JP3767465B2 - Method for producing thin-walled molded product and molding die apparatus used therefor - Google Patents

Method for producing thin-walled molded product and molding die apparatus used therefor Download PDF

Info

Publication number
JP3767465B2
JP3767465B2 JP2001361597A JP2001361597A JP3767465B2 JP 3767465 B2 JP3767465 B2 JP 3767465B2 JP 2001361597 A JP2001361597 A JP 2001361597A JP 2001361597 A JP2001361597 A JP 2001361597A JP 3767465 B2 JP3767465 B2 JP 3767465B2
Authority
JP
Japan
Prior art keywords
resin
mold
cavity
gate
gate side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361597A
Other languages
Japanese (ja)
Other versions
JP2003159735A (en
Inventor
豊 平田
忠夫 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001361597A priority Critical patent/JP3767465B2/en
Publication of JP2003159735A publication Critical patent/JP2003159735A/en
Application granted granted Critical
Publication of JP3767465B2 publication Critical patent/JP3767465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、形状の一部または全体に肉厚の薄い部分を有する樹脂の薄肉成形品の製造方法及びそれに用いる成形金型装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
通常の射出成形では、1mm以下の薄肉形状を持つ樹脂の薄肉成形品を射出成形により製造する場合、射出中に樹脂が金型で冷却されて樹脂の流動性が低下し、キャビティ内への樹脂の充填が困難になる。
【0003】
これを解消するため、キャビティ内で樹脂が高速で流動するように高射出圧力で射出する方法、また金型及び樹脂温度を上げるなど、金型のキャビティ内で樹脂の粘度が上昇しないようにすることが必要となるが、成形時の樹脂圧力を過大にする必要がある、樹脂の断熱圧縮による発熱によって熱分解したり、成形サイクルが長くなったりする等の問題が生じる。
【0004】
また、他の対応策として、金型のキャビティ空間を所定厚さ以上に設定しておき、溶融樹脂を射出しながら型締めをして、所定のキャビティ空間に戻す工程をとる射出圧縮成形の応用も考えられる。このような例として、例えば特開昭60−110419号公報に開示される射出圧縮成形法がある。しかしかかる従来例では、特に肉厚が1mm以下のような薄肉成形品の成形においては、充填の最終段階で発生するキャビティ内圧により型締めが阻害され、必要以上の型締め力が必要になることから、所定の肉厚を得ることが困難となる。また薄肉成形品においては、射出工程時のゲート側、反ゲート側(ゲート側と反対の側のゲートから最も離れた部分)の圧力差は圧縮工程中に完全に解消されないため、ゲート側、反ゲート側において、溶融樹脂の流動による分子配向及び密度の差により内部応力を生じ、成形品に反り、未充填といった成形トラブルを生じやすいという問題がある。
【0005】
本発明は叙述の点に鑑みてなされたものであって、成形加工時における過大な射出圧力をかけることなく、密度が均一で成形トラブルのない薄肉成形品を得ることができる薄肉成形品の製造方法及びそれに用いる成形金型装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明の請求項1の薄肉成形品の製造方法は、一対の金型のうち一方の金型のキャビティに対応する部分をゲート側から反ゲート側に向かって複数設けた分割駆動型で構成し、一対の金型を合致させて一対の金型間に薄肉のキャビティを形成するとき一方の金型の複数の分割駆動型にてキャビティのゲート側の流路断面積をキャビティの反ゲート側の流路断面積より大きく設定しておき、この状態で溶融樹脂をゲートを介してキャビティ内に射出し、溶融樹脂が固化する前に上記一方の金型の分割駆動型を反ゲート側からゲート側に向かって順に溶融樹脂を圧縮するように動作させて所定の肉厚の成形品を形成することを特徴とする。ゲートからキャビティに樹脂を射出してキャビティに樹脂を充填するときゲート側の流路断面積が大きいために樹脂の流動抵抗を減らすことができ、過大な射出圧力をかけることなくキャビティの隅々まで樹脂を充填することができる。溶融樹脂をキャビティに充填した状態で分割駆動型を反ゲート側からゲート側に向かって順に溶融樹脂を圧縮するように動作させて所定の肉厚の成形品を形成していることにより、全体に樹脂が行き亙った薄肉の樹脂成形品を得ることができるのは勿論、溶融樹脂を圧縮するときに余分な樹脂がゲート側にスムーズに移動することにより、樹脂の射出時に偏って分布している樹脂圧力を均等にすることができ、薄肉成形品の品質を向上させることができる。さらに複数の分割駆動型を別々に駆動して圧縮するために一層樹脂圧力を均等にできて薄肉成形品の品質を向上できる。従って成形加工時における過大な射出圧力、速度をかけることなく、密度が均一で成形トラブルのない薄肉成形品を得ることができる。
【0007】
また本発明の請求項2の薄肉成形品の製造方法は、請求項1において、一方の金型の溶融樹脂に接触する部位に配置した圧力センサーにて成形中の樹脂圧力をモニタリングすることにより、樹脂の状況に合わせて分割駆動型の作動量を制御することを特徴とする。この場合、溶融樹脂を圧縮するときキャビティ内の樹脂圧力を検知しながら分割駆動型の駆動速度を調整できるため、キャビティ内の樹脂圧力を急激に上昇させることなく、所定の肉厚まで均一な樹脂圧力分布で圧縮することが可能である。これによりより品質のよい薄肉成形品を得ることができる。
【0008】
また本発明の請求項3の薄肉成形品の製造方法は、請求項2において、ゲートから反ゲート方向に樹脂が流れる方向と直交する方向の略中央で上記樹脂が流れる方向の少なくとも3点に点在させた圧力センサーで樹脂圧力をモニタリングするようにしたことを特徴とする。この場合、溶融樹脂を圧縮するときキャビティ内の樹脂圧力をさらに正確に検知しながら分割駆動型の駆動を制御でき、一層所定の肉厚まで均一な樹脂圧力分布で圧縮することができる。
【0009】
