JP3782645B2 - 超大入熱溶接用高張力鋼 - Google Patents

超大入熱溶接用高張力鋼 Download PDF

Info

Publication number
JP3782645B2
JP3782645B2 JP2000184986A JP2000184986A JP3782645B2 JP 3782645 B2 JP3782645 B2 JP 3782645B2 JP 2000184986 A JP2000184986 A JP 2000184986A JP 2000184986 A JP2000184986 A JP 2000184986A JP 3782645 B2 JP3782645 B2 JP 3782645B2
Authority
JP
Japan
Prior art keywords
haz
steel
heat input
particles
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000184986A
Other languages
English (en)
Other versions
JP2002003986A (ja
Inventor
学 星野
直樹 斎藤
龍治 植森
年道 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000184986A priority Critical patent/JP3782645B2/ja
Publication of JP2002003986A publication Critical patent/JP2002003986A/ja
Application granted granted Critical
Publication of JP3782645B2 publication Critical patent/JP3782645B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高層建築等のボックス柱の組み立てで適用されるエレクトロスラグ溶接、あるいは、造船・橋梁等で適用されるエレクトロガス溶接などの超大入熱溶接における熱影響部(以下、HAZと称する)靭性に優れた溶接用高張力鋼に関するものである。特に、入熱が200kJ/cm以上で、例えば750〜1500kJ/cm程度でも優れたHAZ靭性を有するものである。
【0002】
【従来の技術】
最近の建築構造物の高層化に伴い、鋼製柱が大型化し、これに使用される鋼材の板厚も増してきた。このような大型の鋼製柱を溶接で組み立てる際に、高能率で溶接することが必要であり、極厚鋼板を1パスで溶接できるエレクトロスラグ溶接が広く適用されるようになってきている。また、造船・橋梁分野においても板厚が25mm程度以上の鋼板を1パスで溶接するエレクトロガス溶接が広く適用されるようになってきた。典型的な入熱の範囲は200〜1500kJ/cmであり、このような超大入熱溶接ではサブマージアーク溶接などの大入熱溶接(入熱は200kJ/cm未満)とは異なり、溶接融合線(FL)付近やHAZが受ける熱履歴において1350℃以上の高温滞留時間が極めて長くなり(超大入熱溶接では大入熱溶接の数倍〜数十倍長時間滞留する)、オーステナイト粒の粗大化が極めて顕著であり、HAZの靭性を確保することが困難であった。最近の大地震を契機として建築構造物の信頼性確保が急務の課題であり、このような超大入熱溶接HAZ部の靭性向上を達成することは極めて重要な課題である。
【0003】
従来から大入熱溶接HAZ部の靭性向上に関しては以下に示すように多くの知見・技術があるが、上記の通り、超大入熱溶接と大入熱溶接とではHAZが受ける熱履歴、特に、1350℃以上における滞留時間が大きく異なるために、大入熱溶接HAZ靭性向上技術を単純に本発明の対象分野に適用することはできない。
【0004】
従来の大入熱溶接HAZ靭性向上は大きく分類すると主に二つの基本技術に基づいたものであった。その一つは鋼中粒子によるピン止め効果を利用したオーステナイト粒粗大化防止技術であり、他の一つはオーステナイト粒内フェライト変態利用による有効結晶粒微細化技術である。
【0005】
「鉄と鋼」、第61年(1975)第11号には、各種の鋼中窒化物・炭化物についてオーステナイト粒成長抑制効果を検討し、Tiを添加した鋼ではTiNの微細粒子が鋼中に生成し、大入熱溶接HAZにおけるオーステナイト粒成長を効果的に抑制する技術が開示されている。
【0006】
特開昭60−184663号公報には、Alを0.04〜0.10%、Tiを0.002〜0.02%、さらに、希土類元素(REM)を0.003〜0.05%含有する鋼において、入熱が150kJ/cmの大入熱溶接HAZ靭性を向上させる技術が開示されている。これは、REMが硫・酸化物を形成して大入熱溶接時にHAZ部の粗粒化を防止する作用を有するためである。
【0007】
特開昭60−245768号公報には、粒子径が0.1〜3.0μm、粒子数が5×103 〜1×107 個/mm3 のTi酸化物、あるいはTi酸化物とTi窒化物との複合体のいずれかを含有する鋼では、入熱が100kJ/cmの大入熱溶接HAZ内でこれら粒子がフェライト変態核として作用することによりHAZ組織が微細化してHAZ靭性を向上できる技術が開示されている。
【0008】
特開平2−254118号公報には、TiとSを適量含有する鋼において大入熱溶接HAZ組織中にTiNとMnSの複合析出物を核として粒内フェライトが生成し、HAZ組織を微細化することによりHAZ靭性の向上が図れる技術が開示されている。
【0009】
特開昭61−253344号公報には、Alを0.005〜0.08%、Bを0.0003〜0.0050%含み、さらに、Ti、Ca、REMのうち少なくとも1種以上を0.03%以下含む鋼は大入熱溶接HAZで未溶解のREM・Caの酸化・硫化物あるいはTiNを起点として冷却過程でBNを形成し、これからフェライトが生成することにより大入熱HAZ靭性が向上する技術が開示されている。
【0010】
特開平9−157787号公報には、Mg含有酸化物を1平方mmあたり40,000〜100,000個含み、且つ、粒子径が0.20〜5.0μmのTi含有酸化物とMnSからなる複合体を1平方mmあたり20〜400個含む鋼では、オーステナイト粒成長抑制と粒内フェライト変態促進により超大入熱溶接HAZ靭性を向上できる技術が開示されている。
【0011】
特開平11−286743号公報には、粒子径が0.005〜0.5μmのMgO、MgS、Mg(O、S)の2種以上を含む鋼では、これらの微細粒子によるオーステナイト粒成長抑制により超大入熱溶接HAZ靭性を向上できる技術が開示されている。
【0012】
【発明が解決しようとする課題】
「鉄と鋼」、第61年(1975)第11号に開示されている技術はTiNをはじめとする窒化物を利用してオーステナイト粒成長抑制を図るものであり、大入熱溶接では効果が発揮されるが、本発明が対象とする超大入熱溶接では1350℃以上の滞留時間が極めて長いために、ほとんどのTiNは固溶し、粒成長抑制の効果を失う。従って、この技術を本発明が目的とする超大入熱溶接HAZの靭性には適用できない。
【0013】
特開昭60−184663号公報に開示された技術はREMの硫化・ 酸化物を利用して大入熱溶接時にHAZ部の粗粒化を防止するものである。硫化・酸化物は窒化物に比べて1350℃以上の高温における安定性は高いので、粒成長抑制効果は維持される。しかしながら、硫・酸化物を微細に分散させることは困難である。硫・酸化物の個数密度が低いために、個々の粒子のピン止め効果は維持されるとしても超大入熱溶接HAZのオーステナイト粒径を小さくすることには限度があり、これだけで靭性向上をはかることはできない。
【0014】
特開昭60−245768号公報に記載された技術はTi酸化物、あるいはTi酸化物とTi窒化物との複合体のいずれかの粒子がフェライト変態核として作用することによりHAZ組織を微細化させてHAZ靭性を向上させるものであり、Ti酸化物の高温安定性を考慮すると超大入熱溶接においてもその効果は維持される。しかしながら、粒内変態核から生成するフェライトの結晶方位は全くランダムというわけではなく、母相オーステナイトの結晶方位の影響を受ける。従って、超大入熱溶接でオーステナイト粒が粗大化する場合には粒内変態だけでHAZ組織を微細化することには限度がある。
【0015】
特開平2−254118号公報に開示された技術は、TiN−MnS複合析出物からフェライトを変態させるものであり、大入熱溶接のように1350℃以上の滞留時間が比較的短い場合には効果を発揮するが、エレクトロスラグあるいはエレクトロガス溶接のような超大入熱溶接においては1350℃以上の滞留時間が長く、この間に多くのTiNは固溶してしまうためにフェライト変態核が消失し、その効果が十分には発揮できない。
【0016】
特開昭61−253344号公報に開示された技術は、REM・Caの酸化・硫化物あるいはTiN上にBNを形成し、これからフェライトを生成させることによりHAZ組織を微細化するものであり、超大入熱溶接においても同様な効果は期待できる。しかしながら、REM・Caの酸化・硫化物の個数を増加させることは困難であり、しかもTiNは固溶してフェライト変態だけでは超大入熱溶接HAZの靭性向上には限度がある。
【0017】
特開平9−157787号公報に開示された技術は本発明者らによるものであり、0.01〜0.20μmの微細なMg含有酸化物によるオーステナイト粒成長抑制と0.20〜5.0μmのTi含有酸化物とMnSからなる複合体による粒内フェライト変態促進により超大入熱溶接HAZ靭性を向上できる。しかしながら、Ti含有酸化物の生成にはAl量を0.005%以下に抑制する必要があり、従来のAl添加鋼の利点を損なう。すなわち、従来のAl量が0.010〜0.5%程度のAl脱酸鋼においては、鋼中のAlによる酸化発熱を利用することで溶鋼温度を容易に制御することができ、安価かつ安定な鋼の量産を可能にしてきた。Al添加量を0.005%程度以下に制限すると、溶鋼加熱装置による加熱等の、Alの酸化発熱による溶鋼温度制御を代替する手段が必要となる。溶鋼中のAlは大気中の酸素による溶鋼汚染防止の役割も有し、また、Alは窒化物を形成することで材質確保に有効であることも広く知られており、Al量の0.005%以下への低減はこれらのAl添加の利点を損なうことが課題として残る。
【0018】
特開平11−286743号公報に開示された技術も本発明者らによるものであり、0.005〜0.5μmのMgO、MgS、Mg(O、S)の2種以上を含む鋼では、これらの微細粒子によるオーステナイト粒成長抑制により超大入熱溶接HAZ靭性を向上できる。しかしながら、微細なMgOの生成にはAl量を0.01%以下に抑制する必要があり、やはり、上述したAl添加の利点を損なうことが課題として残る。
【0019】
本発明は高層建築物のボックス柱の組み立てで適用されるエレクトロスラグ溶接、造船・橋梁等で適用されるエレクトロガス溶接などの入熱が200kJ/cm以上の超大入熱溶接におけるHAZ靭性に優れた溶接用高張力鋼をAl添加鋼を前提に提供することにある。
【0020】
【課題を解決するための手段】
本発明者らは、超大入熱溶接HAZの靭性向上にはHAZ組織の微細化が必須であり、これはHAZのオーステナイト粒成長を著しく抑制することにより可能であること、さらに、Al添加鋼を前提として、微細な(Mn,Mg)S粒子が1350℃以上の高温で極めて安定であり、かつ微細分散が可能であることを新規に知見した。この新規知見によりHAZのオーステナイト粒成長を著しく抑制し得ること、その結果、超大入熱HAZ靭性を大きく向上できることを知見して本発明を成した。
【0021】
本発明の要旨は次の通りである。
(1)重量%で、
0.04≦C≦0.25、
0.02≦Si≦0.5、
0.2≦Mn≦2.0、
P≦0.02、
0.002≦S≦0.02、
0.015<Al≦0.5、
0.0005≦Mg≦0.005、
を含有し、粒子径が0.005〜0.5μmの(Mn,Mg)Sを1平方mmあたり1.0×105 〜1.0×107 個含み、残部Feおよび不可避的不純物よりなる鋼であることを特徴とする超大入熱溶接用高張力鋼。
(2)更に母材強度上昇元素群を、重量%で、
0.05≦Cu≦1.5、
0.05≦Ni≦2.0、
0.02≦Cr≦1.0、
0.02≦Mo≦1.0、
0.005≦Nb≦0.05、
0.005≦V≦0.1、
0.005≦Ti≦0.025、
0.0004≦B≦0.004、
の1種または2種以上を含有することを特徴とする(1)記載の超大入熱溶接用高張力鋼にある。
【0022】
また、本発明で言うところの「溶接用高張力鋼」とは、例えば、JIS G3106「溶接構造用圧延鋼材」、JIS G3115「圧力容器用鋼板」、JIS G3118「中・常温圧力容器用炭素鋼鋼板」、JIS G3124「中・常温圧力容器用高強度鋼板」、JIS G3126「低温用圧力容器用炭素鋼鋼板」、及び、JIS G3128「溶接構造用高降伏点鋼板」に相当するものである。
【0023】
【発明の実施の形態】
このような超大入熱溶接用高張力鋼を、大量の製造実績があり優れた量産プロセスであるAl脱酸を前提に製造する。
本発明者らは、超大入熱溶接HAZの組織と靭性の関係に関する詳細な調査・研究を実施した結果、従来の大入熱溶接HAZの組織制御または靭性向上法をそのまま適用しても、超大入熱溶接HAZ靭性は限られたものであり、靭性向上にはHAZのオーステナイト粒を著しく微細化する必要があるとの結論に達した。
【0024】
まず、オーステナイト粒の微細化には鋼中粒子によるピン止め効果を利用することが有効であるが、窒化物の中で最も熱的に安定であるとされるTiNでも1350℃以上に長時間加熱されるとほとんどが溶解し、ピン止め効果を失うために、超大入熱溶接への適用には限度がある。従って、高温で安定である粒子の利用が必須となる。しかしながら、従来技術のREMあるいはCa酸化物(酸化・硫化物も含む)では、超大入熱溶接HAZのオーステナイト粒粗大化抑制に十分な程度にこれら酸化物を鋼中に微細分散させることは極めて困難である。
【0025】
本発明者らは、これまでに各種の粒子について比較検討した結果、微細なMg含有酸化物が有効であることをすでに知見している。しかしながら、これらの微細酸化物を鋼中に多量に生成させるには、鋼中のAl量を例えば0.005%程度以下に抑制する必要があり、先に述べたようにAl添加の利点を損なう。
【0026】
本発明者らはAl脱酸鋼を前提に各種の粒子について比較検討した結果、(Mn,Mg)S粒子が高温で安定で、しかも微細分散に適した粒子であることを新規に知見した。HAZのオーステナイト粒成長抑制に効果を発揮する粒子は主に0.1μm以下のものであるが、Mn、Mg、S、Al添加量などを制御することにより、微細な(Mn,Mg)Sを鋼中に多量に微細分散させることが可能である。
【0027】
従来よりAl脱酸鋼には0.2〜2%程度のMnおよび0.002〜0.02%程度のSは添加されており、MnSを形成することは広く知られている。このMnSは高温で不安定であり溶解してしまうため、オーステナイト粒微細化粒子にはなり得なかった。しかしながら、MnS中のMnのいくつかがMgに置き換わったと考えられる(Mn,Mg)Sでは、MnSとはその性質が全く異なり、高温で極めて安定であり、しかも容易に微細分散することができる。(Mn,Mg)Sが高温で安定でありしかも微細分散しやすい理由は現在の所不明である。
【0028】
単に鋼中にMgを添加しただけでは(Mn,Mg)Sはほとんど生成しない。その理由はMgが強脱酸元素であり酸化物となってしまうことにある。Mgは蒸気圧が高く、多量に添加しても溶鋼中に歩留りにくい元素である。このため、0.0005〜0.005%程度の微量のMgが酸化物として消費されてしまうのを防ぎ、(Mn,Mg)Sを生成させることは極めて重要となる。図1にMn、Mg、S添加量が本発明範囲内の鋼における、0.005〜0.5μmの大きさの(Mn,Mg)S粒子の個数に及ぼすAl添加量の影響を示す。Al添加量が0.015%未満では(Mn,Mg)S粒子の個数は少ない。この時のMgは主にMgAl2 4 あるいはMgOとして酸化物として存在する。一方、Al添加量が0.015%以上では、(Mn,Mg)S粒子の個数が顕著に増加し、酸化物はAl2 3 主体でMgの多くは(Mn,Mg)Sとして存在する。すなわち、0.015%以上のAl添加により微細な(Mn,Mg)S粒子を多数生成させることができる。
【0029】
本発明では、(Mn,Mg)Sの粒子径を0.005〜0.5μmに限定した。0.005μm未満ではオーステナイト粒成長抑制効果が小さくなる。また、0.5μm超ではこれらの粒子や粒子と地鉄との界面が破壊起点となる確率が高くなり靭性を低下させる。0.005〜0.5μmのサイズの(Mn,Mg)S粒子の個数が1平方mmあたり1.0×105 個以上の場合にオーステナイト粒成長抑制効果が顕著となり、1.0×107 個を超えると鋼の延性を低下させるので、(Mn, Mg)S粒子の個数を1平方mmあたり1.0×105 〜1.0×107 個に制限した。
【0030】
粒子個数の測定方法は、鋼板から抽出レプリカを作成し、特性X線検出器(EDX)付きの透過型電子顕微鏡(TEM)で、0.005〜0.5μmの大きさの粒子個数を、少なくとも1000μm2 以上の面積につき測定し、単位面積当たりの個数に換算する。例えば、2万倍の倍率にて1視野を100mm×80mmとして観察した場合、1視野あたりの観察面積は20μm2 であるから少なくとも50視野につき観察を行う。この時の0.005〜0.5μmの粒子の個数が50視野(1000μm2 )で200個であれば、粒子個数は1平方mmあたり2×105 個と換算できる。
【0031】
次に、個数を測定した粒子のうち、(Mn,Mg)S粒子がどれだけ存在したかを測定するが、粒子個数は最低でも100個以上、多い場合には10000個以上となるため全粒子を逐一同定することは大変な作業となる。このため、少なくとも50個以上の粒子について下記の条件にて(Mn,Mg)Sを同定しその存在割合を求め、先に求めた粒子個数に(Mn,Mg)Sの存在割合をかけることで(Mn,Mg)Sの個数を求める。例えば、上述した粒子個数、1平方mmあたり2×105 個に対し、(Mn,Mg)Sの存在割合が90%であった場合には(Mn,Mg)Sの個数は1平方mmあたり1.8×105 個であるとする。
【0032】
次に(Mn,Mg)Sの同定方法について述べる。本発明では(Mn,Mg)S中のMnとMgの割合を重量%で60%≦Mn≦95%、5%≦Mg≦40%に限定する。Mn、Mg以外の元素が検出されても、Mn、Mgを主体とする硫化物であれば本発明のオーステナイト粒微細化効果を発揮するものと考えられる。また、粒子中から微量のOが検出される場合があるが、SとOの割合が重量%にて95%≦Sであり、含まれているOが5%未満と微量であれば(Mn,Mg)Sであるとみなす。尚、SとOの割合が重量%にて95%≦Sであり、含まれているOが5%未満であっても、粒子が明らかにMnSとMgOの複合体であると同定できる場合には、(Mn,Mg)Sとはみなさない。MnとMgの割合およびSとOの割合は、EDXにて定量して求める。この定量時に使用する電子ビーム径は0.001〜0.02μm、TEM観察倍率は5万〜100万倍とし、微細な(Mn, Mg)S粒子内の任意の位置を定量する。
【0033】
鋼板から抽出レプリカを作成した場合に、0.005〜0.5μmのサイズの(Mn,Mg)S以外の析出物、例えばセメンタイトや合金炭窒化物などが多数生成して(Mn,Mg)S粒子の個数を測定しにくい場合には、1400℃にて60秒程度保持して(Mn,Mg)S以外の粒子を固溶させ、その後急冷してセメンタイトや合金炭窒化物が少ないサンプルを作成し、これから抽出レプリカを作成すると良い。
【0034】
上記のようなサイズおよび個数の粒子を鋼中に分散させるためには、Mn、Mg、S、およびAlの含有量を下記のとおり限定することが望ましい。
Mnは(Mn,Mg)Sを構成する元素であるため本発明に必須の元素である。Mnは0.2%以上添加することで微細な(Mn,Mg)Sの多量分散が可能となるので0.2%を下限とした。Mnが2.0%を超えると(Mn,Mg)Sが粗大化しやすくなりHAZ靭性向上効果が小さくなるため2.0%を上限とした。
【0035】
Mgは(Mn,Mg)Sの生成に必須の元素である。0.0005%未満では必要な個数の(Mn,Mg)S粒子を得ることはできない。より多量の微細な(Mn,Mg)S粒子を生成させるためには0.0015%以上の添加がより好ましい。0.005%超の添加はMgが酸化物を生成するため(Mn,Mg)S量が飽和しHAZ靭性向上効果も飽和する上、経済性を損なうのでその上限値を0.005%とした。
【0036】
Sは(Mn,Mg)Sを生成させるために必須の元素である。0.002%未満では(Mn,Mg)Sの量が不十分であるので、下限を0.002%とした。より多量の微細な(Mn,Mg)S粒子を生成させるためには0.003%以上の添加がより好ましい。0.02%超含有すると、粗大な(Mn,Mg)Sが生成して超大入熱溶接HAZのγ粒細粒化効果が得られないため上限値を0.02%とした。
【0037】
AlはMgが酸化物を生成することを抑制し、Mgが(Mn,Mg)Sを生成するために必須の元素であり、0.015%以上の添加が必要である。より多量の微細な(Mn,Mg)S粒子を生成させるためには、0.02%以上のAl添加がより好ましい。0.5%を超えて含有すると、固溶AlによるHAZ脆化が起るため(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても大きな靭性向上効果が得られない。従って、上限を0.5%とした。
【0038】
HAZ靭性はオーステナイト粒微細化と粒内組織微細化だけではなく、合金元素により大きく変化する。また、母材の強度確保のためにも適正な合金元素を含有させる場合があるので、以下の理由により合金元素の添加量を限定した。
【0039】
Cは母材の強度を上昇できる元素である。0.04%未満では母材強度の確保が得られないので0.04%を下限とした。逆に、Cを多く含有すると、脆性破壊の起点となるセメンタイトや島状マルテンサイトを増加させるため、(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても大きな靭性向上効果が得られない。0.25%を超えると靭性低下が顕著となるので、これを上限値とした。
【0040】
Siは母材強度上昇に有効な元素である。0.02%未満ではこの効果が得られないので下限値を0.02%とした。逆に、0.5%超含有すると、HAZ組織中に島状マルテンサイトが多量に生成し、さらに、フェライト地を硬化させるので、(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても大きな靭性向上効果が得られない。従って、上限を0.5%とした。
【0041】
Pは粒界脆化をもたらし、靭性に有害な元素であり、低いほうが望ましい。0.02%超含有すると(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても靭性低下が顕著となるので0.02%を上限とする。
【0042】
さらに、母材強度上昇に効果のある選択元素の限定範囲を以下の理由で決定した。
Cuは母材強度上昇に有効な元素であり、特に、時効熱処理により微細Cu相を析出させることにより著しい強度上昇が得られる。0.05%未満では強度上昇が得られないので、0.05%を下限値とした。逆に、1.5%超含有すると母材やHAZの脆化が顕著となるので上限値を1.5%とした。
【0043】
Niは焼入れ性を上昇させることにより母材強度上昇に効果を有し、さらに、靭性を向上させる。0.05%未満ではこれらの効果が得られないので下限値を0.05%とした。Niは高価な元素であり、2.0%超含有すると経済性を損なうため上限値を2.0%とした。
【0044】
Crは母材強度上昇に効果を有する。0.02%未満ではこの効果が得られないので下限値を0.02%とした。逆に、1.0%超含有するとHAZに硬化組織を生成し、(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても大きなHAZ靭性向上効果が得られない。従って、上限値を1.0%とした。
【0045】
Moは母材強度上昇に効果を有する。0.02%未満ではこの効果が得られないので下限値を0.02%とした。逆に、1.0%超含有するとHAZに硬化組織を生成し、(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても大きなHAZ靭性向上効果が得られない。従って、上限値を1.0%とした。
【0046】
Nbは母材の強度上昇および細粒化に有効な元素である。0.005%未満ではこれらの効果が得られないので下限値を0.005%とした。逆に、0.05%超含有するとHAZにおけるNb炭窒化物の析出が顕著となり、(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても大きなHAZ靭性向上効果が得られない。従って、上限値を0.05%とした。
【0047】
Vは母材の強度上昇および細粒化に有効な元素である。0.005%未満ではこれらの効果が得られないので下限値を0.005%とした。逆に、0.1%超含有するとHAZにおける炭窒化物の析出が顕著となり、(Mn,Mg)SによってHAZのオーステナイト粒を微細化しても大きなHAZ靭性向上効果が得られない。従って、上限値を0.1%とした。
【0048】
Tiは母材の強度上昇および細粒化に有効な元素である。0.005%未満ではこれらの効果が得られないので下限値を0.005%とした。逆に、0.025%超含有すると粗大なTiNを生成しこれが破壊の発生起点となるため、(Mn, Mg)SによってHAZのオーステナイト粒を微細化しても大きなHAZ靭性向上効果が得られない。従って、上限値を0.025%とした。
【0049】
Bは制御冷却および焼入れ熱処理を施す場合に特に顕著な強度上昇の効果を発揮する。0.0004%未満の含有量では強度上昇効果が得られないので下限値を0.0004%とした。逆に、0.004%超含有すると粗大なB窒化物や炭硼化物を析出してこれが破壊の起点となるために、(Mn, Mg)SによってHAZのオーステナイト粒を微細化しても大きなHAZ靭性向上効果が得られない。従って、上限値を0.004%とした。
【0050】
本発明では微細な(Mn, Mg)Sを生成させることが必要であり、このためにMn、Mg以外の硫化物形成元素は極力下げることが望ましい。代表的な元素はCaおよびREMであり、これらは0.0005%以下とすることが望ましい。
【0051】
本発明では鋼中酸素量については特に制限しない。0.015〜0.5%のAl添加鋼では鋼中酸素量は0.0003〜0.0040%程度となるが、この範囲内の酸素量であれば本発明の細粒化効果を損なうことはない。
本発明では鋼中窒素量については特に制限しない。通常の0.0010〜0.010%程度の窒素量であれば本発明の細粒化効果を損なうことはない。
本発明によるHAZ靭性向上効果は超大入熱溶接ばかりでなく、大入熱溶接(例えば、100〜200未満kJ/cm程度)でも有効である。
なお、本発明では鋼中に通常不可避的に含有される不純物元素は許容できる。Cu、Ni、Cr、Mo、Nb、V、B、N、Ti等が不純物として混入しても本発明の性質を損なうことはない。例えば、Cu、Niは0.05%未満、Cr、およびMoは0.02%未満、Nb、V、Tiは0.005%未満、Bは0.0004%未満まで不純物として含有されていても特に悪影響を及ぼさない。
【0052】
鋼の溶製方法は、例えば溶鋼温度を1650℃以下として、溶鋼O濃度を0.01%以下、溶鋼S濃度を0.02%以下とした状態で、適量のMn、Mg、およびAlを添加することにより溶鋼中に微細な(Mn, Mg)Sを生成できる。この溶鋼を連続鋳造により鋳造することにより鋼中に(Mn, Mg)Sの微細粒子を含有させることができる。鋼の製造方法は、(Mn, Mg)Sが所定量存在すれば良いので、鋳造後の加熱、圧延、熱処理条件は母鋼材の機械的性質に応じて適宜選定すればよい。
【0053】
【実施例】
以下に本発明の実施例を示す。転炉により鋼を溶製し、連続鋳造により厚さが240〜400mmのスラブを製造した。表1に鋼材の化学成分を示す。HAZ靭性は鋼材の炭素等量にも大きく依存するので、本発明の効果を確認するために、ほぼ同一の化学成分でMn、Mg、S、Alのみを変えた鋼を溶製して比較した。
【0054】
表2に鋼板の製造方法と板厚、母材の機械的性質を示す。同表に示すとおり、制御圧延・制御冷却法、焼入れ・焼戻し法、直接焼入れ・焼戻し法、および直接焼入れ・二相域熱処理・焼戻し法により鋼板を製造した。板厚は40〜100mmとした。図2に示すエレクトロガス溶接及び図3に示すエレクトロスラグ溶接により溶接試験体を作成した。板厚を35mmにそろえて、入熱が310kJ/cmのエレクトロガス溶接を実施した。ここで、溶接の電流を610A、電圧を35V、速度を4.1cm/分とした。同図に示すように、溶接融合線(FL)および溶接融合線から3mm(HAZ3)の位置がノッチ位置に一致するようにシャルピー衝撃試験片を採取した。また、エレクトロスラグ溶接の電流は380A、電圧は46V、速度は1.14cm/分とした。入熱は920kJ/cmである。エレクトロスラグ溶接と同じノッチ位置となるようにシャルピー衝撃試験片を採取した。衝撃試験は−5℃で行い、3本繰り返しの平均値で靭性を評価した。結果を表3に示す。また、エレクトロスラグ溶接部FL直近のHAZのミクロ組織観察を実施しγ粒径を測定し、さらに、0.005〜0.5μmの粒子径の(Mn, Mg)Sの粒子個数を上記の方法に従って測定した結果を表3に併せて示す。
【0055】
表3から明らかなとおり、本発明鋼は(Mn, Mg)Sの粒子個数が多く、エレクトロスラグ溶接HAZのγ粒径が小さい。その結果、超大入熱溶接HAZの靭性が高い。同様に、エレクトロガス溶接でも本発明鋼のHAZ靭性向上が明らかである。これに対して、比較鋼9、10、18、20、24、26、28ではMn、S、Al添加量は適正であるもののMg添加量が本発明範囲より低いため(Mn, Mg)S粒子の個数が少なくγ粒成長抑制効果は小さくHAZ靭性向上効果は小さい。比較鋼5、16、22ではMn、Mg、Al添加量は適正であるもののS添加量が本発明範囲より低いため(Mn, Mg)S粒子の個数が少なくγ粒成長抑制効果は小さくHAZ靭性向上効果は小さい。比較鋼6ではS添加量が本発明範囲より高いため微細な(Mn, Mg)S粒子の個数が少なくγ粒成長抑制効果は小さくHAZ靭性向上効果は小さい。比較鋼7、8ではMn、Mg、S添加量は適正であるもののAl添加量が本発明範囲より低いため(Mn, Mg)S粒子の個数が少なくγ粒成長抑制効果は小さくHAZ靭性向上効果は小さい。比較鋼15ではMg、S、Al添加量は適正であるもののMn添加量が本発明範囲より低いため(Mn, Mg)S粒子の個数が少なくγ粒成長抑制効果は小さくHAZ靭性向上効果は小さい。
【0056】
【表1】
Figure 0003782645
【0057】
【表2】
Figure 0003782645
【0058】
【表3】
Figure 0003782645
【0059】
【発明の効果】
以上説明したとおり、本発明鋼ではAl脱酸鋼において鋼中に(Mn, Mg)Sの粒子を微細分散させることにより入熱が200kJ/cm以上の超大入熱溶接のFL及びHAZのγ粒成長抑制作用によりHAZの有効結晶粒が微細化され、HAZ靭性を顕著に向上させることができ、本発明を超大入熱溶接が適用される構造物に適用することにより、極めて信頼性の高い溶接構造物を製造することが可能である。
従って、本発明は工業上極めて効果が大きい。
【図面の簡単な説明】
【図1】0.005〜0.5μmの大きさの(Mn, Mg)S粒子の個数に及ぼすAl添加量の影響を示す図である。
【図2】エレクトロガス溶接の条件を示す図である。
【図3】エレクトロスラグ溶接の条件を示す図である。
【符号の説明】
1 シャルピー試験片
2 シャルピー試験片のノッチ位置 : FL
3 シャルピー試験片のノッチ位置 : HAZ3mm

Claims (2)

  1. 重量%で、
    0.04≦C≦0.25、
    0.02≦Si≦0.5、
    0.2≦Mn≦2.0、
    P≦0.02、
    0.002≦S≦0.02、
    0.015<Al≦0.5、
    0.0005≦Mg≦0.005、
    を含有し、粒子径が0.005〜0.5μmの(Mn,Mg)Sを1平方mmあたり1.0×105 〜1.0×107 個含み、残部Feおよび不可避的不純物よりなる鋼であることを特徴とする超大入熱溶接用高張力鋼。
  2. 更に母材強度上昇元素群を、重量%で、
    0.05≦Cu≦1.5、
    0.05≦Ni≦2.0、
    0.02≦Cr≦1.0、
    0.02≦Mo≦1.0、
    0.005≦Nb≦0.05、
    0.005≦V≦0.1、
    0.005≦Ti≦0.025、
    0.0004≦B≦0.004、
    の1種または2種以上を含有することを特徴とする請求項1記載の超大入熱溶接用高張力鋼。
JP2000184986A 2000-06-20 2000-06-20 超大入熱溶接用高張力鋼 Expired - Fee Related JP3782645B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184986A JP3782645B2 (ja) 2000-06-20 2000-06-20 超大入熱溶接用高張力鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184986A JP3782645B2 (ja) 2000-06-20 2000-06-20 超大入熱溶接用高張力鋼

Publications (2)

Publication Number Publication Date
JP2002003986A JP2002003986A (ja) 2002-01-09
JP3782645B2 true JP3782645B2 (ja) 2006-06-07

Family

ID=18685366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184986A Expired - Fee Related JP3782645B2 (ja) 2000-06-20 2000-06-20 超大入熱溶接用高張力鋼

Country Status (1)

Country Link
JP (1) JP3782645B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565531B2 (ja) 2011-12-15 2014-08-06 新日鐵住金株式会社 高強度極厚h形鋼
CN103998636B (zh) * 2012-12-13 2015-07-22 新日铁住金株式会社 焊接用钢材
EP2975149B1 (en) * 2013-03-14 2019-05-01 Nippon Steel & Sumitomo Metal Corporation H-shaped steel and process for manufacturing same
JP6295632B2 (ja) * 2013-12-16 2018-03-20 新日鐵住金株式会社 靭性に優れた高強度h形鋼
JP7260780B2 (ja) * 2019-06-17 2023-04-19 日本製鉄株式会社 大入熱溶接用高強度鋼板
CN113234999B (zh) * 2021-04-27 2022-05-20 南京钢铁股份有限公司 一种高效焊接桥梁钢及其制造方法

Also Published As

Publication number Publication date
JP2002003986A (ja) 2002-01-09

Similar Documents

Publication Publication Date Title
JP3408385B2 (ja) 溶接熱影響部靭性の優れた鋼
JP5692138B2 (ja) 熱影響部低温靭性に優れる超大入熱溶接用高張力鋼
JP3256118B2 (ja) 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
JP5493659B2 (ja) 大入熱溶接熱影響部の靭性に優れた高強度鋼
JP4041201B2 (ja) 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
JP5321766B1 (ja) 溶接用鋼材
JP4041447B2 (ja) 大入熱溶接継手靭性に優れた厚鋼板
JP3782645B2 (ja) 超大入熱溶接用高張力鋼
JP3752075B2 (ja) 超大入熱溶接用高張力鋼
JP4276576B2 (ja) 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP3749616B2 (ja) 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
JP6277885B2 (ja) 溶接用高張力鋼
JP3782648B2 (ja) 超大入熱溶接用高張力鋼
JP3403293B2 (ja) 溶接熱影響部靭性の優れた鋼板
JP3513001B2 (ja) 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
JP2002309338A (ja) 超大入熱溶接用高張力鋼
JP3492314B2 (ja) 超大入熱溶接用高張力鋼
JP3492313B2 (ja) 超大入熱溶接用高張力鋼
JP6447253B2 (ja) 溶接用高張力鋼
JP3502805B2 (ja) 溶接継手部靭性の優れた鋼材の製造方法
JPH093599A (ja) 溶接熱影響部靱性の優れた溶接構造用鋼材およびその製造方法
JP2000054065A (ja) 溶接熱影響部靱性に優れた溶接用高張力鋼材とその製造方法
JP2018016890A (ja) 溶接熱影響部の靱性に優れたタンク用厚鋼板
JP7205618B2 (ja) 鋼材
JP3616609B2 (ja) 溶接熱影響部靭性の優れた鋼材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

R151 Written notification of patent or utility model registration

Ref document number: 3782645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees