JP3765354B2 - Method for producing hydrogen-containing ultrapure water - Google Patents

Method for producing hydrogen-containing ultrapure water Download PDF

Info

Publication number
JP3765354B2
JP3765354B2 JP25284797A JP25284797A JP3765354B2 JP 3765354 B2 JP3765354 B2 JP 3765354B2 JP 25284797 A JP25284797 A JP 25284797A JP 25284797 A JP25284797 A JP 25284797A JP 3765354 B2 JP3765354 B2 JP 3765354B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen gas
dissolved
saturation
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25284797A
Other languages
Japanese (ja)
Other versions
JPH1177023A (en
Inventor
博志 森田
哲夫 水庭
純一 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP25284797A priority Critical patent/JP3765354B2/en
Publication of JPH1177023A publication Critical patent/JPH1177023A/en
Application granted granted Critical
Publication of JP3765354B2 publication Critical patent/JP3765354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水素含有超純水の製造方法に関する。さらに詳しくは、本発明は、微粒子により汚染された半導体用シリコン基板、液晶用ガラス基板などの電子材料のウェット洗浄に用いる水素含有超純水を、水素ガスの無駄がなく、高い効率で製造することができる水素含有超純水の製造方法に関する。
【0002】
【従来の技術】
従来、半導体用シリコン基板、液晶用ガラス基板などの洗浄は、主として、過酸化水素水と硫酸の混合液、過酸化水素水と塩酸と水の混合液、過酸化水素水とアンモニア水と水の混合液など、過酸化水素をベースとする濃厚な薬液を用いて高温で洗浄した後に超純水ですすぐ、いわゆるRCA洗浄法によって行われてきた。RCA洗浄法は、半導体表面の金属分を除去するために有効な方法であるが、同時に半導体表面に付着した微粒子も除去される。しかし、このような方法では、過酸化水素水、高濃度の酸、アルカリなどを多量に使用するために薬液コストが高く、さらにリンス用の超純水のコスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を調製する空調コストなど、多大なコストを要する。これらのコストを低減し、さらに水の大量使用、薬物の大量廃棄、排ガスの放出といった環境への負荷低減を図るために、近年ウェット洗浄工程の見直しが進められている。
本発明者らは、先に、ウェット洗浄工程で除去すべき不純物のうち、特に電子部品性能への影響が大きく問題視されている微粒子が、水素ガスを溶解した超純水により極めて効果的に除去されることを見いだし、低濃度の薬品で、室温で、高い洗浄効果を得ることができる方法として、水素含有超純水を用いる電子材料の洗浄方法を開発した。これに伴って、水素含有超純水を安全かつ自在に操るために、希望の溶存水素ガス濃度の超純水を、溶解効率を高めて水素ガスを無駄なく利用し、確実に製造することができる水素含有超純水の製造方法の確立が要求されてきた。
【0003】
【発明が解決しようとする課題】
本発明は、微粒子により汚染された半導体用シリコン基板、液晶用ガラス基板などの電子材料のウェット洗浄に用いる水素含有超純水を、水素ガスの無駄がなく、高い水素ガス溶解効率で製造することができる水素含有超純水の製造方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、超純水を脱気して溶存気体の飽和度を低下させたのち、水素ガスを供給して超純水に水素ガスを溶解することにより、水素ガスを無駄なく、高い効率で超純水に溶解させ得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)1種以上の溶存気体を含む超純水を脱気して溶存気体の飽和度を低下させたのち、水素ガスを供給して超純水に水素ガスを溶解する水素含有超純水の製造方法において、脱気の際の総溶存気体の低減量を飽和度に換算して、該飽和度が溶解すべき水素ガスの飽和度に見合う量であり、水素ガスの飽和度換算供給量が脱気した総溶存気体の飽和度の低量にほぼ相当する量であることを特徴とする水素含有超純水の製造方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明方法においては、超純水を脱気して溶存気体の飽和度を低下させたのち、水素ガスを供給して超純水に水素ガスを溶解させる。本発明において、気体の飽和度とは、水中に溶解している気体の量を、圧力105Pa、温度20℃における気体の溶解量で除した値である。例えば、水が圧力105Pa、温度20℃の窒素ガスと接して平衡状態にあるとき、水への窒素ガスの溶解量は19.2mg/リットルであるので、水中に溶解している気体が窒素ガスのみであって、その溶解量が19.2mg/リットルである水の飽和度は1.0倍であり、水中に溶解している気体が窒素ガスのみであって、その溶解量が9.6mg/リットルである水の飽和度は0.5倍である。また、圧力105Pa、温度20℃で空気と接して平衡状態にある水は、窒素ガス15.4mg/リットル及び酸素ガス8.8mg/リットルを溶解して飽和度1.0倍の状態となっているので、脱気により気体の溶解量を窒素ガス1.5mg/リットル、酸素ガス0.9mg/リットルとした水の飽和度は0.1倍である。さらに、水が圧力105Pa、温度20℃の水素ガスと接して平衡状態にあるとき、水への水素ガスの溶解量は1.6mg/リットルであるので、水素ガス0.8mg/リットルを溶解した水の水素ガスの飽和度は0.5倍である。
【0006】
本発明方法においては、超純水を脱気して溶存気体の飽和度を低下させたのち、水素ガスを供給して超純水に水素ガスを溶解する。洗浄用機能水としての効果を高めるためには、溶存水素ガス濃度は高いほど望ましく、大気圧下、常温での飽和濃度である約1.6mg/リットルに近づくほど、洗浄効果は高まる。しかし、飽和付近まで溶存水素ガス濃度を高めなくとも、あるレベル以上の濃度があれば、実質的に有効な機能水となる。その濃度は、0.7mg/リットル程度、すなわち、常温、大気圧下における溶存水素ガスの飽和度の1/2倍弱であることが、本発明者らによってすでに確認されている。