また本発明の請求項4の薄肉成形品の成形金型装置は、互いに合致させることにより間に薄肉のキャビティを形成する一対の金型を具備し、一対の金型のうち一方の金型のキャビティに対応する部分をゲート側から反ゲート側に向かって複数設けた分割駆動型で構成し、これら分割駆動型を夫々独立に駆動されるように設け、溶融樹脂の射出を開始するときはキャビティのゲート側の流路断面積を反ゲート側の流路断面積より大きくなるように分割駆動型を駆動するようにすると共にキャビティに射出した溶融樹脂が固化する前には所定の肉厚の成形品を得るために上記一方の金型の分割駆動型を反ゲート側からゲート側に向かって順に溶融樹脂を圧縮するように駆動することを特徴とする。分割駆動型の駆動を制御することにより、請求項1の薄肉成形品の製造方法を容易に実現できる。
【0010】
また請求項5の薄肉成形品の成形金型装置は、請求項4において、一方の金型の溶融樹脂に接触する部位に樹脂の圧力を検出する圧力センサーを設けたことを特徴とし、請求項6の薄肉成形品の成形金型装置は、請求項5において、ゲートから反ゲート方向に樹脂が流れる方向と直交する方向の略中央で上記樹脂が流れる方向の少なくとも3点に圧力センサーを点在させたことを特徴とし、請求項7の薄肉成形品の成形金型装置は請求項5または請求項6において、分割駆動型には圧力センサーからの信号により分割駆動型の作動量を制御する駆動装置を設けたことを特徴とする。このようにすることで請求項2や請求項3の薄肉成形品の製造方法を容易に実現できる。
【0011】
【発明の実施の形態】
成形金型装置は一対の金型にて主体が構成されている。本例の場合、一対の金型は図1のように本図上方向の固定金型1と本図下方向の可動金型2とで構成されている。下の可動金型2は本図において上下方向に駆動されるものであり、可動金型2を上に上昇するように駆動して固定金型1に合致させることにより固定金型1と可動金型2との間にキャビティ3を形成し、可動金型2を下に下降させるように駆動して固定金型1から離間させることによりキャビティ3から成形品4を取り出すことができるようになっている。なお、固定金型1と可動金型2とは固定金型1が上に位置し、可動金型2が下に位置するように図示しているが、固定金型1と可動金型2とは図示のように上下に位置するものでも、左右方向に位置して可動金型2が左右方向に移動するものでもよい。キャビティ3の一端にはゲート5が設けられており、このゲート5と反対のゲート5から最も離れた位置である反ゲート側にはエアベント6が設けられている。
【0012】
上記可動金型2のキャビティ3やゲート5に対応する部分は複数の分割駆動型7で構成してあり、各分割駆動型7が夫々独立して上下に駆動されるようになっている。上記分割駆動型は少なくとも2つ以上あればよいが、図示の例の場合、符号A,B,C,D,Eで示す5個の分割駆動型7で構成してある。各分割駆動型7にはこの分割駆動型7を駆動する駆動装置として夫々型部駆動装置8が設けてあり、符号A,B,C,D,Eに示す5個の型部駆動装置8がある。この型部駆動装置8は例えば、図2に示すような油圧―サーボのハイブリッド駆動機構を用いており、シリンダ9、ピストン10、ピストンロッド11、可変油圧ポンプ12、サーボモータ13、サーボコントローラ14等で構成されている。入力信号にてサーボコントローラ14でサーボモータ13が制御され、このサーボモータ13で可変油圧ポンプ12が駆動されてシリンダ9に送る油圧が制御され、ピストンロッド11が上下に駆動されるようになっている。このときシリンダ9にはピストン10の位置を検出するリニアセンサー16が設けられており、これにより検出した位置情報がサーボコントローラ14にフィードバックされるようになっている。ピストンロッド11は上記分割駆動型7に連結してあり、分割駆動型7を上下に駆動できるようになっている。
【0013】
次に上記のように構成せる成形金型装置にて薄肉成形品を成形する動作を説明する。先ず、図1(a)に示すように可動金型2を上昇させて固定金型1と可動金型2とを型締めして固定金型1と可動金型2との間にキャビティ3を形成する。このときゲート側の流路断面積が反ゲート側の流路断面積より大きくなるように各分割駆動型7を駆動しておく。本例の場合、符号A,B,C,D,Eに示す分割駆動型7をこの順に固定金型1に対して大きく離間するように駆動しておく。このようにキャビティ3内の肉厚を段階的に変化させることにより、製品となる成形品4の本来の肉厚より厚く且つ滑らかに変化させることができる。次に図1(b)に示すようにゲート5からキャビティ3内に矢印aのように溶融樹脂15の射出を開始してキャビティ3に溶融樹脂15を充填する。このとき、反ゲート側からゲート側に向けて漸次流路断面積を大きくしているために射出工程中に樹脂の流動抵抗を減らすことができ、過大な射出圧力をかけることなく薄肉部分への樹脂の充填が可能となる。また溶融樹脂15の射出工程中は分割駆動型7に樹脂圧を支える駆動力を与え続ける。次に、射出を完了すると、溶融樹脂15を圧縮するように(矢印bのように)分割駆動型7を駆動する。このとき反ゲート側からゲート側に向かって順に所定肉厚になるまで圧縮を行う動作を行う。この分割駆動型7の圧縮動作工程中には矢印cのように樹脂がゲート5に向かって移動することにより、射出時に偏って分布している樹脂圧力を均等にすることができ、成形される成形品4の品質を向上することができる。次に図1(d)に示すように分割駆動型7の移動を完了して成形品4を成形した後、可動金型2を下降させて型開きを行い、図1(e)に示すように成形品4を取り出す。
【0014】
上記のように成形を行うとき、分割駆動型7の駆動を行うが、上記符号A,B,C,D,Eに示す分割駆動型7の駆動のシーケンスを示すと図3の通りとなる。図3で縦軸に成形の時間経過を示し、横軸に型部駆動装置8の駆動ストロークを示す。
【0015】
また図4に示す成形金型装置では分割駆動型7の溶融樹脂15に接触する部位に圧力センサー17を設置してある。これにより成形中の樹脂圧力をモニタリングし、樹脂の状況に合わせて分割駆動型7の作動量を制御するようになっている。図5は圧力センサー17が検出する樹脂圧力の一例を示し、図6に示すように圧力センサー17の圧力情報をサーボコントローラ14に入力して分割駆動型7の作動量を制御するようになっている。つまり、射出成形後の分割駆動型7の駆動時にキャビティ3内に発生する圧力を圧力センサー17で検出し、閾値を越えないように分割駆動型7の移動速度のフィードバック制御を行う。このように成形を行うと、射出工程終了後の樹脂圧縮時に、キャビティ3内の樹脂圧力を検知しながら分割駆動型7の駆動速度を調整できるため、キャビティ3内の樹脂圧力を急激に上昇させることなく、所定の肉厚まで均一な樹脂圧力分布で圧縮することが可能になる。
【0016】
また上記圧力センサー17は、キャビティ3のゲートから反ゲート方向に樹脂が流れる方向と直交する方向の略中央で上記樹脂が流れる方向の少なくとも3点に点在させてある。本例の場合、符号A,B,C,D,Eに示す5個の分割駆動型7に夫々圧力センサー17を設けてある。このように3点以上の圧力センサー17を設けてあると、キャビティ3内の各部の樹脂圧力を正確に検出でき、より適切に分割駆動型7を駆動し、所定の肉厚まで均一な樹脂圧力分布で圧縮することが可能になる。
【0017】
【発明の効果】
本発明の請求項1の発明は、一対の金型のうち一方の金型のキャビティに対応する部分をゲート側から反ゲート側に向かって複数設けた分割駆動型で構成し、一対の金型を合致させて一対の金型間に薄肉のキャビティを形成するとき一方の金型の複数の分割駆動型にてキャビティのゲート側の流路断面積をキャビティの反ゲート側の流路断面積より大きく設定しておき、この状態で溶融樹脂をゲートを介してキャビティ内に射出し、溶融樹脂が固化する前に上記一方の金型の分割駆動型を反ゲート側からゲート側に向かって順に溶融樹脂を圧縮するように動作させて所定の肉厚の成形品を形成するものであって、ゲートからキャビティに溶融樹脂を射出してキャビティに樹脂を充填するときゲート側の流路断面積が大きいために樹脂の流動抵抗を減らすことができ、過大な射出圧力をかけることなくキャビティの隅々まで樹脂を充填することができるものであり、しかも溶融樹脂をキャビティに充填した状態で分割駆動型を順に溶融樹脂を圧縮するように動作させて所定の肉厚の成形品を形成していることにより、全体に樹脂が行き亙った薄肉の樹脂成形品を得ることができるのは勿論、溶融樹脂を圧縮するときに余分な樹脂がゲート側にスムーズに移動することにより、樹脂の射出時に偏って分布している樹脂圧力を均等にすることができ、薄肉成形品の品質を向上させることができるものであり、さらに複数の分割駆動型を別々に駆動して圧縮するために一層樹脂圧力を均等にできて薄肉成形品の品質を向上できるものである。従って成形加工時における過大な射出圧力、速度をかけることなく、密度が均一で成形トラブルのない薄肉成形品を得ることができるものである。
【0018】
また本発明の請求項2の発明は、請求項1において、一方の金型の溶融樹脂に接触する部位に配置した圧力センサーにて成形中の樹脂圧力をモニタリングすることにより、樹脂の状況に合わせて分割駆動型の作動量を制御するので、溶融樹脂を圧縮するときキャビティ内の樹脂圧力を検知しながら分割駆動型の駆動速度を調整できるため、キャビティ内の樹脂圧力を急激に上昇させることなく、所定の肉厚まで均一な樹脂圧力分布で圧縮することが可能であり、従って品質のよい薄肉成形品を得ることができるものである。
【0019】
また本発明の請求項3の発明は、請求項2において、ゲートから反ゲート方向に樹脂が流れる方向と直交する方向の略中央で上記樹脂が流れる方向の少なくとも3点に点在させた圧力センサーで樹脂圧力をモニタリングするようにしたので、溶融樹脂を圧縮するときキャビティ内の樹脂圧力をさらに正確に検知しながら分割駆動型の駆動を制御でき、一層所定の肉厚まで均一な樹脂圧力分布で圧縮することができるものである。
【0020】
また本発明の請求項4の発明は、互いに合致させることにより間に薄肉のキャビティを形成する一対の金型を具備し、一対の金型のうち一方の金型のキャビティに対応する部分をゲート側から反ゲート側に向かって複数設けた分割駆動型で構成し、これら分割駆動型を夫々独立に駆動されるように設け、溶融樹脂の射出を開始するときはキャビティのゲート側の流路断面積を反ゲート側の流路断面積より大きくなるように分割駆動型を駆動するようにすると共にキャビティに射出した溶融樹脂が固化する前には所定の肉厚の成形品を得るために上記一方の金型の分割駆動型を反ゲート側からゲート側に向かって順に溶融樹脂を圧縮するように駆動するので、分割駆動型の駆動を制御することにより、請求項1の薄肉成形品の製造方法を容易に実現できるものである。
【0021】
また本発明の請求項5の発明は、請求項4において、一方の金型の溶融樹脂に接触する部位に樹脂の圧力を検出する圧力センサーを設けものであり、請求項6の発明は、請求項5において、ゲートから反ゲート方向に樹脂が流れる方向と直交する方向の略中央で上記樹脂が流れる方向の少なくとも3点に圧力センサーを点在させたものであり、請求項7の発明は請求項5または請求項6において、分割駆動型には圧力センサーからの信号により分割駆動型の作動量を制御する駆動装置を設けたものであり、このようにすることで請求項2や請求項3の薄肉成形品の製造方法を容易に実現できるものである。
【図面の簡単な説明】
【図1】本発明の薄肉成形品の製造方法及び成形金型装置の一例を示す断面図であって、(a)(b)(c)(d)(e)は各工程を示す。
【図2】同上の型部駆動装置の構造を説明する説明図である。
【図3】同上の分割駆動型の駆動のシーケンスを示す図である。
【図4】同上の他の例の成形金型装置を示し、(a)は平面図、(b)は断面図である。
【図5】同上の圧力センサーの検出する圧力の一例を示す説明図である。
【図6】同上の型部駆動装置の構造を説明する説明図である。
【符号の説明】
1 固定金型
2 可動金型
3 キャビティ
4 成形品
5 ゲート
6 エアベント
7 分割駆動型
8 型部駆動装置
15 溶融樹脂
17 圧力センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a thin resin molded product having a thin part in a part or the whole of a shape, and a molding die apparatus used therefor.
[0002]
[Prior art and problems to be solved by the invention]
In normal injection molding, when a thin resin molded product having a thin shape of 1 mm or less is manufactured by injection molding, the resin is cooled by a mold during injection, so that the fluidity of the resin is lowered, and the resin into the cavity Filling becomes difficult.
[0003]
In order to eliminate this, the viscosity of the resin does not increase in the mold cavity, such as by injection at a high injection pressure so that the resin flows at high speed in the cavity, or by increasing the mold and resin temperature. However, there are problems that the resin pressure at the time of molding needs to be excessive, that heat is decomposed by heat generated by adiabatic compression of the resin, and that the molding cycle becomes long.
[0004]
In addition, as another countermeasure, the application of injection compression molding, in which the cavity space of the mold is set to a predetermined thickness or more, the mold is clamped while injecting molten resin, and returned to the predetermined cavity space. Is also possible. As an example of this, there is an injection compression molding method disclosed in, for example, Japanese Patent Application Laid-Open No. 60-110419. However, in such a conventional example, especially in the molding of a thin molded product having a wall thickness of 1 mm or less, the mold clamping is hindered by the cavity internal pressure generated at the final stage of filling, and an excessive clamping force is necessary. Therefore, it becomes difficult to obtain a predetermined thickness. In thin-walled molded products, the pressure difference between the gate side and the counter-gate side (the part farthest from the gate opposite to the gate side) during the injection process is not completely eliminated during the compression process. On the gate side, there is a problem that internal stress is generated due to the difference in molecular orientation and density due to the flow of the molten resin, warping the molded product, and forming trouble such as unfilling.
[0005]
The present invention has been made in view of the description, and it is possible to produce a thin molded product that can obtain a thin molded product with a uniform density and no molding trouble without applying an excessive injection pressure during the molding process. It is an object of the present invention to provide a method and a molding die apparatus used therefor.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention for solving the above-described problem, the thin-walled molded article manufacturing method includes providing a plurality of portions corresponding to the cavities of one of the pair of molds from the gate side toward the opposite gate side. When a thin-walled cavity is formed between a pair of molds by matching a pair of molds, the cross-sectional area of the channel on the gate side of the cavity is divided into a plurality of split drive molds of one mold. Is set to be larger than the cross-sectional area of the channel on the side opposite to the gate of the cavity, and in this state, the molten resin is injected into the cavity through the gate, and before the molten resin is solidified, the split drive mold of the above one mold is used. Is operated so as to compress the molten resin in order from the side opposite to the gate to the side of the gate to form a molded product having a predetermined thickness. When the resin is injected from the gate into the cavity and the resin is filled into the cavity, the flow resistance of the resin on the gate side is large, so that the flow resistance of the resin can be reduced. Resin can be filled. By operating the split drive mold to compress the molten resin in order from the gate side to the gate side with the molten resin filled in the cavity, a molded product with a predetermined thickness is formed on the whole. Of course, it is possible to obtain a thin resin molded product where the resin is distributed, and when the molten resin is compressed, the excess resin moves smoothly to the gate side, so that it is unevenly distributed when the resin is injected. The resin pressure can be made uniform, and the quality of the thin molded product can be improved. Furthermore, since the plurality of split drive dies are driven and compressed separately, the resin pressure can be made even more and the quality of the thin molded product can be improved. Therefore, a thin molded product having a uniform density and no molding trouble can be obtained without applying excessive injection pressure and speed during molding.
[0007]
The method for producing a thin molded article according to claim 2 of the present invention is the method for producing a thin molded article according to claim 1 by monitoring the resin pressure during molding with a pressure sensor disposed at a site in contact with the molten resin of one mold. The operation amount of the split drive type is controlled in accordance with the state of the resin. In this case, when compressing the molten resin, the drive speed of the split drive type can be adjusted while detecting the resin pressure in the cavity, so that a uniform resin up to a predetermined thickness can be obtained without suddenly increasing the resin pressure in the cavity. It is possible to compress with pressure distribution. Thereby, a thin-walled molded article with better quality can be obtained.
[0008]
According to a third aspect of the present invention, there is provided a method for producing a thin-walled molded article according to the second aspect, wherein at least three points in the direction in which the resin flows are substantially at the center in the direction orthogonal to the direction in which the resin flows from the gate to the anti-gate direction. The resin pressure is monitored with a pressure sensor. In this case, when the molten resin is compressed, the drive of the split drive type can be controlled while more accurately detecting the resin pressure in the cavity, and the resin can be compressed with a uniform resin pressure distribution up to a predetermined thickness.
[0009]
According to a fourth aspect of the present invention, there is provided a molding tool device for a thin-walled molded article comprising a pair of molds which form a thin-walled cavity therebetween by being matched with each other . A part corresponding to the cavity is composed of a split drive type that is provided in plural from the gate side to the non-gate side, and these split drive types are provided so as to be driven independently, and when the injection of molten resin is started, the cavity The split drive mold is driven so that the cross-sectional area of the flow path on the gate side is larger than the cross-sectional area of the flow path on the anti-gate side, and molding is performed to a predetermined thickness before the molten resin injected into the cavity is solidified. and drives so as to compress the molten resin in order to split-driven one of the mold above toward the gate side from the anti gate side in order to obtain goods. By controlling the drive of the split drive type, the manufacturing method of the thin molded product of claim 1 can be easily realized.
[0010]
Further, the molding die device for a thin molded product according to claim 5 is characterized in that, in claim 4, a pressure sensor for detecting the pressure of the resin is provided at a portion of the mold that contacts the molten resin. 6. The molding tool device for thin molded products according to claim 5 is characterized in that, in claim 5, pressure sensors are scattered at at least three points in the direction of flow of the resin at the approximate center in the direction perpendicular to the direction of flow of the resin from the gate to the anti-gate direction. According to a seventh aspect of the present invention, there is provided the molding device for thin-walled molded products according to the fifth or sixth aspect, wherein the split drive type is a drive that controls the operation amount of the split drive type by a signal from a pressure sensor. A device is provided. By doing in this way, the manufacturing method of the thin molded product of Claim 2 and Claim 3 is easily realizable.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The main body of the molding die apparatus is composed of a pair of molds. In the case of this example, the pair of molds is composed of a fixed mold 1 in the upper direction of the figure and a movable mold 2 in the lower direction of the figure as shown in FIG. The lower movable mold 2 is driven in the vertical direction in the figure, and the movable mold 2 and the movable mold 1 are moved by moving the movable mold 2 upward to match the fixed mold 1. A cavity 3 is formed between the mold 2 and the movable mold 2 is driven downward to be separated from the fixed mold 1 so that the molded product 4 can be taken out from the cavity 3. Yes. The fixed mold 1 and the movable mold 2 are illustrated such that the fixed mold 1 is positioned on the upper side and the movable mold 2 is positioned on the lower side. May be positioned vertically as shown in the figure, or may be positioned in the left-right direction and the movable mold 2 moves in the left-right direction. A gate 5 is provided at one end of the cavity 3, and an air vent 6 is provided on the side opposite to the gate 5 opposite to the gate 5.
[0012]
The portion of the movable mold 2 corresponding to the cavity 3 and the gate 5 is composed of a plurality of divided drive dies 7, and each of the divided drive dies 7 is independently driven up and down. There may be at least two divided drive types, but in the case of the example shown in the figure, the divided drive type is composed of five divided drive types 7 indicated by reference signs A, B, C, D, and E. Each of the divided drive molds 7 is provided with a mold part drive device 8 as a drive device for driving the divided drive mold 7, and five mold part drive devices 8 denoted by reference numerals A, B, C, D, and E are provided. is there. The mold part drive device 8 uses, for example, a hydraulic-servo hybrid drive mechanism as shown in FIG. 2, and includes a cylinder 9, a piston 10, a piston rod 11, a variable hydraulic pump 12, a servo motor 13, a servo controller 14, and the like. It consists of Servo motor 13 is controlled by servo controller 14 in accordance with the input signal, variable hydraulic pump 12 is driven by this servo motor 13 to control the hydraulic pressure sent to cylinder 9, and piston rod 11 is driven up and down. Yes. At this time, the cylinder 9 is provided with a linear sensor 16 for detecting the position of the piston 10, and position information detected thereby is fed back to the servo controller 14. The piston rod 11 is connected to the split drive mold 7 so that the split drive mold 7 can be driven up and down.
[0013]
Next, the operation of molding a thin molded product with the molding die apparatus configured as described above will be described. First, as shown in FIG. 1 (a), the movable mold 2 is raised and the fixed mold 1 and the movable mold 2 are clamped to form a cavity 3 between the fixed mold 1 and the movable mold 2. Form. At this time, each divided drive type 7 is driven so that the cross-sectional area on the gate side is larger than the cross-sectional area on the opposite gate side. In the case of this example, the divided drive molds 7 indicated by symbols A, B, C, D, and E are driven so as to be largely separated from the fixed mold 1 in this order. Thus, by changing the thickness in the cavity 3 stepwise, the thickness can be changed smoothly and thicker than the original thickness of the molded product 4 as a product. Next, as shown in FIG. 1B, injection of the molten resin 15 is started from the gate 5 into the cavity 3 as indicated by an arrow a, and the cavity 3 is filled with the molten resin 15. At this time, since the cross-sectional area of the flow passage is gradually increased from the opposite gate side to the gate side, the flow resistance of the resin can be reduced during the injection process, and the thin portion can be applied without applying excessive injection pressure. Resin filling is possible. Further, during the injection process of the molten resin 15, a driving force that supports the resin pressure is continuously applied to the split driving mold 7. Next, when the injection is completed, the split drive die 7 is driven so as to compress the molten resin 15 (as indicated by an arrow b). At this time, the compression operation is performed in order from the counter-gate side toward the gate side until a predetermined thickness is reached. During the compression operation process of the split drive mold 7, the resin moves toward the gate 5 as indicated by the arrow c, so that the resin pressure distributed unevenly at the time of injection can be made uniform and molded. The quality of the molded product 4 can be improved. Next, after the movement of the split drive die 7 is completed as shown in FIG. 1 (d) and the molded product 4 is formed, the movable mold 2 is lowered to open the mold, as shown in FIG. 1 (e). The molded product 4 is taken out.
[0014]
When the molding is performed as described above, the divided drive die 7 is driven. The drive sequence of the divided drive die 7 indicated by the symbols A, B, C, D, and E is as shown in FIG. In FIG. 3, the vertical axis shows the molding time, and the horizontal axis shows the driving stroke of the mold unit driving device 8.
[0015]
Further, in the molding die apparatus shown in FIG. 4, a pressure sensor 17 is installed at a portion that contacts the molten resin 15 of the split drive die 7. Thus, the resin pressure during molding is monitored, and the operation amount of the split drive die 7 is controlled in accordance with the state of the resin. FIG. 5 shows an example of the resin pressure detected by the pressure sensor 17. As shown in FIG. 6, the pressure information of the pressure sensor 17 is inputted to the servo controller 14 to control the operation amount of the divided drive type 7. Yes. That is, the pressure sensor 17 detects the pressure generated in the cavity 3 when driving the divided drive mold 7 after injection molding, and performs feedback control of the moving speed of the divided drive mold 7 so as not to exceed the threshold value. When molding is performed in this manner, the resin pressure in the cavity 3 can be rapidly increased because the drive speed of the split drive mold 7 can be adjusted while detecting the resin pressure in the cavity 3 when the resin is compressed after the end of the injection process. Without compression, it becomes possible to compress with a uniform resin pressure distribution up to a predetermined thickness.
[0016]
The pressure sensors 17 are scattered at least at three points in the direction in which the resin flows in the approximate center in the direction perpendicular to the direction in which the resin flows in the opposite gate direction from the gate of the cavity 3. In the case of this example, the pressure sensor 17 is provided in each of the five divided drive molds 7 indicated by reference signs A, B, C, D, and E. When three or more pressure sensors 17 are provided in this way, the resin pressure at each part in the cavity 3 can be accurately detected, and the divided drive die 7 is driven more appropriately, and the resin pressure is uniform up to a predetermined thickness. It becomes possible to compress by distribution.
[0017]
【The invention's effect】
According to the first aspect of the present invention, a part of the pair of molds corresponding to the cavity of one mold is constituted by a divided drive mold in which a plurality of parts are provided from the gate side to the opposite gate side, and the pair of molds When a thin cavity is formed between a pair of molds by matching the flow path cross-sectional area on the gate side of the cavity with the flow cross-sectional area on the opposite gate side of the cavity In this state, the molten resin is injected into the cavity through the gate, and before the molten resin solidifies, the split drive mold of the one mold is melted in order from the opposite gate side to the gate side. It is operated to compress the resin to form a molded product with a predetermined thickness, and when the molten resin is injected from the gate into the cavity and filled with the resin, the flow passage cross-sectional area on the gate side is large. Resin flow resistance The resin can be filled to every corner of the cavity without applying excessive injection pressure, and the molten resin is sequentially compressed with the split drive type in a state where the cavity is filled with the molten resin. By forming the molded product with a predetermined thickness by operating as described above, it is possible to obtain a thin-walled resin molded product in which the resin is spread over the whole. Smooth movement of the resin to the gate side makes it possible to equalize the resin pressure that is unevenly distributed during the injection of the resin, and to improve the quality of the thin molded product. Since the divided drive molds are separately driven and compressed, the resin pressure can be made even more uniform and the quality of the thin molded product can be improved. Therefore, a thin molded product having a uniform density and no molding trouble can be obtained without applying excessive injection pressure and speed during molding.
[0018]
Further, the invention of claim 2 of the present invention is that, in accordance with claim 1, the resin pressure during molding is monitored by a pressure sensor arranged at a portion in contact with the molten resin of one mold so as to match the situation of the resin. Since the operation amount of the split drive type is controlled, the drive speed of the split drive type can be adjusted while detecting the resin pressure in the cavity when compressing the molten resin, so that the resin pressure in the cavity does not rise rapidly. It is possible to compress with a uniform resin pressure distribution up to a predetermined thickness, and thus a thin molded product with good quality can be obtained.
[0019]
According to a third aspect of the present invention, the pressure sensor according to the second aspect is dotted with at least three points in the flow direction of the resin at a substantially center in a direction orthogonal to the flow direction of the resin from the gate to the anti-gate direction. Since the resin pressure is monitored at the time, when the molten resin is compressed, the drive of the split drive type can be controlled while more accurately detecting the resin pressure in the cavity, and the resin pressure distribution can be evenly distributed to a predetermined thickness. It can be compressed.
[0020]
According to a fourth aspect of the present invention, there is provided a pair of molds that form a thin cavity therebetween by being matched with each other, and a portion corresponding to the cavity of one of the pair of molds is gated. A plurality of split drive types are provided from the side toward the opposite gate side, and these split drive types are provided so as to be driven independently of each other. The split drive mold is driven so that the area is larger than the cross-sectional area of the flow path on the opposite gate side, and before the molten resin injected into the cavity is solidified , the above-mentioned one is obtained. since driving the mold split driven to compress the molten resin in order toward the gate side from the anti gate side, by controlling the driving of the split-driven method according to claim 1 of the thin molded product Easily It is those that can be current.
[0021]
Further, the invention of claim 5 of the present invention is that, in claim 4, a pressure sensor for detecting the pressure of the resin is provided at a portion of the mold that contacts the molten resin. Item 5. The pressure sensor according to item 7, wherein pressure sensors are scattered at at least three points in the direction in which the resin flows at a substantially center in a direction orthogonal to the direction in which the resin flows from the gate to the anti-gate direction. In the fifth or sixth aspect, the split drive type is provided with a drive device that controls the operation amount of the split drive type based on a signal from the pressure sensor. The method for producing a thin molded article can be easily realized.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a cross-sectional view showing an example of a method for producing a thin molded product and a molding die apparatus of the present invention, wherein (a), (b), (c), (d), and (e) show each step.
FIG. 2 is an explanatory view for explaining the structure of the mold part drive device according to the embodiment;
FIG. 3 is a diagram showing a split drive type drive sequence same as above.
4A and 4B show another example of the molding die apparatus, wherein FIG. 4A is a plan view and FIG. 4B is a cross-sectional view.
FIG. 5 is an explanatory diagram showing an example of pressure detected by the pressure sensor.
FIG. 6 is an explanatory view for explaining the structure of the mold part drive device according to the embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fixed mold 2 Movable mold 3 Cavity 4 Molded product 5 Gate 6 Air vent 7 Split drive type 8 Mold part drive device 15 Molten resin 17 Pressure sensor

Claims (7)

一対の金型のうち一方の金型のキャビティに対応する部分をゲート側から反ゲート側に向かって複数設けた分割駆動型で構成し、一対の金型を合致させて一対の金型間に薄肉のキャビティを形成するとき一方の金型の複数の分割駆動型にてキャビティのゲート側の流路断面積をキャビティの反ゲート側の流路断面積より大きく設定しておき、この状態で溶融樹脂をゲートを介してキャビティ内に射出し、溶融樹脂が固化する前に上記一方の金型の分割駆動型を反ゲート側からゲート側に向かって順に溶融樹脂を圧縮するように動作させて所定の肉厚の成形品を形成することを特徴とする薄肉成形品の製造方法。 A part of the pair of molds corresponding to the cavity of one mold is constituted by a divided drive mold provided in plural from the gate side to the opposite gate side, and the pair of molds are matched to each other between the pair of molds. When forming a thin-walled cavity, the flow path cross-sectional area on the gate side of the cavity is set to be larger than the flow cross-sectional area on the opposite gate side of the cavity in a plurality of split drive molds of one mold. Resin is injected into the cavity through the gate, and before the molten resin solidifies, the split drive mold of the one mold is operated so as to compress the molten resin in order from the opposite gate side to the gate side. A method for producing a thin-walled molded product, comprising forming a molded product having a thickness of 5 mm. 上記一方の金型の溶融樹脂に接触する部位に配置した圧力センサーにて成形中の樹脂圧力をモニタリングすることにより、樹脂の状況に合わせて分割駆動型の作動量を制御することを特徴とする請求項1記載の薄肉成形品の製造方法。The operation amount of the split drive type is controlled in accordance with the state of the resin by monitoring the resin pressure during molding by a pressure sensor arranged at a position in contact with the molten resin of the one mold. The manufacturing method of the thin molded article of Claim 1. ゲートから反ゲート方向に樹脂が流れる方向と直交する方向の略中央で上記樹脂が流れる方向の少なくとも3点に点在させた圧力センサーで樹脂圧力をモニタリングするようにしたことを特徴とする請求項2記載の薄肉成形品の製造方法。The resin pressure is monitored by pressure sensors that are scattered at least at three points in the direction in which the resin flows at the approximate center in the direction orthogonal to the direction in which the resin flows from the gate to the anti-gate direction. 2. A method for producing a thin molded article according to 2. 互いに合致させることにより間に薄肉のキャビティを形成する一対の金型を具備し、一対の金型のうち一方の金型のキャビティに対応する部分をゲート側から反ゲート側に向かって複数設けた分割駆動型で構成し、これら分割駆動型を夫々独立に駆動されるように設け、溶融樹脂の射出を開始するときはキャビティのゲート側の流路断面積を反ゲート側の流路断面積より大きくなるように分割駆動型を駆動するようにすると共にキャビティに射出した溶融樹脂が固化する前には所定の肉厚の成形品を得るために上記一方の金型の分割駆動型を反ゲート側からゲート側に向かって順に溶融樹脂を圧縮するように駆動することを特徴とする薄肉成形品の成形金型装置。Provided with a pair of molds that form a thin cavity between them by matching each other , a plurality of portions corresponding to the cavity of one mold of the pair of molds were provided from the gate side to the opposite gate side The split drive type is configured so that each of these split drive types is driven independently, and when the injection of the molten resin is started, the flow path cross-sectional area on the gate side of the cavity is determined from the flow cross-sectional area on the anti-gate side. The split drive mold is driven so that it becomes large, and before the molten resin injected into the cavity is solidified , the split drive mold of the one mold is placed on the side opposite to the gate side in order to obtain a molded product having a predetermined thickness. thin molded article of the molding die apparatus and drives so as to compress the molten resin in order toward the gate side from. 上記一方の金型の溶融樹脂に接触する部位に樹脂の圧力を検出する圧力センサーを設けたことを特徴とする請求項4記載の成形金型装置。5. The molding die apparatus according to claim 4, wherein a pressure sensor for detecting the pressure of the resin is provided at a portion of the one die that contacts the molten resin. ゲートから反ゲート方向に樹脂が流れる方向と直交する方向の略中央で上記樹脂が流れる方向の少なくとも3点に圧力センサーを点在させたことを特徴とする請求項5記載の成形金型装置。6. The molding die apparatus according to claim 5, wherein pressure sensors are scattered at at least three points in the direction in which the resin flows at a substantially center in a direction orthogonal to the direction in which the resin flows from the gate to the opposite gate direction. 分割駆動型には圧力センサーからの信号により分割駆動型の作動量を制御する駆動装置を設けたことを特徴とする請求項4または請求項5記載の成形金型装置。6. The molding die apparatus according to claim 4, wherein the split drive type is provided with a drive device that controls an operation amount of the split drive type based on a signal from a pressure sensor.
JP2001361597A 2001-11-27 2001-11-27 Method for producing thin-walled molded product and molding die apparatus used therefor Expired - Fee Related JP3767465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361597A JP3767465B2 (en) 2001-11-27 2001-11-27 Method for producing thin-walled molded product and molding die apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361597A JP3767465B2 (en) 2001-11-27 2001-11-27 Method for producing thin-walled molded product and molding die apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2003159735A JP2003159735A (en) 2003-06-03
JP3767465B2 true JP3767465B2 (en) 2006-04-19

Family

ID=19172224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361597A Expired - Fee Related JP3767465B2 (en) 2001-11-27 2001-11-27 Method for producing thin-walled molded product and molding die apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3767465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668656B2 (en) 2015-01-27 2020-06-02 Denso Corporation Molding die, molding die system, and compression molding method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573755B2 (en) * 2005-11-17 2010-11-04 三菱電機株式会社 Molding equipment
NL1032947C2 (en) * 2006-11-27 2008-05-28 Ecim Technologies Bv Device and method for forming products.
US9011747B2 (en) 2011-06-16 2015-04-21 Toray Industries, Inc. Method for manufacturing fiber-reinforced plastic
FR2989617B1 (en) * 2012-04-18 2014-12-26 Rouxel Sa INJECTION-COMPRESSION MOLD AND USE THEREOF
JP5954262B2 (en) * 2013-06-06 2016-07-20 株式会社デンソー Mold equipment
GB2542711B (en) * 2015-09-25 2019-04-10 Gr8 Eng Ltd Injection moulding method
JP7289279B2 (en) * 2020-04-10 2023-06-09 三菱電機株式会社 Molding device and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668656B2 (en) 2015-01-27 2020-06-02 Denso Corporation Molding die, molding die system, and compression molding method
DE112016000491B4 (en) * 2015-01-27 2021-05-06 Denso Corporation MOLDING TOOL, MOLDING TOOLING SYSTEM, AND MOLDING PROCESS

Also Published As

Publication number Publication date
JP2003159735A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
WO2014208244A1 (en) Device and method for forming thin-plate substrate
JP4671294B2 (en) Injection compression molding method for injection molding machine
JPH09117942A (en) Method for introducing plastic material into mold cavity of molding apparatus and controlling flow of said material
JP3767465B2 (en) Method for producing thin-walled molded product and molding die apparatus used therefor
CN1215931C (en) Method and moulding tool for mfg. fibre-reinforced products
WO2016133021A1 (en) Mold clamping device, molding device, and molding method
CN1466511A (en) Method and device for producing thick-walled moulded parts
JP4397051B2 (en) Method and apparatus for producing hollow plastic components
JPH0615183B2 (en) Press molding method for thermoplastic resin
JP2521008B2 (en) Injection molding method and injection molding machine
CN110815719B (en) Injection molding die and method for manufacturing polymer material element
CN110871552A (en) Injection mold with high reliability
MXPA03000142A (en) Method and apparatus for injection molding.
JP4024778B2 (en) Method for controlling mold clamping device
JPH06278158A (en) Alternating injection molding machine
JP3719512B2 (en) Light guide plate injection molding method and injection mold
JP3197435B2 (en) Injection molding equipment
KR20050022604A (en) Die apparatus for interior panel of vehicle
JPH0834738B2 (en) Injection compression molding method
JP7240343B2 (en) INJECTION COMPRESSION MOLDING APPARATUS AND INJECTION COMPRESSION MOLDING METHOD
JP4136303B2 (en) Injection molding method and injection molding apparatus
JP4579667B2 (en) Injection molding machine and injection molding method
JP2009255463A (en) Injection molding machine and injection molding method
JP3838456B2 (en) Compound progressive forming machine
CN118358111A (en) Intelligent injection molding production system and injection molding method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees