JP3772982B2 - Construction machine remote control valve hydraulic circuit - Google Patents

Construction machine remote control valve hydraulic circuit Download PDF

Info

Publication number
JP3772982B2
JP3772982B2 JP2003053063A JP2003053063A JP3772982B2 JP 3772982 B2 JP3772982 B2 JP 3772982B2 JP 2003053063 A JP2003053063 A JP 2003053063A JP 2003053063 A JP2003053063 A JP 2003053063A JP 3772982 B2 JP3772982 B2 JP 3772982B2
Authority
JP
Japan
Prior art keywords
pilot
pressure
valve
control valve
remote control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003053063A
Other languages
Japanese (ja)
Other versions
JP2004263749A (en
Inventor
雅義 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo SHI Construction Machinery Co Ltd
Priority to JP2003053063A priority Critical patent/JP3772982B2/en
Publication of JP2004263749A publication Critical patent/JP2004263749A/en
Application granted granted Critical
Publication of JP3772982B2 publication Critical patent/JP3772982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は建設機械のリモコン弁油圧回路に関するものであり、特に、油圧ショベル等の建設機械に装備されたアクチュエータを制御するリモコン弁油圧回路に関するものである。
【0002】
【従来の技術】
従来、油圧ポンプからアクチュエータに供給される圧油の流れを制御する方向制御弁と、パイロット油圧源からのパイロット一次圧を導入してパイロット二次圧を導出し、該パイロット二次圧により前記方向制御弁のストローク量を制御するリモコン弁とを備えた建設機械は一般的に広く知られている。しかし、リモコン弁を操作しない機械の非操作時に於いても、パイロット油圧源から常に所定圧力の圧油を導入しているので、駆動源であるエンジンに連続して負荷がかかり、燃料消費量が増大するという不具合があった。また、パイロット油圧源からのパイロット一次圧が一定圧力であるため、負荷の大なる作業時に操作レバーを大きく傾倒させた状態では、アクチュエータの動作速度が速すぎて微操作が困難であった。
【0003】
これらの不具合を解消するために、前記パイロット一次圧を高い圧力と低い圧力に選択設定する切換手段である高圧設定リリーフ弁と低圧設定リリーフ弁と電磁切換弁とを設け、アクチュエータを作動させる速度に応じて前記電磁切換弁を切り換えて、パイロット一次圧を変更設定できるようにしたリモコン弁油圧回路が知られている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平9−287175号公報(第2〜6頁、図1)。
【0005】
【発明が解決しようとする課題】
上記特許文献1記載のリモコン弁油圧回路は、アクチュエータを作動させる速度に応じてオペレータが手動でスイッチをオン・オフし、電磁切換弁を切り換えて高圧設定リリーフ弁と低圧設定リリーフ弁とを選択するため、パイロット圧の変更が煩雑であった。
【0006】
そこで、機械の非操作時には、オペレータの手を煩わすことなく自動的にパイロット一次圧を低下させ、エンジンへの負荷を減少して燃料消費量を低減するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために提案されたものであり、油圧ポンプからアクチュエータに供給される圧油の流れを制御する方向制御弁と、パイロット油圧源からのパイロット一次圧を導入してパイロット二次圧を導出し、該パイロット二次圧により前記方向制御弁のストローク量を制御するリモコン弁とを備えた建設機械に於いて、前記パイロット油圧源からリモコン弁に至るパイロット一次側油路にタンクへ連通する分岐油路を設け、該分岐油路の途中に第1の電磁弁を介装するとともに、該第1の電磁弁の下流に第2の電磁弁を介装し、前記第1の電磁弁により分岐油路の開閉を行い、第2の電磁弁により絞りの開口を変化させるように構成した建設機械のリモコン弁油圧回路、
及び、機械の操作を検出する手段を設け、機械の非操作時は上記第1の電磁弁を開放位置にして、パイロット油圧源からのパイロット一次圧を通過させ、機械の操作時は上記第1の電磁弁を閉止位置にして、前記パイロット油圧源からのパイロット一次圧を遮断して所定圧力まで上昇させるような制御手段を備えた建設機械のリモコン弁油圧回路、
及び、油温を検出する手段を設け、該油温が所定温度以下のときは上記第2の電磁弁を絞りの開口が大である位置にし、該油温が所定温度を超えたときは上記第2の電磁弁を絞りの開口が小である位置にして油圧の低下を抑止するような制御手段を備えた建設機械のリモコン弁油圧回路を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に従って詳述する。図1は建設機械の一例として油圧ショベルのリモコン弁油圧回路を示し、パイロット油圧源11から吐出された圧油はパイロット一次側油路12を経てリモコン弁13に供給される。パイロット一次側油路12にはリリーフ弁14が接続されており、パイロット油圧源11から吐出された圧油は、該リリーフ弁14にて設定された所定圧力(例えば40K)まで上昇してパイロット一次圧となる。