本発明方法において、超純水の脱気の程度に特に制限はないが、溶存水素ガス濃度が0.7mg/リットル以上の水素含有超純水を効率よく調製するために、溶解すべき水素ガスの飽和度に相当する量の溶存気体を脱気して、原水中の気体溶解キャパシティーに空きを作ることが好ましい。例えば、飽和度の1/2倍以上の水素ガスを溶解する場合は、飽和度の1/2倍以上に相当する溶存気体をあらかじめ脱気により除去することが好ましい。飽和度に換算した原水の溶存気体の脱気量と、飽和度に換算した溶解すべき水素ガスの量をほぼ等しくすることにより、水素ガスを無駄なく容易に溶解することができる。
【0007】
溶存気体を制御していない、大気と平衡状態にある超純水には、常温で約8mg/リットルの酸素ガス、約16mg/リットルの窒素ガスと、微量の炭酸などが溶解している。この超純水を原水とする場合には、溶存酸素ガス濃度を4mg/リットル程度以下、溶存窒素ガス濃度を8mg/リットル程度以下、すなわち飽和度の1/2程度以下に低減させれば、飽和度1/2程度までの水素ガスを容易に溶解することができ、溶存水素ガス濃度0.8mg/リットル程度の水素含有超純水を得ることができる。
本発明方法において、原水とする超純水は、必ずしも大気と平衡状態である必要はなく、溶存気体の種類、濃度比率などには全く制限はない。例えば、窒素ガス脱気によってまず溶存酸素ガスを除去し、ほぼ窒素ガスのみによって溶存窒素ガス濃度が高められた原水であれば、そこから溶存窒素ガスを必要な飽和度に相当する量だけ脱気すれば、目的を達することができる。要するに、総溶存気体の低減量を飽和度に換算し、それが溶解すべき水素ガスの飽和度に見合う以上の量であればよい。
本発明の目的にかなう脱気処理としては、触媒脱気や窒素ガス脱気などのいわゆる脱酸素処理は不適であり、酸素ガス以外の気体も除去することができる真空脱気や減圧膜脱気などによることが好ましい。これらの中で、高純度脱気膜モジュールによる膜脱気は、比較的ユースポイントに近いところで、超純水の純度を損なうことなく、微量に溶存する気体を脱気することができるので、特に好適に使用することができる。
【0008】
本発明方法においては、脱気して溶存気体の飽和度を低下させた超純水に、水素ガスを供給して水素ガスを溶解する。水素ガスを溶解する方法には特に制限はなく、例えば、バブリング、ラインミキシング、気体透過膜モジュールの使用など任意の接触方法を利用することができる。これらの中で、単位時間、単位スペースあたりの水素ガス溶解量が大きく、電子材料のウェット洗浄用として使用し得るレベルに水の純度を保ち、水素ガスの溶解効率を容易に高めることができる高純度気体透過膜モジュールが好ましい。
本発明方法において、超純水の脱気及び水素ガスの供給に用いるガス透過膜には特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。水素ガスの供給方法には特に制限はなく、例えば、重質油のガス化反応により得られる合成ガスからの分離、メタノールの接触分解や水蒸気改質、水の電気分解などのほか、市販の高純度水素ガスボンベなどを使用することもできる。ガス透過膜の液体側に脱気した超純水を通過させ、気体側に水素ガスを供給することにより、水素ガスはガス透過膜を経由して超純水中に移行し溶解する。
【0009】
本発明方法において、供給する水素ガスの量には特に制限はないが、大気と平衡状態にある超純水より脱気した気体の飽和度の低下量にほぼ相当する量であることが好ましい。例えば、大気と平衡状態にある超純水中に溶解している窒素ガス及び酸素ガスの80%を脱気して原水の総溶存気体飽和度を0.2倍としたとき、原水中の水素ガス溶解のための気体溶解キャパシティーの空きは飽和度の0.8倍となっているので、水素ガスの飽和度1.6mg/リットルの0.8倍に相当する1.28mg/リットルの水素ガスを供給することが好ましい。脱気した気体の飽和度の低下量にほぼ相当する量の水素ガスを供給することにより、供給した水素ガスがほぼ全量超純水中に溶解し、排ガス中に未溶解のまま放出される水素ガスの量を抑制して、水素ガス溶解効率を高めることができる。しかし、供給する水素ガスの飽和度換算量と、脱気した気体の飽和度の低下量とは、厳密に1:1である必要はなく、超純水に溶解される水素ガスの量を所望量にすることができれば、1:1以下であってもよい。また、超純水の流速などとの関連において、超純水と供給する水素ガスとの接触効率を考量して、供給する水素ガスの飽和度換算量と、脱気した気体の飽和度の低下量の比を、1〜5:1、より好ましくは1〜2:1のように、水素ガスの量を若干の過剰量とすることもできる。
【0010】
前述のように、水素含有超純水を電子材料のウェット洗浄に用いる場合、通常は溶存水素ガス濃度が0.7mg/リットル程度あれば、十分実用レベルの洗浄効果を得ることができる。しかし、必要に応じて、溶存水素ガス濃度を1.2mg/リットル(飽和度の3/4倍)、あるいは1.4mg/リットル(飽和度の約9/10倍)とすることにより、一層高い洗浄効果を得ることができる。このような溶存水素ガス濃度の水素含有超純水を効率よく得るためには、それに見合うレベル、すなわち飽和度の1/4程度以下、あるいは飽和度の1/10程度以下にまであらかじめ総溶存気体濃度を低減することが好ましい。これによって、溶解すべき量の水素ガスを供給して、供給した水素ガスをほぼ完全に水素含有超純水中の溶存水素ガスとすることができる。
なお、水素含有超純水を電子材料のウェット洗浄に用いるとき、洗浄効果を一層高めるために、水素含有超純水に高純度アンモニア水などを添加することができる。アンモニア水を含有する水素含有超純水を製造する場合には、アンモニア濃度が脱気によって減少することのないよう、超純水の脱気を終えたのち、水素ガス溶解工程の前又は後に添加することが好ましい。
【0011】
図1は、本発明の水素含有超純水の製造方法の一態様の工程系統図である。超純水は、流量計1を経由して脱気膜モジュール2に送られる。脱気膜モジュールは、ガス透過膜を介して超純水と接する気相側が真空ポンプ3により減圧状態に保たれ、超純水中に溶存している気体が脱気される。溶存気体が脱気された超純水は、次いで水素ガス溶解膜モジュール4に送られる。水素ガス溶解膜モジュールにおいては、水素ガス供給器5から供給される水素ガスが気相側に送られ、ガス透過膜を介して超純水に供給される。溶存水素ガス濃度が所定の値に達した超純水には、薬液貯槽6から薬注ポンプ7によりアンモニア水などの薬液を供給し、所定のpH値に調整することができる。水素ガスを溶解し、アルカリ性となった水素含有超純水は、最後に精密ろ過装置8に送られ、MFフィルターなどにより微粒子を除去することができる。
本発明方法においては、さらに計器を利用して脱気及び水素ガスの溶解を制御することも可能である。例えば、脱気膜モジュールの出口、あるいは入口及び出口に、溶存気体測定センサ9、例えば、溶存気体計、溶存窒素計、溶存酸素計などを設置し、超純水中の総気体量、あるいは、溶存窒素量、溶存酸素量を測定して飽和度を求め、信号を真空ポンプに送って超純水の飽和度と所望飽和度とを対比し、脱気量を調整する。脱気量の調整は、例えば、真空ポンプによる真空度を真空度調節弁の開度を調整して行うことができ、あるいは、真空ポンプを複数台使用する場合は、その稼働台数を制御してもよく、さらには、脱気する超純水の供給速度を調整することもできる。水素ガスの供給量は、脱気後の超純水の気体飽和度を溶存気体測定センサ9により測定し、水素ガス溶解膜モジュールから流出する水素含有超純水中の水素ガス濃度を溶存水素測定センサ10により測定し、それぞれ信号を水素ガス供給器に送り、例えば、水素ガス供給路に設けた弁の開度などを調整することにより制御することができる。
【0012】
水中に溶存する気体の濃度は、ヘンリーの法則で普遍的に規定され、温度が一定であるとき一定量の液体に対する気体の溶解量は圧力に比例する。したがって、超純水中の溶存水素ガス濃度を高めるために、従来は単に超純水と接する気相の水素ガス分圧を高めることが行われてきた。バブリング、ラインミキシング、気体透過膜を介した気液接触などによる溶解操作は、いずれも溶解すべき気体の分圧を高め、さらに単位時間あたりの溶解量を増やすために、気液接触面積を増大させる操作といえる。
溶解すべき気体が安全かつ安価なものであれば、その供給量を過剰にして、目的以外の気体を希釈することにより目的の気体の分圧を高めて、溶解量を増やすことができる。しかし、水素ガスの溶解においては、安全確保、高純度ガスの消費量削減の観点から、供給した水素ガスを無駄なく全量超純水に溶解することが求められる。本発明方法によれば、飽和度という指標で対比することにより、原水として用いる超純水からの目標の脱気レベルと、脱気した超純水に供給すべき水素ガスの量を簡単に求め、水素ガスの無駄を省いて高い水素ガス溶解効率で水素含有超純水を製造することができる。
【0013】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例、比較例及び参考例においては、図2に示す試験装置を用いた。本装置は、面積1.4m2のポリプロピレン製のガス透過膜を備えた脱気膜モジュール11及び面積1.4m2のポリプロピレン製のガス透過膜を備えた水素ガス溶解膜モジュール12を有し、脱気膜モジュールは真空ポンプ13に、水素ガス溶解膜モジュールは水素ガス供給器14に接続されている。また、比較試験のために直径50mm、長さ300mmのインラインミキサー15を接続している。なお、試験はすべて温度20℃、超純水の流速1.6リットル/分の条件で行った。
比較例1
超純水を脱気することなく、水素ガス溶解膜モジュールに送り、水素ガス供給器から飽和度に換算して10倍量に相当する水素ガスを、水素ガス溶解膜モジュールに送り込んだ。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量は0.6mg/リットルであり、飽和度に換算すると0.38倍に相当し、水素ガスの溶解効率は4%であった。
実施例1
超純水を脱気膜モジュールに送り、溶存気体の飽和度が0.1倍になるまで脱気したのち水素ガス溶解膜モジュールに送り、飽和度に換算して10倍量に相当する水素ガスを水素ガス溶解膜モジュールに送り込んだ。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量は1.5mg/リットル、飽和度に換算すると0.94倍に相当し、水素ガスの溶解効率は9%であった。
実施例2
水素ガス溶解膜モジュールに送り込む水素ガスを、飽和度に換算して2倍量に相当する量まで減少した外は、実施例1と同じ条件で試験を続けた。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量には変化なく1.5mg/リットル、飽和度に換算すると0.94倍であり、水素ガスの溶解効率は47%に向上した。
実施例3
水素ガス溶解膜モジュールに送り込む水素ガスを、さらに飽和度に換算して0.9倍量に相当する量まで減少し、それ以外は実施例1と同じ条件で試験を続けた。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量は1.4mg/リットル、飽和度に換算すると0.88倍となり、水素ガスの溶解効率は97%まで向上した。
実施例4
超純水の溶存気体の飽和度が0.2倍になるよう脱気膜モジュールで脱気して水素ガス溶解膜モジュールに送り、飽和度に換算して10倍量に相当する水素ガスを水素ガス溶解膜モジュールに送り込んだ。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量は1.4mg/リットル、飽和度に換算すると0.88倍に相当し、水素ガスの溶解効率は9%であった。
実施例5
水素ガス溶解膜モジュールに送り込む水素ガスを、飽和度に換算して0.8倍量に相当する量まで減少し、それ以外は実施例4と同じ条件で試験を続けた。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量は1.2mg/リットル、飽和度に換算すると0.75倍となり、水素ガスの溶解効率は94%に向上した。
実施例6
超純水の溶存気体の飽和度が0.5倍になるよう脱気膜モジュールで脱気して水素ガス溶解膜モジュールに送り、飽和度に換算して10倍量に相当する水素ガスを水素ガス溶解膜モジュールに送り込んだ。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量は1.0mg/リットル、飽和度に換算すると0.63倍に相当し、水素ガスの溶解効率は6%であった。
実施例7
水素ガス溶解膜モジュールに送り込む水素ガスを、飽和度に換算して0.5倍量に相当する量まで減少し、それ以外は実施例6と同じ条件で試験を続けた。水素ガス溶解膜モジュールから流出する処理水中の溶存水素ガスの量は0.8mg/リットル、飽和度に換算すると0.50倍となり、水素ガスの溶解効率は100%にまで達した。
比較例2
超純水を脱気することなく、インラインミキサーに送り、水素ガス供給器から飽和度に換算して10倍量に相当する水素ガスを、インラインミキサーに送り込んだ。インラインミキサーから流出する処理水中の溶存水素ガスの量は0.5mg/リットルであり、飽和度に換算すると0.31倍に相当し、水素ガスの溶解効率は3%であった。
実施例8
超純水を脱気膜モジュールに送り、溶存気体の飽和度が0.1倍になるまで脱気したのちインラインミキサーに送り、飽和度に換算して10倍量に相当する水素ガスをインラインミキサーに送り込んだ。インラインミキサーから流出する処理水中の溶存水素ガスの量は0.8mg/リットル、飽和度に換算すると0.50倍に相当し、水素ガスの溶解効率は5%であった。
実施例9
インラインミキサーに送り込む水素ガスを、飽和度に換算して1.5倍量に相当する量まで減少した外は、実施例8と同じ条件で試験を続けた。インラインミキサーから流出する処理水中の溶存水素ガスの量は0.7mg/リットル、飽和度に換算すると0.44倍であり、水素ガスの溶解効率は29%であった。
実施例1〜9及び比較例1〜2の結果を、まとめて第1表に示す。
【0014】
【表1】

Figure 0003765354
【0015】
第1表の結果から、原水の脱気をしない比較例1〜2の場合には、大量の水素ガスを注入しても処理水中の溶存水素の濃度は低く、水素ガスの溶解効率も低い。これに対して、原水の脱気をして溶存気体の飽和度を0.1〜0.5倍とした実施例1〜9においては、処理水中の水素ガス濃度を0.7mg/リットル以上とすることができ、特に、水素ガス溶解装置として気体透過膜モジュールを用い、水素ガスの注入量を脱気した気体の飽和度の低下量に相当する量とした実施例3、実施例5及び実施例7においては、水素ガスの溶解効率は94〜100%となり、注入した水素ガスがほぼ完全に超純水に溶解していることが分かる。
【0016】
【発明の効果】
本発明方法により、溶解すべき水素ガスの飽和度換算量に相当する量の総溶存気体を超純水から脱気したのち、水素ガスを供給して溶解すれば、水素ガスを無駄なく溶解してその使用量を削減することができ、電子材料のウェット洗浄において極めて高い洗浄効果を有する飽和に近い溶存水素ガス濃度の水素含有超純水を、高い水素ガス溶解効率で容易に得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明の水素含有超純水の製造方法の一態様の工程系統図である。
【図2】図2は、実施例において用いた試験装置の系統図である。
【符号の説明】
1 流量計
2 脱気膜モジュール
3 真空ポンプ
4 水素ガス溶解膜モジュール
5 水素ガス供給器
6 薬液貯槽
7 薬注ポンプ
8 精密ろ過装置
9 溶存気体測定センサ
10 溶存水素測定センサ
11 脱気膜モジュール
12 水素ガス溶解膜モジュール
13 真空ポンプ
14 水素ガス供給器
15 インラインミキサー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrogen-containing ultrapure water. More specifically, the present invention produces hydrogen-containing ultrapure water used for wet cleaning of electronic materials such as semiconductor silicon substrates and liquid crystal glass substrates contaminated with fine particles without waste of hydrogen gas and with high efficiency. The present invention relates to a method for producing hydrogen-containing ultrapure water.
[0002]
[Prior art]
Conventionally, cleaning of a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, etc., mainly includes a mixed solution of hydrogen peroxide solution and sulfuric acid, a mixed solution of hydrogen peroxide solution, hydrochloric acid and water, hydrogen peroxide solution, ammonia solution and water. It has been performed by a so-called RCA cleaning method in which a concentrated chemical solution based on hydrogen peroxide such as a mixed solution is used for cleaning at a high temperature and then rinsed with ultrapure water. The RCA cleaning method is an effective method for removing the metal content on the semiconductor surface, but at the same time, the fine particles adhering to the semiconductor surface are also removed. However, with such a method, the cost of the chemical solution is high because a large amount of hydrogen peroxide solution, high-concentration acid, alkali, etc. are used, and furthermore, the cost of rinsing ultrapure water, the cost of waste liquid treatment, and chemical vapor are exhausted However, a large cost is required, such as an air conditioning cost for newly preparing clean air. In order to reduce these costs and to further reduce the environmental burden such as the mass use of water, the mass disposal of drugs, and the release of exhaust gas, the wet cleaning process has been reviewed in recent years.
The inventors of the present invention, among the impurities to be removed in the wet cleaning process, the fine particles, which are considered to have a particularly large influence on the performance of electronic components, are extremely effective with ultrapure water in which hydrogen gas is dissolved. As a method of finding a high cleaning effect at room temperature with a low concentration of chemicals, an electronic material cleaning method using hydrogen-containing ultrapure water has been developed. Along with this, in order to operate hydrogen-containing ultrapure water safely and freely, ultrapure water with the desired dissolved hydrogen gas concentration can be reliably produced by increasing the dissolution efficiency and using hydrogen gas without waste. It has been required to establish a method for producing hydrogen-containing ultrapure water.
[0003]
[Problems to be solved by the invention]
The present invention produces hydrogen-containing ultrapure water used for wet cleaning of electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals contaminated with fine particles without waste of hydrogen gas and with high hydrogen gas dissolution efficiency. The object of the present invention is to provide a method for producing hydrogen-containing ultrapure water that can be used.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have degassed ultrapure water to reduce the saturation of dissolved gas, and then supplied hydrogen gas to hydrogen into ultrapure water. It has been found that by dissolving the gas, hydrogen gas can be dissolved in ultrapure water with high efficiency without waste, and the present invention has been completed based on this finding.
That is, the present invention
(1) A hydrogen-containing ultrapure solution that degasses ultrapure water containing one or more dissolved gases to lower the saturation of the total dissolved gas and then supplies hydrogen gas to dissolve the hydrogen gas in ultrapure water In the water production method, the amount of reduction of the total dissolved gas at the time of degassing is converted into the saturation , and the saturation is an amount commensurate with the saturation of the hydrogen gas to be dissolved. the method of manufacturing a hydrogen-containing ultrapure water, wherein the amount is substantially equivalent amount of a low reduction amount of saturation of the total dissolved gas degassed,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, after ultrapure water is degassed to lower the saturation of dissolved gas, hydrogen gas is supplied to dissolve hydrogen gas in ultrapure water. In the present invention, the gas saturation is a value obtained by dividing the amount of gas dissolved in water by the amount of gas dissolved at a pressure of 10 5 Pa and a temperature of 20 ° C. For example, when water is in contact with nitrogen gas at a pressure of 10 5 Pa and a temperature of 20 ° C., the amount of nitrogen gas dissolved in water is 19.2 mg / liter. The saturation of water, which is only nitrogen gas and its dissolution amount is 19.2 mg / liter, is 1.0 times, and the gas dissolved in water is only nitrogen gas, and its dissolution amount is 9 The saturation of water, which is 0.6 mg / liter, is 0.5 times. In addition, water in contact with air at a pressure of 10 5 Pa and a temperature of 20 ° C. is in a state of 1.0 times saturation by dissolving nitrogen gas 15.4 mg / liter and oxygen gas 8.8 mg / liter. Therefore, the degree of saturation of water in which the amount of dissolved gas is 1.5 mg / liter of nitrogen gas and 0.9 mg / liter of oxygen gas by degassing is 0.1 times. Furthermore, when water is in contact with hydrogen gas at a pressure of 10 5 Pa and a temperature of 20 ° C., the amount of hydrogen gas dissolved in water is 1.6 mg / liter, so that 0.8 mg / liter of hydrogen gas is used. The degree of saturation of the dissolved water hydrogen gas is 0.5 times.
[0006]
In the method of the present invention, after ultrapure water is degassed to lower the saturation of dissolved gas, hydrogen gas is supplied to dissolve hydrogen gas in ultrapure water. In order to enhance the effect as functional water for cleaning, the higher the dissolved hydrogen gas concentration, the more desirable, and the closer to the saturated concentration of about 1.6 mg / liter at normal temperature and atmospheric pressure, the higher the cleaning effect. However, even if the dissolved hydrogen gas concentration is not increased to near saturation, if the concentration is above a certain level, the functional water is substantially effective. It has already been confirmed by the present inventors that the concentration is about 0.7 mg / liter, that is, about 1/2 times the saturation of dissolved hydrogen gas at normal temperature and atmospheric pressure.
In the method of the present invention, the degree of deaeration of ultrapure water is not particularly limited, but hydrogen gas to be dissolved in order to efficiently prepare hydrogen-containing ultrapure water having a dissolved hydrogen gas concentration of 0.7 mg / liter or more. It is preferable to deaerate the dissolved gas in an amount corresponding to the degree of saturation in order to make a space in the gas dissolution capacity in the raw water. For example, when hydrogen gas having a saturation level of 1/2 or more is dissolved, the dissolved gas corresponding to 1/2 or more of the saturation level is preferably removed in advance by degassing. By making the degassing amount of the dissolved gas of raw water converted into saturation and the amount of hydrogen gas to be dissolved converted into saturation, hydrogen gas can be easily dissolved without waste.
[0007]
In ultrapure water that is in equilibrium with the atmosphere without controlling the dissolved gas, about 8 mg / liter of oxygen gas, about 16 mg / liter of nitrogen gas, and a small amount of carbon dioxide are dissolved at room temperature. When this ultrapure water is used as raw water, it is saturated if the dissolved oxygen gas concentration is reduced to about 4 mg / liter or less and the dissolved nitrogen gas concentration is reduced to about 8 mg / liter or less, that is, about 1/2 or less of the saturation. Hydrogen gas up to about 1/2 can be easily dissolved, and hydrogen-containing ultrapure water having a dissolved hydrogen gas concentration of about 0.8 mg / liter can be obtained.
In the method of the present invention, the ultrapure water used as the raw water does not necessarily have to be in equilibrium with the atmosphere, and there are no restrictions on the type of dissolved gas, the concentration ratio, and the like. For example, in the case of raw water in which dissolved oxygen gas is first removed by nitrogen gas degassing and the concentration of dissolved nitrogen gas is increased only by nitrogen gas, the dissolved nitrogen gas is degassed by an amount corresponding to the required saturation. If you do, you can achieve your purpose. In short, the amount of reduction of the total dissolved gas may be converted into the degree of saturation, and it may be an amount that is more than the degree of saturation of the hydrogen gas to be dissolved.
As the deaeration process for the purpose of the present invention, so-called deoxygenation process such as catalyst deaeration and nitrogen gas deaeration is unsuitable, and vacuum deaeration and decompression membrane deaeration that can remove gases other than oxygen gas are also possible. Etc. are preferable. Among these, membrane deaeration with a high-purity deaeration membrane module is capable of degassing a gas dissolved in a very small amount without compromising the purity of ultrapure water, relatively close to the point of use. It can be preferably used.
[0008]
In the method of the present invention, hydrogen gas is supplied to ultrapure water that has been degassed to lower the saturation of dissolved gas, thereby dissolving the hydrogen gas. There is no restriction | limiting in particular in the method of melt | dissolving hydrogen gas, For example, arbitrary contact methods, such as bubbling, line mixing, use of a gas permeable membrane module, can be utilized. Among these, the amount of dissolved hydrogen gas per unit time and unit space is large, the purity of water can be maintained at a level that can be used for wet cleaning of electronic materials, and the dissolution efficiency of hydrogen gas can be easily increased. A pure gas permeable membrane module is preferred.
In the method of the present invention, the gas permeable membrane used for degassing ultrapure water and supplying hydrogen gas is not particularly limited. For example, polypropylene, polydimethylsiloxane, polycarbonate-polydimethylsiloxane block copolymer, polyvinylphenol-poly Examples thereof include polymer films such as dimethylsiloxane-polysulfone block copolymer, poly (4-methylpentene-1), poly (2,6-dimethylphenylene oxide), and polytetrafluoroethylene. There is no particular limitation on the method of supplying hydrogen gas. For example, separation from synthesis gas obtained by gasification reaction of heavy oil, catalytic cracking or steam reforming of methanol, electrolysis of water, etc. A pure hydrogen gas cylinder or the like can also be used. By passing the degassed ultrapure water to the liquid side of the gas permeable membrane and supplying hydrogen gas to the gas side, the hydrogen gas moves into the ultrapure water through the gas permeable membrane and dissolves.
[0009]
In the method of the present invention, the amount of hydrogen gas to be supplied is not particularly limited, but is preferably an amount substantially corresponding to a decrease in the degree of saturation of the gas degassed from ultrapure water in equilibrium with the atmosphere. For example, when 80% of nitrogen gas and oxygen gas dissolved in ultrapure water in equilibrium with the atmosphere is degassed to increase the total dissolved gas saturation of the raw water to 0.2 times, hydrogen in the raw water Since the free capacity of the gas dissolution capacity for gas dissolution is 0.8 times the saturation, 1.28 mg / liter of hydrogen corresponding to 0.8 times the saturation of hydrogen gas 1.6 mg / liter It is preferable to supply gas. By supplying hydrogen gas in an amount approximately corresponding to the amount of decrease in the degree of saturation of the degassed gas, almost all of the supplied hydrogen gas is dissolved in ultrapure water and released as undissolved in the exhaust gas. The amount of gas can be suppressed and the hydrogen gas dissolution efficiency can be increased. However, the amount of saturation of hydrogen gas to be supplied and the amount of decrease in the degree of saturation of the degassed gas do not have to be strictly 1: 1, and the amount of hydrogen gas dissolved in ultrapure water is desired. As long as it can be made into an amount, it may be 1: 1 or less. Also, considering the contact efficiency between ultrapure water and the supplied hydrogen gas in relation to the flow rate of ultrapure water, etc., the amount of saturation of the supplied hydrogen gas is reduced, and the saturation of the degassed gas is reduced. The amount of hydrogen gas may be slightly excessive, such that the ratio of the amounts is 1-5: 1, more preferably 1-2: 1.
[0010]
As described above, when hydrogen-containing ultrapure water is used for wet cleaning of an electronic material, a practically practical cleaning effect can be obtained if the dissolved hydrogen gas concentration is usually about 0.7 mg / liter. However, if necessary, the dissolved hydrogen gas concentration is increased to 1.2 mg / liter (3/4 times the saturation) or 1.4 mg / liter (about 9/10 times the saturation). A cleaning effect can be obtained. In order to efficiently obtain such hydrogen-containing ultrapure water having a dissolved hydrogen gas concentration, the total dissolved gas is previously reduced to a level commensurate with it, that is, about 1/4 or less of saturation or 1/10 or less of saturation. It is preferable to reduce the concentration. As a result, an amount of hydrogen gas to be dissolved can be supplied, and the supplied hydrogen gas can be almost completely converted to dissolved hydrogen gas in hydrogen-containing ultrapure water.
Note that when hydrogen-containing ultrapure water is used for wet cleaning of electronic materials, high-purity ammonia water or the like can be added to the hydrogen-containing ultrapure water in order to further enhance the cleaning effect. When producing hydrogen-containing ultrapure water containing ammonia water, add it before or after the hydrogen gas dissolution step after degassing the ultrapure water so that the ammonia concentration does not decrease by degassing. It is preferable to do.
[0011]
FIG. 1 is a process flow diagram of one embodiment of the method for producing hydrogen-containing ultrapure water of the present invention. The ultrapure water is sent to the deaeration membrane module 2 via the flow meter 1. In the degassing membrane module, the gas phase in contact with the ultrapure water through the gas permeable membrane is maintained in a reduced pressure state by the vacuum pump 3, and the gas dissolved in the ultrapure water is degassed. The ultrapure water from which the dissolved gas has been degassed is then sent to the hydrogen gas dissolving membrane module 4. In the hydrogen gas dissolving membrane module, the hydrogen gas supplied from the hydrogen gas supplier 5 is sent to the gas phase side and supplied to the ultrapure water through the gas permeable membrane. The ultrapure water whose dissolved hydrogen gas concentration has reached a predetermined value can be adjusted to a predetermined pH value by supplying a chemical solution such as ammonia water from the chemical solution storage tank 6 by means of a chemical injection pump 7. The hydrogen-containing ultrapure water that has dissolved the hydrogen gas and has become alkaline is finally sent to the microfiltration device 8, and fine particles can be removed by an MF filter or the like.
In the method of the present invention, it is also possible to control deaeration and dissolution of hydrogen gas using a meter. For example, a dissolved gas measurement sensor 9, for example, a dissolved gas meter, a dissolved nitrogen meter, a dissolved oxygen meter, or the like is installed at the outlet of the degassing membrane module, or at the inlet and outlet, and the total amount of gas in ultrapure water, or The amount of dissolved nitrogen and the amount of dissolved oxygen are measured to determine the degree of saturation, and a signal is sent to the vacuum pump to compare the degree of saturation of ultrapure water with the desired degree of saturation and adjust the amount of deaeration. The amount of deaeration can be adjusted, for example, by adjusting the degree of vacuum by the vacuum pump by adjusting the degree of opening of the vacuum control valve, or when using multiple vacuum pumps, control the number of operating pumps. In addition, the supply rate of ultrapure water to be deaerated can be adjusted. The amount of hydrogen gas supplied is determined by measuring the gas saturation of ultrapure water after degassing with the dissolved gas measurement sensor 9 and measuring the hydrogen gas concentration in the hydrogen-containing ultrapure water flowing out of the hydrogen gas dissolving membrane module. It can be controlled by measuring with the sensor 10 and sending a signal to the hydrogen gas supply unit, for example, adjusting the opening of a valve provided in the hydrogen gas supply path.
[0012]
The concentration of gas dissolved in water is universally defined by Henry's law. When the temperature is constant, the amount of gas dissolved in a certain amount of liquid is proportional to the pressure. Therefore, in order to increase the concentration of dissolved hydrogen gas in ultrapure water, conventionally, the partial pressure of hydrogen gas in the gas phase in contact with ultrapure water has been increased. All of the dissolution operations such as bubbling, line mixing, and gas-liquid contact via a gas permeable membrane increase the gas-liquid contact area in order to increase the partial pressure of the gas to be dissolved and increase the amount of dissolution per unit time. It can be said that this is an operation.
If the gas to be dissolved is safe and inexpensive, the amount of dissolution can be increased by increasing the supply pressure and diluting the gas other than the target to increase the partial pressure of the target gas. However, in dissolving hydrogen gas, from the viewpoint of ensuring safety and reducing the consumption of high-purity gas, it is required to dissolve the supplied hydrogen gas completely in ultrapure water without waste. According to the method of the present invention, the target degassing level from the ultrapure water used as the raw water and the amount of hydrogen gas to be supplied to the degassed ultrapure water can be easily obtained by comparing with the index of saturation. In addition, it is possible to produce hydrogen-containing ultrapure water with high hydrogen gas dissolution efficiency without waste of hydrogen gas.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples, comparative examples, and reference examples, the test apparatus shown in FIG. 2 was used. The apparatus includes a hydrogen gas dissolving membrane module 12 with a polypropylene gas-permeable membrane of the degassing membrane modules 11 and an area 1.4 m 2 with a polypropylene gas permeable membrane area 1.4 m 2, The degassing membrane module is connected to the vacuum pump 13, and the hydrogen gas dissolving membrane module is connected to the hydrogen gas supplier 14. For comparison test, an in-line mixer 15 having a diameter of 50 mm and a length of 300 mm is connected. All tests were conducted under the conditions of a temperature of 20 ° C. and a flow rate of ultrapure water of 1.6 liters / minute.
Comparative Example 1
Without degassing the ultrapure water, it was sent to the hydrogen gas-dissolved membrane module, and hydrogen gas equivalent to 10 times the amount converted into saturation was sent from the hydrogen gas supply device to the hydrogen gas-dissolved membrane module. The amount of dissolved hydrogen gas in the treated water flowing out from the hydrogen gas dissolving membrane module was 0.6 mg / liter, corresponding to 0.38 times in terms of saturation, and the hydrogen gas dissolution efficiency was 4%.
Example 1
Ultrapure water is sent to the degassing membrane module, degassed until the dissolved gas saturation reaches 0.1 times, then sent to the hydrogen gas dissolving membrane module, and hydrogen gas equivalent to 10 times the amount converted to saturation. Was sent to the hydrogen gas-dissolving membrane module. The amount of dissolved hydrogen gas in the treated water flowing out of the hydrogen gas dissolving membrane module was 1.5 mg / liter, corresponding to 0.94 times in terms of saturation, and the hydrogen gas dissolution efficiency was 9%.
Example 2
The test was continued under the same conditions as in Example 1 except that the hydrogen gas fed into the hydrogen gas-dissolving membrane module was reduced to an amount equivalent to twice the amount in terms of saturation. The amount of dissolved hydrogen gas in the treated water flowing out from the hydrogen gas-dissolving membrane module remained unchanged at 1.5 mg / liter and 0.94 times when converted to saturation, and the hydrogen gas dissolution efficiency was improved to 47%.
Example 3
The test was continued under the same conditions as in Example 1 except that the hydrogen gas fed into the hydrogen gas-dissolved membrane module was further reduced to an amount corresponding to 0.9 times the amount of saturation. The amount of dissolved hydrogen gas in the treated water flowing out from the hydrogen gas-dissolving membrane module was 1.4 mg / liter, 0.88 times when converted to saturation, and the hydrogen gas dissolution efficiency was improved to 97%.
Example 4
The degassing membrane module deaerates the purity of the dissolved gas of ultrapure water by 0.2 times and sends it to the hydrogen gas dissolution membrane module. It sent to the gas dissolution membrane module. The amount of dissolved hydrogen gas in the treated water flowing out from the hydrogen gas-dissolving membrane module was 1.4 mg / liter, corresponding to 0.88 times in terms of saturation, and the hydrogen gas dissolution efficiency was 9%.
Example 5
The test was continued under the same conditions as in Example 4 except that the hydrogen gas fed into the hydrogen gas-dissolving membrane module was reduced to an amount corresponding to 0.8 times the amount in terms of saturation. The amount of dissolved hydrogen gas in the treated water flowing out from the hydrogen gas-dissolving membrane module was 1.2 mg / liter, which was 0.75 times when converted to saturation, and the dissolution efficiency of hydrogen gas was improved to 94%.
Example 6
Degassed with a degassing membrane module so that the saturation level of dissolved gas of ultrapure water is 0.5 times and sent to the hydrogen gas dissolution membrane module, and hydrogen gas equivalent to 10 times the amount is converted into hydrogen. It sent to the gas dissolution membrane module. The amount of dissolved hydrogen gas in the treated water flowing out from the hydrogen gas dissolving membrane module was 1.0 mg / liter, corresponding to 0.63 times in terms of saturation, and the hydrogen gas dissolution efficiency was 6%.
Example 7
The test was continued under the same conditions as in Example 6 except that the hydrogen gas fed into the hydrogen gas-dissolved membrane module was reduced to an amount equivalent to 0.5 times the amount in terms of saturation. The amount of dissolved hydrogen gas in the treated water flowing out from the hydrogen gas-dissolving membrane module was 0.8 mg / liter, which was 0.50 when converted to saturation, and the dissolution efficiency of hydrogen gas reached 100%.
Comparative Example 2
Without degassing the ultrapure water, it was sent to an in-line mixer, and hydrogen gas corresponding to 10 times the amount converted into saturation was sent from the hydrogen gas supply device to the in-line mixer. The amount of dissolved hydrogen gas in the treated water flowing out from the in-line mixer was 0.5 mg / liter, corresponding to 0.31 in terms of saturation, and the hydrogen gas dissolution efficiency was 3%.
Example 8
Ultrapure water is sent to the degassing membrane module, degassed until the saturation level of dissolved gas reaches 0.1 times, then sent to the inline mixer, and hydrogen gas equivalent to 10 times the amount is converted into the saturation level. Sent to. The amount of dissolved hydrogen gas in the treated water flowing out from the in-line mixer was 0.8 mg / liter, corresponding to 0.50 times in terms of saturation, and the hydrogen gas dissolution efficiency was 5%.
Example 9
The test was continued under the same conditions as in Example 8 except that the hydrogen gas fed into the in-line mixer was reduced to an amount equivalent to 1.5 times the amount in terms of saturation. The amount of dissolved hydrogen gas in the treated water flowing out of the in-line mixer was 0.7 mg / liter, 0.44 times in terms of saturation, and the dissolution efficiency of hydrogen gas was 29%.
The results of Examples 1 to 9 and Comparative Examples 1 and 2 are collectively shown in Table 1.
[0014]
[Table 1]
Figure 0003765354
[0015]
From the results of Table 1, in the case of Comparative Examples 1 and 2 in which the raw water is not degassed, the concentration of dissolved hydrogen in the treated water is low and the hydrogen gas dissolution efficiency is low even when a large amount of hydrogen gas is injected. On the other hand, in Examples 1 to 9 in which the degree of saturation of the dissolved gas was 0.1 to 0.5 times by degassing the raw water, the hydrogen gas concentration in the treated water was set to 0.7 mg / liter or more. In particular, the gas permeable membrane module was used as the hydrogen gas dissolving apparatus, and the amount of hydrogen gas injected was set to an amount corresponding to the amount of decrease in the degree of saturation of the degassed gas. In Example 7, the dissolution efficiency of hydrogen gas is 94 to 100%, and it can be seen that the injected hydrogen gas is almost completely dissolved in ultrapure water.
[0016]
【The invention's effect】
According to the method of the present invention, after degassing the total dissolved gas in an amount equivalent to the saturation conversion amount of hydrogen gas to be dissolved from ultrapure water, if hydrogen gas is supplied and dissolved, the hydrogen gas is dissolved without waste. Therefore, it is possible to easily obtain hydrogen-containing ultrapure water with a dissolved hydrogen gas concentration close to saturation having a very high cleaning effect in wet cleaning of electronic materials with high hydrogen gas dissolution efficiency. .
[Brief description of the drawings]
FIG. 1 is a process flow diagram of one embodiment of the method for producing hydrogen-containing ultrapure water of the present invention.
FIG. 2 is a system diagram of a test apparatus used in Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flowmeter 2 Deaeration membrane module 3 Vacuum pump 4 Hydrogen gas dissolution membrane module 5 Hydrogen gas supply device 6 Chemical liquid storage tank 7 Chemical injection pump 8 Microfiltration device 9 Dissolved gas measurement sensor 10 Dissolved hydrogen measurement sensor 11 Deaeration membrane module 12 Hydrogen Gas-dissolving membrane module 13 Vacuum pump 14 Hydrogen gas supplier 15 In-line mixer

Claims (1)

1種以上の溶存気体を含む超純水を脱気して溶存気体の飽和度を低下させたのち、水素ガスを供給して超純水に水素ガスを溶解する水素含有超純水の製造方法において、脱気の際の総溶存気体の低減量を飽和度に換算して、該飽和度が溶解すべき水素ガスの飽和度に見合う量であり、水素ガスの飽和度換算供給量が脱気した総溶存気体の飽和度の低量にほぼ相当する量であることを特徴とする水素含有超純水の製造方法。Production of hydrogen-containing ultrapure water in which ultrapure water containing one or more dissolved gases is degassed to lower the saturation level of the total dissolved gas, and then hydrogen gas is supplied to dissolve hydrogen gas in ultrapure water In the method, the amount of reduction of the total dissolved gas at the time of degassing is converted into the saturation , and the saturation is an amount commensurate with the saturation of the hydrogen gas to be dissolved. the method for producing a hydrogen-containing ultrapure water, which is a substantially equivalent amount of a low reduction amount of saturation of the total dissolved gas was air.
JP25284797A 1997-09-02 1997-09-02 Method for producing hydrogen-containing ultrapure water Expired - Lifetime JP3765354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25284797A JP3765354B2 (en) 1997-09-02 1997-09-02 Method for producing hydrogen-containing ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25284797A JP3765354B2 (en) 1997-09-02 1997-09-02 Method for producing hydrogen-containing ultrapure water

Publications (2)

Publication Number Publication Date
JPH1177023A JPH1177023A (en) 1999-03-23
JP3765354B2 true JP3765354B2 (en) 2006-04-12

Family

ID=17243016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25284797A Expired - Lifetime JP3765354B2 (en) 1997-09-02 1997-09-02 Method for producing hydrogen-containing ultrapure water

Country Status (1)

Country Link
JP (1) JP3765354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348496A (en) * 2009-03-31 2012-02-08 栗田工业株式会社 Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
JP2015177912A (en) * 2014-03-19 2015-10-08 株式会社日本トリム Manufacturing apparatus of dialysate
WO2016063480A1 (en) * 2014-10-20 2016-04-28 株式会社日本トリム Peritoneal dialysis fluid production apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506909B2 (en) * 1999-02-17 2010-07-21 栗田工業株式会社 Planarization processing method of silicon substrate surface oxide film
JP2000350903A (en) * 1999-06-11 2000-12-19 Fuji Photo Film Co Ltd Deaeration method
TWI280891B (en) * 2000-01-12 2007-05-11 Sekisui Chemical Co Ltd Ozonization apparatus, photoresist remove apparatus, and substrate rinsing apparatus
JP2001330969A (en) * 2000-05-23 2001-11-30 Sekisui Chem Co Ltd Apparatus for removing photoresist
JP4637329B2 (en) * 2000-07-06 2011-02-23 株式会社ササクラ Hydrogen dissolver
JP2003334433A (en) 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2006071340A (en) * 2004-08-31 2006-03-16 Kurita Water Ind Ltd Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP5320665B2 (en) * 2006-09-29 2013-10-23 栗田工業株式会社 Ultrapure water production apparatus and method
JP4557262B2 (en) * 2006-11-07 2010-10-06 佐藤工業株式会社 Gas dissolved water production equipment
JP5292136B2 (en) * 2009-03-16 2013-09-18 オルガノ株式会社 Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
JP5617081B2 (en) * 2009-12-10 2014-11-05 株式会社コアテクノロジー Method for producing saturated gas-containing nanobubble water and apparatus for producing saturated gas-containing nanobubble water
JP5740549B2 (en) * 2010-05-26 2015-06-24 株式会社コアテクノロジー Production method of nanobubble water containing saturated gas and production device of nanobubble water containing saturated gas
JP5585076B2 (en) * 2009-12-24 2014-09-10 栗田工業株式会社 Cleaning method
US8668763B2 (en) * 2011-03-25 2014-03-11 Idex Health & Science Llc Apparatus for pervaporation control in liquid degassing systems
JP5999222B2 (en) * 2015-05-29 2016-09-28 栗田工業株式会社 Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP6232086B2 (en) * 2016-01-29 2017-11-15 野村マイクロ・サイエンス株式会社 Functional water production apparatus and functional water production method
JP6350706B1 (en) * 2017-03-30 2018-07-04 栗田工業株式会社 Water quality adjustment water production equipment
CN109999681B (en) * 2019-04-17 2021-09-24 山东世博金都药业有限公司 Small-molecule high-hydrogen bubble water and preparation method thereof
JP7387320B2 (en) * 2019-07-29 2023-11-28 オルガノ株式会社 Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348496A (en) * 2009-03-31 2012-02-08 栗田工业株式会社 Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
JP2015177912A (en) * 2014-03-19 2015-10-08 株式会社日本トリム Manufacturing apparatus of dialysate
WO2016063480A1 (en) * 2014-10-20 2016-04-28 株式会社日本トリム Peritoneal dialysis fluid production apparatus
JP2016077675A (en) * 2014-10-20 2016-05-16 株式会社日本トリム Peritoneal dialysis fluid manufacturing device

Also Published As

Publication number Publication date
JPH1177023A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
US8999069B2 (en) Method for producing cleaning water for an electronic material
US9129797B2 (en) Cleaning method
JP5251184B2 (en) Gas dissolved water supply system
JP4756327B2 (en) Nitrogen gas dissolved water production method
WO2010113863A1 (en) Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
TW201813715A (en) Dilute chemical solution-producing apparatus and dilute chemical solution-producing method
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
JPH11138181A (en) Ozone-containing ultrapure water feeder
JP4151088B2 (en) Hydrogen-containing ultrapure water supply device
JP2865452B2 (en) Removal device for dissolved gas in raw water
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
JPH11138182A (en) Ozonized ultrapure water feeder
JP4587111B2 (en) Ozone dissolved water supply device
JP4090361B2 (en) Method and apparatus for producing ozone-containing ultrapure water
JP2000283939A (en) Water quality monitoring system, water quality monitoring method, and demineralizer
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP2010216943A (en) Method and device for measuring concentration of dissolved nitrogen
JP5552792B2 (en) Gas dissolved water production apparatus and production method
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP4112966B2 (en) Pure water production apparatus and pure water production method
JP4038940B2 (en) Ozone-dissolved water production equipment
JPH1119663A (en) Removing method for organic matter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

EXPY Cancellation because of completion of term