JP7387320B2 - Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system - Google Patents

Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system Download PDF

Info

Publication number
JP7387320B2
JP7387320B2 JP2019138903A JP2019138903A JP7387320B2 JP 7387320 B2 JP7387320 B2 JP 7387320B2 JP 2019138903 A JP2019138903 A JP 2019138903A JP 2019138903 A JP2019138903 A JP 2019138903A JP 7387320 B2 JP7387320 B2 JP 7387320B2
Authority
JP
Japan
Prior art keywords
water
supply system
water supply
cleaning
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019138903A
Other languages
Japanese (ja)
Other versions
JP2021020172A (en
Inventor
望 高取
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2019138903A priority Critical patent/JP7387320B2/en
Publication of JP2021020172A publication Critical patent/JP2021020172A/en
Application granted granted Critical
Publication of JP7387320B2 publication Critical patent/JP7387320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

本発明は超純水供給システム又はガス溶解水供給システムの製造方法に関し、また、超純水供給システム又はガス溶解水供給システムの洗浄方法に関する。 The present invention relates to a method for manufacturing an ultrapure water supply system or a gas dissolved water supply system, and also to a method for cleaning an ultrapure water supply system or a gas dissolved water supply system.

超純水は、一般に、工業用水、市水、井水等の原水を、必要に応じて前処理システムで処理した後、一次純水システムで処理して純水(一次純水)を得、それを二次純水システム(サブシステム)で処理することにより製造する。なお、超純水は、上記のように、一般的には一次純水システムに続いて二次純水システムを設けた超純水供給システムにより製造される。超純水は、半導体基板のような極めて清浄な表面を得ることが求められる電子部品等の洗浄用水等として用いられる。 Ultrapure water is generally obtained by treating raw water such as industrial water, city water, well water, etc. with a pretreatment system as necessary, and then treating it with a primary pure water system to obtain pure water (primary pure water). It is manufactured by treating it with a secondary pure water system (subsystem). Note that, as described above, ultrapure water is generally produced by an ultrapure water supply system that includes a primary pure water system followed by a secondary pure water system. Ultrapure water is used as water for cleaning electronic components and the like that require extremely clean surfaces, such as semiconductor substrates.

一方で、純水若しくは超純水に所望のガス(炭酸ガスやオゾンや水素等)を溶解した水をガス溶解水(機能水とも)と呼ぶ。例えば、炭酸溶解水は炭酸が溶け込んでいることで比抵抗値が低下し静電気の発生を抑制することができ、半導体ウエハ洗浄において洗浄水やリンス水に使用される。 On the other hand, water obtained by dissolving a desired gas (carbon dioxide, ozone, hydrogen, etc.) in pure water or ultrapure water is called gas-dissolved water (also called functional water). For example, carbonic acid-dissolved water is used as cleaning water or rinsing water in semiconductor wafer cleaning because it has carbonic acid dissolved in it, which lowers the resistivity value and can suppress the generation of static electricity.

新規に建設した超純水供給システムの運転立ち上げ時、あるいは既存の超純水供給システムの長期間休止後に、超純水供給システムを洗浄することが知られている。特許文献1には、超純水供給システム内にオゾンを供給して殺菌洗浄した後、システム内にオゾンが残留している状態で塩基性薬品を供給することにより、殺菌洗浄に連続して微粒子除去洗浄を行う、超純水供給システムの洗浄方法が記載される。特許文献2には、超純水供給システムの超純水接触面に付着した微粒子を除去する洗浄方法において、微細気泡を共存させた塩基性溶液で前記超純水供給システムの少なくとも一部を洗浄する、超純水供給システムの洗浄方法が開示される。 It is known that an ultrapure water supply system is cleaned when a newly constructed ultrapure water supply system is put into operation or after an existing ultrapure water supply system has been stopped for a long period of time. Patent Document 1 discloses that after ozone is supplied into an ultrapure water supply system for sterilization cleaning, a basic chemical is supplied while ozone remains in the system, and fine particles are removed continuously from the sterilization cleaning. A method of cleaning an ultrapure water supply system that performs removal cleaning is described. Patent Document 2 discloses a cleaning method for removing fine particles adhering to an ultrapure water contact surface of an ultrapure water supply system, in which at least a portion of the ultrapure water supply system is cleaned with a basic solution containing microbubbles. A method of cleaning an ultrapure water supply system is disclosed.

特開2008-221144号公報Japanese Patent Application Publication No. 2008-221144 特開2002-151459号公報Japanese Patent Application Publication No. 2002-151459

既存の超純水供給システム又はガス溶解水供給システムを改造することがある。特には、水処理が施された水(処理水)を貯留する処理水槽として用いられていた水槽を、超純水又はガス溶解水供給システムの原水槽に転用したい場合がある。このような場合、その水槽がバイオフィルム等の有機物で汚染されていると、改造後に当該システムを再稼働させた後に、当該システムが汚染され、例えばシステム内の膜が詰まる可能性がある。 Existing ultrapure water supply systems or gas dissolved water supply systems may be modified. In particular, there are cases where it is desired to convert a water tank used as a treated water tank for storing treated water (treated water) into a raw water tank for an ultrapure water or gas-dissolved water supply system. In such a case, if the aquarium is contaminated with organic matter such as biofilm, the system may become contaminated and, for example, the membrane within the system may become clogged after the system is restarted after modification.

しかし、超純水供給システムもしくはガス溶解水供給システムの改造については、確立された技術が無い。 However, there is no established technology for modifying ultrapure water supply systems or gas-dissolved water supply systems.

本発明の目的は、水処理装置の処理水槽として用いられた水槽を、超純水又はガス溶解水供給システムの原水槽に転用する場合に、当該システム再稼働後のバイオフィルムなどの有機物汚染による影響を抑制することのできる、超純水又はガス溶解水供給システムの製造方法および洗浄方法を提供することである。 The purpose of the present invention is to reduce the risk of organic matter contamination such as biofilm after restarting the system when a water tank used as a treated water tank of a water treatment equipment is used as a raw water tank of an ultrapure water or gas dissolved water supply system. It is an object of the present invention to provide a manufacturing method and a cleaning method for an ultrapure water or gas-dissolved water supply system that can suppress the influence.

本発明の一態様により、
超純水又は超純水にガスを溶解したガス溶解水を供給する第1の水供給システムから供給された超純水又はガス溶解水、或いは逆浸透膜透過水である処理水を貯留していた処理水槽を、超純水又は超純水にガスを溶解したガス溶解水を供給する第2の水供給システム原水槽として再利用する水供給システムの構築方法であって、
該処理水槽を過酸化水素のアルカリ性水溶液又は加温された過酸化水素水溶液で洗浄する水槽洗浄工程と、
該洗浄された水槽を該第2の水供給システムに原水槽として接続する接続工程と、
を有する水供給システムの構築方法が提供される。
According to one aspect of the invention,
It stores ultrapure water or gas-dissolved water supplied from the first water supply system that supplies ultrapure water or gas-dissolved water in which gas is dissolved in ultrapure water, or treated water that is reverse osmosis membrane permeated water. A method for constructing a water supply system in which a treated water tank is reused as a raw water tank of a second water supply system that supplies ultrapure water or gas-dissolved water in which a gas is dissolved in ultrapure water, the method comprising:
a water tank cleaning step of washing the treated water tank with an alkaline aqueous solution of hydrogen peroxide or a heated aqueous hydrogen peroxide solution;
a connecting step of connecting the cleaned water tank to the second water supply system as a raw water tank;
A method of constructing a water supply system having the following is provided.

本発明の別の態様により、
超純水又は超純水にガスを溶解したガス溶解水を供給する第1の水供給システムから供給された超純水又はガス溶解水、或いは逆浸透膜透過水である処理水を貯留していた処理水槽を、超純水又は超純水にガスを溶解したガス溶解水を供給する第2の水供給システムに原水槽として再利用するおける洗浄方法であって、
処理水槽を該第2の水供給システムの原水槽として接続する接続工程と、
該原水槽を過酸化水素のアルカリ性水溶液又は加温された過酸化水素水溶液で洗浄する原水槽洗浄工程と、
該原水槽洗浄工程の後に、該第2の水供給システムを洗浄するシステム洗浄工程と
を有する水供給システムの洗浄方法が提供される。
According to another aspect of the invention,
It stores ultrapure water or gas-dissolved water supplied from the first water supply system that supplies ultrapure water or gas-dissolved water in which gas is dissolved in ultrapure water, or treated water that is reverse osmosis membrane permeated water. A cleaning method in which a treated water tank is reused as a raw water tank in a second water supply system that supplies ultrapure water or gas-dissolved water in which a gas is dissolved in ultrapure water,
a connecting step of connecting the treated water tank as a raw water tank of the second water supply system;
a raw water tank cleaning step of cleaning the raw water tank with an alkaline aqueous solution of hydrogen peroxide or a heated aqueous hydrogen peroxide solution;
A method for cleaning a water supply system is provided, which includes a system cleaning step of cleaning the second water supply system after the raw water tank cleaning step .

本発明によれば、水処理装置の処理水槽として用いられた水槽を、超純水又はガス溶解水供給システムの原水槽に転用する場合に、当該システム再稼働後のバイオフィルムなどの有機物汚染による影響を抑制することのできる、超純水又はガス溶解水供給システムの製造方法および洗浄方法が提供される。 According to the present invention, when a water tank used as a treated water tank of a water treatment device is used as a raw water tank of an ultrapure water or gas-dissolved water supply system, it is possible to prevent organic matter contamination such as biofilm after restarting the system. Provided are methods for manufacturing and cleaning ultrapure water or gas dissolved water supply systems that can suppress the effects.

ガス溶解水供給システムの、改造前の概略構成例を示すプロセスフローダイアグラムである。1 is a process flow diagram showing an example of a schematic configuration of a gas-dissolved water supply system before modification. ガス溶解水供給システムの、改造後の概略構成例を示すプロセスフローダイアグラムである。1 is a process flow diagram showing a schematic configuration example of a gas-dissolved water supply system after modification. 洗浄液によるバイオフィルムの分解の様子を示す写真である。This is a photograph showing how biofilm is decomposed by a cleaning solution.

以下、図面を参照しつつ、本発明の一形態に係る超純水供給システムおよびガス溶解水供給システムの改造例について説明するが、本発明はこれによって限定されるものではない。 Hereinafter, examples of modification of the ultrapure water supply system and the gas-dissolved water supply system according to one embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1は、改造前の超純水供給システム100およびガス溶解水供給システム200の概略構成を示す。超純水供給システム100は、一次純水タンク1、熱交換器2、脱気装置3、紫外線照射装置5、イオン交換装置6、および限外ろ過膜装置8aを有している。なお、一次純水システムの図示は省略する。被処理水として一次純水システムから供給された一次純水を、一次純水タンク1に貯留し、次いで被処理水を熱交換器2にて温度調節する。次いで被処理水を脱気装置3にて脱気し、被処理水中の溶存ガスを除去する。次いで紫外線照射装置5にて被処理水に紫外線を照射し、殺菌や有機物分解を行う。次いでイオン交換装置(カートリッジポリッシャー)6にて被処理水中の金属イオンなどをイオン交換処理により除去する。次いで限外ろ過膜装置8aにて被処理水中の微粒子を除去して超純水を得る。製造した超純水をユースポイント9aに供給する。ユースポイント9aで使用しない超純水は一次純水タンク1に返送される。超純水供給システム100の要素として、上記の他に過酸化水素添加装置や、過酸化物除去装置、精密ろ過膜装置等を備えることもでき、各要素の配置も適宜変更することができる。 FIG. 1 shows a schematic configuration of an ultrapure water supply system 100 and a gas dissolved water supply system 200 before remodeling. The ultrapure water supply system 100 includes a primary pure water tank 1, a heat exchanger 2, a deaerator 3, an ultraviolet irradiation device 5, an ion exchange device 6, and an ultrafiltration membrane device 8a. Note that illustration of the primary pure water system is omitted. Primary pure water supplied from a primary pure water system as water to be treated is stored in a primary pure water tank 1, and then the temperature of the water to be treated is adjusted by a heat exchanger 2. Next, the water to be treated is degassed by the deaerator 3 to remove dissolved gases in the water to be treated. Next, the water to be treated is irradiated with ultraviolet rays by the ultraviolet irradiation device 5 to sterilize and decompose organic matter. Next, an ion exchange device (cartridge polisher) 6 removes metal ions and the like from the water to be treated by ion exchange treatment. Next, ultrapure water is obtained by removing fine particles in the water to be treated using an ultrafiltration membrane device 8a. The produced ultrapure water is supplied to the use point 9a. Ultrapure water that is not used at the use point 9a is returned to the primary pure water tank 1. In addition to the above elements, the ultrapure water supply system 100 can also include a hydrogen peroxide addition device, a peroxide removal device, a microfiltration membrane device, etc., and the arrangement of each element can be changed as appropriate.

ガス溶解水供給システム200では、超純水供給システム100のイオン交換装置(カートリッジポリッシャー)6の出口から分岐して得た被処理水に、炭酸ガス溶解装置7にて炭酸ガスを溶解し、次いで限外ろ過膜装置8bにて被処理水中の微粒子を除去して炭酸ガス溶解水を得る。換言すれば、ガス溶解水供給システム200と超純水供給システム100は、一次純水タンク1からイオン交換装置6までを共用している。製造した炭酸ガス溶解水をユースポイント9bに供給する。ユースポイント9bで使用しない炭酸ガス溶解水は処理水槽としての貯水槽10に受けた後、超純水供給システム100の一次純水システムに返送したり、その他の用途に再利用したりすることができる。 In the gas-dissolved water supply system 200, carbon dioxide is dissolved in the carbon dioxide gas dissolving device 7 in the water to be treated which is obtained by branching from the outlet of the ion exchange device (cartridge polisher) 6 of the ultrapure water supply system 100, and then Fine particles in the water to be treated are removed by the ultrafiltration membrane device 8b to obtain carbon dioxide dissolved water. In other words, the gas-dissolved water supply system 200 and the ultrapure water supply system 100 share the primary pure water tank 1 to the ion exchange device 6. The produced carbon dioxide dissolved water is supplied to the use point 9b. After the carbon dioxide gas-dissolved water that is not used at the use point 9b is received in a water storage tank 10 as a treated water tank, it can be returned to the primary pure water system of the ultrapure water supply system 100 or reused for other purposes. can.

なお、本実施形態では、超純水供給システム100で製造された超純水(ただし限外ろ過膜装置8aで処理されていないもの)の一部を分岐してガス溶解水供給システム200の原水として使用し、超純水の供給とガス溶解水の供給とが可能なシステムとしているが、超純水供給システム100とガス溶解水供給システム200とは全くの別系統のシステムであってもよい。また、限外ろ過膜装置8a及びユースポイント9aがなく、超純水供給システム100で製造された超純水(ただし限外ろ過膜装置8aで処理されていないもの)の全量がガス溶解水供給システム200の原水として使用されるシステムであってもよい。 In addition, in this embodiment, a part of the ultrapure water produced by the ultrapure water supply system 100 (but not processed by the ultrafiltration membrane device 8a) is branched and used as raw water for the gas dissolved water supply system 200. Although the system is used as a system capable of supplying ultrapure water and gas dissolved water, the ultrapure water supply system 100 and the gas dissolved water supply system 200 may be completely different systems. . In addition, there is no ultrafiltration membrane device 8a and use point 9a, and the entire amount of ultrapure water produced by the ultrapure water supply system 100 (but not treated by the ultrafiltration membrane device 8a) is supplied as gas-dissolved water. The system may be used as raw water for the system 200.

図2は、改造後(接続工程実施後)の超純水供給システム100およびガス溶解水供給システム201の概略構成を示す。超純水供給システム100は改造前後で構成は変わっていない。一方、ガス溶解水供給システム201は、ユースポイント9bで使用しないガス溶解水を貯水槽10に受けた後、第2の熱交換器21、第2の紫外線照射装置22および第2のイオン交換装置(カートリッジポリッシャー)23を介して炭酸ガス溶解装置7に送る。このために、超純水供給システム100からの分岐ラインを貯水槽10に接続し、貯水槽10の下流に、第2の熱交換器21、第2の紫外線照射装置22および第2のイオン交換装置23を設けている。これにより、ガス溶解水供給システム201は、ユースポイント9bで使用しないガス溶解水を超純水供給システム100と同様に循環して再利用できるように改造されている。即ち、貯水槽10には、改造前においては、超純水に炭酸ガスが溶解されたガス溶解水がガス溶解水供給システムの処理水として貯留され、改造後においては、ガス溶解水供給システムの原水が貯留される。 FIG. 2 shows a schematic configuration of the ultrapure water supply system 100 and the gas-dissolved water supply system 201 after modification (after the connection process is performed). The configuration of the ultrapure water supply system 100 remains unchanged before and after the remodeling. On the other hand, the gas dissolved water supply system 201 receives unused gas dissolved water at the use point 9b into the water storage tank 10, and then supplies the gas dissolved water to the second heat exchanger 21, the second ultraviolet irradiation device 22, and the second ion exchange device. (cartridge polisher) 23 to the carbon dioxide dissolving device 7. For this purpose, a branch line from the ultrapure water supply system 100 is connected to the water storage tank 10, and downstream of the water storage tank 10, a second heat exchanger 21, a second ultraviolet irradiation device 22, and a second ion exchanger are installed. A device 23 is provided. Thereby, the gas dissolved water supply system 201 has been modified so that the gas dissolved water not used at the use point 9b can be circulated and reused similarly to the ultrapure water supply system 100. That is, before the modification, gas-dissolved water in which carbon dioxide gas is dissolved in ultrapure water is stored in the water storage tank 10 as treated water of the gas-dissolved water supply system, and after the modification, gas-dissolved water of the gas-dissolved water supply system is stored. Raw water is stored.

超純水供給システムやガス溶解水供給システムは、イオンや微粒子等の不純物が高度に除去されたものであり、設備のメンテナンスや改造等で一度システムを停止させた後、再稼働の際には、システムの洗浄が行われる。洗浄は、通常、過酸化水素水溶液、アルカリ性水溶液、又はオゾンで行われる。改造前の貯水槽10で貯留された炭酸ガス溶解水の導電率は10μS/cm以下であるため、上記のような通常の洗浄を行えばよいと考えられる。しかし、本発明者らは、このようにイオンや微粒子等の不純物が高度に除去された貯水槽を超純水供給システムやガス溶解水供給システムの原水槽として使用する場合には、上記のような通常の洗浄を行っただけでは、バイオフィルム等の有機物が後段の機器、特に限外ろ過膜装置に影響を及ぼすことを見出した。 Ultra-pure water supply systems and gas-dissolved water supply systems have impurities such as ions and particulates removed to a high degree, and once the system has been stopped for equipment maintenance or modification, it will not be necessary to restart the system. , the system is flushed. Cleaning is typically performed with aqueous hydrogen peroxide, aqueous alkaline solution, or ozone. Since the conductivity of the carbon dioxide dissolved water stored in the water storage tank 10 before remodeling is 10 μS/cm or less, it is considered that normal cleaning as described above may be sufficient. However, the present inventors believe that when using a water tank from which impurities such as ions and particulates have been highly removed as a raw water tank for an ultrapure water supply system or a gas dissolved water supply system, It has been found that if only normal cleaning is performed, organic substances such as biofilms will affect downstream equipment, especially ultrafiltration membrane equipment.

そこで、本発明では、貯水槽10を過酸化水素のアルカリ性水溶液又は加温した過酸化水素水溶液で洗浄する(水槽洗浄工程)。これにより、貯水槽10で発生したバイオフィルム等の有機物が確実に除去され、その他の部分については通常の洗浄を行う(システム洗浄工程)ことで、システムを再稼働した後のバイオフィルム等の有機物の影響を抑制することができる。 Therefore, in the present invention, the water storage tank 10 is cleaned with an alkaline aqueous solution of hydrogen peroxide or a heated aqueous hydrogen peroxide solution (water tank cleaning step). As a result, organic matter such as biofilm generated in the water storage tank 10 is reliably removed, and other parts are cleaned as usual (system cleaning process), so that organic matter such as biofilm generated in the water tank 10 can be removed after restarting the system. It is possible to suppress the influence of

〔水槽洗浄工程における洗浄対象〕
水槽洗浄工程では、水処理装置の処理水槽、すなわち水処理装置で処理された処理水を貯留する水槽を洗浄する。ここでいう「水処理装置」は、例えば、超純水又はガス溶解水供給システムである。ここでいう「処理水」は、例えば、超純水又はガス溶解水供給システムから供給された超純水又はガス溶解水であり、特にはユースポイントで使用されなかった超純水又はガス溶解水である。あるいは、「処理水」は逆浸透膜透過水であってもよい。処理水は例えば10μS/cm以下の導電率を有する。したがって、水槽洗浄工程の洗浄対象は、導電率10μS/cm以下の処理水を貯留する処理水槽として用いられた水槽であってよい。
[Objects to be cleaned in the aquarium cleaning process]
In the water tank cleaning step, a treated water tank of the water treatment device, that is, a water tank that stores treated water treated by the water treatment device is cleaned. The "water treatment device" here is, for example, an ultrapure water or gas dissolved water supply system. "Processed water" here means, for example, ultrapure water or gas-dissolved water supplied from an ultrapure water or gas-dissolved water supply system, and in particular ultrapure water or gas-dissolved water that is not used at the point of use. It is. Alternatively, the "treated water" may be reverse osmosis membrane permeated water. The treated water has a conductivity of, for example, 10 μS/cm or less. Therefore, the object to be cleaned in the aquarium cleaning step may be an aquarium used as a treated aquarium that stores treated water with an electrical conductivity of 10 μS/cm or less.

水槽洗浄工程では、少なくとも転用しようとする水槽(貯水槽10)を洗浄するが、場合により上述の他の機器や配管などを適宜洗浄することもできる。アルカリ性水溶液を通さないほうが良い機器(イオン交換装置など)については、水槽洗浄工程において、過酸化水素のアルカリ性水溶液を適宜バイパスすることができる。 In the aquarium cleaning step, at least the aquarium (water tank 10) to be diverted is cleaned, but other equipment, piping, etc. mentioned above may also be appropriately cleaned depending on the case. For equipment (such as ion exchange equipment) that is better not to pass an alkaline aqueous solution, the alkaline aqueous solution of hydrogen peroxide can be bypassed as appropriate in the aquarium cleaning process.

〔接続工程で接続する原水槽〕
接続工程では、水処理装置の処理水槽として用いられた水槽(水槽洗浄工程で洗浄する)を、超純水又はガス溶解水供給システムに原水槽として接続する。原水槽に貯留する原水は、超純水又はガス溶解水供給システムで処理されて超純水又はガス溶解水となる。原水は例えば一次純水と同等もしくはそれ以上の水質を有することができ、一次純水と同等もしくはそれ以下の導電率を有することができる。原水槽は、例えば超純水又はガス溶解水供給システムのサブシステムの原水槽である。
[Raw water tank connected in the connection process]
In the connection step, the water tank used as the treated water tank of the water treatment device (to be cleaned in the tank cleaning step) is connected to the ultrapure water or gas-dissolved water supply system as a raw water tank. The raw water stored in the raw water tank is treated with an ultrapure water or gas dissolved water supply system to become ultrapure water or gas dissolved water. For example, the raw water can have a water quality equal to or better than primary pure water, and can have an electrical conductivity equal to or lower than primary pure water. The raw water tank is, for example, a raw water tank of a subsystem of an ultrapure water or gas dissolved water supply system.

〔過酸化水素の使用目的〕
過酸化水素は分解すると水になるので、超純水供給システムの立ち上げ時に早期に所定の水質を得るための洗浄液として一般的に使用される。しかしながら、過酸化水素水溶液を一般的な使用方法で使用(アルカリ性にせずに、かつ昇温せずに洗浄に使用)すると、バイオフィルム分解の効果が薄く、バイオフィルム表面の殺菌しかできなかったり、あるいはバイオフィルムの分解に時間がかかったりすることがある。したがって、過酸化水素水溶液の温度を上げるか、もしくはアルカリ性にする。これにより、過酸化水素の分解によりラジカルの発生が促進し、その結果、ラジカルによる有機物の分解を促進する効果が期待できる。また、過酸化水素の分解により生じるガスにより、洗浄対象に物理的に付着した有機物を微細化させる効果を得ることもできる。なお、オゾンを用いてバイオフィルムを分解することも可能ではあるが、オゾンは取り扱いが容易とは言えない。また、次亜塩素酸を用いてバイオフィルムを分解することも可能ではあるが、CLについて低濃度の水質保証が求められることが多く、超純水供給システムの立ち上げ時に所定の水質を得るまでに時間がかかってしまう。
[Purpose of use of hydrogen peroxide]
When hydrogen peroxide decomposes, it becomes water, so it is generally used as a cleaning liquid to quickly obtain a predetermined water quality when starting up an ultrapure water supply system. However, when a hydrogen peroxide solution is used in the usual way (using it for cleaning without making it alkaline or raising the temperature), it has little effect on biofilm decomposition and can only sterilize the surface of the biofilm. Alternatively, it may take time for the biofilm to decompose. Therefore, the temperature of the hydrogen peroxide aqueous solution is increased or it is made alkaline. This promotes the generation of radicals through the decomposition of hydrogen peroxide, and as a result, the effect of promoting the decomposition of organic matter by the radicals can be expected. Further, the gas generated by the decomposition of hydrogen peroxide can also have the effect of making organic substances physically attached to the object to be cleaned finely divided. Note that although it is possible to decompose biofilms using ozone, it cannot be said that ozone is easy to handle. In addition, although it is possible to decompose biofilms using hypochlorous acid, it is often necessary to guarantee water quality at a low concentration of CL, and until a specified water quality is achieved at the time of starting up an ultrapure water supply system. It takes time.

〔アルカリ剤の種類〕
水槽洗浄工程で用いる洗浄液(過酸化水素水溶液)をアルカリ性にするために、水酸化ナトリウム、アンモニア、水酸化テトラメチルアンモニウム(TMAH)、等のアルカリ剤を用いることができる。しかしながら、Naについて低濃度の水質保証が求められることが多く、超純水供給システムの立ち上げ時に早期に所定の水質を得るために、TMAHまたはアンモニアが好ましい。また、臭気の観点からは、アンモニア以外のものが好ましい。TMAHはTOC源にはなりうるが、一般に金属類に比べると有機物の水質保証値は高いので、超純水供給システムの立ち上げ時に早期に所定の水質を得る観点からTMAHが好ましい。また、超純水供給システムがある半導体又は液晶製造工場では、TMAHを現像液として使用していることも多いため、TMAH使用が受け入れやすい。
[Type of alkaline agent]
In order to make the cleaning liquid (hydrogen peroxide aqueous solution) used in the aquarium cleaning process alkaline, an alkaline agent such as sodium hydroxide, ammonia, tetramethylammonium hydroxide (TMAH), etc. can be used. However, water quality assurance at a low concentration of Na is often required, and TMAH or ammonia is preferred in order to quickly obtain a predetermined water quality when starting up an ultrapure water supply system. Moreover, from the viewpoint of odor, substances other than ammonia are preferable. Although TMAH can be a TOC source, organic substances generally have a higher guaranteed water quality value than metals, so TMAH is preferable from the viewpoint of quickly obtaining a predetermined water quality when starting up an ultrapure water supply system. Further, in semiconductor or liquid crystal manufacturing factories that have ultrapure water supply systems, TMAH is often used as a developer, so the use of TMAH is easily accepted.

〔アルカリ性の過酸化水素水溶液の調製方法〕
水槽洗浄工程における洗浄対象に送水できるタンク、例えば一次純水タンクに純水もしくは超純水を入れ、次いで過酸化水素(通常は過酸化水素水)およびアルカリ剤を順に入れて混合することにより、アルカリ性の過酸化水素水溶液を調製することができる。過酸化水素とアルカリ剤の投入順番はどちらが先でもよいし、同時でもよい。過酸化水素とアルカリ剤の混合直後から過酸化水素の分解が促進されるので、混合後速やかに洗浄対象へ洗浄液を送ることが望ましい。また、貯水槽10の洗浄(水槽洗浄工程)にあたっては、貯水槽10に過酸化水素を投入した後にアルカリ剤を投入して貯水槽10内で過酸化水素とアルカリ剤とを混合してもよい。
[Preparation method of alkaline hydrogen peroxide aqueous solution]
By putting pure water or ultrapure water into a tank that can send water to the object to be cleaned in the aquarium cleaning process, such as a primary pure water tank, and then adding hydrogen peroxide (usually hydrogen peroxide solution) and an alkaline agent in order and mixing. An alkaline aqueous hydrogen peroxide solution can be prepared. The hydrogen peroxide and the alkaline agent may be added in either order or at the same time. Since the decomposition of hydrogen peroxide is accelerated immediately after mixing hydrogen peroxide and an alkaline agent, it is desirable to send the cleaning liquid to the object to be cleaned immediately after mixing. Furthermore, when cleaning the water tank 10 (water tank cleaning step), hydrogen peroxide may be added to the water tank 10 and then an alkaline agent may be added to mix the hydrogen peroxide and the alkaline agent in the water tank 10. .

〔水槽洗浄工程における過酸化水素濃度、pH〕
水槽洗浄工程で使用する洗浄液中の過酸化水素濃度は、有機物の分解を促進して洗浄時間を短かくする観点から、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3%以上である。また、過酸化水素の使用量を抑える観点から、過酸化水素濃度は10質量%以下が好ましい。
[Hydrogen peroxide concentration and pH in the aquarium cleaning process]
The concentration of hydrogen peroxide in the cleaning liquid used in the aquarium cleaning process is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 3% by mass, from the viewpoint of promoting the decomposition of organic matter and shortening the cleaning time. % or more. Further, from the viewpoint of suppressing the amount of hydrogen peroxide used, the hydrogen peroxide concentration is preferably 10% by mass or less.

洗浄液のpHは、7を超え、14以下の範囲にあればよいが、洗浄効果の観点から、好ましくは9以上、より好ましくは11以上である。 The pH of the cleaning liquid may be in the range of more than 7 and less than 14, but from the viewpoint of cleaning effect, it is preferably 9 or more, more preferably 11 or more.

〔水槽洗浄工程のタイミング〕
貯水槽10の洗浄(水槽洗浄工程)を行うタイミングは、システムの改造(接続工程)の前および後のいずれでもよく、前および後の両方でもかまわない。貯水槽10の洗浄後にシステムの改造を行うと貯水槽10の洗浄後、システム改造の間に貯水槽10内に外気が入り込んで、バイオフィルムが発生する可能性があるため、改造後に貯水槽10を洗浄することが好ましい。
[Timing of aquarium cleaning process]
The timing for cleaning the water tank 10 (water tank cleaning process) may be either before or after the system modification (connection process), or both before and after the system modification (connection process). If the system is modified after cleaning the water tank 10, there is a possibility that outside air will enter the water tank 10 and biofilm will occur after cleaning the water tank 10 and during the system modification. It is preferable to wash the

〔水槽洗浄工程の洗浄時間〕
洗浄対象の履歴や汚染状況、洗浄液の過酸化水素濃度およびアルカリ剤濃度にもよるが、典型的には1時間~1週間程度、洗浄対象に洗浄液を接触させる。このとき、洗浄対象と洗浄液が接触していればよく、洗浄対象を洗浄液に浸漬するだけで効果がある。ただし、ポンプを用いて洗浄液を洗浄対象内で循環させたり、洗浄対象内で洗浄液を窒素ガスで曝気したりすると、より有機物の分解が促進されるため、好ましい。なお、洗浄に際してガスが生成するが、生成したガスは適切に排気すればよい。
[Cleaning time of aquarium cleaning process]
The cleaning liquid is typically brought into contact with the cleaning object for about one hour to one week, depending on the history of the cleaning object, the contamination status, and the concentration of hydrogen peroxide and alkaline agent in the cleaning liquid. At this time, it is sufficient that the object to be cleaned and the cleaning liquid are in contact with each other, and it is effective simply by immersing the object to be cleaned in the cleaning liquid. However, it is preferable to circulate the cleaning liquid within the object to be cleaned using a pump or to aerate the cleaning liquid within the object to be cleaned with nitrogen gas, as this will further promote the decomposition of organic matter. Note that gas is generated during cleaning, but the generated gas may be appropriately exhausted.

〔昇温した過酸化水素水溶液の調製方法〕
水槽洗浄工程の洗浄対象に送水できるタンクに純水もしくは超純水を入れ、次いで過酸化水素(通常は過酸化水素水)を入れ、熱交換器など適宜の加熱手段を用いて加熱することにより、昇温した過酸化水素水溶液を調製することができる。過酸化水素の投入と加熱の順番はどちらが先でもよいし、同時でもよい。なお、昇温したアルカリ性の過酸化水素水溶液を調製する場合、上述した過酸化水素の投入、アルカリ剤の投入および加熱を適宜行うことができる。
[Preparation method of heated hydrogen peroxide aqueous solution]
By pouring pure or ultrapure water into a tank capable of delivering water to the object to be cleaned in the aquarium cleaning process, then pouring hydrogen peroxide (usually hydrogen peroxide water) and heating it using an appropriate heating means such as a heat exchanger. , an aqueous solution of hydrogen peroxide can be prepared at elevated temperature. The order of adding hydrogen peroxide and heating may be either done first or at the same time. In addition, when preparing a heated alkaline aqueous hydrogen peroxide solution, the above-mentioned addition of hydrogen peroxide, addition of an alkaline agent, and heating can be performed as appropriate.

〔水槽洗浄工程の洗浄温度〕
過酸化水素の分解を促進して洗浄時間を短かくする観点から、水槽洗浄工程の洗浄温度は20℃以上が好ましい。時間当たりのガス生成量の増加を抑える観点、および配管・構成部材の耐熱性等の観点から、水槽洗浄工程の洗浄温度は80℃以下が好ましい。
[Cleaning temperature in the aquarium cleaning process]
From the viewpoint of promoting the decomposition of hydrogen peroxide and shortening the cleaning time, the cleaning temperature in the aquarium cleaning step is preferably 20° C. or higher. From the viewpoint of suppressing the increase in the amount of gas produced per hour and from the viewpoint of heat resistance of piping and structural members, the cleaning temperature in the aquarium cleaning step is preferably 80° C. or lower.

〔システム洗浄工程〕
本発明の一態様に係る超純水又はガス溶解水供給システムの製造方法は、前述の水槽洗浄工程と接続工程を有する。本発明の別の態様に係る超純水又はガス溶解水供給システムの洗浄方法は、水槽洗浄工程の前に接続工程を有し、水槽洗浄工程の後にシステム洗浄工程を有する。システム洗浄工程では、超純水又はガス溶解水供給システムを洗浄する。過酸化水素水溶液(アルカリ性でなく、加温もされていないもの)、アルカリ性水溶液(過酸化水素を含まないもの)、又はオゾンを、超純水又はガス溶解水供給システムに通す、通常の洗浄方法を採用することができる。
[System cleaning process]
A method for manufacturing an ultrapure water or gas-dissolved water supply system according to one aspect of the present invention includes the above-described water tank cleaning step and connection step. A method for cleaning an ultrapure water or gas dissolved water supply system according to another aspect of the present invention includes a connection process before the water tank cleaning process, and a system cleaning process after the water tank cleaning process. In the system cleaning step, the ultrapure water or gas dissolved water supply system is cleaned. Conventional cleaning methods that involve passing an aqueous hydrogen peroxide solution (not alkaline or heated), an alkaline aqueous solution (not containing hydrogen peroxide), or ozone through an ultrapure water or gas dissolved water supply system. can be adopted.

〔実施例1~6、比較例1~2、参考例1〕
導電率10μS/cm以下の環境下で貯水槽内部に生成したバイオフィルムを超純水に溶解させて濃厚バイオフィルム水溶液を調製し、濃厚バイオフィルム水溶液5mLと表1に示す洗浄液45mLを混合して、初期濁度が2以上の水溶液を調製した。表中、常温とは約23℃を意味する。
[Examples 1 to 6, Comparative Examples 1 to 2, Reference Example 1]
A concentrated biofilm aqueous solution was prepared by dissolving the biofilm generated inside the water storage tank in an environment with an electrical conductivity of 10 μS/cm or less in ultrapure water, and 5 mL of the concentrated biofilm aqueous solution and 45 mL of the cleaning solution shown in Table 1 were mixed. , an aqueous solution with an initial turbidity of 2 or more was prepared. In the table, normal temperature means about 23°C.

混合した水溶液を表1に示す温度に保ち、所定時間経過時に水溶液を目視観察し、また濁度を測定することで、バイオフィルムが分解したかどうかを確認した。目視観察結果は次のように評価した。
A:バイオフィルムが概ね分解および微細化し、残存量はわずかであった。
B:バイオフィルムがある程度微細化または減少した。
C:初期状態と比べて変化が見られなかった。
The mixed aqueous solution was maintained at the temperature shown in Table 1, and after a predetermined period of time, the aqueous solution was visually observed and the turbidity was measured to confirm whether the biofilm had decomposed. Visual observation results were evaluated as follows.
A: The biofilm was mostly decomposed and refined, and only a small amount remained.
B: The biofilm became finer or decreased to some extent.
C: No change was observed compared to the initial state.

実施例1~6から、過酸化水素水溶液の温度を上げるか、またはアルカリ性にすることで、バイオフィルムの分解が促進されることが分る。特に実施例1のように過酸化水素水溶液をpH11にした場合、次亜塩素酸ナトリウム水溶液を使用した参考例1と同レベルの短時間でバイオフィルムが分解した。 Examples 1 to 6 show that biofilm decomposition is promoted by increasing the temperature of the hydrogen peroxide aqueous solution or making it alkaline. In particular, when the hydrogen peroxide aqueous solution was adjusted to pH 11 as in Example 1, the biofilm was decomposed in the same short time as Reference Example 1 using an aqueous sodium hypochlorite solution.

実施例2~4では、TMAHを添加した過酸化水素水溶液のpHを変化させ、バイオフィルムの分解の様子を確認した。pHが高いほど早く分解した。また、実施例5で、TMAHに替えてアンモニアを使用した場合においても、バイオフィルムが分解することを確認した。 In Examples 2 to 4, the pH of the hydrogen peroxide aqueous solution to which TMAH was added was changed, and the state of biofilm decomposition was confirmed. The higher the pH, the faster the decomposition. Furthermore, in Example 5, it was confirmed that the biofilm was decomposed even when ammonia was used instead of TMAH.

一方、過酸化水素水溶液のみで常温の場合は、バイオフィルムの分解が促進しなかった。また、TMAHを添加した過酸化水素水溶液であっても、pHが7の場合はバイオフィルムの分解が促進しなかった。 On the other hand, when the hydrogen peroxide solution alone was used at room temperature, biofilm decomposition was not promoted. Further, even with a hydrogen peroxide aqueous solution to which TMAH was added, biofilm decomposition was not promoted when the pH was 7.

〔実施例7~8〕
前述と同様にバイオフィルムを容器に一定量入れ、表2に示す過酸化水素濃度とpHを有する洗浄液(TMAHを使用)を加え、表2に示す温度に保ち、所定時間経過時にバイオフィルムの分解の様子を観察した。表2に、バイオフィルムがどの程度残存していたかを示す(実施例3及び4のサンプルについても同様に示す)。表2から、過酸化水素濃度が高いほど、またpHが高いほど、短時間でバイオフィルムが分解することがわかる。分解の様子を観察したところ、バイオフィルムにガスが付着してしばらくすると、バイオフィルムが微細化し、分解する様子が確認された。実施例4における分解の様子を、図3に示す。洗浄液を加えてから1時間後の写真では、中央にはっきりとバイオフィルムが確認できるが、5時間後にはその像がかなり不鮮明になり、24時間後には、バイオフィルムは無くなった。
[Examples 7-8]
As before, put a certain amount of biofilm into a container, add a cleaning solution (TMAH is used) having the hydrogen peroxide concentration and pH shown in Table 2, keep it at the temperature shown in Table 2, and decompose the biofilm after a predetermined period of time. I observed the situation. Table 2 shows how much biofilm remained (the same is shown for the samples of Examples 3 and 4). Table 2 shows that the higher the hydrogen peroxide concentration and the higher the pH, the faster the biofilm decomposes. When observing the state of decomposition, it was confirmed that after a while the biofilm became finer and decomposed after the gas adhered to it. The state of disassembly in Example 4 is shown in FIG. In the photograph taken 1 hour after the addition of the washing solution, a biofilm can be clearly seen in the center, but after 5 hours the image becomes quite unclear, and after 24 hours, the biofilm has disappeared.

Figure 0007387320000001
Figure 0007387320000001

Figure 0007387320000002
Figure 0007387320000002

1 一次純水タンク
2 熱交換器
3 脱気装置
4 窒素ガス溶解装置
5 紫外線照射装置
6 イオン交換装置
7 炭酸ガス溶解装置
8 限外ろ過膜装置
9 ユースポイント
10 転用する貯水槽
21 第2の熱交換器
22 第2の紫外線照射装置
23 第2のイオン交換装置
100 超純水供給システム
200 ガス溶解水供給システム(改造前)
201 ガス溶解水供給システム(改造後)
1 Primary pure water tank 2 Heat exchanger 3 Deaerator 4 Nitrogen gas dissolving device 5 Ultraviolet irradiation device 6 Ion exchange device 7 Carbon dioxide dissolving device 8 Ultrafiltration membrane device 9 Use point 10 Repurposed water storage tank 21 Second heat Exchanger 22 Second ultraviolet irradiation device 23 Second ion exchange device 100 Ultrapure water supply system 200 Gas dissolved water supply system (before modification)
201 Gas dissolved water supply system (after modification)

Claims (12)

超純水又は超純水にガスを溶解したガス溶解水を供給する第1の水供給システムから供給された超純水又はガス溶解水、或いは逆浸透膜透過水である処理水を貯留していた処理水槽を、超純水又は超純水にガスを溶解したガス溶解水を供給する第2の水供給システム原水槽として再利用する水供給システムの構築方法であって、
該処理水槽を過酸化水素のアルカリ性水溶液又は加温された過酸化水素水溶液で洗浄する水槽洗浄工程と、
該洗浄された水槽を該第2の水供給システム原水槽として接続する接続工程と、
を有する水供給システムの構築方法。
It stores ultrapure water or gas-dissolved water supplied from the first water supply system that supplies ultrapure water or gas-dissolved water in which gas is dissolved in ultrapure water, or treated water that is reverse osmosis membrane permeated water. A method for constructing a water supply system in which a treated water tank is reused as a raw water tank of a second water supply system that supplies ultrapure water or gas-dissolved water in which a gas is dissolved in ultrapure water, the method comprising:
a water tank cleaning step of washing the treated water tank with an alkaline aqueous solution of hydrogen peroxide or a heated aqueous hydrogen peroxide solution;
a connecting step of connecting the cleaned water tank as a raw water tank of the second water supply system;
A method of constructing a water supply system having
前記処理水槽は、導電率10μS/cm以下の処理水を貯留する貯水槽として用いられていた水槽である、請求項1に記載の水供給システムの構築方法。 2. The method of constructing a water supply system according to claim 1, wherein the treated water tank is a water tank that has been used as a water storage tank for storing treated water with an electrical conductivity of 10 μS/cm or less. 前記過酸化水素のアルカリ性水溶液は、水酸化ナトリウム、アンモニアおよび水酸化テトラメチルアンモニウムからなる群から選ばれる少なくとも一種を含む、請求項1又は2に記載の水供給システムの構築方法。 The method for constructing a water supply system according to claim 1 or 2, wherein the alkaline aqueous solution of hydrogen peroxide contains at least one selected from the group consisting of sodium hydroxide, ammonia, and tetramethylammonium hydroxide. 前記過酸化水素のアルカリ性水溶液が、水酸化テトラメチルアンモニウムを含み、9以上のpHを有し、1質量%以上の過酸化水素濃度を有する、請求項1~3のいずれか1項に記載の水供給システムの構築方法。 The alkaline aqueous solution of hydrogen peroxide contains tetramethylammonium hydroxide, has a pH of 9 or more, and has a hydrogen peroxide concentration of 1% by mass or more. How to build a water supply system. 前記水槽洗浄工程において、バイオフィルムが発生した処理水槽を洗浄してバイオフィルムを分解する、請求項1~4のいずれか1項に記載の水供給システムの構築方法。 The method for constructing a water supply system according to any one of claims 1 to 4, wherein in the aquarium cleaning step, a treated aquarium in which a biofilm has occurred is cleaned to decompose the biofilm. 前記接続工程において、前記洗浄された水槽は、該第2の水供給システムの限外ろ過膜装置の前段に接続される、請求項5に記載の水供給システムの構築方法。 6. The method for constructing a water supply system according to claim 5, wherein in the connecting step, the cleaned water tank is connected to a stage upstream of an ultrafiltration membrane device of the second water supply system. 超純水又は超純水にガスを溶解したガス溶解水を供給する第1の水供給システムから供給された超純水又はガス溶解水、或いは逆浸透膜透過水である処理水を貯留していた処理水槽を、超純水又は超純水にガスを溶解したガス溶解水を供給する第2の水供給システムに原水槽として再利用する洗浄方法であって、
処理水槽を該第2の水供給システムの原水槽として接続する接続工程と、
該原水槽を過酸化水素のアルカリ性水溶液又は加温された過酸化水素水溶液で洗浄する原水槽洗浄工程と、
該原水槽洗浄工程の後に、該第2の水供給システムを洗浄するシステム洗浄工程と
を有する水供給システムの洗浄方法。
It stores ultrapure water or gas-dissolved water supplied from the first water supply system that supplies ultrapure water or gas-dissolved water in which gas is dissolved in ultrapure water, or treated water that is reverse osmosis membrane permeated water. A cleaning method in which a treated water tank is reused as a raw water tank in a second water supply system that supplies ultrapure water or gas-dissolved water in which a gas is dissolved in ultrapure water, the method comprising:
a connecting step of connecting the treated water tank as a raw water tank of the second water supply system;
a raw water tank cleaning step of cleaning the raw water tank with an alkaline aqueous solution of hydrogen peroxide or a heated aqueous hydrogen peroxide solution;
A method for cleaning a water supply system, comprising a system cleaning step of cleaning the second water supply system after the raw water tank cleaning step .
前記処理水槽は、導電率10μS/cm以下の処理水を貯留する貯水槽として用いられていた水槽である、請求項7に記載の水供給システムの洗浄方法。 8. The method for cleaning a water supply system according to claim 7, wherein the treated water tank is a water tank that has been used as a water storage tank for storing treated water with an electrical conductivity of 10 μS/cm or less. 前記過酸化水素のアルカリ性水溶液は、水酸化ナトリウム、アンモニアおよび水酸化テトラメチルアンモニウムからなる群から選ばれる少なくとも一種を含む、請求項7又は8に記載の水供給システムの洗浄方法。 The method for cleaning a water supply system according to claim 7 or 8, wherein the alkaline aqueous solution of hydrogen peroxide contains at least one selected from the group consisting of sodium hydroxide, ammonia, and tetramethylammonium hydroxide. 前記過酸化水素のアルカリ性水溶液が、水酸化テトラメチルアンモニウムを含み、9以上のpHを有し、1質量%以上の過酸化水素濃度を有する、請求項7~9のいずれか1項に記載の水供給システムの洗浄方法。 The alkaline aqueous solution of hydrogen peroxide contains tetramethylammonium hydroxide, has a pH of 9 or more, and has a hydrogen peroxide concentration of 1% by mass or more. How to clean the water supply system. 前記原水槽洗浄工程において、前記原水槽として接続された前記処理水槽はバイオフィルムが発生した水槽であって、該原水槽を洗浄してバイオフィルムを分解する、請求項7~10のいずれか1項に記載の水供給システムの洗浄方法。 In the raw water tank cleaning step, the treated water tank connected as the raw water tank is a tank in which a biofilm has occurred, and the raw water tank is cleaned to decompose the biofilm. Methods for cleaning water supply systems as described in Section. 前記接続工程において、前記原水槽は、該第2の水供給システムの限外ろ過膜装置の前段に接続される、請求項11に記載の水供給システムの洗浄方法。 12. The method for cleaning a water supply system according to claim 11, wherein in the connecting step, the raw water tank is connected upstream of an ultrafiltration membrane device of the second water supply system.
JP2019138903A 2019-07-29 2019-07-29 Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system Active JP7387320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138903A JP7387320B2 (en) 2019-07-29 2019-07-29 Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138903A JP7387320B2 (en) 2019-07-29 2019-07-29 Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system

Publications (2)

Publication Number Publication Date
JP2021020172A JP2021020172A (en) 2021-02-18
JP7387320B2 true JP7387320B2 (en) 2023-11-28

Family

ID=74574618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138903A Active JP7387320B2 (en) 2019-07-29 2019-07-29 Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system

Country Status (1)

Country Link
JP (1) JP7387320B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192162A (en) 2000-12-26 2002-07-10 Kurita Water Ind Ltd Washing and sterilizing method for extrapure water manufacturing system
JP2004122020A (en) 2002-10-03 2004-04-22 Japan Organo Co Ltd Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus
JP2006297343A (en) 2005-04-25 2006-11-02 Japan Organo Co Ltd Washing method of ultrapure water manufacturing and supplying device
WO2008123351A1 (en) 2007-03-30 2008-10-16 Kurita Water Industries Ltd. Method of washing and sterilizing ultrapure water production system
JP2014217830A (en) 2013-04-11 2014-11-20 栗田工業株式会社 Ultrapure water production system and ultrapure water production and supply system
WO2017191829A1 (en) 2016-05-06 2017-11-09 野村マイクロ・サイエンス株式会社 Method for starting ultrapure water production apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765354B2 (en) * 1997-09-02 2006-04-12 栗田工業株式会社 Method for producing hydrogen-containing ultrapure water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192162A (en) 2000-12-26 2002-07-10 Kurita Water Ind Ltd Washing and sterilizing method for extrapure water manufacturing system
JP2004122020A (en) 2002-10-03 2004-04-22 Japan Organo Co Ltd Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus
JP2006297343A (en) 2005-04-25 2006-11-02 Japan Organo Co Ltd Washing method of ultrapure water manufacturing and supplying device
WO2008123351A1 (en) 2007-03-30 2008-10-16 Kurita Water Industries Ltd. Method of washing and sterilizing ultrapure water production system
JP2014217830A (en) 2013-04-11 2014-11-20 栗田工業株式会社 Ultrapure water production system and ultrapure water production and supply system
WO2017191829A1 (en) 2016-05-06 2017-11-09 野村マイクロ・サイエンス株式会社 Method for starting ultrapure water production apparatus

Also Published As

Publication number Publication date
JP2021020172A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP5251184B2 (en) Gas dissolved water supply system
WO2009128327A1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
US11975995B2 (en) Wash water processing apparatus and sterilization and purification unit, and wash water processing method of semiconductor element or liquid-crystal glasses
JP4910796B2 (en) Cleaning method of ultrapure water production system
JP2017113729A (en) Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
JP2015181973A (en) Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism
JP2016185520A (en) Chemical cleaning method and chemical cleaning apparatus for reverse osmosis membrane device
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
WO2017191829A1 (en) Method for starting ultrapure water production apparatus
JP7387320B2 (en) Manufacturing method and cleaning method for ultrapure water or gas dissolved water supply system
JP2005230731A (en) Method and apparatus for water treatment
JP2009240943A (en) Conditioning method of ion-exchange resin
JP4747659B2 (en) Cleaning method for ultrapure water production and supply equipment
JP6107987B1 (en) Cleaning method of ultrapure water production system
JP2016185514A (en) Cleaning method of permeable membrane, and cleaner
JP2013248547A (en) Method for washing reverse osmosis membrane, and washing solution
CN113767071B (en) Apparatus for treating washing water for semiconductor manufacturing/liquid crystal manufacturing and electronic parts, and method for treating washing water for semiconductor manufacturing/liquid crystal manufacturing and electronic parts
JP2007260211A (en) Method for antiseptically cleaning ultrapure water producing system
JP2007098244A (en) Recycling method of ozone-containing drain
JP2004026987A (en) Washing method for ultra-pure water making system
JP2010227886A (en) Apparatus for producing pure water
CN116322947A (en) Ultrapure water production system and ultrapure water production method
JP2002210477A (en) Method and apparatus for treating ozone-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7387320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150