【0009】
アクチュエータへの圧油の流れを制御する方向制御弁(図示せず)は、方向制御弁群15の中に複数個配置されており、前記パイロット油圧源11から吐出されたパイロット一次圧の一部が、油路16を経て接続点Pから方向制御弁群15へ導出され、方向制御弁群15の中にある全ての方向制御弁が中立位置にあるときは、前記パイロット一次圧が各方向制御弁のスプールの一部分を通過してタンク17に戻る。尚、方向制御弁群15の中には前記接続点P付近に圧力スイッチ等の圧力センサ(図示せず)を設けてあり、後述の操作検出手段としている。
【0010】
前記パイロット油圧源11からパイロット一次側油路12を経てリモコン弁13にパイロット一次圧が導入されるが、前記リモコン弁13の操作レバー18を操作しないときは、リモコン弁13のパイロット二次側油路(図示せず)にパイロット二次圧は発生しない。従って、方向制御弁群15の中にある全ての方向制御弁は中立位置となり、前記パイロット一次圧が各方向制御弁のスプールの一部分を通過してタンク17に戻るため、前述した圧力センサはオフの状態である。
【0011】
これに対して、操作レバー18を傾倒操作したときは、リモコン弁13のパイロット二次側油路を経て、前記方向制御弁群15の中の該当する方向制御弁のパイロットポートへパイロット二次圧が導出される。従って、パイロット二次圧が導出された方向制御弁のスプールが動いて、前記パイロット一次圧が遮断されるため、前記接続点P付近の圧力が上昇して前述した圧力センサがオンの状態に切り換わる。
【0012】
即ち、前記操作レバー18によって機械の操作が行われていないときは前記圧力センサがオフであり、機械の操作が行われたときは圧力センサがオンとなる。従って、前記圧力センサが機械の操作を検出する操作検出手段19となる。コントローラ30は操作検出手段19からの操作検出信号を受け、機械が非操作状態であるか或いは機械が操作状態であるかを判別する。
【0013】
ここで、前記パイロット油圧源11からリモコン弁13に至るパイロット一次側油路12の途中に、タンク17へ連通する分岐油路20を設け、この分岐油路20の途中に第1の電磁弁21を介装する。該第1の電磁弁21はノーマル状態では「閉止位置」(イ)となっており、コントローラ30からの信号によりソレノイド22が励磁されると「開放位置」(ロ)に切り換わる。
【0014】
更に、該第1の電磁弁21の下流に第2の電磁弁23を介装する。該第2の電磁弁23は開口面積の異なる2つの絞りを有し、ノーマル状態では開口面積の大きな「絞り大位置」(ハ)となっており、コントローラ30からの信号によりソレノイド24が励磁されると開口面積の小さな「絞り小位置」(ニ)に切り換わる。即ち、第1の電磁弁21が切り換わって分岐油路20の開閉を行い、第2の電磁弁23により絞りの開口面積を変化させるように構成してある。
【0015】
また、圧油の油温を検出するために、例えば温度センサ等の油温検出手段25を設け、該油温検出手段25にて検出された油温検出信号が前記コントローラ30へ入力される。コントローラ30は油温検出手段25からの油温検出信号を受け、油温が予め設定された所定温度以下であるか或いは油温が所定温度を超えたかを判別する。
【0016】
次に、リモコン弁油圧回路の作用について説明する。パイロット油圧源11から吐出された圧油は、前記リリーフ弁14にて設定された所定圧力(例えば40K)にてパイロット一次圧が供給される。前記操作レバー18を傾倒操作しない状態では、前記操作検出手段19により、コントローラ30は機械の非操作時であること判別する。
【0017】
機械の非操作時は、コントローラ30から信号を出力して前記第1の電磁弁21のソレノイド22を励磁し、図2に示すように、第1の電磁弁21を「開放位置」(ロ)に切り換える。従って、分岐油路20が開放されるため、パイロット油圧源11から吐出された圧油の一部がパイロット一次側油路12から分岐油路20に分岐し、第1の電磁弁21の「開放位置」(ロ)を通過して、第2の電磁弁23の「絞り大位置」(ハ)を経てタンク17に戻る。即ち、パイロット一次圧は第2の電磁弁23の比較的大きな絞りによって適当な圧力まで下降する。
【0018】
このように、リモコン弁13を操作しない機械の非操作時に於いては、パイロット油圧源11からのパイロット一次圧が予め設定した比較的低い圧力に下降するため、駆動源であるエンジンにかかる負荷が低下し、燃料消費量を減少することができる。
【0019】
ここで、一般的に油温と油圧との関係を述べれば、油温の上昇に伴って油圧は下降する。このため、機械の非操作時に、第1の電磁弁21を開放してパイロット一次圧を低下させた場合、油温が高くなり過ぎるとパイロット一次圧が必要以上に低下する。これを防止するために、前記油温検出手段25の検出信号から油温が所定温度を超えたとコントローラ30が判別したときは、コントローラ30から信号を出力して前記第2の電磁弁22のソレノイド24を励磁し、図3に示すように、第2の電磁弁23を「絞り小位置」(ニ)に切り換える。
【0020】
該第2の電磁弁23は、「絞り大位置」(ハ)のときよりも「絞り小位置」(ニ)のときの方が絞りの開口面積が小さいので、第2の電磁弁23を「絞り小位置」(ニ)に切り換えることにより、必要以上の圧力低下を抑止できる。このように、機械の非操作時には、第1の電磁弁21を開放してパイロット一次圧を低下させるとともに、油温の高さに応じて第2の電磁弁22の絞り位置を切り換えることにより、自動的にパイロット一次圧を最適な圧力に低下させることができる。
【0021】
そして、オペレータが操作レバー18を操作して機械を操作したときは、前記方向制御弁群15の中の該当する方向制御弁が切り換わり、前記操作検出手段19からの操作検出信号を受けて、コントローラ30は機械の操作時であることを判別する。然るときは、コントローラ30からの信号を停止して前記第1の電磁弁21のソレノイド22の励磁をやめ、図1に示したように、第1の電磁弁21を「閉止位置」(イ)に戻す。
【0022】
従って、分岐油路20が閉止されるため、パイロット油圧源11から吐出された圧油は、リリーフ弁14にて設定された所定圧力に上昇する。即ち、パイロット一次圧がアイドリング状態から作業可能状態に復帰する。
【0023】
尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
【0024】
【発明の効果】
本発明は上記一実施の形態に詳述したように、請求項1記載の発明は、パイロット油圧源からリモコン弁に至るパイロット一次側油路にタンクへ連通する分岐油路を設け、第1の電磁弁により分岐油路の開閉を行い、第2の電磁弁により絞りの開口を変化させるように構成したので、前記第1の電磁弁を開放すればパイロット一次圧を低下させることができ、駆動源であるエンジンの負荷を低下させて、燃料消費量を減少できる。また、第2の電磁弁により絞りの開口を変化させることにより、複数の異なった圧力設定を選択することができる。
【0025】
請求項2記載の発明は、機械の操作を検出する手段を設け、機械の非操作時は制御手段の制御によって上記第1の電磁弁を開放位置に切り換えるため、パイロット油圧源からのパイロット一次圧を自動的に低下させることができる。従って、請求項1記載の発明の効果に加えて、機械の非操作時は自動的にパイロット一次圧を低下させ、オペレータが特別な操作を施すことなく、燃料低減効果が期待できる。
【0026】
請求項3記載の発明は、油温を検出する手段を設け、油温が所定温度を超えたときは制御手段の制御によって上記第2の電磁弁を絞りの開口が小である位置に切り換えるため、油圧が必要以上低下するのを抑止できる。従って、請求項1または2記載の発明の効果に加えて、油温の変動に拘わらず機械の非操作時のパイロット一次圧を必要最小限の圧力に維持できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示し、初期状態のリモコン弁油圧回路図。
【図2】本発明の一実施の形態を示し、機械の非操作時のリモコン弁油圧回路図。
【図3】本発明の一実施の形態を示し、機械の非操作時に油温が上昇した状態のリモコン弁油圧回路図。
【符号の説明】
11 パイロット油圧源
12 パイロット一次側油路
13 リモコン弁
14 リリーフ弁
15 方向制御弁群
16 油路
17 タンク
18 操作レバー
19 操作検出手段
20 分岐油路
21 第1の電磁弁
22 ソレノイド
23 第2の電磁弁
24 ソレノイド
25 油温検出手段
30 コントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a remote control valve hydraulic circuit for a construction machine, and more particularly to a remote control valve hydraulic circuit for controlling an actuator provided in a construction machine such as a hydraulic excavator.
[0002]
[Prior art]
Conventionally, a directional control valve that controls the flow of pressure oil supplied from a hydraulic pump to an actuator and a pilot primary pressure from a pilot hydraulic pressure source are introduced to derive a pilot secondary pressure, and the pilot secondary pressure is used to Construction machines having a remote control valve for controlling the stroke amount of the control valve are generally widely known. However, even when the machine that does not operate the remote control valve is not in operation, pressure oil of a predetermined pressure is always introduced from the pilot hydraulic power source, so a load is continuously applied to the engine that is the driving source, and fuel consumption is reduced. There was a problem of increasing. Further, since the pilot primary pressure from the pilot hydraulic power source is a constant pressure, the operation speed of the actuator is too high and fine operation is difficult in a state where the operation lever is greatly tilted during work with a heavy load.
[0003]
In order to solve these problems, a high pressure setting relief valve, a low pressure setting relief valve, and an electromagnetic switching valve, which are switching means for selectively setting the pilot primary pressure between a high pressure and a low pressure, are provided, so that the actuator can be operated at a speed that allows Accordingly, there is known a remote control valve hydraulic circuit that can change and set the pilot primary pressure by switching the electromagnetic switching valve accordingly (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-9-287175 (pages 2-6, FIG. 1).
[0005]
[Problems to be solved by the invention]
In the remote control valve hydraulic circuit described in Patent Document 1, the operator manually turns on / off the switch according to the speed at which the actuator is operated, and switches between the electromagnetic switching valves to select the high pressure setting relief valve and the low pressure setting relief valve. Therefore, changing the pilot pressure is complicated.
[0006]
Therefore, when the machine is not operated, there is a technical problem to be solved in order to automatically reduce the pilot primary pressure without bothering the operator and reduce the load on the engine to reduce fuel consumption. Therefore, an object of the present invention is to solve this problem.
[0007]
[Means for Solving the Problems]
The present invention has been proposed in order to achieve the above object. A pilot valve is introduced by introducing a directional control valve for controlling the flow of pressure oil supplied from a hydraulic pump to an actuator and a pilot primary pressure from a pilot hydraulic source. In a construction machine having a remote control valve for deriving a secondary pressure and controlling a stroke amount of the directional control valve by the pilot secondary pressure, in a pilot primary side oil passage from the pilot hydraulic power source to the remote control valve A branch oil passage communicating with the tank is provided, a first solenoid valve is interposed in the middle of the branch oil passage, and a second solenoid valve is interposed downstream of the first solenoid valve. A remote control valve hydraulic circuit for a construction machine configured to open and close the branch oil passage with a solenoid valve and to change the opening of the throttle with a second solenoid valve;
And a means for detecting the operation of the machine. When the machine is not operated, the first electromagnetic valve is set to the open position so that the pilot primary pressure from the pilot hydraulic power source is allowed to pass. A remote control valve hydraulic circuit for a construction machine comprising control means for shutting off the pilot primary pressure from the pilot hydraulic power source and raising the solenoid valve to a predetermined pressure.
And a means for detecting the oil temperature, and when the oil temperature is below a predetermined temperature, the second solenoid valve is set to a position where the opening of the throttle is large, and when the oil temperature exceeds the predetermined temperature, the above-mentioned The present invention provides a remote control valve hydraulic circuit for a construction machine provided with a control means for suppressing a decrease in hydraulic pressure by setting the second electromagnetic valve to a position where the aperture of the throttle is small.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a remote control valve hydraulic circuit of a hydraulic excavator as an example of a construction machine. Pressure oil discharged from a pilot hydraulic pressure source 11 is supplied to a remote control valve 13 via a pilot primary side oil passage 12. A relief valve 14 is connected to the pilot primary side oil passage 12, and the pressure oil discharged from the pilot hydraulic power source 11 rises to a predetermined pressure (for example, 40K) set by the relief valve 14, and the pilot primary Pressure.
[0009]
A plurality of directional control valves (not shown) for controlling the flow of pressure oil to the actuator are arranged in the directional control valve group 15 and a part of the pilot primary pressure discharged from the pilot hydraulic power source 11. Is led out from the connection point P to the directional control valve group 15 via the oil passage 16, and when all the directional control valves in the directional control valve group 15 are in the neutral position, the pilot primary pressure is controlled in each direction control. It passes through a part of the valve spool and returns to the tank 17. In the direction control valve group 15, a pressure sensor (not shown) such as a pressure switch is provided in the vicinity of the connection point P, which serves as an operation detection means described later.
[0010]
Pilot primary pressure is introduced from the pilot hydraulic power source 11 through the pilot primary side oil passage 12 to the remote control valve 13, but when the operation lever 18 of the remote control valve 13 is not operated, the pilot secondary side oil of the remote control valve 13 is used. No pilot secondary pressure is generated on the road (not shown). Therefore, all the directional control valves in the directional control valve group 15 are in the neutral position, and the pilot primary pressure passes through a part of the spool of each directional control valve and returns to the tank 17, so that the pressure sensor described above is turned off. It is a state.
[0011]
On the other hand, when the operation lever 18 is tilted, the pilot secondary pressure passes through the pilot secondary side oil passage of the remote control valve 13 to the pilot port of the corresponding directional control valve in the directional control valve group 15. Is derived. Accordingly, the spool of the directional control valve from which the pilot secondary pressure is derived moves and the pilot primary pressure is shut off, so that the pressure near the connection point P rises and the pressure sensor described above is turned on. Change.
[0012]
That is, the pressure sensor is turned off when the operation lever 18 is not operating the machine, and the pressure sensor is turned on when the machine is operated. Therefore, the pressure sensor serves as the operation detection means 19 that detects the operation of the machine. The controller 30 receives an operation detection signal from the operation detection means 19 and determines whether the machine is in a non-operating state or the machine is in an operating state.
[0013]
Here, a branch oil passage 20 communicating with the tank 17 is provided in the middle of the pilot primary oil passage 12 from the pilot hydraulic power source 11 to the remote control valve 13, and a first electromagnetic valve 21 is provided in the middle of the branch oil passage 20. To intervene. The first solenoid valve 21 is in the “closed position” (A) in the normal state, and is switched to the “open position” (B) when the solenoid 22 is excited by a signal from the controller 30.
[0014]
Further, a second electromagnetic valve 23 is interposed downstream of the first electromagnetic valve 21. The second solenoid valve 23 has two diaphragms having different opening areas. In the normal state, the second solenoid valve 23 is in a “large-diaphragm position” (C) having a large opening area, and the solenoid 24 is excited by a signal from the controller 30. Then, it switches to the “small aperture position” (d) with a small aperture area. That is, the first electromagnetic valve 21 is switched to open and close the branch oil passage 20 and the second electromagnetic valve 23 changes the aperture area of the throttle.
[0015]
Further, in order to detect the oil temperature of the pressure oil, for example, an oil temperature detecting means 25 such as a temperature sensor is provided, and an oil temperature detection signal detected by the oil temperature detecting means 25 is input to the controller 30. The controller 30 receives an oil temperature detection signal from the oil temperature detecting means 25 and determines whether the oil temperature is equal to or lower than a predetermined temperature set in advance or whether the oil temperature exceeds a predetermined temperature.
[0016]
Next, the operation of the remote control valve hydraulic circuit will be described. The pressure oil discharged from the pilot hydraulic source 11 is supplied with a pilot primary pressure at a predetermined pressure (for example, 40K) set by the relief valve 14. In a state where the operation lever 18 is not tilted, the operation detection means 19 determines that the controller 30 is not operating the machine.
[0017]
When the machine is not operated, a signal is output from the controller 30 to excite the solenoid 22 of the first solenoid valve 21, and as shown in FIG. 2, the first solenoid valve 21 is moved to the “open position” (b). Switch to. Accordingly, since the branch oil passage 20 is opened, a part of the pressure oil discharged from the pilot hydraulic power source 11 branches from the pilot primary oil passage 12 to the branch oil passage 20, and the first solenoid valve 21 is opened. After passing through the “position” (b), it returns to the tank 17 via the “large throttle position” (c) of the second solenoid valve 23. That is, the pilot primary pressure is lowered to an appropriate pressure by the relatively large throttle of the second electromagnetic valve 23.
[0018]
Thus, when the machine that does not operate the remote control valve 13 is not operated, the pilot primary pressure from the pilot hydraulic source 11 drops to a relatively low pressure set in advance, so that the load on the engine that is the driving source is increased. Can be reduced and fuel consumption can be reduced.
[0019]
Here, generally speaking, if the relationship between the oil temperature and the oil pressure is described, the oil pressure decreases as the oil temperature increases. For this reason, when the first solenoid valve 21 is opened and the pilot primary pressure is lowered when the machine is not operated, the pilot primary pressure drops more than necessary if the oil temperature becomes too high. In order to prevent this, when the controller 30 determines that the oil temperature has exceeded a predetermined temperature from the detection signal of the oil temperature detecting means 25, a signal is output from the controller 30 and the solenoid of the second electromagnetic valve 22 is output. As shown in FIG. 3, the second solenoid valve 23 is switched to the “throttle small position” (d).
[0020]
Since the aperture area of the second solenoid valve 23 is smaller in the “small aperture position” (d) than in the “large aperture position” (c), the second solenoid valve 23 is set to “ By switching to the “small aperture position” (d), an excessive pressure drop can be suppressed. Thus, when the machine is not operated, the first electromagnetic valve 21 is opened to reduce the pilot primary pressure, and the throttle position of the second electromagnetic valve 22 is switched according to the oil temperature. The pilot primary pressure can be automatically reduced to an optimum pressure.
[0021]
When the operator operates the operating lever 18 to operate the machine, the corresponding directional control valve in the directional control valve group 15 is switched, and receives an operation detection signal from the operation detecting means 19, The controller 30 determines that the machine is operating. In that case, the signal from the controller 30 is stopped, the excitation of the solenoid 22 of the first electromagnetic valve 21 is stopped, and as shown in FIG. 1, the first electromagnetic valve 21 is moved to the “closed position” (a Return to).
[0022]
Accordingly, since the branch oil passage 20 is closed, the pressure oil discharged from the pilot hydraulic pressure source 11 rises to a predetermined pressure set by the relief valve 14. That is, the pilot primary pressure returns from the idling state to the workable state.
[0023]
It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified one.
[0024]
【The invention's effect】
As described in detail in the above embodiment, the invention according to claim 1 is provided with a branch oil passage communicating with the tank in the pilot primary oil passage extending from the pilot hydraulic power source to the remote control valve. Since the branch oil passage is opened and closed by the solenoid valve and the opening of the throttle is changed by the second solenoid valve, if the first solenoid valve is opened, the pilot primary pressure can be lowered and driven. The fuel consumption can be reduced by reducing the load on the engine that is the source. Also, a plurality of different pressure settings can be selected by changing the aperture of the throttle with the second solenoid valve.
[0025]
According to a second aspect of the present invention, there is provided a means for detecting the operation of the machine, and when the machine is not operated, the first electromagnetic valve is switched to the open position by the control of the control means. Can be lowered automatically. Therefore, in addition to the effect of the first aspect of the invention, the pilot primary pressure is automatically lowered when the machine is not operated, and a fuel reduction effect can be expected without any special operation by the operator.
[0026]
According to a third aspect of the present invention, there is provided means for detecting the oil temperature, and when the oil temperature exceeds a predetermined temperature, the second electromagnetic valve is switched to a position where the aperture of the throttle is small under the control of the control means. , The hydraulic pressure can be prevented from dropping more than necessary. Therefore, in addition to the effect of the invention described in claim 1 or 2, the pilot primary pressure during non-operation of the machine can be maintained at the minimum necessary pressure regardless of the fluctuation of the oil temperature.
[Brief description of the drawings]
FIG. 1 is a remote control valve hydraulic circuit diagram in an initial state, showing an embodiment of the present invention.
FIG. 2 is a remote control valve hydraulic circuit diagram when the machine is not operated according to the embodiment of the present invention.
FIG. 3 shows an embodiment of the present invention, and is a remote control valve hydraulic circuit diagram in a state in which the oil temperature is raised when the machine is not operated.
[Explanation of symbols]
11 Pilot hydraulic power source 12 Pilot primary side oil passage 13 Remote control valve 14 Relief valve 15 Direction control valve group 16 Oil passage 17 Tank 18 Operation lever 19 Operation detecting means 20 Branch oil passage 21 First solenoid valve 22 Solenoid 23 Second electromagnetic Valve 24 Solenoid 25 Oil temperature detection means 30 Controller

Claims (3)

油圧ポンプからアクチュエータに供給される圧油の流れを制御する方向制御弁と、パイロット油圧源からのパイロット一次圧を導入してパイロット二次圧を導出し、該パイロット二次圧により前記方向制御弁のストローク量を制御するリモコン弁とを備えた建設機械に於いて、前記パイロット油圧源からリモコン弁に至るパイロット一次側油路にタンクへ連通する分岐油路を設け、該分岐油路の途中に第1の電磁弁を介装するとともに、該第1の電磁弁の下流に第2の電磁弁を介装し、前記第1の電磁弁により分岐油路の開閉を行い、第2の電磁弁により絞りの開口を変化させるように構成したことを特徴とする建設機械のリモコン弁油圧回路。A directional control valve that controls the flow of pressure oil supplied from the hydraulic pump to the actuator, and a pilot primary pressure from a pilot hydraulic power source is introduced to derive a pilot secondary pressure, and the directional control valve is generated by the pilot secondary pressure. In a construction machine equipped with a remote control valve for controlling the stroke amount of the pilot oil, a branch oil passage communicating with the tank is provided in the pilot primary oil passage from the pilot hydraulic power source to the remote control valve, and in the middle of the branch oil passage A first solenoid valve, a second solenoid valve downstream of the first solenoid valve, the branch solenoid passage being opened and closed by the first solenoid valve, and a second solenoid valve; A remote control valve hydraulic circuit for a construction machine, characterized in that the aperture of the throttle is changed by the above. 機械の操作を検出する手段を設け、機械の非操作時は上記第1の電磁弁を開放位置にして、パイロット油圧源からのパイロット一次圧を通過させ、機械の操作時は上記第1の電磁弁を閉止位置にして、前記パイロット油圧源からのパイロット一次圧を遮断して所定圧力まで上昇させるような制御手段を備えた請求項1記載の建設機械のリモコン弁油圧回路。Means for detecting the operation of the machine is provided. When the machine is not operated, the first electromagnetic valve is opened to allow the pilot primary pressure from the pilot hydraulic power source to pass. When the machine is operated, the first electromagnetic valve is provided. 2. The remote control valve hydraulic circuit for a construction machine according to claim 1, further comprising control means for closing the pilot primary pressure from the pilot hydraulic pressure source and raising the valve to a predetermined pressure by setting the valve to a closed position. 油温を検出する手段を設け、該油温が所定温度以下のときは上記第2の電磁弁を絞りの開口が大である位置にし、該油温が所定温度を超えたときは上記第2の電磁弁を絞りの開口が小である位置にして油圧の低下を抑止するような制御手段を備えた請求項1または2記載の建設機械のリモコン弁油圧回路。A means for detecting the oil temperature is provided. When the oil temperature is lower than a predetermined temperature, the second solenoid valve is set to a position where the opening of the throttle is large, and when the oil temperature exceeds the predetermined temperature, the second electromagnetic valve is set. 3. The remote control valve hydraulic circuit for a construction machine according to claim 1 or 2, further comprising a control means for setting the electromagnetic valve of the first position to a position where the aperture of the throttle is small to suppress a decrease in hydraulic pressure.
JP2003053063A 2003-02-28 2003-02-28 Construction machine remote control valve hydraulic circuit Expired - Fee Related JP3772982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053063A JP3772982B2 (en) 2003-02-28 2003-02-28 Construction machine remote control valve hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053063A JP3772982B2 (en) 2003-02-28 2003-02-28 Construction machine remote control valve hydraulic circuit

Publications (2)

Publication Number Publication Date
JP2004263749A JP2004263749A (en) 2004-09-24
JP3772982B2 true JP3772982B2 (en) 2006-05-10

Family

ID=33117783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053063A Expired - Fee Related JP3772982B2 (en) 2003-02-28 2003-02-28 Construction machine remote control valve hydraulic circuit

Country Status (1)

Country Link
JP (1) JP3772982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005977A (en) * 2017-11-08 2018-05-08 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of hydraulic buttery valve with temperature-monitoring function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125627A (en) * 2004-09-29 2006-05-18 Kobelco Contstruction Machinery Ltd Hydraulic circuit of construction machinery
JP4548494B2 (en) * 2008-02-19 2010-09-22 コベルコ建機株式会社 Hydraulic circuit for construction machinery
CN106762907B (en) * 2016-12-27 2018-08-14 山河智能装备股份有限公司 A kind of engineering machinery hydraulic oil return control loop and its control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108005977A (en) * 2017-11-08 2018-05-08 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of hydraulic buttery valve with temperature-monitoring function
CN108005977B (en) * 2017-11-08 2020-08-18 中国航空工业集团公司金城南京机电液压工程研究中心 Hydraulic electromagnetic valve with temperature monitoring function

Also Published As

Publication number Publication date
JP2004263749A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
US7513109B2 (en) Hydraulic controller for working machine
KR100395820B1 (en) Hydraulic control device of working machine
EP2050970B1 (en) Hydraulic circuit for heavy equipment
US10393151B2 (en) Hydraulic drive system for working machine
US20100303643A1 (en) Fan Drive System
JP2011127727A (en) Hydraulic circuit of construction machine
JP2009150413A (en) Hydraulic circuit of construction machinery
JP2010169204A (en) Hydraulic circuit for hydraulic working machine
US11378101B2 (en) Shovel
JP3772982B2 (en) Construction machine remote control valve hydraulic circuit
JP2007333017A (en) Energy saving device of construction machine
JP2008190694A (en) Control device having auto deceleration control function and method of controlling same
JP2009167659A (en) Hydraulic control circuit of utility machine
JP4969541B2 (en) Hydraulic control device for work machine
JP2008002505A (en) Energy saving device for construction machine
JP4668445B2 (en) Hydraulic control equipment, construction machinery and hydraulic excavators
JP2007298130A (en) Hydraulic system of construction machine
KR101281232B1 (en) Apparatus for controlling displacement of variable displacement type of hydraulic pump
JP4926627B2 (en) Electric oil system
JP2005325911A (en) Controller of fluid pressure circuit
JP2004263750A (en) Hydraulic circuit for remote control valve for construction machine
JP3810263B2 (en) Hydraulic circuit in work machines
JP2010047983A (en) Hydraulic circuit of hydraulic excavator
JP7474626B2 (en) Excavator
JPH06159312A (en) Hydraulically driven device for construction machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent or registration of utility model

Ref document number: 3772982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees