチ2、電流/電流変換回路3、ロジック入力部4、基準電圧源5、電流切換回路6、ゲイン設定回路7、制御増幅回路8、オフセット補償回路9、第2のスイッチ10、電流駆動出力回路11及び高周波重畳回路12を有する。
【0018】
また、LD駆動回路1には集積回路の外部接続端子として、制御電流入力端子20、電流変換ゲイン設定端子21,22、光量制御オン・オフ制御端子23、高周波重畳オン・オフ端子24、ループゲイン設定端子25、GND(グラウンド)端子26、高周波重畳振幅設定端子27、高周波重畳周波数設定端子28、駆動感度設定端子29、LD駆動端子30、電源供給端子31、モニタ電流フィードバック端子32及び基準電圧端子33が備えられている。
【0019】
LD駆動端子30には半導体レーザ(以下、LDという)50のカソード端子が接続され、LD50のアノード端子は電源Vccに接続されるとともに、LD50の光出力を受けるように配置されたフォトダイオードからなる光出力モニタ用の光検出器51のカソード端子に接続され、光検出器51のアノード端子はモニタ電流フィードバック端子32に接続されている。
【0020】
さらに、LD駆動回路1を構成する集積回路の外付け素子として、ループゲイン設定端子25、高周波重畳振幅設定端子27、高周波重畳周波数設定端子28、駆動感度設定端子29に、それぞれのパラメータを設定するための設定用抵抗40,41,42,43が接続され、またモニタ電流フィードバック端子32と基準電圧端子33との間には、制御電流とモニタ電流との差電流を電圧に変換するための電流/電圧変換抵抗44が接続されている。
【0021】
(半導体レーザ装置の概略動作)
次に、図1の各部の詳細な構成を説明する前に、半導体レーザ装置全体の概略的な動作について述べる。
LD50の出力光は光検出器51により検出され、光検出器51からLD50の光出力に応じたモニタ電流が出力される。このモニタ電流は、モニタ電流フィードバック端子32を介して制御増幅回路8の反転入力端子にフィードバック(負帰還)される。制御増幅回路8の反転入力端子は、基準電圧源5により基準電圧端子33、電流/電圧変換抵抗44及びモニタ電流フィードバック端子32を介してバイアスされている。
【0022】
一方、制御電流入力端子20を介してLD駆動回路1の外部から入力される入力制御電流は、第1のスイッチ2を介して電流/電流変換回路3に入力され、ここの電流/電流変換回路3で集積回路の内部電流(電流/電流変換回路3での内部帰還電流)に変換された後、電流切換回路6においてロジック入力部4によって制御される電流変換比で切り換えられる。
【0023】
従って、電流/電圧変換抵抗44で電流切換回路6からの制御電流と光検出器51からのモニタ電流との差電流が電圧(誤差電圧)に変換され、この差電流、つまり電流/電圧変換抵抗44の両端間に生じる誤差電圧が最小となるように制御増幅回路8にフィードバック制御が施される。制御増幅回路8からの出力は、第2のスイッチ10を介して電流増幅器からなる電流駆動出力回路11に入力され、ここで電流増幅された後、LD駆動端子30を介してLD50に駆動電流として供給される。
【0024】
ここで、外付けの電流/電圧変換抵抗44を変更することでループゲインを大きくとることができ、仕様の異なる各種光学系の対応が可能となる。さらに、電流切換回路6において、外部から端子21,22を介して入力される電流ゲイン設定信号G1,G2に従ってロジック入力部4により入出力電流の変換比を可変とすることで、電流検出器51から出力される種々の大きさのモニタ電流値に対応することが可能となり、汎用性が向上する。
【0025】
一方、オフセット補償回路9によって、電流/電流変換回路3の入力から制御増幅回路8の出力までの信号経路で生じるオフセットが補償(除去)される。このオフセット補償回路9は、まずロジック入力部4からLD駆動指令が与えられた直後の期間において、第1のスイッチ2をオフとして電流/電流変換回路2への入力制御電流を遮断し、かつ第2のスイッチ10をオフセット補償回路9の入力側へ接続して、制御増幅回路8の出力を電流駆動出力回路11の入力から切り離し、電流駆動出力回路11を完全にオフとした状態で、制御増幅回路8の出力電圧を取り込み、この出力電圧が所定の基準電圧(中電位)となるまで電流/電流変換回路3に電流をフィードバックすることで、オフセットを検知する。
【0026】
そして、以後このオフセット検知結果、すなわち電流/電流変換回路3へのフィードバック電流を保持し、第1のスイッチ2をオンとして電流/電流変換回路2に入力制御電流を与えると共に、第2のスイッチ10を電流駆動出力回路11の入力側切り換えて制御増幅回路8の出力を電流駆動出力回路11に伝達することにより、電流駆動出力回路11から端子30を介してLD50に駆動電流を供給し、LD50を駆動する。これにより上述したオフセットがキャンセルされる結果、制御信号電流とモニタ電流との差電流は極めて微小となり、入力制御電流に応じた正確な光出力を得ることができる。
【0027】
なお、高周波重畳回路12はLD50の戻り光ノイズを抑制するために、LD50に供給する駆動電流に適当な周波数及び振幅の高周波電流を重畳させるものであるが、この手法は既に周知であるため、詳細な説明は省略する。
【0028】
(オフセット補償回路9について)
図2及び図3を用いて、オフセット補償回路9のさらに詳細な構成と動作を説明する。図2はオフセット補償回路9の詳細な構成を示すブロック図、図3はそのタイミングチャートである。
【0029】
図2に示されるように、オフセット補償回路9は制御増幅回路8の出力電圧と基準電圧(中電位)Vref1とを比較して、両者の大小関係に応じた極性の出力信号を発生するコンパレータ(第1の比較器)60と、コンパレータ60の出力信号P2をフィルタリングするフィルタ(例えば、ローパスフィルタ)61と、フィルタ61の出力電圧を二つの基準電圧Vref2,Vref3と比較して、これらの基準電圧Vref2とVref3の間の範囲内にあるか否かを判定することでオフセット検知終了タイミングを決定するウインドウコンパレータ(第2の比較器)62と、コンパレータ60の出力信号極性に従ってアップカウントまたはダウンカウントを行うアップダウンカウンタ63と、アップダウンカウンタ63の出力ディジタル値をアナログ電流に変換する電流モードのD/A変換器64、及びLD駆動指令信号P1とウインドウコンパレータ62の出力P3に従って第1のスイッチ2及び第2のスイッチ10を制御するスイッチ制御信号P4を生成すると共に、アップダウンカウンタ63に供給するクロックを生成するタイミング発生器65から構成され。
【0030】
次に、図3のタイミングチャートを用いてオフセット補償回路9の動作を説明する。タイミング発生器65は、図1のロジック入力部4からのLD駆動指令信号P1を受け、第1のスイッチ2をオフとし、第2のスイッチ10をオフセット補償回路9の入力側に接続すると共に、アップダウンカウンタ63へのクロックの供給を開始する。アップダウンカウンタ63は、このクロック供給開始前の状態でD/A変換器64の出力ディジタル値がゼロになるように初期値がプリセットされているものとする。
【0031】
ここで、制御増幅回路8の出力にΔVの電圧のオフセット(オフセット電圧)があるものとすると、このオフセットΔVと基準電圧Vref1がコンパレータ60により比較される結果、コンパレータ60の出力信号はΔVとVref1との大小関係に応じた極性となる。アップダウンカウンタ63は、このコンパレータ60の出力信号極性に応じて、ロジック入力部4から供給されるクロックをアップカウントまたはダウンカウントする。アップダウンカウンタ63の出力ディジタル値は、D/A変換器64によりアナログ電流に変換され、この電流が電流/電流変換回路3にフィードバックされることにより、オフセットΔVが減少する方向に制御が行われる。
【0032】
このようにしてオフセットΔVは、アップダウンカウンタ63のカウント動作と共に徐々にゼロに向かう。オフセットΔVがゼロ近傍に収束すると、ΔVは基準電圧Vref1を中心として振動するので、これに伴いコンパレータ60の出力P2にパルス列が発生する。オフセットΔVがゼロ近傍に収束したことを判定する手段は種々の方法が考えられるが、ここでは以下のようにコンパレータ60の出力パルスをフィルタ61によりフィルタリング(平均化)し、このフィルタ61の出力をウインドウコンパレータ62により判定することで行っている。
【0033】
コンパレータ60の出力P2にパルス列が続いて発生して、フィルタ61の出力が二つの基準電圧Vref2,Vref3の中間レベルになり、オフセットが十分にキャンセルされた状態となった時点で、ウインドウコンパレータ62の出力P3は低レベルから高レベルに転じる。ウインドウコンパレータ62の出力が高レベルになると、タイミング発生器65はアップダウンカウンタ63へのクロックの供給を停止して、アップダウンカウンタ63の出力ディジタル値を保持させると共に、第1のスイッチ2をオンとし、第2のスイッチ10を電流駆動出力回路11の入力側に接続する。これにより以後、オフセットΔVがゼロの状態に保持された状態で、LD駆動回路1はLD50を駆動する。
【0034】
(制御増幅回路8について)
図1のような構成で広帯域のフィードバック制御を行おうとする場合は、制御増幅回路8の遅延も大きな問題となるため、制御増幅回路8は増幅段の段数が最小であることが望ましい。図4は、段数の少ない構成で、しかも利得可変機能を有する制御増幅回路8の具体回路を示している。
【0035】
図4に示す制御増幅回路8は、大きく分けて図1の電流切換回路6から出力される制御電流とLD50の光出力のモニタ電流との差電流に応じた電圧を増幅する一対の能動負荷を有する差動増幅器91と、この差動増幅器91の一対の能動負荷から一対の電流入力端に入力される電流を一対の電流出力端へ所望の分配比で分配する電流分配回路92と、この一対の電流出力端からの出力電流の差電流を検出して出力する差電流検出回路93、及び差電流検出回路93により検出された差電流を電圧に変換して出力する出力段回路94から構成される。
【0036】
さらに詳しく説明すると、差動増幅器91は差動対MOSトランジスタ72,74と電流源73及び電流源75,76から構成される。差動対MOSトランジスタ72,74は、各々のゲートが非反転入力端子70及び反転入力端子71にそれぞれ接続され、各々のソースは電流源73の一端に共通に接続され、各々のドレインは一対の能動負荷である電流源75,76の各一端にそれぞれ接続されている。非反転入力端子70は、図1の基準電圧源5及び基準電圧端子33に接続され、反転入力端子71は、電流切換回路6の出力端子及びモニタ電流フィードバック端子32に接続されている。電流源73の他端はGND(グラウンド)端子90に接続され、また電流源75,76の他端は電源Vccの端子86に接続されている。
【0037】
電流分配回路92は、いわゆるギルバートセルと呼ばれる回路であって、二組の差動対MOSトランジスタ77,78及び79,80からなり、図1のゲイン設定回路7から端子87,88を介して入力されるゲイン設定信号(Gain-set)に従って二つの電流出力の分配比が変化するように構成されている。すなわち、電流分配回路92の第1、第2の電流入力端である差動対MOSトランジスタ77,78の各々のソース及び差動対MOSトランジスタ79,80の各々のソースは、差動増幅器91における能動負荷である電流源75,76にそれぞれ共通に接続され、MOSトランジスタ77,80のゲートは端子87に、MOSトランジスタ78,79のゲートは端子88にそれぞれ共通に接続されている。MOSトランジスタ77,79のドレイン及びMOSトランジスタ78,80のドレインは、それぞれ共通に接続されて電流分配回路92の第1、第2の電流出力端となる。
【0038】
電流分配回路92の第1の電流出力端には、差電流検出回路93のダイオード接続されたMOSトランジスタ81のドレイン及びゲートが接続され、電流分配回路92の第2の電流出力端には、差電流検出回路93のもう一つのMOSトランジスタ82のドレインが接続されている。MOSトランジスタ81,82の各々のソースは、GND端子90に接続されている。
【0039】
MOSトランジスタ81,82はカレントミラーを形成しており、MOSトランジスタ81のドレインに電流分配回路92の第1の電流出力端からの電流が流れ込み、これと同じ電流がMOSトランジスタ82のドレインに流れ込む。このため、結果として差電流検出回路93ではMOSトランジスタ82のドレインに流れ込む電流と、電流分配回路92の第2の電流出力端からの出力電流との差電流、すなわち電流分配回路92の第1、第2の電流出力端からの出力電流の差電流が検出されることになる。
【0040】
差電流検出回路93により検出された差電流は、電流源83とキャパシタ84及びMOSトランジスタ85から構成される出力段回路94により電圧に変換され、出力端子89より出力される。
【0041】
このように図4に示した制御増幅回路8は、差動増幅器91の能動負荷(電流源75,76)とGND端子90との間に、図1のゲイン設定回路7から出力されるゲイン設定信号Gain-setにより電流分配比を変化させる電流分配回路92及び差電流検出回路93を挿入して利得可変機能を持たせることにより、増幅段としては差動増幅器91のみの1段からなる遅延の少ない構成で、増幅機能と利得可変機能を実現することができる。
【0042】
(入力回路(電流/電流変換回路3及び電流切換回路6)について)
本実施形態におけるLD駆動回路1においては、外部からの入力制御電流を受ける入力回路が電流/電流変換回路3及び電流切換回路6によって構成される。電流/電流変換回路3には制御電流入力端子20から第1のスイッチ2を介して入力制御電流が与えられるが、この入力制御電流は通常、集積回路であるLD駆動回路1の外部においてD/A変換器の出力電流として生成されている。従って、このD/A変換器の有限のビット精度から、種々の仕様の出力光モニタ用光学系が光ディスク装置で用いられた場合の光検出器51のモニタ電流に対応させるべく、入力制御電流の設定範囲を大きくしようとすると、電流設定精度が劣化する。
【0043】
図5は、このような問題点を回避できるようにした電流/電流変換回路3及び電流切換回路6の具体回路を示している。図5において、電流/電流変換回路3は二つの電流/電圧変換抵抗100,101と演算増幅器102及びMOSトランジスタ103から構成される。電流/電圧変換抵抗100は第1のスイッチ2の他端及び演算増幅器102の非反転入力端子と電源Vccとの間に接続され、制御電流入力端子20からスイッチ2を介して入力される入力制御電流を電圧に変換する。もう一つの電流/電圧変換抵抗101は電源Vccと演算増幅器102の反転入力端子との間に接続され、内部帰還電流を電圧に変換する。MOSトランジスタ103はゲートが演算増幅器102の出力端子に接続され、ドレインが演算増幅器102の反転入力端子に接続されることにより、内部帰還電流を生成する。
【0044】
この電流/電流変換回路3では、演算増幅器102の非反転入力端子と反転入力端子が同電位となるように、つまり二つの電流/電圧変換抵抗100,101の電圧降下の差がゼロとなるように働くので、通常はMOSトランジスタ103のドレインに入力制御電流と同じ大きさの電流が流れる。
【0045】
ところが、演算増幅器102の反転入力端子には、さらに図1のオフセット補償回路9の出力端子(図2のD/A変換器64の出力端子)が接続されており、電流/電圧変換抵抗101には内部帰還電流とオフセット補償回路9からフィードバックされる電流の和が流れるので、電流/電流変換回路3の出力電流は、入力制御電流のみならずオフセット補償回路9からの出力電流によっても変化することになり、これによりオフセット調整が可能となる。
【0046】
一方、電流切換回路6は複数のMOSトランジスタ110,111,112,113とアナログスイッチ(電流スイッチ)114から構成される。MOSトランジスタ110,111,112,113は、電流/電流変換回路3内のMOSトランジスタ103とゲートが共通に接続されることにより、MOSトランジスタ103と共にカレントミラーを形成しており、MOSトランジスタ103と同じドレイン電流が流れる。
【0047】
アナログスイッチ114は、図1の電流変換ゲイン設定端子21,22に入力される電流変換ゲイン設定信号G1,G2に基づきロジック入力部4から供給される電流切換信号に従って、電流切換回路6の出力端子に接続するMOSトランジスタ110,111,112,113の出力数を切り換える。このようにすると、電流切換信号に応じて電流切換回路6の出力電流を、電流/電流変換回路3で生成した制御電流の任意の整数倍に切り換えることができる。従って、入力制御電流の設定範囲を大きくすることなく、電流切換回路6の出力電流を大きく変化させることができ、LD駆動電流の精度を低下させることなく、種々の仕様の出力光モニタ用光学系に対応することが可能となる。
【0048】
(応用例について)
次に、本発明に係るLD駆動回路を用いた図6に示す光ディスク装置について説明する。
図6において、半導体レーザ駆動回路(LD駆動回路)201は図1に示したとLD駆動回路1と同様のものである。図1に示したLD50及びその光出力モニタ用の光検出器51は、固定光学ユニット202内に設けられる。固定光学ユニット202の内部の詳細については図示していないが、この固定光学ユニット202ではLDの出力光を例えばコリメータレンズ、複合プリズム及びガルバノミラー等の光学素子を経て移動光学ヘッド203に導びく。
【0049】
移動光学ヘッド203は、スピンドルモータにより回転する光ディスク204に光ビームを集束させて照射する対物レンズ及びこれをフォーカス方向及びトラッキング方向に移動させるためのアクチュエータ等を含んで構成され、光ディスク204の半径方向に移動可能となっている。
【0050】
光ディスク204に記録された情報を再生するときは、LDから記録時よりも低パワーのレーザビームが読み出し用ビームとして出力され、固定光学ユニット202から移動光学ヘッド203に導かれ、移動光学ヘッド203により光ディスク204上に微小な光スポットとして照射される。光ディスク204からの反射光は、移動光学ヘッド203を経て固定光学ユニット202に導かれる。固定光学ユニット202においては、移動光学ヘッド203から導かれてきた反射光が複合プリズムで入射光と分離され、再生用ホログラム素子により再生用光検出器に集光される。
【0051】
再生用光検出器の出力は、プリアンプと加減算回路を主体として構成された演算処理回路205に入力され、再生情報信号とフォーカスサーボ及びトラッキングサーボのためのサーボ用信号が生成される。サーボ用信号はサーボ回路207に導かれ、これに基づきサーボ回路207が移動光学ヘッド203を制御することによって、フォーカスサーボ及びトラッキングサーボを行う。
【0052】
再生情報信号は2値化/PLL回路206に導かれ、ここで再生情報のディジタル処理可能とするために2値化されるとともに、再生クロックが生成される。生成された2値化信号及び再生クロックは、メインコントローラ208に入力される。メインコントローラ208は変復調回路及び誤り訂正回路を備えるほか、サーボ回路207とレーザコントローラ209を制御する機能を有し、レーザコントローラ209とのインタフェース等を含んで構成される。
【0053】
レーザコントローラ209は、データバス及びアドレスバスを介してメインコントローラ208と接続され、メインコントローラ208からの制御の下で図1に示した制御電流入力端子20、電流変換ゲイン設定端子21,22、光量制御オン・オフ制御端子23、高周波重畳オン・オフ端子24等へ供給する各種の信号を生成する。
【0054】
光ディスク204への情報の記録時には、レーザコントローラ209内において記録すべき情報に応じた制御電流がD/A変換器により生成され、LD駆動回路201に入力される。そして、LD駆動回路201から出力される駆動電流がLDに供給されることにより、LDから再生時よりも高パワーのレーザビームが書き込み用ビームとして出力され、先の再生時と同様に固定光学ユニット202から移動光学ヘッド203を経て光ディスク204上に微小な光スポットとして照射される。これによって、光ディスク204上に情報が記録される。このような記録可能な光ディスク204は、特に方式が限定されるものではないが、例えば光磁気方式あるいは相変化方式の光ディスクが用いられる。
【0055】
このような光ディスク装置に、本発明に基づくLD駆動回路201を含む半導体レーザ装置を適用することによって、従来技術の問題点が解消される。すなわち、LD駆動回路201内で生じるオフセットが効果的に低減されるため、LDの出力光量が所望値以上に上昇することによる光ディスク204上の既記録情報の損傷や消去を防止でき、逆にLDの出力光量が所望値以下に下がることによる再生信号S/Nの低下を避けることができる。
【0056】
また、LD駆動回路201を前述のように全CMOSトランジスタ構成としながらもオフセットが十分に低減されるため、光ディスク装置の低消費電力化・低コスト化の要求に容易に応えることができる。
【0057】
さらに、LD駆動回路201においては、前述したように入力回路において、電流/電流変換回路の出力電流を電流切換回路により外部からの切換信号に従って制御される電流変換比で切り換えて出力するようにすると共に、この制御電流と光検出器からのモニタ電流との差電流を電圧に変換する電圧/電流変換抵抗を集積化されたLD駆動回路201に対し外付け素子として設けることで、その値を容易に変更できるようにしている。従って、LD駆動回路201への入力制御電流を大きく増減させることなく、光ディスク装置の光学系に用いられるLDの種類や光検出器等のモニタ用光学系のモニタ量の違いに対応することができ、入力制御電流を増減することによる消費電力の増加や伝送S/Nの低下という問題も解決することができる。
【0058】
【発明の効果】
以上説明したように、本発明の半導体レーザ駆動回路によれば、回路内で発生するオフセットを十分に低減できるので、例えば回路を消費電力及びコスト面で有利であるが発生するオフセットの大きい全CMOS回路構成としても、半導体レーザを安定に駆動でき、光ディスク装置での既記録データの消去や再生S/Nの低下といった問題を解消することが可能となる。
【0059】
また、本発明の半導体レーザ駆動回路は、フィードバックループのループゲインを広範囲に調整でき、さらにモニタ電流の大きさに適合した制御が容易であるため、光ディスク装置の光学系の種々の仕様に対応することが可能であり、汎用性に富むという利点がある。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る半導体レーザ装置の構成を示すブロック図
【図2】同実施形態におけるオフセット補償回路の詳細な構成を示すブロック図
【図3】同実施形態におけるオフセット補償回路の動作を説明するためのタイミングチャート
【図4】同実施形態における制御増幅回路の詳細な構成を示す回路図
【図5】同実施形態における電流/電流変換回路及び電流切換回路の詳細な構成を示す回路図
【図6】本発明の半導体レーザ駆動回路を適用した光ディスク装置の構成を示すブロック図
【符号の説明】
1…LD駆動回路
2…第1のスイッチ
3…電流/電流変換回路(入力回路)
4…ロジック入力部
5…基準電圧源
6…電流切換回路(入力回路)
7…ゲイン設定回路
8…制御増幅回路
9…オフセット調整回路
10…第2のスイッチ
11…電流駆動出力回路
12…高周波重畳回路
44…電流/電圧変換抵抗
50…LD(半導体レーザ)
51…モニタ用光検出器
60…コンパレータ(第1の比較器)
61…フィルタ
62…ウインドウコンパレータ(第2の比較器)
63…アップダウンカウンタ
64…電流モードD/A変換器
65…タイミング発生器
91…差動増幅器
92…電流分配回路
93…差電流検出回路
94…出力段回路

Claims (6)

  1. 外部から供給される入力制御電流に従って半導体レーザを駆動する半導体レーザ駆動回路において、
    前記入力制御電流を集積回路内部の制御電流に変換する入力回路と、
    前記入力回路から出力される制御電流と前記半導体レーザの光出力を検出する光検出器からフィードバックされる該光出力に応じたモニタ電流との差電流に応じた電圧を増幅する制御増幅回路と、
    前記制御増幅回路からの出力に対応して前記半導体レーザに駆動電流を供給する出力回路と、
    前記入力回路の入力から前記制御増幅回路の出力までの信号経路で生じるオフセットを補償するオフセット補償回路とを備え、
    前記オフセット補償回路は、前記半導体レーザの駆動指令が与えられた直後の期間において前記入力回路への前記入力制御電流を遮断し、かつ前記制御増幅回路の出力を前記出力回路の入力から切り離した状態で前記オフセットを検知し、該検知結果に基づいて該オフセットの補償を行うことを特徴とする半導体レーザ駆動回路。
  2. 前記入力回路への前記入力制御電流をオン/オフする第1のスイッチと、
    前記制御増幅回路の出力と前記出力回路の入力との間に挿入された第2のスイッチとをさらに備え、
    前記オフセット補償回路は、前記半導体レーザの駆動指令が与えられたとき、一時的に前記第1のスイッチをオフ状態としかつ前記第2のスイッチを制御して前記制御増幅回路の出力を前記出力回路の入力から切り離すと共に、前記制御増幅回路からの出力を取り込んだ状態で前記オフセットを検知することを特徴とする請求項1記載の半導体レーザ駆動回路。
  3. 前記オフセット補償回路は、
    前記制御増幅回路の出力電圧と基準電圧とを比較し、両者の大小関係に応じた極性の出力信号を出力する第1の比較器と、
    前記第1の比較器の出力信号極性に従ってアップカウントまたはダウンカウントを行ってディジタル値を出力するアップダウンカウンタと、
    前記アップダウンカウンタからの出力ディジタル値をアナログ電流に変換して前記入力回路にフィードバックするD/A変換器と、
    前記第1の比較器の出力信号をフィルタリングするフィルタと、
    前記フィルタの出力電圧が所定範囲内にあるか否かを判定して前記オフセット検知終了タイミングを決定する第2の比較器とを有することを特徴とする請求項2記載の半導体レーザ駆動回路。
  4. 前記入力回路は、
    前記入力制御電流を電流/電流変換する電流/電流変換回路と、
    前記電流/電流変換回路からの出力電流を外部からの制御信号に基づいて制御される変換比で切り換えて出力する電流切換回路とを有することを特徴とする請求項1記載の半導体レーザ駆動回路。
  5. 前記制御増幅回路は、
    前記入力回路からの出力電流と前記モニタ電流との差電流に応じた電圧を入力とする、一対の能動負荷を有する差動増幅器と、
    前記一対の能動負荷から一対の電流入力端にそれぞれ入力される電流を一対の電流出力端へ所望の分配比で分配する電流分配回路と、
    前記一対の電流出力端からの出力電流の差電流を検出して出力する差電流検出回路と、
    前記差電流検出回路により検出された差電流を電圧に変換して出力する出力段回路とを有することを特徴とする請求項1記載の半導体レーザ駆動回路。
  6. 外部から供給される入力制御電流に従って半導体レーザを駆動する半導体レーザ駆動回路において、
    前記入力制御電流を集積回路内部の制御電流に変換する電流/電流変換回路と、
    前記電流/電流変換回路から出力される制御電流を外部からの制御信号に基づいて制御される変換比で切り換えて出力する電流切換回路と、
    前記電流切換回路から出力される制御電流と前記半導体レーザの光出力を検出する光検出器からフィードバックされる該光出力に応じたモニタ電流との差電流に応じた電圧を増幅する制御増幅回路と、
    前記制御増幅回路からの出力に対応して前記半導体レーザに駆動電流を供給する出力回路とを備え、
    前記電流/電流変換回路、電流切換回路、制御増幅回路及び出力回路は集積回路として構成され、前記制御電流とモニタ電流との差電流を電圧に変換して前記制御増幅回路に供給する電流/電圧変換抵抗が該集積回路に外付け素子として接続されることを特徴とする半導体レーザ駆動回路。
JP2000085113A 2000-03-24 2000-03-24 半導体レーザ駆動回路 Expired - Fee Related JP3785020B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000085113A JP3785020B2 (ja) 2000-03-24 2000-03-24 半導体レーザ駆動回路
US09/814,719 US6501775B2 (en) 2000-03-24 2001-03-23 Semiconductor laser driving circuit and semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000085113A JP3785020B2 (ja) 2000-03-24 2000-03-24 半導体レーザ駆動回路

Publications (2)

Publication Number Publication Date
JP2001274504A JP2001274504A (ja) 2001-10-05
JP3785020B2 true JP3785020B2 (ja) 2006-06-14

Family

ID=18601498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000085113A Expired - Fee Related JP3785020B2 (ja) 2000-03-24 2000-03-24 半導体レーザ駆動回路

Country Status (2)

Country Link
US (1) US6501775B2 (ja)
JP (1) JP3785020B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20007884U1 (de) * 2000-05-02 2001-09-06 iC-Haus GmbH, 55294 Bodenheim Monolithisch integrierter Schaltkreis zum Regeln der Lichtleistung einer Laserdiode
WO2002037622A2 (en) 2000-11-06 2002-05-10 Vitesse Semiconductor Corporation Method of controlling the turn off characteristics of a vcsel diode
JP3632641B2 (ja) * 2001-09-07 2005-03-23 ティアック株式会社 光ディスク装置
US7061951B2 (en) 2002-12-20 2006-06-13 Elantec Semiconductor, Inc. Systems and methods for automatic power control of laser diodes
US8036539B2 (en) * 2005-06-28 2011-10-11 Finisar Corporation Gigabit ethernet longwave optical transceiver module having amplified bias current
US7382191B2 (en) 2006-02-17 2008-06-03 Sipex Corporation Multiplier-transimpedance amplifier combination with input common mode feedback
JP2011187494A (ja) * 2010-03-04 2011-09-22 Ricoh Co Ltd 半導体レーザ駆動装置及びその半導体レーザ駆動装置を備えた画像形成装置
US8411716B2 (en) * 2011-01-26 2013-04-02 Institut National D'optique Circuit assembly for controlling an optical system to generate optical pulses and pulse bursts
CN102855889B (zh) * 2011-06-27 2015-03-18 晶致半导体股份有限公司 激光二极管控制电路及应用此电路的激光二极管控制装置
JP6886235B2 (ja) * 2015-09-24 2021-06-16 キヤノン株式会社 記録装置および発光素子駆動用基板
JP6914010B2 (ja) * 2016-05-25 2021-08-04 キヤノン株式会社 駆動装置
JP7154079B2 (ja) * 2018-09-14 2022-10-17 キヤノン株式会社 記録装置および発光素子駆動用基板
US11967061B2 (en) * 2019-07-10 2024-04-23 Hamamatsu Photonics K.K. Semiconductor apparatus examination method and semiconductor apparatus examination apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097473A (en) 1989-12-21 1992-03-17 Kabushiki Kaisha Toshiba Stabilized-feedback control device for semiconductor lasers
US5579329A (en) 1994-07-15 1996-11-26 Kabushiki Kaisha Toshiba Semiconductor laser apparatus, information recording/reproducing apparatus and image recording apparatus
US5506853A (en) 1994-11-23 1996-04-09 Harris Corporation Offset stabilization of wide dynamic range injection laser diode with single bit sampling
US5848044A (en) 1995-08-18 1998-12-08 Kabushiki Kaisha Toshiba Semiconductor laser driving circuit, semiconductor laser device, image recording apparatus, and optical disk apparatus
US6388521B1 (en) * 2000-09-22 2002-05-14 National Semiconductor Corporation MOS differential amplifier with offset compensation

Also Published As

Publication number Publication date
US6501775B2 (en) 2002-12-31
JP2001274504A (ja) 2001-10-05
US20010026566A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
JP3785020B2 (ja) 半導体レーザ駆動回路
JP3688484B2 (ja) 光学式記録媒体のドライブ装置
KR100380786B1 (ko) 광디스크 재생장치에 이용되는 트래킹 에러 밸런스조정회로 및 전류제어회로 및 이를 탑재한 광디스크재생장치
US4769801A (en) Focus servo control device for optical disks having servo offset error elimination
KR920009195B1 (ko) 광기록 재생장치의 피드백 제어장치
US5553040A (en) Offset compensation apparatus for tracking error signal of optical recording reproduction apparatus
US5703849A (en) Tracking servo correction control circuit
US6335909B1 (en) Multi-layer recording medium reproducing device
JP3323033B2 (ja) 半導体レーザ制御装置、半導体レーザ装置、情報記録再生装置及び画像記録装置
US7009918B2 (en) Information storage apparatus
KR960007894B1 (ko) 디스크재생시스템에서의 포커스서보개시장치
US20050147011A1 (en) Optical integrated device
WO2011061876A1 (ja) 増幅回路及び光ピックアップ装置
JP2684772B2 (ja) アクチュエータの駆動回路
US20070035801A1 (en) Light receiving element circuit and optical disk device
JP2010011216A (ja) 受光増幅器
JP3946180B2 (ja) 光ディスク装置および光ディスク装置の制御方法
JP2004032003A (ja) 増幅器
US20050118972A1 (en) RF circuit for disc playing apparatus
JP3879590B2 (ja) サーボ回路
JP2008176882A (ja) フロントモニタ装置ならびにそれを備える光ピックアップ装置および情報記録再生装置
JP3544581B2 (ja) 情報信号検出装置
TW200410483A (en) Means for limiting an output signal of an amplifier stage
JPH04208581A (ja) 半導体装置、半導体レーザ装置及び光ディスク装置
JP2001067692A (ja) 光記録媒体を走査するための装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees